第七章 协方差分析.ppt

合集下载

协方差分析

协方差分析
协方差分析的作用、意义 单向分组资料的协方差分析 两项分组资料的协方差分析 协方差分析的数学模型和基本假定
协方差分析是将乘积和与平方和按照变异来源 进行分解,从而将直线回归与方差分析结合应 用的一种统计方法。
在方差分析的过程中,通常是根据变异的来源将平 方和和自由度分离,从而进行误差估计和显著性检 验。
P
2
0.18667 0.09333 1.04 0.375
组内
18 1.62286 0.09016
总变异
20 1.80952
对y的方差分析
变异来源 组间
df
SS
s2
F
P
2
2.201 1.100 0.45 0.646
组内
18
44.251 2.458
总变异
20
46.452
从方差分析结果来看,不论是营养液喷洒前还 是喷洒后,瓜苗的高度均没有显著区别!
检验误差项回归系数的显著性(F检验法):
Ue
F dfe(U ) 25.348 22.8
Qe
18.9
dfe(Q)
17
按df1=1,df2=17查F值表,得F(0.01)=8.40, F值达到极显著水平,故认为喷洒营养液一周
后植株的高度确实受到植株原高度的影响。
检验误差项回归系数的显著性(t检验法):
C x 2.4 2 2.3 2.2 2 2.9 2.7 16.5 2.35
y 12.9 10.2 12 11 9.5 14.2 13.3 83.1 11.87
总计 x
51.7 2.46
y
240.4 11.44
先对x和y变量分别进行方差分析,得如下结果:
对x的方差分析

《线性回归与协方差》课件

《线性回归与协方差》课件
协方差矩阵
描述数据点之间的协方差关系, 即各变量之间的相关程度。
协方差在回归分析中的作用
01
02
03
预测精度
协方差矩阵用于估计回归 模型的参数,从而提高预 测精度。
模型评估
通过比较实际值与预测值 的协方差,可以评估模型 的拟合效果。
变量选择
协方差矩阵可以帮助确定 哪些变量对回归模型的影 响最大,从而进行变量选 择。
最小二乘法的推导
最小二乘法的推导过程
通过最小化残差平方和,利用数学方 法(如导数)求解最佳参数值。
正规方程法
迭代法
通过迭代算法逐步逼近最小二乘解, 常用的迭代方法有高斯-牛顿法和雅可 比法。
通过正规方程组求解参数值,得到最 小二乘解。
最小二乘法的应用
线性回归分析
最小二乘法广泛应用于线性回 归分析,通过最小化残差平方 和来估计最佳线性模型的参数

时间序列分析
在时间序列分析中,最小二乘 法用于估计最佳的预测模型, 如ARIMA模型。
经济计量学
在经济计量学中,最小二乘法 用于估计经济模型的参数,如 多元线性回归模型。
其他领域
除了以上领域,最小二乘法还 广泛应用于其他领域,如生物 统计学、医学统计、地理信息
系统等。
03
CATALOGUE
协方差介绍
ቤተ መጻሕፍቲ ባይዱ
利用协方差分析股票市场的实例
总结词
协方差矩阵
01
02
详细描述
通过分析股票市场的历史数据,计算各股票 之间的协方差矩阵,了解各股票之间的相关 性。
总结词
投资组合优化
03
总结词
市场趋势分析
05
06
04

协方差与相关系数 PPT

协方差与相关系数 PPT

D(V ) D(2X Y ) D(2X ) D(Y ) 2Cov(2X ,Y )
4D( X ) D(Y ) 2 2 Cov( X ,Y ) 17
所以
Cov(U ,V ) Cov(2X Y , 2X Y )
Cov(2X , 2X ) Cov(2X ,Y ) Cov(Y , 2X ) Cov(Y ,Y )
所以D(t0X*-Y*)=0,由方差得性质知它等价于 P{t0X*-Y* =0}=1,即P{Y=aX+b}=1
其中a=t0σ(Y)/σ(X),b=E(Y)- t0 E(X) σ(Y)/σ(X)、
• 性质3:若X与Y相互独立,则ρXY=0、 证明 若X与Y相互独立,则E(XY)=E(X)E(Y), 又 Cov(X,Y)= E(XY)-E(X)E(Y),所以
协方差与相关系数
一、协方差得概念及性质 二、相关系数得概念及性质 三、协方差得关系式
§1 协方差
• 定义:设二维随机向量(X,Y)得数学期望 (E(X),E(Y))存在,若E[(X-E(X))(Y-E(Y))]存在,则称 它为随机变量X与Y得协方差,记为Cov(X,Y),即
Cov(X,Y)= E[(X-E(X))(Y-E(Y))] • 协方差有计算公式
9 , XY
1 3
,设
U
2X
Y

V 2X Y , 求 UV .

