安徽大学2017-2018高数概率论统计试卷

合集下载

2018届高考数学(理)热点题型:概率与统计((有答案))

2018届高考数学(理)热点题型:概率与统计((有答案))

概率与统计热点一 常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3) =C 14⎝⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4) =C 04⎝⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是ξ 0 2 4 P82740811781【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i ,这是本题求解的关键. (2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【对点训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝ ⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝ ⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14,P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝⎛⎭⎪⎫233=827,∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118, ∴所求概率为P (B|A )=P (AB )P (A )=11813=16.热点二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5. (1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)· P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29, P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2.②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为X 20 60P 1212所以顾客所获的奖励额的数学期望为E(X)=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X120 60 100P 162316X1的数学期望为E(X1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X240 60 80P 162316X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5×0.06×40=12.第4组的人数为5×0.04×40=8.第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11.②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为X 012P 25815115E(X)=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48. 热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2,又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b^=l xy l xx=2480=0.3, a^=y -b ^x =2-0.3×8=-0.4,故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b^=0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r 来确定,r 的绝对值越接近于1,表明两个变量的线性相关性越强,r 的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a ^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?非读书迷 读书迷总计 男 15 女 45 总计(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ). 解 (1)完成2×2列联表如下:非读书迷 读书迷 总计 男 40 15 55 女 20 25 45 总计6040100K 2=100×(40×25-15×20)60×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关. (2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3).X 的分布列为 X0 1 2 3 P27125 54125 36125 8125均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。

2018年大一轮数学文高考复习人教专题测试八 概率与统

2018年大一轮数学文高考复习人教专题测试八 概率与统

专题测试八 概率与统计、算法 (时间90分钟,满分100分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从某班学生中任意找出一人,如果该同学的身高不到160 cm 的概率为0.2,该同学的身高在cm 内的概率为0.5,那么该同学的身高超过175 cm 的概率为( ) A .0.2 B .0.3 C .0.7D .0.8解析:选B.由对立事件的概率计算公式可得,该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3.2.一部3卷文集随机地排在书架上,卷号自左向右或自右向左恰为1,2,3的概率是( ) A.16 B.13 C.12D.23解析:选B.本题考查古典概型.3卷文集随机排列,共有6种结果,卷号自左向右或自右向左恰为1,2,3的只有2种结果,所以卷号自左向右或自右向左恰为1,2,3的概率是26=13.3.点P 在边长为1的正方形ABCD 内运动,则动点P 到顶点A 的距离|PA |<1的概率为( ) A.π4 B.12 C.14D.2π解析:选A.由题意知,所求概率为S 扇形S 正方形=π41=π4.4.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则组成的两位数为奇数的概率是( ) A.16 B.13 C.12D.38解析:选C.本题考查古典概型.所组成的两位数有12,13,20,21,30,31,共6个,其中,所组成的两位数为奇数的有13,21,31,共3个,故所组成的两位数为奇数的概率是36=12.5.某单位男职工进行健康体验时的体重情况的频率分布直方图如图所示.已知图中从左到右的前3个小组的频率之比为1∶2∶3,其中第2小组的频数为24,则该单位男职工的总人数为( )A .150B .120C .48D .96解析:选D.设该单位男职工的总人数为n ,第1小组的频率为p ,则由题意可知,第2小组的频率为2p ,第3小组的频率为3p ,则p +2p +3p +(0.037+0.013)×5=1,解得p =0.125,故第2小组的频率为0.25,由24n=0.25,解得n =96,故该单位男职工的总人数为96.6.在演讲比赛的决赛中,七位评委给甲、乙两位选手打分的茎叶图如图所示,其中在☆处的数据丢失了.按照规则,甲、乙需各去掉一个最高分和一个最低分,用x 和y 分别表示甲、乙两位选手获得的平均分,则( )A .x >yB .x <yC .x =yD .x 和y 之间的大小关系无法确定解析:选B.本题考查茎叶图及平均数的计算.设题图中甲、乙丢失的数据分别为a ,b ,则x =80+a +165,y =80+265,因为0≤a ≤9,所以x =80+a +165≤80+255<y ,即x <y . 7.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.因为回归直线y ^=b ^x +a ^必过样本中心点,但除了样本中心点,回归直线上还可能有其他点,故B 正确.8.现用系统抽样的方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后,在第1组采用简单随机抽样的方法抽到的编号为9.抽到的32人中,编号落入区间的人做问卷A ,编号落入区间的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ) A .7 B .9 C .10D .15解析:选C.从960人中用系统抽样的方法抽取32人,则每隔30人抽取1人,因为第1组抽到的编号为9,则第n 组抽到的编号为9+30(n -1)=30n -21,由451≤30n -21≤750,得152230≤n ≤252130,所以n =16,17,…,25,所以做问卷B 的人数为25-16+1=10. 9.按如图所示的程序框图运算,若输出的b 的值为3,则输入的a 的取值范围是( )A .(6,+∞)B .(6,19]C .,样本数据分组为,已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45解析:选A.产品净重小于100克的频率为(0.050+0.100)×2=0.300,设样本容量为n ,则36n=0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.二、填空题(本大题共4小题,每小题5分,把答案填在相应题号后的横线上.)13.为了实现素质教育,某校开展“新课改”动员大会,参会的有100名教师,1 500名学生,1 000名家长,为了解大家对推行“新课改”的认可程度,现采用恰当的方法抽样调查,抽取了n 个样本,其中教师与家长共抽取了22名,则n =________.解析:本题考查了统计中的分层抽样.根据题意可知采用分层抽样的方法最为合适,参会人数为100+1 500+1 000=2 600,设抽取教师x 名,家长y 名,则x +y =22,又x 100=y1 000=n2 600,x +y 1 100=n 2 600,故n =52. 答案:5214.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.解析:由频率分布直方图可得树木底部周长小于100 cm 的频率是(0.025+0.015)×10=0.4,又样本容量是60,所以频数是0.4×60=24. 答案:2415.在区间上随机取一个数x ,则sin x ≤ 32的概率为________. 解析:本题考查几何概型.由sin x ≤32,x ∈,得 x ∈⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎦⎥⎤2π3,π,∴所求概率为π3+π3π=23.答案:2316.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟订的价格进行试销,得到如下数据:由表中数据求得线性回归方程为y =-4x +a .若在这些样本点中任取一点,则它在回归直线左下方的概率为________.解析:本题主要考查线性回归方程、古典概型等基础知识.由表中数据得x =6.5,y =80,由y =-4x +a ^得a ^=106,故线性回归方程为y ^=-4x +106.画图(图略)易知点(5,84)和(9,68)在回归直线的左下方,故所求概率为26=13.答案:13三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设平面向量a m =(m,1),b n =(2,n ),其中m ,n ∈{1,2,3,4}.(1)请列出有序数组(m ,n )的所有可能结果;(2)记“a m ⊥(a m -b n )”为事件A ,求事件A 发生的概率.解:(1)有序数组(m ,n )的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个. (2)由a m ⊥(a m -b n )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个. 因为基本事件的总数为16, 所以所求的概率P (A )=216=18.18.(本小题满分10分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^;(2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b ^=∑i =1nx i y i -n x -y -∑i =1nx 2i -n x 2,a ^=y --b ^x -.解:(1)由题意知n =10,x -=1n ∑i =1nx i =8010=8,y -=1n ∑i =1n y i =2010=2,又∑i =1nx 2i -n x 2=720-10×82=80,∑i =1nx i y i -n x -y -=184-10×8×2=24,由此得b ^=∑i =1nx i y i -n x - y-∑i =1nx 2i -n x 2=2480=0.3, a ^=y --b ^x -=2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b ^=0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).。

