9因式分解——分组分解法
小专题( 六 ) 因式分解的几种常见方法
小专题(六) 因式分解的几种常见方法 -3-
4.十字相乘法:x2+( p+q )x+pq型的多项式的因式分解.这类二次三项式的特点是:二次项的 系数是1,常数项是两个数的积,一次项系数是常数项的两个因数的和.因此,可以直接将某些二 次项的系数是1的二次三项式因式分解:x2+( p+q )x+pq=( x+p )( x+q ).mx2+px+q型的多项
( 1 )1.992+1.99×0.01; 解:原式=1.99×( 1.99+0.01 )=3.98.
( 2 )20162+2016-20172.
解:原式=2016×[( 2016+1 )]-20172=2016×2017-20172=2017×( 2016-2017 )=-2017.
小专题(六) 因式分解的几种常见方法 -5-
m+n )2( m-n )2. 当 m=-3,n=2 时,原式 =( -3+2 )2×( -3-2 )2=( -1 )2×( -5 )2=1×25=25.
5.已知 x=156,y=144,求代数式12x2+xy+12y2 的值. 解:12x2+xy+12y2=12( x2+2xy+y2 )=12( x+y )2, 当 x=156,y=144 时, 原式=12×( 156+144 )2=45000.
小专题(六) 因式分解的几种常见方法 -10-
根据上述论法和解法,思考并解决下列问题: ( 1 )分解因式:x3+x2-2; ( 2 )分解因式:x3-7x+6; ( 3 )分解因式:x4+x2+1. 解:( 1 )原式=( x3-1 )+( x2-1 )=( x-1 )( x2+x+1 )+( x-1 )·( x+1 )=( x-1 )( x2+2x+2 ). ( 2 )原式=x3-1-7x+7=( x-1 )( x2+x+1 )-7( x-1 )=( x-1 )( x2+x-6 )=( x-1 )( x-2 )( x+3 ). ( 3 )原式=x4+2x2+1-x2=( x2+1 )2-x2=( x2+1+x )·( x2+1-x ).
分组分解法因式分解课件
在分组后,需要对每个组内的项式进行因式分解。常用的因式分解技巧包括提公 因式法、十字相乘法、公式法等。根据不同组内项式的特征,选择合适的因式分 解技巧,并灵活运用,以获得最佳的分解结果。
问题三:如何确定分组分解法的正确性?
总结词
确定分组分解法的正确性是确保因式分解结果准确无误的重要步骤。
详细描述
03
原理概述
分组分解法是一种将多项 式分组,然后对每组进行 因式分解的方法。
分组依据
分组依据是多项式的项数 和各项系数的特征,通常 是将系数相近或具有某种 关系的项分为一组。
分解步骤
分组后,对每组进行因式 分解,最后将各组的因式 结果组合起来。
原理应用示例
示例1
将多项式$2x^2 + 3x - 5$分组为$(2x^2 - 5) + 3x$,然后 分别对$2x^2 - 5$和$3x$进行因式分解,得到结果$(2x + 5)(x - 1) + 3x = 2x^2 + x - 5$。
特点
分组分解法适用于多项式的因式 分解,尤其在处理复杂的多项式 时具有高效性和实用性。
分组分解法的应用场景
多项式的因式分解
适用于任何可以分组提取公因式的多 项式,如二次、三次、四次多项式等 。
代数方程的求解
数学竞赛和数学教育
分组分解法是数学竞赛和中学数学教 育中的重要内容,用于提高学生的数 学思维和解题能力。
06 分组分解法的总结与展望
总结
定义
分组分解法是一种将多项式分 组并提取公因式进行因式分解
的方法。
适用范围
适用于具有明显分组特征的多 项式,如三项一组、二项一组 等。
步骤
首先观察多项式的项数和系数 特点,然后选择合适的分组方 式,提取公因式进行因式分解 。
分组分解法因式分解
因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b (3)4x2-9y2-24yz-16z2(4)x3-x2-x+1 分析:首先注意前两项的公因式2x和后两项的公因式-3,此题也可以考虑含有y的项分在一组。
解法1:解法2:说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
这也是分组中必须遵循的规律之一。
(2)分析:若将此题按上题中法2分组将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组,即-b2-4b=-b(b+4),那a(a+4)与-b(b+4)再没有公因式可提,不可再分解下去。
可先将a2-b2一组应用平方差公式,再提出因式。
解:(3)若将此题应用(2)题方法分组将4x2-9y2一组应用平方差公式,或者将4x2-16z2一组应用平方差公式后再没有公因式可提,分组失败。
观察题中特点,后三项符合完全平方公式,将此题二、三、四项分组先用完全平方公式,再用平方差公式完成分解。
解:(4)分析:此题按照系数比为1或者为-1,可以有不同的分组方法。
解法1:解法2:原式=例2、分解因式:(1)m2+n2-2mn+n-m分析:此题还是一个五项式,其中m2-2mn +n2是完全平方公式,且与-m+n=-(m-n)之间有公因式可提取,因而可采用三项、二项分组。
因式分解之四大基本解法
因式分解之四大基本解法知识锦囊经典例题【必会考点1】提取公因式1.因式分解:2281012x y xy --【解答】解:原式222(456)x y xy =--2(43)(2)xy xy =+-.2.因式分解:324824m m m -+-.【解答】解:32248244(26)m m m m m m -+-=--+.3.因式分解:325()10()x y y x -+-.【解答】解:325()10()x y y x -+-325()10()x y x y =-+-25()[()2]x y x y =--+25()(2)x y x y =--+.4.因式分解:3()3()a x y b y x ---.【解答】解:3()3()a x y b y x ---3()3()a x y b x y =-+-3()()x y a b =-+.【必会考点2】公式法1.因式分解:(1)22169x y - (2)22222()4x y x y +-. 【解答】解:(1)原式22(4)(3)(43)(43)x y x y x y =-=+-;(2)原式222222(2)(2)()()x y xy x y xy x y x y =+++-=+-.2.分解因式:22(23)m m -+.【解答】解:原式(23)(23)m m m m =++--(33)(3)m m =+--3(1)(3)m m =-++.3.因式分解:2()6()9x y y x -+-+【解答】解:2()6()9x y y x -+-+2()6()9x y x y =---+2(3)x y =--.【必会考点3】提取公因式与公式法综合1.因式分解:(1)2x xy -; (2)329189x x x -+; 【解答】解:(1)22(1)(1)(1)x xy x y x y y -=-=+-;(2)322291899(21)9(1)x x x x x x x x -+=-+=-;2.因式分解:(1)244am am a -+; (2)22()()a x y b y x -+-. 【解答】解:(1)22242(44)(2)am am a a m m a m -+=-+=-;(2)2222()()()()()()()a x y b y x x y a b x y a b a b -+-=--=-+-.