Cov( X ,Y ) XY
D( X ) D(Y ) 1 3
49 2
D(U ) D(2X Y ) D(2X ) D(Y ) 2Cov(2X ,Y )
4D( X ) D(Y ) 2 2 Cov( X ,Y ) 33
E( X ) (1) 0.15 1 0.35 0.20

协方差和相关系数的计算ppt(共24张PPT)

协方差和相关系数的计算ppt(共24张PPT)

E(X 2) 2
D( X ) D(Y ) 2
E(Y 2 ) 2
cov(U ,V ) (a2 b2 ) 2
而 D(U ) a2D( X ) b2D(Y ) (a2 b2 ) 2
D(V ) a2D( X ) b2D(Y ) (a2 b2 ) 2

UV
a2 a2
b2 b2
XY 1 0 P pq
E(X ) p, E(Y ) p, D(X ) pq, D(Y ) pq, E(XY ) p, D(XY ) pq,
cov( X ,Y ) pq, XY 1
例2 设 ( X ,Y ) ~ N ( 1,12,2,22,), 求
XY .

cov( X ,Y )
当D(X ) > 0, D(Y ) > 0 时,当且仅当
P(Y E(Y ) t0 ( X E( X ))) 1
时,等式成立 —Cauchy-Schwarz不等式.
证明 令
g(t) E[(Y E(Y )) t( X E( X ))]2 D(Y ) 2t cov( X ,Y ) t2D( X )
在寒冷的年代里,母爱是温暖。
协方差和相关系数的计算
cov(U ,V ) 解 在文明的年代里,母爱是道德。
继续讨论:a,b 取何值时,U,V 不相关?
E(UV
)
E(U
)E(V
)
为X,Y 的相关系数,记为
a E( X ) b E(Y ) 例2 设 ( X ,Y ) ~ N ( 1, 12, 2, 22,2 ), 求 2XY . 2
E( XY ) p, D( XY ) pq,
cov( X ,Y ) pq, XY 1
X X p ,Y Y p , P(X Y ) 1

协方差分析(Analysis_of_Covariance)(精选)共36页PPT

协方差分析(Analysis_of_Covariance)(精选)共36页PPT


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
协方差分析(Analysis_of_Covariance) (精选)
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
Hale Waihona Puke ▪30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
36

第七章协方差分析

第七章协方差分析

相应的总体相关系数ρ 可用x与y的总体标
准差 x 、 y ,总体协方差COV(x,y)或 xy 表
示如下:
CO(Vx,y) xy xy xy
(10-4)
均积与均方具有相似的形式 , 也有相似的
性质。在方差分析中,一个变量的总平方和与
自由度可按变异来源进行剖分,从而求得相应
的均方。统计学已证明:两个变量的总乘积和
(covariance),记为COV(x,y)或 xy 。统 计学证明了,均积MPxy是总体协方差COV(x,y) 的无偏估计量,即 EMPxy= COV(x,y)。
于是,样本相关系数r可用均方MSx、MSy,
均积MPxy表示为:
r MPxy MSx MSy
(10-3)
上一张 下一张 主 页 退 出
在分析阶段控制混杂因素的方法:
1、采用分层分析:如把年龄分组,再比较 同一年龄组的正常体重与超重组有无差别。 (适用:计量、计数资料)
2、协方差分析(适用:计量资料)
3、多因素分析(适用:计量、计数资料)
协方差分析(analysis of covariance,ANCOVA)
将线性回归与方差分析结合起来,检 验两组或多组修正均数间有无差异的一种 统计方法,用于消除混杂因素对分析指标 的影响。
Yijuti eij
第i组第j个观 测值
一般均值
第i组的组效 应
随机误差
方差分析的前提是除随机误差外,水平变量是影响观测值的唯一变量
下面我们再看协方差分析数据结构(单因 素完全随机设计试验资料的协方差分析):
观测值=一般均值+水平影响+协变量影响+随机误差
Y ij u y tie (X ij u x )ij