安徽大学《概率论与数理统计A三》2016-2017学年第一学期期末试卷A卷

安徽大学《概率论与数理统计A三》2016-2017学年第一学期期末试卷A卷

安徽大学2016—2017学年第一学期《高等数学A (三)》(概率论与数理统计)考试试卷考试试卷((A 卷)(闭卷 时间120分钟分钟)考场登记表序号一、 填空题填空题((每小题3分,共15分)1. 设A ,B 是随机事件,()0.4P A =,()0.2P AB =,(|)(|)1P A B P A B +=, 则()__________P A B =∪. 2. 设随机变量X 服从参数为1的泊松分布,则方程220x x X −+=无实根的概率为______. 3. 设X 服从正态分布(3,4)N ,Y 服从参数12λ=的指数分布,且,X Y 相互独立,又25Z X Y =−+,则DZ =___________.4. 设12,,,n X X X ⋯为来自二项分布总体(,)B n p 的简单随机样本,X 和2S 分别为样本均值 和样本方差,若2X kS +为2np 的无偏估计量,则________k =.5. 设总体X 服从正态分布(,8)N µ,µ为未知参数,1232,,,X X X ⋯是取自总体X 的一个 简单随机样本,X 为样本均值,如果以区间()1,1X X −+作为µ的置信区间,则置信水平 为_________. (标准正态分布分布函数值(2)0.977Φ=,(3)0.999Φ≈,(4)1Φ≈)二、单选题选题((每小题3分,共15分)6. 将一枚均匀硬币连续抛掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正反面各出现一次},4A ={正面出现两次},则事件( ). (A )123,,A A A 相互独立 (B )234,,A A A 相互独立 (C )123,,A A A 两两独立 (D )234,,A A A 两两独立题 号 一 二 三 四 五 总分得 分阅卷人分得分院/系 年级 专业 姓名 学号答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------得分分7. 设随机变量X 的分布函数为()F x ,概率密度为()f x ,1Y X =−,Y 的分布函数记为()G y ,概率密度记为()g y ,则有( )(A )()(1)g y f y =− (B )()1()g y f y =−(C )()(1)G y F y =−(D )()1()G y F y =− 8. 设随机变量X ,Y 相互独立,且EX ,EY 和DX ,DY 存在,则下列等式中不成 立的是( ),下列表示式中a ,b 均为常数.(A )()E aX bY aEX bEY ±=± (B )()E aX bY abEX EY ⋅=⋅ (C )22()D aX bY a DX b DY +=+ (D )22()D aX bY a DX b DY −=− 9. 设12,,,n X X X ⋯是来自总体X 的简单随机样本,EX µ=,1DX =,下列说法)(0,1)X N µ−∼ ()2E Xµ=由切比雪夫不等式可知()211P X n µεε−<≥−(ε为任意正数) ○4 若µ为未知参数,则样本均值X 是µ的矩估计量 中正确的有( )个.(A )1 (B )2 (C ) 3 (D )410. 在正态总体的假设检验中,显著性水平为α,则下列结论正确的是( ). (A )若在0.1α=下接受0H ,则在0.05α=下必接受0H(B )若在0.1α=下接受0H ,则在0.05α=下必拒绝0H (C )若在0.1α=下拒绝0H ,则在0.05α=下必接受0H(D )若在0.1α=下拒绝0H ,则在0.05α=下必拒绝0H三、分析计算题分析计算题((每小题12分,共60分)11.一道单选题有四个答案可供选择.已知60%的考生对相关知识完全掌握,他们可选出正确答案;20%的考生对相关知识部分掌握,他们可剔除两个不正确答案,然后随机选一个答案;20%的考生对相关知识完全不掌握,他们随机选一个答案. (1)现任意挑选一位学生参加考试,求他选得正确答案的概率;(2)已知某位考生选对了答案,求他确实是完全掌握相关知识的概率.分得分第3 页共6 页12.设连续型随机变量X的概率密度函数为20,()0,xAxexfxx−≥=<.求:(1)常数A的值;(2)X的分布函数()Fx;(3)概率(12)PX−≤<.13.设随机变量X与Y的概率分布律分别为:且22()1PXY==,求:(1)(,)XY的联合分布律;(2)ZXY=的分布律;(3)X与Y的相关系数XYρ.答 题题 勿勿 超超 装装 订订 线线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------14. 设二维随机变量(,)X Y 的概率密度函数为1,1,(,)0,.x y f x y <<=其他 试判断X 与Y的独立性,并给出理由.15. 设总体X 的概率密度函数为(1),01,()0,x x f x θθ +<<= 其他.其中1θ>−是未知参数.设12,,,n X X X ⋯为来自总体X 的简单随机样本,试求参数θ的矩估计量和极大似然估计量. 四、应用题应用题((每小题5分,共5分)16.某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则车主得赔偿1000元.假设车辆丢失率为0. 6%,试利用中心极限定理,求保险公司一年获利润不少于60000元的概率为多少?得分答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------五、证明证明题题(每小题5分,共5分)17. 设1X ,2X ,3X ,4X 分别为来自总体10,2N的简单随机样本,证明:统计量Y =服从自由度为2的t 分布.分得分。