【必会考点3】分组分解法1.因式分解:2m my mx yx -+- 【解答】解:(3)2m my mx yx -+-2()()m my mx yx =-+-()()m m y x m y =-+-()()m y m x =-+.2.因式分解:2221b bc c -+-【解答】解:2221b bc c -+-2()1b c =--(1)(1)b c b c =-+--.【必会考点4】十字相乘法1.因式分解:(1)256x x +- (2)2234a ab b -- 【解答】解:(1)256(1)(6)x x x x +-=-+(2)2234a ab b --(4)()a b a b =-+.2.分解因式:2231x x -+【解答】解:2231(1)(21)x x x x -+=--.巩固练习1.因式分解:(1)2()3()m a b n b a ---; (2)2282()x x y --.2.分解因式:(1)()()x x a y a x -+- (2)321025x y x y xy -+3.因式分解:53242357a b c a b c a bc +-4.分解因式:222(4)16m m +-.5.分解因式(1)222(1)4a a +- (2)229()25()a b a b +--.6.因式分解:22436x xy x y -+-7.因式分解:22144a ab b -+-8.分解因式(1)2249x y - (2)2221x y y -+-9.分解因式:22221x y x y -+-.10.分解因式①226x x -- ②332x x -+11.分解因式:2228x xy y --.12.十字相乘法因式分解:(1)256x x ++ (2)256x x --(3)2231x x -+ (4)2656x x +-.13.因式分解:(1)23a b b -; (2)1n m mn -+-;(3)2221x x y -+-; (4)2()()()x y x y x y -++-14.把下列各式分解因式:(1)225x -; (2)2816a a -+;(3)2()9()x x y x y +-+; (4)3222a a b ab -+-.15.因式分解:(1)236x xy x -+; (2)3241628m m m -+-;(3)2318()12()a b b a ---.巩固练习解析1.因式分解:(1)2()3()m a b n b a ---; (2)2282()x x y --.【解答】解:(1)2()3()m a b n b a --- 2()3()m a b n a b =-+- ()(23)a b m n =-+;(2)2282()x x y --222[4()]x x y =-- 2(3)()x y x y =-+.2.(1)分解因式()()x x a y a x -+- (2)分解因式321025x y x y xy -+ 【解答】(1)解:()()x x a y a x -+- (x =x a -)(y -x a -) (=x a -)(x y -);(2)解:321025x y x y xy -+ (xy =21025)x x -+ (xy =25)x -.3.因式分解:53242357a b c a b c a bc +- 【解答】解:原式322(57)a bc a b c ab =+-; 4.分解因式:222(4)16m m +-. 【解答】解:222(4)16m m +-22(44)(44)m m m m =+++- 22(2)(2)m m =+-.5.分解因式 (1)222(1)4a a +- (2)229()25()a b a b +--. 【解答】解:(1)222(1)4a a +-22(12)(12)a a a a =+++- 2(1)a =+2(1)a -; (2)229()25()a b a b +--[3()5()][3()5()]a b a b a b a b +=+--+- .4(4)(4)a b b a =--.6.因式分解:22436x xy x y -+- 【解答】解:原式2(2)3(2)x x y x y =-+- (2)(23)x y x =-+.7.22144a ab b -+-【解答】解:22144a ab b -+-221(44)a ab b =--+ 21(2)a b =--(12)(12)a b a b =+--+.8.分解因式 (1)2249x y - (2)2221x y y -+-【解答】解:(1)原式(23)(23)x y x y =-+; (2)原式22(21)x y y =--+22(1)x y =--(1)(1)x y x y =+--+.9.分解因式:22221x y x y -+-.【解答】解:原式222222(1)1(1)(1)(1)(1)(1)x y y y x y y x =-+-=-+=+-+. 10.分解因式 ①226x x -- ②332x x -+【解答】解:①226(23)(2)x x x x --=+-; ②332x x -+ 342x x x =-++ (2)(2)(2)x x x x =+-++2(2)(21)x x x =+-+ 2(2)(1)x x =+-.11.分解因式:2228x xy y --. 【解答】解:2228x xy y -- (4)(2)x y x y =-+.12.十字相乘法因式分解: (1)256x x ++ (2)256x x -- (3)2231x x -+ (4)2656x x +-.【解答】解:(1)原式(2)(3)x x =++; (2)原式(6)(1)x x =-+; (3)原式(21)(1)x x =--; (4)原式(23)(32)x x =+-. 13.因式分解: (1)23a b b -; (2)1n m mn -+-; (3)2221x x y -+-;(4)2()()()x y x y x y -++-【解答】解:(1)原式22()()()b a b b a b a b =-=-+;(2)原式(1)()(1)(1)(1)(1)n m mn n m n m n =-+-=-+-=+-;(3)原式2222(21)(1)(1)(1)x x y x y x y x y =-+-=--=---+;(4)原式()()2()x y x y x y x x y =--++=-.14.把下列各式分解因式:(1)225x -;(2)2816a a -+;(3)2()9()x x y x y +-+;(4)3222a a b ab -+-.【解答】解:(1)原式(5)(5)x x =+-;(2)原式2(4)a =-;(3)原式2()(9)x y x =+-()(3)(3)x y x x =++-;(4)原式22(2)a a ab b =--+2()a a b =--.15.因式分解:(1)236x xy x -+;(2)3241628m m m -+-;(3)2318()12()a b b a ---.【解答】解:(1)236(361)x xy x x x y -+=-+;(2)322416284(47)m m m m m m -+-=--+;(3)23218()12()6()(322)a b b a a b a b ---=-+-.。
分组分解法
例 2 解法二:
2ax-10ay+5by-bx
=(2ax-bx)+(5by-10ay)
=x(2a-b)-5y(2a-b) = (2a-b)(x-5y)
还有其他分组 的方法吗?