随机变量的方差、协方差与相关系数

随机变量的方差、协方差与相关系数
随机变量的方差、 协方差与相关系数
目 录
• 随机变量的方差 • 随机变量的方差 • 随机变量的协方差 • 相关系数 • 方差、协方差与相关系数的关系 • 实例分析
01
CATALOGUE
随机变量的方差
协方差的定义
协方差是衡量两个随机变量同时偏离其各自期望值程度的量,表示两个随机变量 之间的线性相关程度。
03
当两个随机变量的尺度相差很大时,直接计算协方差可能 得出不准确的结果,此时归一化的相关系数更为适用。
方差、协方差与相关系数的应用场景
方差在统计学中广泛应用于衡量数据的离散程度,例如在计算平均值、中位数等统计量时需要考虑数 据的离散程度。
协方差在回归分析、时间序列分析等领域中有着广泛的应用,用于衡量两个变量之间的线性相关程度。
3
当只考虑一个随机变量时,方差即为该随机变量 与自身期望值之差的平方的期望值,因此方差是 协方差的一种特例。
协方差与相关系数的关系
01
相关系数是协方差的一种归一化形式,用于消除两个随机变量 尺度上的差异,计算公式为 $r = frac{Cov(X,Y)}{sigma_X sigma_Y}$。
02
相关系数的取值范围是 [-1,1],其中 1 表示完全正相关,1 表示完全负相关,0 表示不相关。
详细描述
对称性是指如果随机变量X和Y的相关系数是r,那么随机变量Y和X的相关系数也是r。有界性是指相关 系数的绝对值不超过1,即|r|≤1。非负性是指相关系数的值总是非负的,即r≥0。
相关系数的计算
总结词
相关系数的计算方法有多种,包括皮尔 逊相关系数、斯皮尔曼秩相关系数等。
VS
详细描述
皮尔逊相关系数是最常用的一种,其计算 公式为r=∑[(xi-x̄)(yi-ȳ)]/[(n-1)sxy],其 中xi和yi分别是随机变量X和Y的第i个观测 值,x̄和ȳ分别是X和Y的均值,sxy是X和 Y的协方差。斯皮尔曼秩相关系数适用于 有序分类变量,其计算方法是根据变量的 秩次进行计算。

第七篇 方差分析(stata统计分析与应用)

第七篇 方差分析(stata统计分析与应用)

主要选项
描述
category(varlist) class(varlist) repeated(varlist) partial sequential noconstant regress [no]anova
分类变量
分类变量,与上同义。如不注明,Stata默 认所有变量都是分类变量。
重复观测因子
使用边际平方和,默认选项
描述
bonferroni 多重比较检验 scheffe 多重比较检验 sidak 多重比较检验 产生列表 [不]显示均值 [不]显示标准差 [不]显示频数 [不]显示观测个数 不显示方差分析表 以数值形式显示,而不是以标签形式 列表不隔开 将缺失值作P为age一类10
STATA从入门到精通
■ longway命令的基本格式如下: ■ loneway response_var group_var [ i f ] [ i n ] [weight] [ , options]
■ 表7-15 员工信息表
minority educ
salary
beginsalar y
gender
0
8
15750
10200
Female
0
8
15900
10200
Female
0
8
16200
9750
Female
0
8
16650
9750
Female
0
8
16800
10200
Female
0
8
16950
10200
喝减肥茶后体 重(公斤) 63 71 79 73 74 65 67 73 60 76 71 72 75 62

方差分析与协方差分析

方差分析与协方差分析

方差分析的前提条件
(1)每个水平下的因变量应当服从正态分布。方差分析对分布 假设有稳健性(robust),即正态性不满足时,统计结果变化 不大,因此一般并不要求检验总体的正态性。 (2)变异可加性。各因素对离差平方和的影响可以分割成几个 可以加在一起的部分。(多因素) (3)独立性。观察对象是来自所研究因素的各个水平之下的独 立随机抽样
不同颜色带来不同的销售量 随机性差异:由于抽选样本的随机性而产生的差异,例如,
相同颜色的饮料在不同的商场销售量也不相同。
方差分析的基本思想(单因素)
组间变异 组内变异
总变异
▪ 组内只包含随机误差 ▪ 组间既包括随机误差,也包括系统误差
9
组间变异>组内变异
BX A
●●●●●●
X1
●●●●●●
X2
●●●●●●
方差来源 平方和 自由度 均方和
因素A 因素B 误差 总和
SS A SSB SSE SST
df A
MS A
SS A df A
df B
MSB
SSB df B
df E
MSE
SSE df E
dfT
F值
FA
MS A MSE
FB
MSB MSE
F 值临介值
F ( a 1 , a 1 b 1) F (b 1 , a 1 b 1)
注意
df E
dfT
df A
fB,
SSE SST SSA SSB
各因素离差平方和的自由度为水平数减一,总平方和的自由度为试验总次数减一 。
双因素(有重复)试验方差分析表
方差来源 平方和 自由度 均方和
F值
F 值临介值
因素A 因素B