2017年安徽大学432统计学[专业硕士]考研真题(回忆版)及详解【圣才出品】

2017年安徽大学432统计学[专业硕士]考研真题(回忆版)及详解【圣才出品】

2017年安徽大学432统计学[专业硕士]考研真题(回忆版)及详解一、选择题涵盖内容:1.推断统计2.集中趋势3.概率的统计定义4.方差分析(检验对象)5.离散趋势6.变量类型7.统计量的分布(抽样分布)8.平均数(中、众、平)9.回归方差分析那块考了几个小知识点二、简答题1.统计数据按计量尺度可分为哪几种类型?不同类型的数据各有什么特点?答:(1)统计数据按计量尺度的分类按照所采用的计量尺度的不同,可以将统计数据分为分类数据、顺序数据和数值型数据。

①分类数据是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。

②顺序数据是只能归于某一有序类别的非数字型数据。

顺序数据虽然也是类别,但这些类别是有序的。

③数值型数据是按数字尺度测量的观察值,其结果表现为具体的数值。

现实中所处理的大多数数据都是数值型数据。

(2)不同类型的数据的特点分类数据和顺序数据说明的是事物的品质特征,通常是用文字来表述的,其结果均表现为类别,因而也可统称为定性数据或称品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此也可称为定量数据或数量数据。

2.比较概率抽样与非概率抽样。

答:(1)概率抽样也称随机抽样,是指遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。

非概率抽样是相对于概率抽样而言的,指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式主观地从总体中抽出部分单位对其实施调查。

(2)概率抽样与非概率抽样的区别:概率抽样是依据随机原则抽选样本,样本统计量的理论分布是存在的,因此可以根据调查的结果对总体的有关参数进行估计,计算估计误差,得到总体参数的置信区间,并且在进行抽样设计时,对估计的精度提出要求,计算为满足特定精度要求所要的样本量。

而非概率抽样不是依据随机原则抽选样本,样本统计量的分布是不确切的,因而无法使用样本的结果对总体相应的参数进行推断。

2017-2018年高考真题解答题专项训练概率与统计(理科)学生版(优选.)

2017-2018年高考真题解答题专项训练概率与统计(理科)学生版(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改2017------2018年高考真题解答题专项训练:概率与统计(理科)学生版1.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期..望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.2.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.3.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,4.下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.5.根据预测,某地第个月共享单车的投放量和损失量分别为和(单位:辆),其中,,第个月底的共享单车的保有量是前个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第个月底的单车容纳量(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?6.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率。

2018届高考数学(理)热点题型:概率与统计((有答案))

2018届高考数学(理)热点题型:概率与统计((有答案))

2018届高考数学(理)热点题型:概率与统计((有答案))D23456=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和507元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 解 (1)设顾客所获的奖励额为X .①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为X 20 60 P1212所以顾客所获的奖励额的数学期望为E (X )=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1 20 60 100 P162316X 1的数学期望为E (X 1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X240 60 80P162316X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.89解 (1)由频率分布直方图知: 第3组的人数为5×0.06×40=12. 第4组的人数为5×0.04×40=8. 第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人. ①设“甲或乙进入第二轮面试”为事件A ,则 P (A )=1-C 310C 312=511,所以甲或乙进入第二轮面试的概率为511.②X 的所有可能取值为0,1,2,P (X =0)=C 24C 26=25,P (X =1)=C 12C 14C 26=815,P (X =2)=C 22C 26=115.所以X 的分布列为X 0 1 2 P25815115E (X )=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)10=P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48.热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?非读书迷读书迷总计男15女45总计(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X 的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:非读书迷读书迷总计男401555女202545总计60 40 100K 2=100×(40×2560×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3). X 的分布列为X 0 1 2 3 P2712554125361258125均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝⎛⎭⎪⎫1-25=1825.。

高考数学(理):专题07 概率与统计(含解析)

高考数学(理):专题07 概率与统计(含解析)

7.概率与统计1.【2018年浙江卷】设0<p<1,随机变量ξ分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D点睛:2.【2018年理新课标I卷】下图来自古希腊数学家希波克拉底所研究几何图形.此图由三个半圆构成,三个半圆直径分别为直角三角形ABC斜边BC,直角边AB,AC.△ABC三边所围成区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A【解析】分析:首先设出直角三角形三条边长度,根据其为直角三角形,从而得到三边关系,之后应用相应面积公式求得各个区域面积,根据其数值大小,确定其关系,再利用面积型几何概型概率公式确定出p1,p2,p3关系,从而求得结果.详解:设,则有,从而可以求得面积为,黑色部分面积为,其余部分面积为,所以有,根据面积型几何概型概率公式,可以得到,故选A.点睛:该题考查是面积型几何概型有关问题,题中需要解决是概率大小,根据面积型几何概型概率公式,将比较概率大小问题转化为比较区域面积大小,利用相关图形面积公式求得结果.【2018年理新课标I卷】某地区经过一年新农村建设,农村经济收入增加了一倍.实现翻番.为3.更好地了解该地区农村经济收入变化情况,统计了该地区新农村建设前后农村经济收入构成比例.得到如下饼图:则下面结论中不正确是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入总和超过了经济收入一半【答案】A详解:设新农村建设前收入为M,而新农村建设后收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入综合占经济收入,所以超过了经济收入一半,所以D正确;故选A.点睛:该题考查是有关新农村建设前后经济收入构成比例饼形图,要会从图中读出相应信息即可得结果.4.【2018年全国卷Ⅲ理】某群体中每位成员使用移动支付概率都为,各成员支付方式相互独立,设为该群体10位成员中使用移动支付人数,,,则A. 0.7B. 0.6C. 0.4D. 0.3【答案】B点睛:本题主要考查二项分布相关知识,属于中档题。

