预测分析之季节预测法
季节变动预测法
季节变动预测法季节变动预测法概述季节变动预测法又称季节周期法、季节指数法、季节变动趋势预测法,季节变动预测法是对包含季节波动的时间序列进行预测的方法。
要研究这种预测方法,首先要研究时间序列的变动规律。
季节变动是指价格由于自然条件、生产条件和生活习惯等因素的影响,随着季节的转变而呈现的周期性变动。
这种周期通常为1年。
季节变动的特点是有规律性的,每年重复出现,其表现为逐年同月(或季)有相同的变化方向和大致相同的变化幅度。
对于同时含有季节因素、趋势因素和不规则因素的时间数列,目前常用的季节预测法主要有两种;移动平均趋势剔除法和最小平方趋势剔除法。
移动平均趋势剔除法虽然原理简单,可以消除季节因素和不规则因素影响,显示现象总体的线性变动趋势,但该方法求得的移动平均值能否真正反映各期趋势水平则令人怀疑,并且如果样本数据多,时间数列长,则计算机械烦琐。
同时此法还存在仅适用近期预测,对短中期预测具有显著不适应性等问题。
最小平方趋势剔除法是一种较为科学的季节预测方法,它是依据最小平方原理通过配合适宜的趋势模型求出数列各期发展水平的趋势值,然后从原数列中予以剔除,进而测定出季节指数或季节变差,并在此基础上进行预测。
移动平均法移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量、公司产能等的一种常用方法。
移动平均法适用于即期预测。
当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的。
移动平均法根据预测时使用的各元素的权重不同移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。
因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。
需求预测的方法有哪些
需求预测的方法有哪些需求预测是指利用历史数据和统计方法来预测未来市场的需求情况。
通过需求预测,企业可以更好地制定采购计划、生产计划和销售策略,降低库存成本,提高生产效率,增强市场竞争力。
需求预测的方法多种多样,可以根据具体的情况选用不同的方法来进行预测。
下面将介绍一些常见的需求预测方法。
1. 趋势分析法趋势分析法是一种常见的需求预测方法,它基于历史数据中的趋势来预测未来的需求。
这种方法适用于需求变化比较平稳的产品。
通过对历史数据进行分析,可以发现产品的需求趋势,进而预测未来的需求情况。
趋势分析法通常使用数学模型来进行预测,如线性回归、指数平滑等。
2. 季节性分析法季节性分析法是一种针对季节性需求变化的预测方法。
许多产品的销量在不同季节会有明显的变化,因此需要通过季节性分析来预测未来的需求。
这种方法通常通过对历史数据进行季节性调整,然后再进行趋势分析来预测未来的需求情况。
3. 历史法历史法是一种简单直接的需求预测方法,它基于历史数据来进行预测。
通过分析历史数据的变化情况,可以预测未来需求的趋势和规律。
历史法适用于产品需求比较稳定,且没有太多外部因素影响的情况。
4. 调查法调查法是一种通过调查受访者的意见和观点来进行需求预测的方法。
这种方法通常适用于新产品的需求预测,通过市场调查和消费者调研来获取未来需求的信息,从而进行预测。
调查法能够更加直观地了解消费者的需求,但其结果受到访调者的主观因素影响较大。
5. 场景法场景法是一种通过构建不同的市场场景来对需求进行预测的方法。
这种方法通常适用于对未来不确定性较大的市场情况进行预测。
通过构建不同的市场情景,可以对未来需求进行多种可能性的预测,进而制定相应的应对策略。
6. 统计预测法统计预测法是一种基于统计学方法进行需求预测的方法,如时间序列分析、回归分析等。
通过对历史数据进行分析和建模,可以预测未来的需求情况。
这种方法通常需要借助统计软件进行分析和建模,能够更加客观地对未来需求进行预测。
第十章时间序列预测法-季节指数法
时间序列 预测法
四、 季节指数预测法
❖ 本法适用于有季节变动特征的经济现象数量预测
销量
200
150
销售量(万元)