协方差分析

协方差分析

当作随机因素
• 当我们考虑动物窝别对增重的影响时,一般 我们可把它当作随机因素处理,这一方面是 由于它不容易数量化,另一方面是同一窝一 般有几只动物,可分别接受另一因素不同水 平的处理
• 如果我们考虑试验开始前动物初始体重的影 响,这时一般方法是选初始重量相同的动物 作为一组,分别接受另一因素的不同水平处 理,此时用方差分析也无问题。
a2 = 54.570,
b2 = 2.332,
SS
G e
2
32.431
Syy3 = 566.875, Sxy3 = 245.375, Sxx3 = 115.875,
a3 = 43.131,
b3 = 2.118,
SS
G3 e
47.273
组内剩余平方和:,其自由度=18
3
SSeG SSeGi 179 .577
• 从调整后的数据看来,第二种饲料效果最好, 第一种稍差,而第三种差得较多。但从调整 前的数据看是第二种最好,第三种几乎与第 二种相同,而第一种差得多。这种调整前的 差异是不正确的,因为它包含了初始体重的 影响。第三组初始体重明显偏大,而第一组 偏小,这影响了对两种饲料的正确评价。
对各调整后的平均数据作统计 比较
(8)为比较各饲料好坏,计算 调整平均数 y'i.
y'i. yi. b* ( xi. x..), i 1,2,3
• 代入数据,得:
y'1. 81.750 2.402 (13.750 19.25) 94.961 y'2. 98.000 2.402 (18.625 19.25) 99.501 y'3. 96.875 2.402 (25.375 19.25) 82.163
S
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在分析阶段控制混杂因素的方法:
1、采用分层分析:如把年龄分组,再比较 同一年龄组的正常体重与超重组有无差别。 (适用:计量、计数资料)
2、协方差分析(适用:计量资料)
3、多因素分析(适用:计量、计数资料)
协方差分析(analysis of covariance,ANCOVA)
将线性回归与方差分析结合起来,检 验两组或多组修正均数间有无差异的一种 统计方法,用于消除混杂因素对分析指标 的影响。
所以, 处理平均数的回归矫正和矫正平均 数的显著性检验,能够提高试验的准确性 和精确性,从而更真实地反映试验实际。 这种将回归分析与方差分析结合在一起, 对试验数据进行分析的方法,叫做协方差 分析(analysis of covariance)。
二、估计协方差组分
在第六章曾介绍过表示两个相关变量线性相 关性质与程度的相关系数的计算公式:
于是,样本相关系数r可用均方MSx、MSy,
均积MPxy表示为:
r MPxy MSx MSy
第七章 协方差分析
第一节 协方差分析的意义
上一张 下一张 主 页 退 出
在科研中,实验效应除了受到处理因 素的作用外,尚受到许多非处理因素的影 响。如在研究临床疗效时,疗效的好坏不 仅与治疗措施有关,还受病人的年龄、性 别、病情、心理、环境、社会等因素的影 响。
药物临床疗效研究
混杂因
患者的状况(性别、年龄
一、对试验进行统计控制 为了提高试验的精确性和准确性 ,对处理 以外的一切条件都需要采取有效措施严加控制, 使它们在各处理间尽量一致,这叫试验控制。
上一张 下一张 主 页 退 出
但在有些情况下,即使作出很大努力也难以 使试验控制达到预期目的。例如:
研究几种配合饲料对猪的增重效果,希望试 验仔猪的初始重相同,因为仔猪的初始重不同, 将影响到猪的增重。经研究发现:增重与初始重 之间存在线性回归关系。但是,在实际试验中很 难满足试验仔猪初始重相同这一要求。
可以控制的混杂因素:最好在设计阶段(也可 在分析阶段)进行控制。 难以控制的混杂因素:在分析阶段进行控制。
常见的实例