安徽大学2017-2018高数概率论统计试卷

安徽大学2017-2018高数概率论统计试卷

安徽大学2017—2018学年第一学期《高等数学A (三)》(概率论与数理统计)考试试卷(A 卷)(闭卷 时间120分钟)考场登记表序号一、 填空题(每小题2分,共10分)1.设()0.6P A =,()0.4P B =,(|)0.3P A B =,则(|)__________P A B =.2.设随机变量X 的概率密度函数01,()0,.x f x <<=其他,λ是(0,1)内的一个实数,且满足()()P X P X λλ<=>,则λ=____________.3.某人向同一目标独立重复射击,每次击中目标的概率为(01)p p <<,则此人第4次射击时恰好第2次命中目标的概率为___________.4.设X 与Y 是两个独立同分布的随机变量,且1(0)3P X ==,2(1)3P X ==,则min(,)Z X Y =的分布律为________.5.已知2EX =,3EY =,4DX =,16DY =,()14E XY =,则由切比雪夫不等式可得(|32|3)P X Y −≤≥___________.二、选择题(每小题2分,共10分)6. 设A 和B 为随机事件,则()()()P A B P A P B −=−成立的充要条件是( ). (A )B A ⊂ (B )A B = (C )()0P B A −= (D )()0P A B =7.设1()F x 和2()F x 都是随机变量的分布函数,则为了使12()()()F x aF x bF x =−是某随机变量的分布函数,在下列给定的各组数值中应取( ).题 号 一 二 三 四 五 总分得 分阅卷人得分院/系 年级 专业 姓名 学号答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------得分(A )35a =,25b = (B )23a =,13b =− (C )12a =−,32b = (D )12a =,32b =−8.设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,记(,)f x y 表示(,)X Y 的联合概率密度函数;(),()X Y f x f x 分别表示X ,Y 的边缘概率密度函数;||(|),(|)X Y Y X f x y f y x 分别表示Y y =条件下X 的条件概率密度和X x =条件下Y 的条件概率密度.考虑下列式子: •(,)()()X Y f x y f x f y =; ‚()(,)()X Y f x f x y f y =; ƒ|(|)()X Y X f x y f x =; ○4|(|)()Y X Y f y x f y =. 其中正确的个数为( ).(A )1个 (B ) 2个 (C )3个 (D )4个9.设随机变量X 和Y 有相同且不为零的方差,则相关系数1XY ρ=−的充要条件为( ). (A )(,)0Cov X Y Y −= (B )(,)0Cov X Y X −= (C )(,)0Cov X Y X Y +−= (D )(,)0Cov X Y Y +=10.设12,,,,n X X X L L 是相互独立的随机变量序列且都服从区间上的均匀分布,记()x Φ为标准正态分布的分布函数,则( ).(A)14lim ()n i i n X P x x n =→∞ −≤=Φ ∑ (B)2lim ()n i n X P x x →∞− ≤=Φ∑ (C)lim ()n i n X P x x →∞ ≤=Φ ∑ (D)lim ()n i n X P x x →∞≤=Φ∑三、分析计算题(每小题13分,共65分)11.甲袋中有3件正品2件次品,乙袋中有4件正品4件次品.先从甲袋中任取两件产品放入乙袋,再从乙袋中任取1件产品.(1)求取出的该产品是正品的概率;(2)若已知从乙袋中取出的产品是正品,求从甲袋中取出的是一件正品、一件次品的概率.得分12.设连续型随机变量X 的概率密度函数为()x f x Ce −=,x −∞<<+∞.求:(1)常数C 的值;(2)X 的分布函数()F x ;(3)Y X =的概率密度函数.13.袋中装有5个白球和3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取两个球,用i X 表示第i 次取到的白球数,1,2i =. (1)求12(,)X X 的联合分布律; (2)求事件12{0}X X =的概率;(3)判断1X 与2X 是否相关,并说明理由.答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------14.已知二维随机变量(,)X Y 在以点(0,0),(1,1)−,(1,1)为顶点的三角形区域内服从均匀分布.求:(1)()Y f y ;(2)|(|)X Y f x y ;(3)102P X Y>>.15. 设总体X 的概率分布为X1 2 3 P2θ2(1)θθ−2(1)θ−其中()01θθ<<是未知参数.利用总体X 的如下样本值1、1、2、1、3、2,求θ的矩估计值和极大似然估计值. 四、应用题(每小题10分,共10分)16.已知一种元件的寿命2~(,)X N µσ,并根据规定其平均寿命为1000小时.现从中随机抽取25个元件,测得样本均值950x =小时,样本标准差150s =小时.分别在下列两种情况:① 己知100σ=小时;② 未知σ下,检验这批元件是否符合规定要求.(0.05)α=(其中0.05 1.65u =,0.025 1.96u =,0.05(25) 1.7081t =,0.05(24) 1.7109t =,0.025(25) 2.0595t =,0.025(24) 2.0639t =)得分答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------五、证明题(每小题5分,共5分)17.设总体X 服从(0,1)N ,()12,,n X X X L 是来自总体的简单随机样本,11ni i X X n ==∑,()22111n ii S X X n ==−−∑分别为样本均值和样本方差,记221T X S n =−. 证明:2(1)DT n n =−.得分。

2018年大学概率论与数理统计期末考试试卷及解析(7)

2018年大学概率论与数理统计期末考试试卷及解析(7)

2018年大学概率论与数理统计期末考试试卷及解析(7)杭州电子科技大学学生考试(模拟)题解一、填空题(每空格2分)1.设事件B A ,相互独立,6.0)(,4.0)(==B P A P ,则概率)(B A P ?= 0.76 。

2.袋内装有6个白球,4个黑球。

从中任取三个,取出的三个球都是白球的概率= 1/6 。

3.设3.0}2010{),,10(~2=<<<="" 的值为="">4.设随机变量X 服从(0,2)上的均匀分布,则随机变量2X Y =在(0,4)上概率密度)(y f Y =y41。

5.设随机变量X 服从二项分布)3.0,10(b ,随机变量Y 服从正态分布)4,2(N ,且Y X ,相互独立,则)2(Y X E -= -1 ,)2(Y X D -= 18.1 。

二、试解下列各题 1.(求(1)X 的分布函数)(x F ;(2)概率}2{,}25.0{>≤X P X P ;(3))(,)(X D X E 。

解:≥<≤<≤--<=3,132,8.021,3.01,0)(x x x x x F 分分分1.........1.........1.........分分1...................2.0}3{}2{1.............3.0}1{}25.0{===>=-==≤X P X P X P X P3.12.035.023.0)(=?+?+-=X E 1分1.42.035.023.0)1()(2222=?+?+?-=X E 1分∴ 41.2)]([)()(22=-=X E X E X D 1分2、(16%)设二维随机变量),(Y X 的概率密度为<+=其它,01,1),(22y x y x f π试问:(1)Y X ,是否相互独立?(2)Y X ,是否相关?(3)求概率}{X Y P >。