分组规律:
在有公因式的前提下,按对应项 系数成比例分组,或按对应项的次数 成比例分组。
分解步骤: (1)分组; (2)在各组内提公因式; (3)在各组之间进行因式分解;
小结:
1. 利用分组来分解因式的方法叫做分组分解法; 2.分组分解法的特点: (1).分组后连续两次提公因式; (2).分组后用公式和提公因式; (3).分组后连续两次用公式; 分组后能利用公式.
(1)能利用平方差公式
(2)能利用完全平方公式 3. 问题: (1).是否任意分组都行? (不是) (2).分组应达到什么目的? (能提公因式或能应用公式)
(mx 2my) ( x 4xy 4 y )
2
( x 2 y)(m x 2 y)
2
思考:五项以上的多项式怎样分组?
a 6ab 12b 9b 4a
2
练习2.分解因式:x
2
y x y
2
解:x
2
y x y ( x y ) ( x y)
整 am+an+bm+bn 因 =a(m+n)+b(m+n) 式 =a(m+n)+b(m+n) 式 分 乘 =am+an+bm+bn 法 =(a+b)(m+n) 解 定义: 这种把多项式分成几组来分解因式的方法 叫分组分解法。 (a+b)(m+n) 注意:如果把一个多项式的项分组并提出 公因式后,它们的另一个因式正好相同, 那么这个多项式就可以用分组分解法来分 解因式。
因式分解的9种方法
因式分解的多种方法——--知识延伸,向竞赛过度1. 提取公因式:这种方法比较常规、简单,必须掌握.常用的公式:完全平方公式、平方差公式例一:0322=-x x解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程.总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x —a )因式,这对我们后面的学习有帮助。
2. 公式法常用的公式:完全平方公式、平方差公式。
注意:使用公式法前,部分题目先提取公因式。
例二:42-x 分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a —b) 2解:原式=(x+2)(x —2)3. 十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。
注意:它不难。
这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1•a2,把常数项c 分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b ,那么可以直接写成结果例三: 把3722+-x x 分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。
分解二次项系数(只取正因数): 2=1×2=2×1;分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(—3).用画十字交叉线方法表示下列四种情况:经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 原式=(x —3)(2x —1).总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c 的一次项系数b,即a1c2+a2c1=b ,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).这种方法要多实验,多做,多练。
因式分解之分组分解法及添拆项法
分组分解法及添拆项法【知识要点】1.分组分解法(1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式,即可达到分解因式的目的,即22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++,这种利用分组来分解因式的方法叫分组分解法。
(2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。
(3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。
例 把多项式am+bn+an+bm 分解因式。
解法一:原式=(am+an )+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:原式=(am+bm )+(bn+an)=m(a+b)+n(a+b)= (a+b)(m+n)(4)对于四项式,在分解时并不一定“二二”分组,有的需要“一三”分组, 例如:2221xy x y --+,在分组分解时,前三项为一组,最后一项为一组。
2221xy x y --+=2221(2)1()(1)(1)x xy y x y x y x y --+=--=+--+【典型例题】例1 分解因式(1)22x ax y ay --+ (2)432416x x x -+-(3)22244x xy y a -+- (4)27321a b ab a -+-(5)xy y y x x 2)1()1(-++-(6) )()(2222b a cd d c ab +++例2 分组后能直接运用公式的因式分解。
(1)22194m mn n +-+(2)2242x x y y --+例3 添拆项后再分组。
(1)44a +(2)4224a a b b ++(3)51a a ++ (4)1724+-x x(5)22222+++--+y x y x xy y x (6)22412a ax x x -+++例4 已知7,10x y xy +==,求(1)22x y +(2)44x y +的值。
因式分解分组分解法教师版
分组分解法是在提取公因式法、公式法、十字相乘法的基础上学习的最后一种基本的因式分解方法.分组分解法并不是一种独立的因式分解的方法,通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的.我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的.如何将多项式am an bm bn+++因式分解?分析:很显然,多项式am an bm bn+++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n+=+,()bm bn b m n+=+而:()()()()a m nb m n m n a b+++=++.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.分组分解法知识结构知识精讲内容分析【例1】 因式分解: (1)2a ab ac bc -+-; (2)ax by bx ay --+.【难度】★【答案】(1)()()a c a b +-;(2)()()x y a b +-. 【解析】(1)原式()()()()a a b c a b a c a b =-+-=+-;(2)原式()()()()a x y b x y x y a b =+-+=+-.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例2】 分解因式:32x bx ax ab +++. 【难度】★【答案】2()()x b x a ++. 【解析】原式2()()x x b a x b =+++2()()x b x a =++.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例3】 分解因式:32acx bcx adx bd +++. 【难度】★【答案】2()()ax b cx d ++.【解析】原式2()()cx ax b d ax b =+++2()()ax b cx d =++.【点评】考查学生分组分解方法的运用以及提取公因式的能力.例题解析【例4】 分解因式:22abx bxy axy y +--. 