(1)比较不同施肥量对果树单株产量的影 响,果树起始干周是混杂因素。 (2)比较两种药物治疗高血压的疗效,年 龄是一个混杂因素。 (3)研究不同饲料对动物增加体重的作用 时,动物的初始体重、进食量等因素。 (4)… …
不满足条件时的处理方法
X与Y不满足线性关系时,通常情况下是 对X或Y或两者作适当的变量变换,使之符 合线性关系。
协方差分析适用的资料
协方差分析可用于: 完全随机设计、随机区组设计、拉丁方设计、 析因设计等资料; 协变量X可以仅有一个,称一元协方差分析; 协变量也可以有多个,称多元协方差分析。
协方差分析有二个意义 , 一是对试验进行 统计控制,二是对协方差组分进行估计,现分 述如下。
(xx)(yy)
r
(xx)2 (yy)2
若将公式右端的分子分母同除以自由度(n1),得
r
(xx)(yy)/(n1)
(xx)2 (yy)2
(10-1)
(n1)
(n1)
上一张 下一张 主 页 退 出
其中
(x x)2
n 1
是x的均方MSx,它是x的
方差
2 的无偏估计量;
xห้องสมุดไป่ตู้
(y y)2
n 1
是y的均方MSy,它是y的
若 y 的变异主要由x的不同造成(处理没有显 著效应),则各矫正后的 y 间将没有显著差异(但 原y间的差异可能是显著的)。
若 y的变异除掉x不同的影响外, 尚存在不 同处理的显著效应,则可y 期望各y 间将有显著差 异 (但原y间差异可能是不显著的)。此外,矫正 后的 y 和原y的大小次序也常不一致。
上一张 下一张 主 页 退 出
这时可利用仔猪的初始重(记为x)与其增重 (记为y)的回归关系, 将仔猪增重都矫正 为初始重相同时的增重,于是初始重不同 对仔猪增重的影响就消除了。由于矫正后 的增重是应用统计方法将初始重控制一致 而得到的,故叫统计控制。统计控制是试 验控制的一种辅助手段。经过这种矫正, 试验误差将减小,对试验处理效应估计更 为准确。
协变量:在进行协方差分析时,混杂因素 统称为协变量。
协方差分析的基本思想:
在作两组或多组均数 y1 ,y 2 …,y k 的假 设检验前,用线性回归分析方法找出协变
量X与各组Y之间的数量关系,求得在假定X
相等时修定均数y '1 ,y '2 y,'k ,然后用方差 分析比较修正均数间的差别,这就是协方
方差
2 x
的无偏估计量;
(xx)(yy) 称为x与y的平均的离均差 n1
的乘积和,简称均积,记为MPxy,即
(xx)(yy)
MxP y
n1
xy(x)n(y) n1
(10-2)
与 均 积 相 应 的 总 体参 数 叫 协 方 差
(covariance),记为COV(x,y)或 xy 。统 计学证明了,均积MPxy是总体协方差COV(x,y) 的无偏估计量,即 EMPxy= COV(x,y)。
协方差分析的应用条件
⑴各比较组协变量X与分析指标Y存在线性 关系(按直线回归分析方法进行判断)。 ⑵各比较组的总体回归系数βi相等,即各直 线平行(绘出回归直线,看是否平行)。
两条回归直线不平行
结论: 本资 料不 宜做 协方 差分 析
三条回归直线基本平行
各回归系数不 为零
结论: 本资 料可 以做 协方 差分 析

药物
病情
疗效


心 理 因
其他因 素

各组间的效应进行比较,必须保持组间的 影响因素(混杂因素的比例)相同,组间 才具有可比性。
处理因素
T + S1
混杂因素

S2
T
e + s1 (实验组)
s2 (对照组) e
(在设计阶段控制混杂因素的方法)
在混杂因素中,有些是难以完全控制的, 如,天气变化,饲料的进食量;有些是可以控 制的,如年龄,动物的初始体重。
差分析的基本思想。
协方差分析的应用条件
⑴要求各组资料都来自正态总体,且各组的方 差相等;(t检验或方差分析的条件) ⑵各组的总体回归系数βi相等,且都不等于0 (回归方程检验)。
因此,应用协方差分析前,要对资料进行 方差齐性检验和回归系数的假设检验(斜率同 质性检验),只有满足上述两个条件之后才能 应用,否则不宜使用。
相关文档
最新文档