2018届高考数学(理)大一轮复习2017高考试题汇编 第十三章 概率与统计含解析

2018届高考数学(理)大一轮复习2017高考试题汇编 第十三章 概率与统计含解析

第十三章 概率与统计第一节 概率及其计算题型140 古典概型1.(2017山东理18(1))在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者1A ,2A ,3A ,4A ,5A ,6A 和4名女志愿者1B ,2B ,3B ,4B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含1A 但不包含1B 的概率.1.解析 (1)记接受甲种心理暗示的志愿者中包含1A 但不包含1B 的事件为M ,则48510C 5().C 18P M ==题型141 几何概型2.(2017江苏07)记函数()f x =的定义域为D .在区间[]4,5-上随机取一个数x ,则x D ∈的概率是 .2.解析 由题意260x x +-…,故[]2,3D =-,所以()()325549P --==--.故填59.3.(2017全国1卷理科2)如图所示,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是( ). A.14 B. π8 C. 12 D. π4AB D3.. 解析 设正方形的边长为2,则圆的半径为1,则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的面积为π2,则此点取自黑色部分的概率为ππ248=.故选B.第二节 随机变量及其分布题型142 条件概率及相互独立事件同时发生的概率4.(2107天津理16(2))从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.4.解析 (2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)P Y Z P Y Z P Y Z +====+===(0)(1)(1)(0)P Y P Z P Y P Z ==+==1111111142424448=⨯+⨯=. 所以这2辆车共遇到1个红灯的概率为1148.题型143 离散型随机变量的分布列及其数学期望与方差5.(2107浙江8)已知随机变量i ξ满足()1i i P p ξ==,()01i i P p ξ==-,12i =,.若12102p p <<<,则( ).A .()()12E E ξξ<,()()12D D ξξ<B .()()12E E ξξ<,()()12D D ξξ>C .()()12E E ξξ>,()()12D D ξξ<D .()()12E E ξξ>,()()12D D ξξ>5. 解析 依题意,列分布列1ξ1 0p1p11p -2ξ1 0p2p 21p -所以()11E p ξ=,()()1111D p p ξ=-;()22E p ξ=,()()2221D p p ξ=-. 因为12102p p <<<,所以()()12E E ξξ<,()()()()21211210D D p p p p ξξ-=--+>⎡⎤⎣⎦.故选A .6.(2017山东理18)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者1A ,2A ,3A ,4A ,5A ,6A 和4名女志愿者1B ,2B ,3B ,4B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含1A 但不包含1B 的概率.(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望()E X . 6.解析 (1)记接受甲种心理暗示的志愿者中包含1A 但不包含1B 的事件为M ,则48510C 5().C 18P M ==(2)由题意知X 可取的值为0,1,2,3,4,则56510C 1(0)C 42P X ===,4164510C C 5(1)C 21P X ===,3264510C C 10(2)C 21P X ===,2364510C C 5(3)C 21P X ===,1464510C C 1(4)C 42P X ===,因此X 的分布列为X 的数学期望()0(0)1(1)2(2)3(3)4(4)E X P X P X P X P X P X =⨯=+⨯=+⨯=+⨯=+⨯==5105101234221212142+⨯+⨯+⨯+⨯=. 7..(2107山东理8)分别从标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是( ). A.518 B.49 C.59D.79 7. 解析 由于是不放回的抽取,两张卡片的数的奇偶性不同共有11542C C 种基本情况,总的基本事件共有98=72⨯种,则所求事件的概率为12542C C 5989=⨯ .故选C. 8.(2107天津理16)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 8.解析 (1)随机变量X 的所有可能取值为0,1,2,3.()111101112344P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()11111111111111111123423423424P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()111111111121112342342344P X ⎛⎫⎛⎫⎛⎫==-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1111323424P X ==⨯⨯=. 所以随机变量X 的分布列为随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)P Y Z P Y Z P Y Z +====+===(0)(1)(1)(0)P Y P Z P Y P Z ==+==1111111142424448=⨯+⨯=. 所以这2辆车共遇到1个红灯的概率为1148.9.(2017全国2卷理科13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则()D X = . 9.解析 有放回的抽取,是一个二项分布模型,其中0.02=p ,100n =, 则()()11000.020.98 1.96D X np p =-=⨯⨯=.10.(2107全国3卷理科18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 10.解析 (1)易知需求量x 可取200,300,500, ()21612003035P X +===⨯;()3623003035P X ===⨯;()257425003035P X ++===⨯. 则分布列为:【解析】X【解析】200【解析】300【解析】500【解析】P【解析】15【解析】25【解析】25(2)①当200n ≤时:()642Y n n =-=,此时max 400Y =,当200n =时取到. ②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦880026800555n n n -+=+=, 此时max 520Y =,当300n =时取到.③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦320025n -= 此时520Y <.④当500n ≥时,易知Y 一定小于③的情况. 综上所述当300n =时,Y 取到最大值为520.11.(2017北京理17)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)11.解析 (1)由图知,在服药的50名患者中,指标y 的值小于60的有15人, 所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为150.350=. (2)由图知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.2224C 1(0)C 6P ξ===,112224C C 2(1)C 3P ξ===,2224C 1(2)C 6P ξ===. 所以ξ的分布列为ξ0 1 2故ξ的期望121()0121636E ξ=⨯+⨯+⨯=. (3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差. 12.(2017江苏23)已知一个口袋有m 个白球,n 个黑球()*,2,m n n ∈N …,这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,,m n ⋅⋅⋅+的抽屉内,其中第k 次取出的球放入编号为k 的抽屉()1,2,3,,k m n =⋅⋅⋅+.(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()()1nE X m n n <+-.12.解析 (1)编号为2的抽屉内放的是黑球的概率p 为:11C C n m n n m n n p m n-+-+==+. (2)随机变量 X 的概率分布为:随机变量X 的期望为:111C ()C n m nk n k n m nE X k -+-=+=⋅∑()()()1!11C 1!!m nnk n m n k k n k n +=+-=⋅--∑. 