【难度】★【答案】()()ax y bx y +-.【解析】原式()()bx ax y y ax y =+-+()()ax y bx y =+-.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例5】 分解因式:2105ax ay by bx -+-. 【难度】★【答案】(2)(5)a b x y --.【解析】原式2(5)(5)a x y b x y =---(2)(5)a b x y =--.【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意符号的变化.【例6】 因式分解:26694k mn km kn -+-. 【难度】★【答案】(32)(23)k n k m -+.【解析】原式3(23)2(23)k k m n k m =+-+(32)(23)k n k m =-+.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例7】 分解因式:222332154810ac cx ax c +--. 【难度】★【答案】22(23)(165)c x a c --.【解析】原式222216(23)5(23)a c x c c x =---22(23)(165)c x a c =--.【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意符号的变化.【例8】 分解因式:2222ac bd ad bc +--. 【难度】★★【答案】()()()c d c d a b -+-. 【解析】原式2222()()a c d b d c =-+- 22()()c d a b =--()()()c d c d a b =-+-.【点评】考查学生分组分解方法以及平方差公式的运用,注意分解要彻底.【例9】 分解因式:221x ax x ax a +++--. 【难度】★★【答案】2(1)(1)a x x ++-.【解析】原式2(1)(1)(1)x a x a a =+++-+2(1)(1)a x x =++-.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例10】 分解因式:4321x x x ++-. 【难度】★★【答案】322(1)(1)(1)(1)x x x x x ++=+-+. 【解析】原式3(1)(1)x x x =+++ 3(1)(1)x x =++(未学过立方和的分解到这一步就可以)22(1)(1)x x x +-+【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例11】 分解因式:22221a b a b --+. 【难度】★★【答案】(1)(1)(1)(1)a a b b -+-+. 【解析】原式22222(1)(1)(1)(1)(1)(1)(1)(1)a b b a b a a b b =---=--=-+-+【点评】考查学生分组分解方法以及平方差公式的运用,注意分解要彻底.【例12】 分解因式:22222a b a b ab ---. 【难度】★★【答案】()()ab a b ab a b --++. 【解析】原式2222222(2)()()()a b a b ab a b a b ab a b ab a b =-++=-+=--++【点评】考查学生分组分解方法以及乘法公式的运用.【例13】 分解因式:2421193n n m mx x y y +-+. 【难度】★★【答案】2211()(1)33n m n m x y x y +-+.【解析】原式2422222211()93111()()()33311()(1)33n m n m n m n m n m n m n m x y x y x y x y x y x y x y =-++=+-++=+-+ 【点评】考查学生分组分解方法以及平方差公式的运用,注意对字母指数的准确理解.【例14】 分解因式:()()x x z y y z +-+. 【难度】★★【答案】()()x y x y z -++.【解析】原式2222()()()x xz y yz x y z x y x y x y z =+--=-+-=-++.【点评】考查学生分组分解方法以及平方差公式的运用,当不能直接分解时,要利用乘法公式展开后再进行分组.【例15】 分解因式:()()2221ab x x a b +++. 【难度】★★【答案】()()ax b bx a ++.【解析】原式222()()()()abx ab a x b x ax bx a b a bx ax b bx a =+++=+++=++. 【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意先拆再重新分组.【例16】 因式分解:()()2232x x x x ++-+. 【难度】★★★【答案】2(2)(1)(1)x x x x +-+-【解析】原式222222()3()2[()2][()1](2)(1)(1)x x x x x x x x x x x x =+-++=+-+-=+-+-. 【点评】考查学生分组分解方法的运用以及十字相乘方法的运用能力,注意先拆再重新分组.【例17】 已知三个连续奇数的平方和为251,求这三个奇数. 【难度】★★★ 【答案】7、9、11.【解析】设三个连续奇数最小的为21(0)k k +≥且k 为整数,则由题意可得: 222(21)(23)(25)251k k k +++++=,即222441412942025251k k k k k k ++++++++=.整理,得:23180k k +-=,即(6)(3)0k k +-=. ∵0k ≥,∴3k =.∴这三个连续奇数为7、9、11.【点评】如何设三个连续奇数是难点,然后完全平方公式的分解化为一元二次方程即可,再利用因式分解的思路求出方程的解.【例18】 已知:111201*********a xb xc x =+=+=+,,, 求:222a b c ab bc ac ++---的值. 【难度】★★★ 【答案】3.【解析】由222a b c ab bc ac ++---,可得:2222222221(222222)21[()()()]2a b c ab bc ac a b c ab bc ac a b b c a c ++---=++---=-+-+-把已知代入,可得:222a b c ab bc ac ++---=1(141)32⨯++=.【点评】主要利用系数乘以2后得到的三组完全平方公式,此类题目具有一般性.【例19】 已知三条线段长分别为a 、b 、c 其中a b c <<,且满足2222a c b ac +<+.证明:以a 、b 、c 为三边能构成三角形. 【难度】★★★ 【答案】见【解析】.【解析】∵2222a c ac b +-<,即22()a c b -<.∴c a b -<,∴c a b <+,又c 最大, 可得以a 、b 、c 为三边能构成三角形.【点评】考查学生对于构成三角形的条件判定,以及运用因式分解求解不等式的能力.【例20】 求方程x y xy -=的整数解. 【难度】★★★【答案】12120202x x y y ==-⎧⎧⎨⎨==⎩⎩,. 【解析】由方程可得1(1)111y x y xy x y y x y y-=-===-+--,,所以, ∵x 、y 均为整数,∴11y -=±,∴12120202x x y y ==-⎧⎧⎨⎨==⎩⎩,. 【点评】本题综合性较强,主要考查利用因式分解求解方程以及如何去求整数解,注意对方法的总结.【习题1】 因式分解: (1)33ac bc a b +++;(2)1xy x y --+、【难度】★【答案】(1)()(3)a b c ++;(2)(1)(1)x y --. 【解析】(1)原式()3()()(3)c a b a b a b c =+++=++; (2)原式(1)(1)(1)(1)x y y x y =---=--.