100
销量
季度
50
1998年 1999年 2000年 2001年
0
0
4
8
12
16
20
第一季度 148 138 150 145 第二季度 62 64 58 66
第三季度 76 80 72 78
年份 一季度 二季度 三季度 四季度
1995 120 1996 124 1997 138 1998 142
165 182 197 218
282 312 354 370
114 123 140 148
年份
一季度
1995
120
1996
124
1997
138
1998
142
各年同季平 均数
131
季节指数度 四季度
165
282
114
182
312
123
197
354
140
218
370
148
190.5 329.5 131.25
97.41% 168.49% 67.11% 213.82 369.83 147.32
同年各季 平均数 170.25 185.25 207.25 219.50
2 、季节指数预测法的步骤
第1步 第2步
n
计算各年同季(或同月)的平均值
yi
yi
i 1
n
n
计算所有年所有季(或月)的总平均值
y
yi
i 1
n
第3步 计算各季(或月)的季节比率(即季节指数)
季节变动预测法课件
季节变动预测法课件2023-10-29•季节变动预测法概述•季节变动预测法的基本原理•季节变动预测法的应用•季节变动预测法的实践案例•季节变动预测法的优缺点及改进方向目•相关软件工具介绍及操作演示录01季节变动预测法概述定义季节变动预测法是一种基于时间序列数据,识别和预测具有季节性特征的周期性变化的方法。
特点考虑了时间序列数据中季节性因素的影响,能够揭示数据的周期性变化规律,适用于具有明显季节性特征的时间序列数据的预测。
定义与特点适用范围适用于具有明显季节性特征的周期性变化的时间序列数据,如旅游客流量、能源消耗量、农产品产量等。
限制不适用于非周期性变化的数据,或者季节性特征不明显的数据。
此外,季节变动预测法通常需要较长的历史数据,对于较短的时间序列数据可能无法准确预测。
适用范围与限制方法比较与选择方法比较01季节变动预测法与其他预测方法相比,如线性回归、指数平滑等,具有更强的针对性,特别是对于具有明显季节性特征的数据,预测效果通常更佳。
方法选择02在选择季节变动预测法时,需要考虑数据的特征和预测需求。
对于周期性变化明显、季节性因素重要的数据,季节变动预测法是一种有效的预测方法。
注03以上内容仅为概括性的描述,实际应用中还需要根据具体数据特征和预测需求进行详细的分析和应用。
02季节变动预测法的基本原理时间序列分析时间序列的分类根据数据性质的不同,时间序列可分为定量数据和定性数据两大类。
时间序列分析的意义通过对时间序列数据的分析,可以揭示现象在时间上的变化规律,发现其发展变化的趋势,为预测未来走势提供依据。
时间序列的定义时间序列是指按时间顺序排列的一组数据,用于反映某一现象在时间上的变化和发展趋势。
1季节指数计算23季节指数是根据时间序列数据,通过计算特定时间段内数据的平均值或加权平均值,反映现象在该时间段内的变化规律。
季节指数的定义根据时间序列数据性质的不同,季节指数可分为日季节指数、月季节指数、季度季节指数等。
预测分析之季节预测法
4 4036 3982 101.3561 4223 4138 102.0541 4577 4294 106.5906
平均
99.2183 100
16
时间
2005.1 2 3 4
2006.1 2 3 4
2007.1 2 3 4
第一节 季节预测法概述
一、季节变动因子
季节变动预测法是对包含季节变动的时间序列 进行预测的专门方法。为此首先要研究时间序列 中的季节变动规律。
季节变动是指某些社会经济现象由于受自然条 件或社会因素的影响,在一年或更短的时间内, 随着时序的变化而引起的有规律的变动。比较典 型的例子是农业生产。
1
季节变动因子的三种不同情形;
平均 .7 7 3 3
7737
3
月趋 203 205. 208. 205. 212. 213. 193. 194. 195. 197. 199. 201.