所以()()()()2!1C 1!!m nn k n m n k E X n k n +=+-<--∑()()()2!1=(1)C 2!!m nn k n m n k n n k n +=+-=---∑ ()()222121 1C C C =1C n n n n n m n n m nn ----+-+++++-L()()12221121C C C C =1C n n n n n n n m n nm nn ------+-++++⋅⋅⋅+- ()()12221C C C ==1C n n n n n m n nm nn ---+-+++⋅⋅⋅+-L ()()12221C C =1C n n m n m n nm nn --+-+-++- ()()()11C 1C 1n m n nm n n n m n n -+-+=-+-, 即()()()1nE X m n n <+-.题型144 正态分布——暂无13.(2107全国1卷理科19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在()–3,3μσμσ+之外的零件数,求()1P X …及X 的数学期望; (2)一天内抽检零件中,如果出现了尺寸在()–3,3μσμσ+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.9610.01 9.929.9810.04 10.269.9110.13 10.02 9.2210.04 10.059.95经计算得16119.9716i i x x ===∑,0.212s ===,其中i x 为抽取的第i 个零件的尺寸,1216i =⋯,,,.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除()ˆˆˆˆ3,3μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布()2,N μσ,则()–330.9974P Z μσμσ<<+=,160.99740.9592≈0.09≈.13. 解析 (1)由题可知尺寸落在()33μσμσ-+,之内的概率为0.9974,落在()33μσμσ-+,之外的概率为0.0026.()()016160C 10.99740.99740.9592P X==-≈,()()11010.95920.0408P X P X =-=≈-=…,由题可知()~160.0026X B ,,所以()160.00260.0416E X =⨯=. (2)(i )尺寸落在()33μσμσ-+,之外的概率为0.0026,由正态分布知尺寸落在()33μσμσ-+,之外为小概率事件,因此上述监控生产过程的方法合理.(ii )39.9730.2129.334μσ-=-⨯=,39.9730.21210.606μσ+=+⨯=,()()339.33410.606μσμσ-+=,,,因为()9.229.33410.606∉,,所以需对当天的生产过程检查.因此剔除9.22,剔除数据之后:9.97169.2210.0215μ⨯-==.()()()()()222222[9.9510.0210.1210.029.9610.029.9610.0210.0110.02σ=-+-+-+-+-+()()()()()222229.9210.029.9810.0210.0410.0210.2610.029.9110.02-+-+-+-+-+()()()()()22222110.1310.0210.0210.0210.0410.0210.0510.029.9510.02]0.00815-+-+-+-+-⨯≈.所以0.09σ=≈.第三节 统计与统计案例题型145 抽样方式——暂无14.(2017江苏3)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件. 14.解析 按照分层抽样的概念应从丙种型号的产品中抽取60300181000⨯=(件).故填18. 题型146 样本分析——用样本估计总体15.(2017北京理14)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点i A 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点i B 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,123i =,,.①记1Q 为第i 名工人在这一天中加工的零件总数,则1Q ,2Q ,3Q 中最大的是_________. ②记i p 为第i 名工人在这一天中平均每小时加工的零件数,则123p p p ,,中最大的是_________.OB 1B 2B 3A 3A 2A 1)零件数件()15. 解析 联结11A B ,22A B ,33A B 比较三者中点终坐标的大小,所以第一问选1Q ,分别作1B ,2B ,3B 关于原点的对称点1B ',2B ',3B ',比较直线11A B ',22A B ',33A B '斜率大小,可得22A B '最大.故填2p16.(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是( ). A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳16.解析 由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误.故选A.17.(全国2卷理科18)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg )的频率分布直方图如图所示.频率频率组距箱产量/kg新养殖法旧养殖法箱产量/kg(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg , 新养殖法的箱产量不低于50kg ,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:22()()()()()n ad bc K a b c d a c b d -=++++ .17.解析 (1)记:“旧养殖法的箱产量低于50kg ” 为事件B ,“新养殖法的箱产量不低于50kg ”为事件C ,由题图并以频率作为概率得()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯0.62=,()0.06850.04650.01050.0085P C =⨯+⨯+⨯+⨯0.66=,()()()0.4092P A P B P C ==. (2)箱产量50kg <箱产量50kg ≥旧养殖法 62 38 新养殖法3466由计算可得2K 的观测值为()222006266383415.70510010096104k ⨯⨯-⨯==⨯⨯⨯,因为15.705 6.635>,所以()2 6.6350.001P K ≈≥,从而有99%以上的把握认为箱产量与养殖方法有关.(3)150.2÷=,()0.10.0040.0200.0440.032-++=,80.0320.06817÷=,85 2.3517⨯≈,50 2.3552.35+=,所以中位数为52.35.题型147 线性回归方程18.(2107山东理5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为( ).A. 160B. 163C. 166D.17018. 解析 22.5x =,160y =,所以$160422.570a=-⨯=,从而24x =时,42470166y =⨯+=.故选C.题型148 独立性检验——暂无19.(全国2卷理科18)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg )的频率分布直方图如图所示.频率频率组距箱产量/kg新养殖法旧养殖法箱产量/kg(1)设两种养殖方法的箱产量相互独立,记A表示事件:旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:22()()()()()n ad bcKa b c d a c b d-=++++.19.解析(1)记:“旧养殖法的箱产量低于50kg” 为事件B,“新养殖法的箱产量不低于50kg”为事件C,由题图并以频率作为概率得()0.04050.03450.02450.01450.0125P B=⨯+⨯+⨯+⨯+⨯0.62=,()0.06850.04650.01050.0085P C=⨯+⨯+⨯+⨯0.66=,()()()0.4092P A P B P C==.(2)箱产量50kg<箱产量50kg≥旧养殖法62 38新养殖法3466由计算可得2K 的观测值为()222006266383415.70510010096104k ⨯⨯-⨯==⨯⨯⨯,因为15.705 6.635>,所以()2 6.6350.001P K ≈≥,从而有99%以上的把握认为箱产量与养殖方法有关.(3)150.2÷=,()0.10.0040.0200.0440.032-++=,80.0320.06817÷=,85 2.3517⨯≈,50 2.3552.35+=,所以中位数为52.35.。