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【习题2】 分解因式:432x x x x +++. 【难度】★【答案】2(1)(1)x x x ++.【解析】原式32(1)(1)(1)(1)x x x x x x x =+++=++.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【习题3】 分解因式:222a ab ac bc +--. 【难度】★【答案】()(2)a c a b -+.【解析】原式()2()()(2)a a c b a c a c a b =-+-=-+.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【习题4】 分解因式:ax ay bx cy cx by -++-- 【难度】★【答案】()()a b c x y +--.【解析】原式()()()()()a x y b x y c y x a b c x y =-+-+-=+--.【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意符号的变化.随堂检测【习题5】 分解因式:27321x y xy x -+-. 【难度】★【答案】(7)(3)x y x +-.【解析】原式7(3)(3)(7)(3)x x y x x y x =---=+-.【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意符号的变化.【习题6】 分解因式:2226923ax a xy xy ay -+-. 【难度】★【答案】(3)(23)ax y x ay +-.【解析】原式3(23)(23)(3)(23)ax x ay y x ay ax y x ay =-+-=+-. 【点评】考查学生分组分解方法的运用以及提取公因式的能力.【习题7】 分解因式:222221x y z x z y z --+. 【难度】★【答案】22(1)(1)y z x z --.【解析】原式22222(1)(1)(1)(1)x z y z y z y z x z =---=--. 【点评】考查学生分组分解方法的运用以及提取公因式的能力.【习题8】 分解因式:3254222x x x x x --++-. 【难度】★★【答案】24(2)(1)x x x -+-.【解析】原式2424(2)(2)(2)(2)(1)x x x x x x x x =---+-=-+-.【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意不要漏项.【习题9】 因式分解:2224x xy y ++-. 【难度】★★【答案】(2)(2)x y x y +-++.【解析】原式2()4(2)(2)x y x y x y =+-=+-++. 【点评】考查学生分组分解方法以及乘法公式的运用.【习题10】 分解因式:2293x x y y ---. 【难度】★★【答案】(3)(31)x y x y +--.【解析】原式229(3)(3)(3)(3)(3)(31)x y x y x y x y x y x y x y =--+=+--+=+--. 【点评】考查学生分组分解方法以及乘法公式的运用.【习题11】 228224x y xy ---. 【难度】★★【答案】2(2)(2)x y x y --++.【解析】原式22[4()]2(2)(2)x y x y x y =-+=--++.【点评】考查学生分组分解方法以及乘法公式的运用,第一步先提取公因式很重要.【习题12】 分解因式:226269x xy x y y --++ 【难度】★★【答案】(3)(32)x y x y ---.【解析】原式222(69)2(3)(3)2(3)(3)(32)x xy y x y x y x y x y x y =-+--=---=---【点评】考查学生分组分解方法以及乘法公式的运用.【习题13】 分解因式:2212x x y ---+.【难度】★★【答案】(1)(1)y x y x --++.【解析】原式2222(12)(1)(1)(1)x x y y x y x y x =-+++=-+=--++.【点评】考查学生分组分解方法以及乘法公式的运用.【习题14】 分解因式:222223a ab b a b ++---.【难度】★★【答案】(3)(1)a b a b +-++.【解析】原式2()2()3(3)(1)a b a b a b a b =+-+-=+-++.【点评】考查学生分组分解方法以及乘法公式的运用.【习题15】 分解因式:()()126x x x ---.【难度】★★【答案】2(2)(3)x x +-.【解析】原式3222326(3)2(3)(2)(3)x x x x x x x x =-+-=-+-=+-.【点评】考查学生分组分解方法的运用,注意先拆再重新分组.【习题16】 分解因式:()()()()2222a b a c c d b d +++-+-+.【难度】★★【答案】2()()a d a b c d -+++.【解析】原式2222()()()()()()()()()(2)()(2)()(2222)2()()a b b d a c c d a b b d a b b d a c c d a c c d a d a b d a d a c d a d a b c d a d a b c d =+-+++-+=+--+++++--+++=-+++-++=-+++=-+++【点评】考查学生分组分解方法以及平方差公式的运用,注意先拆再重新分组,分解一定要彻底.【习题17】 已知:22102510x xy y ++-=,化简:3225x x y x ++.【难度】★★【答案】0或22x .【解析】由22102510x xy y ++-=,可得:2(5)10x y +-=,∴51x y +=±.∵32225(51)x x y x x x y ++=++,∴3225x x y x ++的值为0或22x .【点评】本题主要考查利用因式分解求解方程,以及利用整体代入进行求值的思想.【习题18】 把多项式()242211a a a a a +++++分解因式,所得的结果为( ) A .()221a a +-B .()221a a -+C .()221a a ++D .()221a a -- 【难度】★★★【答案】C【解析】()2423242222222222112221(21)221()2()1(1)a a a a a a a a a a a a a a a a a a a a a +++++=+++++=+++++=++++=++【点评】考查学生分组分解方法的运用,注意先拆再重新分组.【习题19】 因式分解:222816x x y y -+-.【难度】★★★【答案】(4)(42)x y x y -+-.【解析】原式2222211816(1)(14)(114)(114)(4)(42)x x y y x y x y x y x y x y =-+-+-=---=-+---+=-+-【点评】考查学生分组分解方法的运用以及如何添项凑完全平方公式.【习题20】 因式分解:22243x y x y -++-.【难度】★★★【答案】(3)(1)x y x y -++-.【解析】原式222221(44)(1)(2)(12)(12)(3)(1)x x y y x y x y x y x y x y =++--+=+--=+-+++-=-++-【点评】考查学生分组分解方法的运用以及如何添项凑完全平方公式.【习题21】 已知:221a b +=,221c d +=,且0ac bd +=,求ab cd +的值.【难度】★★★【答案】0.