势平 均
46727226568
季节 77. 88.4 97.4 152. 139. 129. 119. 107. 95.4 91.1 86.8 81.7 105. 比率 192 62 59 309 02 481 928 261 5 39 24 64 507
这种方法不考虑长期趋势的影响,直接对原始 数据的时间序列采用直接平均的方法消除不规则 变动,计算出各期的季节指数,对预测对象的平 均趋势水平进行季节性调整或预测。重点是对周 期内各个不同的水平进行预测。
7
二、一般步骤
1、收集历年各月(季)的资料(三年以上); 2、计算各年同月(季)的平均数; 3、计算总的月(季)平均数; 4、计算各月(季)的季节指数:
季节指数预测法运用实例
季节指数预测法运用实例假设公司经营多种产品,其中一种产品是每年销售量呈现明显的季节性变化。
我们已经收集到该产品过去5年(60个月)的销售数据,现在需要利用这些数据来预测未来12个月的销售情况。
首先,我们应该生成季节指数。
季节指数可以通过计算每个季度平均销售量占总年销售量的比例来得到。
然后,季度平均销售量除以季度指数,即可得到季度调整后的销售量。
假设我们选取第一年的数据作为基期计算季度指数,即将第一年的季度指数设为1、则可以按照以下步骤进行计算:1.计算每个季度的销售总量:季度1:(销售量1+销售量5+销售量9+销售量13+销售量17+销售量21+销售量25+销售量29+销售量33+销售量37+销售量41+销售量45+销售量49+销售量53+销售量57)=总销售量1季度2:(销售量2+销售量6+销售量10+销售量14+销售量18+销售量22+销售量26+销售量30+销售量34+销售量38+销售量42+销售量46+销售量50+销售量54+销售量58)=总销售量2季度3:(销售量3+销售量7+销售量11+销售量15+销售量19+销售量23+销售量27+销售量31+销售量35+销售量39+销售量43+销售量47+销售量51+销售量55+销售量59)=总销售量3季度4:(销售量4+销售量8+销售量12+销售量16+销售量20+销售量24+销售量28+销售量32+销售量36+销售量40+销售量44+销售量48+销售量52+销售量56+销售量60)=总销售量42.计算每个季度的季度指数:季度指数1=总销售量1/(总销售量1+总销售量2+总销售量3+总销售量4)季度指数2=总销售量2/(总销售量1+总销售量2+总销售量3+总销售量4)季度指数3=总销售量3/(总销售量1+总销售量2+总销售量3+总销售量4)季度指数4=总销售量4/(总销售量1+总销售量2+总销售量3+总销售量4)3.计算每个月的季度调整销售量:月度销售量1=销售量1/季度指数1月度销售量2=销售量2/季度指数2...月度销售量60=销售量60/当季季度指数接下来,我们可以利用计算得到的季度调整销售量进行预测。
第4章 季节周期预测法
(2)计算修匀比例,即时间序列中各季度 的数值与其对应的趋势值相比,使其增长趋 势的影响得以消除,以表明各季度销售量的 季节变动程度。
(3)把修匀比率按季度排列,计算出各年同 季度平均数,及平均修匀比率,该数值就是 各季度指数。
(4)把各季的季节指数加起来,判断是否等 于400%。()
1400 1200 1000 800 600 400 200 0
1
2004
2
2005 2006
32007 200841400 1200 1000 800 600 400 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
第二步:计算季节指数(移动平均趋势剔除法 计算季节指数 ) (1)计算移动平均值。由于是季度数据,所 以在计算的时候,采用4项移动平均。并将 结果进行“中心化”处理,也就是将移动平 均的结果再进行一次2项移动平均,即得出 “中心化移动平均值”。
二、季节指标 (一)季节比率 不考虑长期趋势变动: 季节比率=各月(或季)实际观察值/月 (或季)平均值 考虑长期趋势: 各月(或季)实际观察值/月(或季)趋势值
(二)季节变差 季节变差: 不考虑长期趋势变动: 季节比率=各月(或季)实际观察值-月 (或季)平均值 考虑长期趋势: 各月(或季)实际观察值-月(或季)趋势值
季节比率偏离100%的程度大,说明季节变 动幅度大,季节比率偏离100%的程度小, 说明市场现象季节变动的幅度小。 季节变差偏离0的程度大,说明季节变动的 幅度大,季节变差偏离0的程度小,说明市 场现象季节变动的幅度小。
三、模型的形式 1、加法模型 Y=T+S 2、乘法模型 Y=T+S
四、不考虑长期趋势的季节预测法。 例2:某企业空调销售量2000-2003年四年 的月份资料如下表所示,说明该商品的销售 量是否呈季节变动,并用季节指标进行描述, 同时对该企业2004年的空调销售量进行预 测。 第一步:判断是否存在季节成分。
季节指数预测法 PPT课件
1季度 2季度 3季度 4季度 合计
季节平均值
182 1728 1144 118 3172 793
231 1705 1208 134 3278 819.5
330 1923 1427 132 3821 955.25
247 1788.3 1259.7
128 3423.7 855.93
28.9% 298.15 208.9% 2155.16 147.2% 1518.62
如某种商品第一季度的季节指数为125%,这表明该商品第 一季度的销售量通常高于年平均数25%,属旺季,若第三季 度的季节指数为73%,则表明该商品第三季度的销售量通常 低于年平均数27%,属淡季。
四、简单季节指数法实例分析