2018全国高考数学统计与概率专题(附答案解析)

2018全国高考数学统计与概率专题(附答案解析)

2018全国高考真题数学统计与概率专题(附答案解析)1.(全国卷I,文数、理数第3题.5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案:A2.(全国卷I,文数19题.12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案解析】解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=. 3.(全国卷I ,理数20题12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为()01p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ; (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案解析】(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-.因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =.当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)YB ,=+.X Y=⨯+,即402520225X Y所以(4025)4025490=+=+=.EX E Y EY(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于400EX>,故应该对余下的产品作检验.4.(全国卷Ⅱ,文数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5C.0.4D.0.3【答案】D5.(全国卷Ⅱ,文数、理数18题.12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5y t=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案解析】解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.6.(全国卷Ⅱ,理数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3【答案】A7.(全国卷Ⅲ,文数5题.5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.7【答案】B8.(全国卷Ⅲ,文数、理数18题.12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,2()0.0500.0100.0013.8416.63510.828P K kk≥.【答案解析】解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科%网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.(北京卷,文数17题,13分)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;学科*网(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案解析】(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000. 第四类电影中获得好评的电影部数是200×0.25=50, 故所求概率为500.0252000=. (Ⅱ)方法一:由题意知,样本中获得好评的电影部数是 140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=. 方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(0P B ==. (Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率. 10.(北京卷,理数17题,12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【答案解析】解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (Ⅱ)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB )=P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (Ⅲ)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ. 11.(天津卷,文数,15题,13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.【答案解析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分. (Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 12.(天津卷,理数,16题,13分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【答案解析】本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.学.科网(Ⅰ)解:由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)解:随机变量X的所有可能取值为0,1,2,3.P(X=k)=34337C CCk k-⋅(k=0,1,2,3).所以,随机变量X的分布列为随机变量X的数学期望11218412 ()0123353535357E X=⨯+⨯+⨯+⨯=.(ii)解:设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.13.(江苏卷,3题,5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为__________.【答案解析】答案:90解析:8989909191905++++=14.(浙江卷,7题,4分)设0<p<1,随机变量ξ的分布列是ξ0 1 2P12p-122p 则当p在(0,1)内增大时,A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【答案】D第11 页共11 页。

各地高考数学汇编--概率与统计

各地高考数学汇编--概率与统计

各地高考数学汇编--概率与统计一、选择题1 .(2018年高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 ( )A .23B .25 C .35D .9102 .(2017年高考重庆卷(文))下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( )A .0.2B .0.4C .0.5D .0.63 .(2019年高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发生的概率为.21,则ADAB=____ ( )A .12B .14 C D 4 .(2016年高考江西卷(文))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是 ( )A .23B .13C .12D .165 .(2017年高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D .____ (A .9B .10C .12D .136 .(2015年高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以表示:则7个剩余分数的方差为 ( )A .B .C .36D .7 .(2017年高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是0.04组距频率0.05组距频率0.04组距频率0.04组距频率0.010.020.030.010.020.030.040.010.020.030.010.020.03(B)(A)(C)(D)8 .(2018年高考课标Ⅰ卷(文))从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )A .12 B .13C .14D .169 .(2016年高考陕西卷(文))对一批产品的长度(单位: mm )进行抽样检测, 下图喂检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间8 7 79 4 0 1 0 9 1x[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.4510.(2019年高考江西卷(文))总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .08B .07C .02D .0111.(2018年高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .6012.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且$2.347 6.423y x =-; ② y 与x 负相关且$3.476 5.648y x =-+; ③ y 与x 正相关且$5.4378.493y x =+; ④ y 与x 正相关且$ 4.326 4.578y x =--. 其中一定不正确...的结论的序号是 A.①② B.②③C.③④D. ①④13.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A.a a b b'>'>ˆ,ˆ B.a a b b '<'>ˆ,ˆ C.a a b b '>'<ˆ,ˆ D.a a b b '<'<ˆ,ˆ 二、填空题14.(2017年高考浙江卷(文))从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________.15.(2016年高考湖北卷(文))在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =__________.16.(2015年高考福建卷(文))利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为_______17.(2017年高考重庆卷(文))若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为____________. 18.(2018年高考辽宁卷(文))为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________.19.(2015年上海高考数学试题(文科))某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为________. 20.(2013年高考湖北卷(文))某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为__________; (Ⅱ)命中环数的标准差为__________.21.(2014年高考课标Ⅱ卷(文))从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.22.(2016年上海高考数学试题(文科))盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_______(结果用最简分数表示).三、解答题23.(2018年高考江西卷(文))小波已游戏方式决定是去打球、唱歌还是去下棋.游戏规则为以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.5 3(1) 写出数量积X 的所有可能取值 (2) 分别求小波去下棋的概率和不.去唱歌的概率 24.(2019年高考陕西卷(文))有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次,(Ⅰ) 为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B 组中抽取了6人. 请将其余各组抽取的人数填入下表.人数(Ⅱ) 在(Ⅰ)中, 若, 两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率. 25.(2017年高考四川卷(文))某算法的程序框图如图所示,其中输入的变量x 在24,,3,2,1Λ这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =; (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.n=时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为当2100i i=的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求(1,2,3)的可能性较大.26.(2016年高考辽宁卷(文))现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:(I)所取的2道题都是甲类题的概率; (II)所取的2道题不是同一类题的概率.27.(2015年高考天津卷(文))某产品的三个质量指标分别为x, y, z, 用综合指标S = x + y+ z评价该产品的等级. 若S≤4, 则该产品为一等品. 先从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:质量指标(x , y , z )(1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取两件产品, (⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率. 28.(2013年高考湖南(文))某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米. (Ⅰ)完成下表,并求所种作物的平均年收获量;(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率. 29.(2014年高考安徽(文)) 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲 乙 7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 07 0 0 2 2 2 3 3 6 6 9 7 5 4 4 28 1 1 5 5 8 2 09 0(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x 的值.30.(2016年高考课标Ⅱ卷(文))经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t 该农产品.以X(单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率.31.(2015年高考广东卷(文))从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.32.(2018年高考山东卷(文))某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:A B C DE (Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率 33.(207年高考北京卷(文))下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)34.(2018年高考福建卷(文))某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:35.(2017年高考大纲卷(文))甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)求前4局中乙恰好当1次裁判概率.36.(2016年高考课标Ⅰ卷(文))(本小题满分共12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (3)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?37.(本小题满分13分,(Ⅰ)小问9分,(Ⅱ)、(Ⅲ)小问各2分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得10180ii x==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑.(Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+;(Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y bx a =+中,1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-,其中x ,y 为样本平均值,线性回归方程也可写为$$y bxa =+$.1.【答案】D2.【答案】B3.【答案】D4.【答案】C5.【答案】D6.【答案】B7.【答案】A8.【答案】B9.【答案】D 10.【答案】D 11.【答案】B 12.【答案】D13.【答案】C 14.【答案】1515.【答案】3 16.【答案】3117.【答案】23 18.【答案】10 19.【答案】7820.【答案】(Ⅰ)7 (Ⅱ)2 21.【答案】15 22.【答案】5723.【答案】解:(1) x 的所有可能取值为-2 ,-1 ,0, 1. (2)数量积为-2的只有25OA OA •一种数量积为-1的有15OA OA •,1624263435,,,,OA OA OA OA OA OA OA OA OA OA •••••六种数量积为0的有13143646,,,OA OA OA OA OA OA OA OA ••••四种 数量积为1的有12234556,,,OA OA OA OA OA OA OA OA ••••四种 故所有可能的情况共有15种. 所以小波去下棋的概率为1715p = 因为去唱歌的概率为2415p =,所以小波不去唱歌的概率2411111515p p =-=-= 24.【答案】解: (Ⅰ) 按相同的比例从不同的组中抽取人数.从B 组100人中抽取6人,即从50人中抽取3人,从100人中抽取6人,从100人中抽取9人.(Ⅱ) A 组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持支持1号歌手的概率为· B 组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持支持1号歌手的概率32为· 现从抽样评委A 组3人,B 组6人中各自任选一人,则这2人都支持1号歌手的概率. 所以,从A,B 两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为. 25.【答案】解:(Ⅰ)变量x 是在24,,3,2,1Λ这24个整数中等可能随机产生的一个数,共有24种可能.当x 从23,21,19,17,15,13,11,9,7,5,3,1这12个数中产生时,输出y 的值为1,故211=P ; 当x 从22,20,16,14,10,8,4,2这8个数中产生时,输出y 的值为2,故312=P ; 当x 从24,18,12,6这4个数中产生时,输出y 的值为3,故613=P . 所以输出y 的值为1的概率为21,输出y 的值为2的概率为31,输出y 的值为3的概率为61. (Ⅱ)当2100n =时,甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率如下,比较频率趋势与概率,可得乙同学所编写程序符合算法要求的可能性较大.26.【答案】62926232=⋅=P 9227.【答案】28.【答案】解: (Ⅰ) 由图知,三角形中共有15个格点,与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1).与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3,).与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1).如下表所示:平均年收获量4615==u .(Ⅱ)在15株中,年收获量至少为48kg 的作物共有2+4=6个.所以,15株中任选一个,它的年收获量至少为48k 的概率P=4.0156=. 29.【答案】解:(1)30300.056000.05n n =⇒== 255306p ==(2)174013504246092670922805290230x +++⨯++⨯++⨯++⨯++⨯= =208430254014503176010337010208059030x +++⨯++⨯++⨯++⨯+==2069302120842069150.5303030x x ===--30.【答案】31.【答案】(1)重量在[)90,95的频率200.450==; (2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541515=⨯=+;(3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,)x a x b x c a b a c b c 6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==; 32.【答案】33.【答案】解:(I)在3月1日至3月13日这13天中,1日.2日.3日.7日.12日.13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613. (II)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气质量重度污染的概率为413. (III)从3月5日开始连续三天的空气质量指数方差最大. 34.【答案】解:(Ⅰ)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人),记为1A ,2A ,3A ;25周岁以下组工人有400.052⨯=(人),记为1B ,2B从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =(Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手600.2515⨯=(人),“25周岁以下组”中的生产能手400.37515⨯=(人),据此可得所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关” 35.【答案】(Ⅰ)记1A 表示事件“第2局结果为甲胜”,2A 表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12=A A A •.12121()=P()()()4P A A A P A P A •==. (Ⅱ)记1B 表示事件“第1局结果为乙胜”,2B 表示事件“第2局乙参加比赛时,结果为乙胜”,3B 表示事件“第3局乙参加比赛时,结果为乙胜”,B 表示事件“前4局中恰好当1次裁判”.则1312312B B B B B B B B =•+••+•.1312312()()P B P B B B B B B B =•+••+• 1312312()()()P B B P B B B P B B =•+••+•1312312()()()()()()()P B P B P B P B P B P B P B =•+••+• 111484=++ 58=. 36.【答案】(本小题满分共12分)(1) 设A 药观测数据的平均数为 ,B 药观测数据的平均数为 ,又观测结果可得120x=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+3.0+3.1+3.2+3.5)=2.3,1(0.50.50.60.80.9 1.1 1.2 1.2 1.3 1.4 1.6 1.7 1.8 1.9 2.1202.4 2.5 2.6 2.73.2 1.6y =+++++++++++++++++++=由以上计算结果可得x >y,因此可看出A 药的疗效更好(2)由观测结果可绘制如下茎叶图: 9 8 7 7 6 5 4 3 3 2 从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎2.3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.37.。