【解析】由222222222()202ac bd a c abcd b d abcd a c b d +=++==--,得, 代入2222222222222()2ab cd a b abcd c d a b a c b d c d +=++=--+2222222222()()()()a b c d b c b c a d =---=--,再把221a b +=,221c d +=代入,可得:22222222222()()(11)()()b c a d a d a d a d --=--+-=--,∴2222()()ab cd a d +=--,∴2222()()0ab cd a d ++-=,可得0ab cd +=.【点评】本题综合性较强,主要考查学生如何通过代数式等式,利用完全平方公式和因式分解以及非负性求解代数式的值.【作业1】 因式分解:(1)a ax b bx --+;(2)2xy y yz xz --+. 【难度】★【答案】(1)()(1)a b x --;(2)()()x y y z -+.【解析】(1)原式()()()(1)a b x a b a b x =---=--;(2)原式()()()()y x y z y x x y y z =---=-+.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业2】 分解因式:4333x x y xz yz +++.【难度】★【答案】33()()x z x y ++.【解析】原式3333()()()()x x y z x y x z x y =+++=++.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业3】 分解因式:325153x x x --+.【难度】★【答案】2(51)(3)x x --.【解析】原式225(3)(3)(51)(3)x x x x x =---=--.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业4】 分解因式:251539a m am abm bm -+-.【难度】★【答案】(53)(3)m a b a +-.【解析】原式5(3)3(3)(53)(3)am a bm a m a b a =-+-=+-.【点评】考查学生分组分解方法的运用以及提取公因式的能力.课后作业【作业5】 分解因式:54321x x x x x +++++.【难度】★★【答案】42(1)(1)x x x +++.【解析】原式4242(1)(1)(1)(1)(1)x x x x x x x x =+++++=+++.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业6】 分解因式:22ax bx bx ax a b -+-+-.【难度】★★【答案】2()(1)a b x x --+.【解析】原式22()()()()(1)x a b x b a a b a b x x =-+-+-=--+.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业7】 分解因式:21ax x a ++-.【难度】★★【答案】(1)(1)x ax a +-+.【解析】原式2(1)(1)(1)(1)a x x x ax a =-++=+-+.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业8】 分解因式:()22112a b b b --+-.【难度】★★【答案】2(1)(1)a b --.【解析】原式222(1)(1)(1)(1)a b b a b =---=--.【点评】考查学生分组分解方法的运用以及运用乘法公式的能力.【作业9】 分解因式:3223a a b ab b --+.【难度】★★★【答案】2()()a b a b -+.【解析】原式22()()a a b b a b =---()()()a b a b a b =-+- 2()()a b a b =-+.【点评】考查学生分组分解方法的运用以及运用乘法公式的能力,注意分解要彻底.【作业10】 已知2246130a b a b +--+=,求a b +的值.【难度】★★★【答案】5.【解析】由22224613044690a b a b a a b b +--+=-++-+=,得, 即22(2)(3)0a b -+-=,∴23a b ==,. ∴5a b +=.【点评】考查学生分组分解方法的运用以及如何添项凑完全平方公式.。
因式分解的9种办法
因式分解的多种方法----知识延伸,向竞赛过度1. 提取公因式:这种方法比较常规、简单,必须掌握。
常用的公式:完全平方公式、平方差公式例一:0322=-x x解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程。
总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式,这对我们后面的学习有帮助。
2. 公式法常用的公式:完全平方公式、平方差公式。
注意:使用公式法前,部分题目先提取公因式。
例二:42-x 分解因式2 2 2 23. 是做c1,c2的积c1?c2例三: 把解 原式,常数项c a1 ╳ a2 b ,即ax2+bx+c=(a1x+c1)(a2x+c2).这种方法要多实验,多做,多练。
它可以包括前两者方法。
4. 分组分解法也是比较常规的方法。
一般是把式子里的各个部分分开分解,再合起来,需要可持续性!例四:2244y x x -++可以看出,前面三项可以组成平方,结合后面的负平方,可以用平方差公式解:原式=(x+2)^2-y^2=(x+2+y)(x+2-y)总结:分组分解法需要前面的方法作基础,可见前面方法的重要性。
5. 换元法整体代入,免去繁琐的麻烦,亦是建立的之前的基础上例五:1)(2)(2++-+y x y x 分解因式考虑到x+y 是以整体出现,展开是十分繁琐的,用a 代替x+y那么原式=a^2-2a+1 =(a-1)^2,回代原式=(x+y-1)^26. 主元法这种方法要难一些,多练即可。
即把一个字母作为主要的未知数,另一个作为常数例六:因式分解24222)1(8)1(216-++-+y x y x y x y分析:本题尚且属于简单例用,只是稍加难度,以y 为主元会使原式极其烦琐,而以x 为主元的话,原式的难度就大大降低了。
原式=y y x y x y x 168)1(2)1(22224++-+-...............................主元法7. 列都满例七:ab 8. 例八:22-+x x 该题可以用十字相乘来做,这里介绍一种待定系数法我们可以把它当方程做,x^2+x-2=0一眼看出,该方程有一根为x=1,那么必有一因式为(x-1)结合多项式展开原理,另一因式的常数必为2(因为乘-1要为-2)一次项系数必为1(因为与1相乘要为1),所以另一因式为(x+2),分解为(x-1)(x+2)9. 列竖式让人拍案叫绝的方法。
因式分解(分组分解法)
=(2ax-bx)+(5by-10ay)
=a(a+c)-b(a+c)
=(2ax-bx)+(-10ay +5by)
= (a+c)(a-b)
=x(2a-b)-5y(2a-b)
= (2a-b)(x-5y)
分组规律: 在有公因式的前提下,按对应项系数成
比例分组,或按对应项的次数成比例分组。
解: 2ax-10ay+5by-bx
=(2ax-10ay)+(5by-bx)
=(2ax-10ay)+(-bx +5by)
=2a(x-5y)-b(x- 5y)
=(x-5y)(2a-b)
例1,例3种还有没有其他分组的方法;如果有, 因式分解的结果是不是一样。
例1解(2):a2-ab+ac-bc 例2解(2): 2ax-10ay+5by-bx
先提公因式;
2. 如果各项没有公因式,那么可以尝试运用 公式来分解;
3.如果用上述方法不能分解,那么可以尝试 用分组来分解;
4.分解因式,必须进行到每一个多项式都不 能再分解为止. 口诀: 一提 二套 三分 四彻底
教学重点:掌握分组分解法的 分组规律和步骤。 主要内容:
学习分组分解法的概念,用分组分解法分 组之后,可以用提公因式的多项式进行因式分 解。
例2把多项式 a2-2ab+b2-c2 分解因式.
【分析】观察多项式,前 三项符合完全平方公式.