技能核算题:某公司从1996年到2001年,每一年各季度的
纺织品销售量见下表。预测2010年各季度纺织品的销售量。 (单位:件)
利用季节指数预测法进行预测时,时间序列的时间单位或是 季,或是月,变动循环周期为4季或是12个月。
运用季节指数进行预测,首先,要利用统计方法计算出预测 目标的季节指数,以测定季节变动的规律性;然后, 在已 知季度的平均值的条件下, 预测未来某个月(季)的预测值。
二、简单季节指数法
简单季节指数法是根据呈现季节变动的时间序列 资料,用求算术平均值方法直接计算各月或各季 的季节指数,据此达到预测目的的一种方法。
年度
2004 2005 2006 2007 2008 2009
年度销售量
600 660 700 750 850 1000
第一季 度
180 210 230 160 170 180 200 220
第三季 度
120 130 130 140 150 160
季节预测法例题
季节预测法是一种基于时间序列数据的预测方法,它利用时间序列中的季节性规律来预测未来的趋势。
下面是一个使用季节预测法的简单例题:
假设你是一位餐厅老板,想要预测未来一个月的销售额。
你收集了过去几个月的销售额数据,发现销售额呈现出季节性波动,每个月的销售额都会出现一次高峰和一次低谷。
基于这些数据,你可以使用季节预测法来预测未来一个月的销售额。
具体步骤如下:1.将时间序列数据划分为若干个季节,每个季节包含若干个时间点。
在这个例子
中,你可以将每个月划分为一个季节,然后计算每个月的平均销售额。
2.计算季节性指数,即将每个季节的平均销售额除以所有季节的平均销售额。
例
如,如果某个月的平均销售额为1000元,而所有月份的平均销售额为800元,则该月份的季节性指数为1.25。
3.使用季节性指数来预测未来一个月的销售额。
假设过去几个月的季节性指数分
别为1.1、1.2、1.3和1.4,则未来一个月的销售额预测值为800 * 1.3 = 1040元。
需要注意的是,季节预测法只适用于具有明显季节性规律的时间序列数据。
如果数据中没有明显的季节性规律,或者季节性规律不稳定,则该方法可能不适用。
此外,还需要注意数据的异常值和缺失值对预测结果的影响。
季节波动预测方法
感谢您的指导和支持!
Thank you for your guidance and support !
年月日
J i u q u a n Vo c a t i o n a l Te c h n i c a l C o l l e g e
2016
2017
2018
季节指数
2.55 0.95 0.22 0.29
季节指数
2.52 0.94 0.22 0.31
季节指数
2.53 0.76 0.20 0.51
平均指数
2.52 0.93 0.21 0.34
• 2009年各季度的销售量预测值为: • 第一季度 2.52×4000/4 = 2524(kg) • 第二季度 0.93×4000/4= 923(kg) • 第三季度 0.21×4000/4= 212(kg) • 第四季度 0.34×4000/4= 341(kg)
市场预测
季节波动预测分析方法
李波
一、概念 季节波动:是指主要由自然条件使经济现象在一 年内随着季节的转变而引起的周期性变动。
季节波动法:是根据一年内季节变动的规律建 立数学模型,对未来市场发展趋势和水平进行 外推预测的方法。
二、方法使用条件 1.四年以上的各个季节相应的信息数据; 2.所有的信息数据是可靠的、客观的。
Z34 … Z3n
Z44 … Z4n
步骤4:计算预测年各季度的销售量预测值为:
X1= ̄Z11*Q/4 X2= ̄Z21*Q/4 X3= ̄Z31*Q/4 X4= ̄Z41*Q/4
四、实际案例
案例
如表1 表2 所示,如2019年预计销售量为4000kg,请预测2019年 各季度的销售量。
销售量kg 年份 季节
第11章 季节变动预测法
全年预测值 2400 400% 7668(吨) 125.2
市场调研与预测
13
第三节 季节变差预测法(一)
一、季节变差指标的测定方法
某季的季节变差=历年同季的季度平均值-整个时期季度平均值
例:上例中(见表8-1数据),要求利用季节变差估算各季度预测值。 解:
第一季度季节变差 2189.2 1747.9 441.3 第二季度季节变差 1495.0 1747.9 252.9 第三季度季节变差 1518.8 1747.9 229.1 第四季度季节变差 1786.8 1749.9 38.9
该季的季节指数
例:上例中,若已知2006年1季度实际销售量为2400吨,预测其它各季度预
测值和全年预测值。
解:第二季度预测值 2400 85.6% 1643(吨) 125.2%
第三季度预测值 2400 86.9% 1666(吨) 125.2%
第四季度预测值 2400 102.2% 1959(吨) 125.2%
20 第一季度季节指数 2189.2/1747.9100% 125.2%
第二季度季节指数 1495/1747.9100% 85.6%
第三季度季节指数 1518.8/1747.9100% 86.9%
第四季度季节指数 1786.8/1747.9100% 102.2%
市场调研与预测
8
— —续上页— —
1786.8
1747.9
102.2%
400%
38,00
市场调研与预测
9
第二节 季节指数预测法(三)
2、全年比率平均法
分两步:
①各季(月)的季节比率(%)
各季度的值 全年季度平均值
100%
②某季度季节指数
季节分析预测法
这四种因素对时间数列的影响通常有两种 假定构成形式。
一是假定四种变动因素是相互独立的,则 时间数列各期发展水平是各个影响因素相 加的总和。它们的结构可用加法模型表达, 即:Y=T+S+C+I
二是假定四种变动因素存在着某种相互影
响关系,互不独立,则时间数列各期发展
3
季节分析预测法
时间数列的分解通常是将上述乘法模型表达式进行变型, 以确定每一个因素的影响。具体表达式如下:
统计学
季节分析预测法
季节分析预测一般采用时间数列分解预测法。 时间数列分解预测法是将影响现象发展过程的各因素,
以模型法进行分解,并加以量度,以便预测各具体因素 受其他因素影响未来可能出现的值。
2
季节分析预测法
时间数列的影响因素有四种:长期趋势因 素T、循环变动因素C、季节变动因素S、 不规则变动因素I。
T Y S CI
S Y T CI
C Y
第六讲 季节变动预测法
预测步骤
1、求各年同月的平均数。以 i 表示各年第i月的 1 同月平均数,则: r1 ( y1 y13 y12 N 11 )
r
N
1 r12 ( y12 y24 y12 N ) N 2、求各年的月平均数。以 y (t ) 表示第t年的月平 1 均数,则: y(1) ( y1 y2 y12 ) 12
tyt 26.58 b 2 13.29 2 t
各月份趋势值填入表中的第⑥行中。 ri fi (i 1,2, ,12) 4、计算季节指数 。由公式: ˆ T i 计算消除了趋势变动影响的同月平均数与趋势的比值。 将结果填入表中的第⑦行中。 1200 1.008 求修正系数: 1190 .5 用此系数分别乘表中第⑦行的各数,结果填入表中第 ⑧行,即为季节指数 Fi 一月季度指数F1=25.28%×1.008=25.48%
62.59 62.54
第四季度 73.75 73.58 73.44 101.52 322.29
80.57 80.51
合计 394.14 383.65 374.89 448.47 1601.15
400.3 400
③同季平均 ④季节指数
上表中第③行的合计本应400%,但合计数为400.3%,故要进行 修正,修正系数=400/400.3=0.99925 以0.99925乘上第③行各数,可得第④行的季节指数
a 15.125 0.3471 8.5 12.175
故有:
ˆ 12.175 0.3471 T t t
2、求历史各期的趋势值
ˆ 12.175 0.34711 12.52 T 1 ˆ 12.175 0.3471 2 12.87 T
季节预测法——精选推荐
四、季节变动预测法季节变动是指由于自然条件和社会条件的影响,事物现象在一年内随着季节的转换而引起的周期性变动。
例如,电力系统一天24小时的负荷和交通系统的客运量均呈现季节性的波动。
为了掌握季节性变动的规律,测算未来的需求,正确地进行各项经济管理决策,及时组织生产和交通运输、安排好市场供给,必须对季节变动进行预测。
季节变动预测就是根据以日、周、月、季为单位的时间序列资料,测定以年为周期、随季节转换而发生周期性变动的规律性方法。
进行季节变动分析和预测,首先要分析判断该时间序列是否呈现季节性变动。
通常,将3—5年的已知资料绘制历史曲线图,以其在一年内有无周期性波动作出判断。
然后,将各种影响因素结合起来,考虑它是否还受趋势变动和随机变动等其他因素的影响。
季节变动的预测方法有很多,最常用的方法是平均数趋势整理法。
它的基本思想是:通过对不同年份中同一时期数据平均,消除年随机变动,然后再利用所求出的平均数消除其中的趋势成分,得出季节指数,最后建立趋势季节模型进行预测。
下面以例5.5为例,介绍平均数趋势整理法的实际操作。
例5.5 已知某市2003年至2005年接待海外游客资料如表5.7所示,要求预测2006年第一季度各月该市接待海外游客的数量。
表5.7 某市2003-2005年接待海外游客资料单位:万人次[解] (1)求出各年的同月平均数,以消除年随机变动。
以n代表时间序列所包含的年数,i r表示各年第i个月的同月平均数,则:173191715...121111=++=+++=n y y y r n33.193212017...222122=++=+++=n y y y r n……253272523...1221211212=++=+++=n y y y r n求各年的月平均数,以消除月随机变动。
以)(t y -表示第t 年的月平均数,则:83.261223241715121121211)1(=++++=+++=-y y y y33.301225292017122122221)2(=++++=+++=-y y y y……5.321227302119121221)(=++++=+++=-n n n n y y y y建立趋势预测模型,求趋势值。
季节指数预测法
四,简单季节指数法实例分析
技能核算题: 技能核算题:某公司从1996年到2001年,每一年各季度的
纺织品销售量见下表.预测2010年各季度纺织品的销售量. (单位:件) 年度 2004 2005 2006 2007 2008 2009 年度销售量 600 660 700 750 850 1000 第一季 度 180 210 230 250 300 400 第二季度 150 160 170 180 200 220 第三季 度 120 130 130 140 150 160 第四季度 150 160 170 180 200 220
季节指数预测法
一,季节指数的含义
季节指数法是根据时间序列中的数据资料所 呈现的季节变动规律性,对预测目标未来状 况作出预测的方法. 在市场销售中,一些商品如电风扇,冷饮, 四季服装等往往受季节影响而出现销售的淡 季和旺季之分的季节性变动规律.掌握了季 节变动规律,就可以利用它来对季节性的商 品进行市场需求量的预测.