例3把2ax-10ay+5by-bx分解因式 分析:把这个多项式的四项按前两项与后两项分成
两组,并使两组的项都按x的降幂排列,然后从两
组分别提出公因式2a与-b,这时,另一个因式正好
因式分解---分组分解拆添项法
因式分解---分组分解、拆添项法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(因式分解---分组分解、拆添项法)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为因式分解---分组分解、拆添项法的全部内容。
板块一:分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式, 这就是分组分解法.【例1】分解因式:% 2 + ax 2 + x + ax一 1 一a【例2】分解因式:期一% -y+1【例3】分解因式:ax一by - bx + ay【例4】分解因式:ac2 + bd2 -ad2 -bc22T y+x—2x【例5】分解因式:7【例7】分解因式:X4 + X3 + X2 -1【例8】分解因式:ax +bya xy-2【例9】分解因式:Xxzr-) y(y a )[例10]分解因式:(x2+1)2+Xx-2)(x2+x+1)-x2【例11】分解因式:(ax+颇ay-x 2x2cy2 【例12】分解因式:x(x-1)(x-2)-6【例14】分解因式:axy^^3)b^ba-2y)【例15】分解因式:K如⑼2—ax【例16】已知三个连续奇数的平方和为251,求这三个奇数. 【例17】分解因式:2x2「a肝(4a的)【例18】分解因式:b2以)「ad 2ad【例19】分解因式:x3 + bx2 + ax- b【例21】分解因式:a2b -a2 -b2 +12xy-却【例23】分解因式:6a2 -9a xy+【例24】分解因式:5x3-15x2-x 3【例25】分解因式:5a2 m-15am+3abm-9bm【例26】分解因式:x3——xx + 2 + x5— 2 x 4 【例28】分解因式:3+^(+ +&— +旗—+d2【例29】分解因式:x2—^^一3y【例30】分解因式:笫+y5T x性产)1 1x2 n + x n y 4 m + —9 4【例32】分解因式:【例33】分解因式:31—须—12 b— 2【例34】分解因式:落+第—y —*【例35】分解因式:ax3 + x+a+1【例36】分解因式:a4 一 a ba b + b 【例37】分解因式:x3 +++x2 2y+ 2【例39】分解因式:XXXXX4 + 3 + 2 + +11【例40】分解因式:@+bXa一(x+bya+(3一一X x3y)=因式分解一-分组分解、拆添项法【例41】分解因式:3+纱+°+怎+( +须+原+b+G[例42] 分解因式:axb-+xb x-ax+a-b【例43】分解因式:ax-ay+bx+cy-cx-by板块二:拆项与添项模块一:利用配方思想拆项与添项【例44】已知g+拉-儡b+13 = 0 ,求帅的值.【例45】分解因式:%4+寿2X2+X+1【例46】分解因式:的+2 ^b+3a2-bu+2加+加 =,【例47】分解因式:%4-3^+1【例48】分解因式:-^-23x2+1 ;【例49】分解因式:a4 + a 2 b2+ 加【例50】分解因式:x12—3x6 +1【例51】分解因式:x8 +x4 +1【例52】分解因式:x4-7x V +8故【例53】已知n是正整数,且n4-16n2 +100是质数,那么〃 = 【例54】分解因式:(1+亨》2x2 QQ x4 0—y >【例55】分解因式:x4-20 +3x珀㈤2分解 因式:-a 4 -b 4 -c 4 +++2b 2b 2c 2 2c 2a 模块二:拆项与添项【例61】分解因式:g-4a +3【例62】分解因式:%3 + 2x 2-65 x 【例56】 分解因式:落0+)一以x 或〃-b )+赵b ) 【例57】 把刑例分解因式. 【例58】 分解因式:%,+ 64 【例59】证明:在mn 都是大于l 的整数时,隰+4.是合数. 【例60】【例63】分解因式: X 3 +3x 2 -4【例64】分解因式:X 2 + 6x -7【例65】分解因式:*-9x +8【例66】(“CASIO"杯河南省竞赛)把下列各式因式分解:X 3 + 6X 2 +11x +6【例67】(“CASIO"杯河南省竞赛)把下列各式因式分解:X 4 + 2x 3 - 9X 2 -+8【例68】若x +产-1 ,则 x 4 +5x 3y +x 2>+8x 2* x 2 +5x 3+ y 的值等于() A.0 B.-i C.1 D.3【例70】分解因式:+^+1【例71】分解因式:a + a4+1【例72】分解因式:a3 +如c 3abc 。
因式分解——分组分解法
因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的。
我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的,至于如何恰当地分组,需要具体问题具体分析,但分组时要有预见性,要统筹思考,减少盲目性,分组的好坏直接影响到因式分解能否顺利进行。
通过适当的练习,不断总结规律,便能掌握分组的技巧。
三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b(3)4x2-9y2-24yz-16z2 (4)x3-x2-x+1分析:首先注意到前两项的公因式2x和后两项的公因式-3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解。
此题也可以考虑含有y的项分在一组。
如下面法(二)解法。
解(一)2x2+2xy-3x-3y=(2x2+2xy)-(3x+3y)=2x(x+y)-3(x+y)=(x+y) (2x-3)解(二)2x2+2xy-3x-3y=(2x2-3x)+(2xy-3y)=x(2x-3)+y(2x-3)=(2x-3)(x+y)说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
这也是分组中必须遵循的规律之一。
因式分解——分组分解法
北京四中撰稿:史卫红编审:谷丹责编:赵云洁因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的。
我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的,至于如何恰当地分组,需要具体问题具体分析,但分组时要有预见性,要统筹思考,减少盲目性,分组的好坏直接影响到因式分解能否顺利进行。
通过适当的练习,不断总结规律,便能掌握分组的技巧。
三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b(3)4x2-9y2-24yz-16z2 (4)x3-x2-x+1分析:首先注意到前两项的公因式2x和后两项的公因式-3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解。
此题也可以考虑含有y的项分在一组。
如下面法(二)解法。
解(一)2x2+2xy-3x-3y=(2x2+2xy)-(3x+3y)=2x(x+y)-3(x+y)=(x+y) (2x-3)解(二)2x2+2xy-3x-3y=(2x2-3x)+(2xy-3y)=x(2x-3)+y(2x-3)=(2x-3)(x+y)说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
初中数学竞赛——因式分解之分组分解法
第4讲 因式分解之分组分解法知识总结归纳一. 分组分解解题步骤: (1)将原式的项适当分组;(2)对每一提取公因式或者运用公式进行处理;(3)将经过处理后的每一组当作一项,再提取公因式或者运用公式. 二. 分组分解注意事项:(1)一个整式往往有很多种分组的方法,有时需要经过尝试才能找到适当的分组方法。