练习: 练习:根据某市2007-2009年销售资料预测2010年各
个季节的销售量(单位:件)
季度 1季度 2季度 3季度 4季度 2007年 年 182 1728 1144 118 2008年 年 231 1705 1208 134 2009年 年 330 1923 1427 132
季度 1季度 季度 2季度 季度 3季度 季度 4季度 季度 合计
Y=Yt*C = 298.15 2155.16 1518.62 154.75
247 1788.3 1259.7 128 3423.7 855.93
�
季节平均值
2007年 年 182 1728 1144 118 3172 793
2008年 年 231 1705 1208 134 3278 819.5
第十章时间序列预测法-季节指数法
第四季度 164 172 180 173
1、季节指数预测法的原理
❖ 季节指数法,就是根据预测目标各年按月(或季) 编制的时间数列资料,以统计方法测定出反映季 节变动规律的季节指数,并利用季节指数进行预 测的预测方法。
季节指数×预测年趋势值=预测年各季预测值
各年同季平均数 季总平均数
即预测年的 季平均数
2 、季节指数预测法的步骤
第1步 第2步
n
计算各年同季(或同月)的平均值
yi
yi
i 1
n
n
计算所有年所有季(或月)的总平均值
y
yi
i 1
n
第3步 计算各季(或月)的季节比率(即季节指数)
第4步
fi
Yi Y
估算预测期趋势值
Xˆ
(有多种估算方法)
t
第5步 建立季节指数预测模型 Yˆt Xˆt fi ,进行预测
下年预测值 147.03
二季度 三季度 四季度
165
282
114
182
312
123
197
354
140
218
370
148
190.5 329.5 131.25
97.41% 168.49% 67.11% 213.82 369.83 147.32
同年各季 平均数 170.25 185.25 207.25 219.50
第十章
时间序列 预测法
四、 季节指数预测法
❖ 本法适用于有季节变动特
150
销售量(万元)
100
销量
季度
50
1998年 1999年 2000年 2001年
0
0
4
8
季节变化预测法
2. 计算平均季节指数Fj’ Fj’
o
1j
Fj’ =(S1j+S2j+‥‥Snj) ∕N
j
k =
1,2,
t ‥‥,k
通过运算之后, Fj’有一个新的平均值:
季节变化预测法
二.预测方程为y = y1t• Fj,其中Fj为周期系数(或称季节
系数) 1. 计算序列每一个单位长度的周期指数St
St = yt/y1t t = 2,…… n
公式指出,找出St,即是找出序列每一点真值与趋势 的比值关系。
1 j k 2k 4k
……
由图可以看出,这是一种归一化方法,将问题转向 只考虑周期状况而不考虑运行大趋势。
F = (1/k) ∑Fj’
3. 求出Fj: Fj = Fj’/F j = 1,2, ‥‥,k,
4. 预测公式:第t期预测值为
yt = y1t ·F mod[t,k]
谢谢大家
第五章 季节变动预测法
1995
1996
1997
29
1.进行四项移动平均:
年份 1993 季度 1 2 3 4 1994 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 销售额 254.0 292.4 297.8 330.3 291.1 327.6 321.2 354.3 304.6 348.4 350.8 374.2 319.5 361.5 369.4 395.2 332.6 383.5 383.8 407.4
12
L
第三步:将历年相同月(季)的比率进行 简单计算平均,得到各月(季)的季节指 数。
∑f
fi =
j =1
k
ji
k
(i = 1,2,L , k )
13
年份 1993
季度 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1994
1995
1996
1997
销售额 254.0 292.4 297.8 330.3 291.1 327.6 321.2 354.3 304.6 348.4 350.8 374.2 319.5 361.5 369.4 395.2 332.6 383.5 383.8 407.4
∑S
Si =
j =1
k
ji
k
21
用离差平均法测定季节变差
年份 1993 季度 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 销售额 254.0 292.4 297.8 330.3 291.1 327.6 321.2 354.3 304.6 348.4 350.8 374.2 319.5 361.5 369.4 395.2 332.6 383.5 383.8 407.4 各年平均 293.6 293.6 293.6 293.6 319.8 319.8 319.8 319.8 344.5 344.5 344.5 344.5 361.4 361.4 361.4 361.4 376.8 376.8 376.8 376.8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、预测
下一年第k期预测水平=下一年期平均水平*第k期季节指数
优点:计算简便,容易了解。 缺点:没有考虑时间序列中长期趋势的影响,所得季
节指数有时不够精确。
同月 156 181. 203. 313. 295 276. 231. 208. 186. 180 173. 165
平均 .7 7 3 3
7737
3
月趋 203 205. 208. 205. 212. 213. 193. 194. 195. 197. 199. 201.
势平 均
46727226568
2、具体步骤:
(1)确定指数平滑的初始值; (2)分别对趋势因子、趋势增长因子和季节
因子作一次指数平滑,并计算平滑值; (3)根据最后一期的指数平滑值建立温特斯
法预测模型; (4)根据模型进行季节预测。
温特法的基础方程式:
St
xt ItL
1 St1
bt1
0 1
bt St St1 1 bt1 0 1
四季度
平均
106
99.25
104
99.75
101
99.75
103
100.5
103.5
99.8125
103.6944 100.0025
103.6918
100
第三节 趋势剔除法
一、概念
趋势剔除法是通过计算序列个起的趋势因子 (趋势值),然后剔除趋势因子后计算季节指数,据 此进行季节预测的方法。
与直接平均法不同,这种方法要剔除所有时 期以及同期平均数中可能的包含的趋势因子,求 出纯粹的季节因子,并将之标准化,作为季节预 测模型中的季节指数。
经过大量的数据)
2、图示法(散点图、折线图等,能直观判断出时间序列的季节变动及
其强弱)
3、指标法(判断时间序列季节变动的两个常用指标:季节指数和季节
变差。季节指数是通过一个季节周期内,各期实际水平与平均水平的偏 差程度来显示季节变动,一般是各期实际水平除以总平均水平。季节变 差等于各期实际水平减去总平均水平,用于加法模型)
在实际运用中,指数平滑法可分为两种情况: (1)单纯利用指数平滑的方法建立模型; (2)将指数平滑法与因子分解法相结合建立模型。 指数平滑法使用最为广泛的是温特斯(季节指数平滑)法
二、温特斯指数平滑法
1、基本原理 温特斯指数平滑法是在指数平滑法的基础上,
给出的一种自适应校正的建模预测方法。它可以 同时修正时间序列数据的季节性和倾向性,能用 于对既有倾向性变动趋势又有季节性变动趋势的 时间序列进行预测。它利用三个方程式(其中每 一个方程式都用于平滑模型的三个组成部分(随机 性、趋势性和季节性),且都含有一个有关的参数, 可以平滑随机性)分别对长期趋势因子、趋势增 长量因子和季节变动因子做指数平滑,然后把三 个平滑结果应用到一个预测模型中综合起来,进 行外推预测。
季节 77. 88.4 97.4 152. 139. 129. 119. 107. 95.4 91.1 86.8 81.7 105. 比率 192 62 59 309 02 481 928 261 5 39 24 64 507
季节 73. 83.8 92.3 144. 131. 122. 113. 101. 90.4 86.3 82.2 77.4 100 指数 163 45 72 359 764 723 668 662 68 82 92 96
• 如果这个比值大于1,就说明该季度的值常常会高 于总平均值。(旺季)
• 如果这个比值小于1,就说明该季度的值常常低于 总平均值。(淡季)
• 如果序列的季节指数都近似等于1,那就说明该序 列没有明显的季节效应 。(不存在季节因子)
第二节 直接平均法
一、概念
直接平均法是通过同期(月或季度)数值直 接平均的方法度量季节水平,进而求解各期的季 节指数,预测出时间序列未来水平的预测方法, 又称同期平均法、按月(季)平均法。
1、分析季节变动,掌握季节变动的规律,有利于 指导当前的社会生产和各种经济活动。
2、分析季节变动,可以根据季节变动的规律来配 合适当的季节模型,结合长期趋势进行经济预 测,规划未来。
3、分析季节变动,有利于消除季节变动对时间序 列的影响,更好的研究长期趋势和循环变动。
二、季节预测法的步骤
在研究季节变动时,通常包含了长期趋势。因此,
99.2183 100
时间
2005.1 2 3 4
2006.1 2 3 4
2007.1 2 3 4
实际值Y 4242 3997 2881 4036 4360 4362 3172 4223 4690 4694 3342 4577
四项平均
3789 3818.5 3909.75 3982.5 4029.25 4111.75 4194.75 4237.25 74325.75
趋势值Mt
季节因子S
3803.75 3864.125 3946.125 4005.875 4070.5 4153.25
4216 4281.5