如果某一种方法失败,则要从零开始,重新分组。
(2)高手下棋时绝不会只看一步,同样,在进行分组时,不仅要看到第二步,还要看到后面几步。
典型例题一. 基础练习例题1 分解因式:ay bx by ax +++.例题2 分解因式:ay bx by ax +--.例题3 分解因式:bc ac ab a -+-2.例题4 分解因式:x xy y x 21372+++.例题5 分解因式:bd bc ad ac 362-+-.例题6 分解因式:xy x y x 215652--+.例题7 分解因式:an am bn bm 304152-+-.例题8 分解因式:b ab a a 332+--.例题9 分解因式:cy bx ay cx by ax 222---++.例题10 分解因式:123+--x x x .例题11 分解因式:a ax x ax x --+++122.二. 思维拓展例题12 分解因式:b a b a 62922-+-.例题13 分解因式:y y x x 2422--+.例题14 分解因式:2229124c bc b a -+-.例题15 分解因式:22269n n m m -+-.例题16 分解因式:x x x x +++234.例题17 分解因式:xy y x y xy x x 22))(1(3222+++-+.例题18 分解因式:2225510)12(x y y x +++++.例题19 分解因式:bd ac abcd c -+-2.例题20 分解因式:2222345+++++a a a a a .例题21 分解因式:ab by bx a ay ax +-++-2.例题22 分解因式:a ax ax ax -+-45.例题23 分解因式:yz z y x 2222---.例题24 分解因式:m m n -+-2241.例题25 分解因式:22444a ax x a -+-.例题26 分解因式:222221a b c c ab +----.例题27 分解因式:22)()(ay bx by ax -++.三. 综合提高例题28 分解因式:33y y x x --+.例题29 分解因式:43224x x x -+-.例题30 分解因式:)()1(222b a x x ab +++.例题31 分解因式:1+++ab b a .例题32 分解因式:bm abm am m a 931552-+-.例题33 分解因式:2222y y x xy y x x -+-+-.例题34 分解因式:)1)(1()2(+---m m y y .例题35 分解因式:)2())((a b b c a c a ++-+.例题36 分解因式:32232y y xy x x -+-+.例题37 分解因式:y y y x x x ---++2323.例题38 分解因式:cd ab d c b a 4242222++--+.思维飞跃一. 巧妙分组例题39 分解因式:)4)(2()5)(3()5)(4()3)(2(y x y x y x y x y x y x y x y x --+--+--+--.例题40 分解因式:123-+++a ax ax x .例题41 分解因式:))(())((b a b a cd d c d c ab -++-+.例题42 分解因式:1)1(2)(3---++y x xy y x .二. 适当拆项例题43 分解因式:233332323++++++b b b a a a .例题44 分解因式:334234++++x x x x .例题45 分解因式:xy y x 4)1)(1(22---.例题46 分解因式:673+-x x .例题47 分解因式:323-++a a a .作业1. 分解因式:b a ab a 32172--+.2. 分解因式:124322--+a x ax .3. 分解因式:22244y a xy x +--.4. 分解因式:mn n m 2122+--.5. 分解因式:b a ax bx bx ax -+-+-22.6. 分解因式:222y y x xy y x x -+-+-.7. 分解因式:ay a z xz y x 222222--+--.8. 分解因式:y by ay x bx ax 363242-+-+-.9. 分解因式:926622+--++mn m n n m .10. 分解因式:2222az xz xy yz axyz yz x ---++.11. 分解因式:2222)()()()(d b c a d c b a +-+-+++.。
因式分解——分组分解法
分解因式: x 2 + ax 2 + x + ax − 1 − a
(35)
分解因式: x 4 + x3 + x 2 + x
模块化讲义体系
七年级第一学期.因式分解大礼包——分组分解法.学生版
Page6 of 19
Mathematics
(36) 分解因式: x3 + y 3 + x 2 + 2 xy + y 2
因式分解分组分解法12x?2m?ax?am2x2?xy?a2x?a2y2xmaxm2axm37m2?3n?mn?21m410mx?12nx?5my?6ny5a3x2?a3y?x2?y72ax?2ay?3bx?4cy?3by?4cx9a2?8ab?16b2?6a?24b?911x2?6xy?9y2?4x?12y13?x2?y2?a2?2?4x2y26ax2?bx2?cx2?ay2?by2?cy28a2?4ab?4b2?x2?2x?110ax2?ay2?2axy?ab2129a2?18a?9?b2?4b2?4332214已知a?b?0求a?2b?ab?2a3; acx3
(100) 分解因式: 2 x − 4 x y − x z + 2 xy + 2 xyz − y z
3 2 2 2 2
模块化讲义体系
七年级第一学期.因式分解大礼包——分组分解法.学生版
Page19 of 19
七年级第一学期.因式分解大礼包——分组分解法.学生版
Page16 of 19
Mathematics
(86) 分解因式: ( a + b ) + ( b + c ) + ( c + a ) + a + b + c
因式分解16种方法
因式分解16种方法因式分解是代数学中的一项重要内容,它是将一个多项式写成几个因子相乘的形式。
在代数中,我们可以使用不同的方法来进行因式分解,下面将介绍16种常用的因式分解方法。
一、常数公因子法:当多项式中的每一项都有一个相同的因子时,可以将这个公因子提取出来。
二、提公因式法:可以将多项式中的公因子提取出来,并分别乘在每一项的前面。
三、平方差公式:平方差公式可以将两个平方差分解为两个因子相乘的形式。
四、求和差公式:求和差公式可以将两个数的和或差分解为两个因子相乘的形式。
五、特殊公式:特殊公式是一些特定形式的因式分解规律,如完全平方公式、立方差公式等。
六、分组法:将多项式中的项分成若干组,每一组内部有一个公因子,然后进行合并、提公因子的操作。
七、配方法:如果多项式中存在二次项或一次项,可以使用配方法将其转化为完全平方或完全立方。
八、三项因式分解法:将三个项的多项式进行因式分解,可以根据其特征进行分解,如完全平方三项式、卷积三项式等。
九、因式分解公式:在代数学中,有一些常见的因式分解公式,如平方差公式、和差的立方公式等。
十、分式因式分解法:将分式分解为最简形式,可以进行因式分解,然后进行约分、合并等操作。
十一、二次三项式分解法:将二次三项式进行因式分解,可以根据特定的形式进行分解,如完全平方三项式、卷积三项式等。
十二、差的立方公式:差的立方公式可以将两个数的差分解为两个因子相乘的形式。
十三、平方根的平方差公式:平方根的平方差公式可以将平方根的平方差分解为两个因子相乘的形式。
十四、特殊三项式分解法:特殊三项式分解法是针对特定形式的三项式进行因式分解,如完全平方三项式、卷积三项式等。
十五、分场因子法:将多项式中的每一项提取出一个因子,并按照对应的规律进行提取。
十六、根与系数的关系:多项式的根与系数之间存在一定的关系,可以通过观察根与系数之间的关系进行因式分解。
以上是常用的16种因式分解方法,每一种方法都适用于特定的情况和形式的多项式。