75.741 104.448 110.488 108.89 77.936 101.679 111.243 109.634
时间 2005 2006 2007 同季平均 季节因子
1
110.488 111.243 110.8655 110.8569
2
108.89 109.637 109.2635 109.2551
3 75.741 77.936
4 104.448 101.679
合计
76.8385 76.8325
103.0635 103.0555
400.031 400
四、季节因子的趋势分析法
数)
时间 1 2 3 4 5 6 7 8 9 10 11 12 合 计
2007 150 170 185 285 270 250 185 170 160 150 145 140
2008 155 180 205 310 295 275 245 220 190 185 175 170
2009 165 195 220 345 320 305 265 235 210 205 200 185
4、方差分析法(用F统计量判定时间序列中的季节性,通过对组间方
差与组内方差关系的分析,判断时间序列中是否存在季节变动因子,实 际计算得到的F统计量大于临界值,则时间序列中存在季节变动因子)
季节指数的理解
所谓季节指数就是用简单平均法计算的周 期内各时期季节性影响的相对数
• 季节指数反映了该季度与总平均值之间的一种比 较稳定的关系。
在实际环境中,季节因子也存在某种稳定的 增减趋势变化 。若季节因子存在某种趋势变化, 则在进行季节预测时,就必须对季节因子自身的 变化规律予以考虑,而不能将同期趋势比率简单 平均作为季节指数,此时可以根据季节因子本身 的趋势规律来计算季节因子。
第四节 指数平滑法
一、指数平滑法的概念
指数平滑法是指通过指数平滑的方法,消除 季节因子中的趋势因子和不规则变动因子,从而 求得季节指数,进行季节预测的方法。这种方法 统一采用指数平滑的方法,消除了同一模型中由 于参数估计方法不同而造成的不可比性。
1、季节变动相对稳定(每个季节周期的同一个阶段,其规律特
征基本不变。为此,季节预测中的季节因子一般采用同季的平均季节 指数)
2、季节变动因子不稳定,但季节变动的变化趋势明 显(上升趋势或下降趋势。季节预测要根据具体的季节因子的变化规
律来预测季节指数)
3、季节变动因子不稳定,无规律可循
研究和分析季节变动的意义
4、修正平均季节指数,求出季节指数;
5、根据乘法模型进行预测。(预测值=当期趋势值*对应期季节指数)
年/季度
2005
实际
趋势
比率
2006
实际
趋势
比率
2007
实际
趋势
比率
年/季度 2005 2006 2007
同季平均 季节指数
1 109.7542 108.4307 112.2815 110.1555 111.02336
三、趋势比率剔除法的一般步骤
1、计算长期趋势的趋势值;(趋势模型;在没有明确的趋势模型的时间序
列中,可用移动平均数作为趋势值(12项或4项移动平均))(目的:消除各月季 节变动的影响,确定序列的增长总趋势)
2、各月实际值/各月趋势值=各月季节指数;(消除长期趋势的影响)
3、将历年各月的季节指数加以平均,得到历年各月的平均季节 指数;
时间序列的预测值可看作长期趋势 和T季t 节指数 S j
的函数:
yˆt f (Tt , S j )
j 1,2, , K , K为季节变动的周期数
1、求预测对象的长期趋势水平(选择合适的模型,对于简单情
况可选择直线趋势)
2、计算预测对象的季节指数(准确与否直接关系到预测结果的
精确度。不同模型,都要根据季节变化规律有的放矢地对季节因子进行 测量、描述和预测)
3 73.0662 77.3847 78.5429 76.3313 76.93268
3 2881 3943 73.0662 3172 4099 77.3847 3342 4255 78.5429
4 101.3561 102.0541 106.5906 103.3336 104.14772
4 4036 3982 101.3561 4223 4138 102.0541 4577 4294 106.5906 平均
第一节 季节预测法概述
一、季节变动因子
季节变动预测法是对包含季节变动的时间序 列进行预测的专门方法。为此首先要研究时间序 列中的季节变动规律。