修订版——安徽大学2014—2015学年第二学期《应用随机过程》A卷及其参考答案

修订版——安徽大学2014—2015学年第二学期《应用随机过程》A卷及其参考答案

5、 (12 分,选做一题) (1)求解下面的 Vasicek 随机利率模型( SDE ) : dr t r t dt dW t ,其中 , 和 均为常数, W t , t 0 为标准
(2)设 W t , t 0 是标准 Brown 运动, Brown 运动,并求 E r t 、Var r t 。
三、 计算证明题 1、 (1)令 A “该顾客得到满意服务” ,由题意, T ~E 2 ,且
P A


P A T s fT s ds P s 2e 2 s ds
0
1 ; 2
(2)易见, z 0 , P XY z
得 分
( Brown ) 运动, 试利用 Radon Nikodym W t ,0 t T 是概率测度 P 下的标准 dQ 导数 构造一个新的概率测度 Q , 使得 S t ,0 t T 在概率测度 Q 下遵循: dP
dS t dt dW t ,其中 S t
1 X k , n 1,试证: k 1 X k 1
n
《 应用随机过程 》 (A 卷)
第 1 页1Βιβλιοθήκη 三、计算证明题(共 64 分)
得分
1、 (10 分,选做一题) (1)一顾客于时刻 T 到达一服务台, T ~E 2 ,若已知 顾客于任意时刻 s 到达服务台,则“该顾客能够得到满意服务”的概率为 P s e2 s ,试求“该顾客得到满意服务”的概率。 (2)设 X ~U a, b , 0 a b ,给定 X x 时, Y 服从参数为 x 的指数分 布,则 XY ~E 1 。

安徽大学高等数学期末试卷和答案

安徽大学高等数学期末试卷和答案

安徽大学2011—2012学年第一学期《高等数学A (三)》考试试卷(A 卷)院/系 年级 专业 姓名 学号答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------(闭卷 时间120分钟)考场登记表序号题 号 一 二 三 四 五 总分 得 分阅卷人得分 一、选择题(每小题2分,共10分)1.设A 为阶可逆矩阵,则下列各式正确的是( )。

n (A); (B)1(2)2A −=1A −11(2)(2)T T A A −−=; (C); (D)。

1111(())(())T T A A −−−−=11(())(())T T T A A −−−=12.若向量组12,,,r αα α可由另一向量组12,,,s ββ β线性表示,则下列说法正确的是( )。

(A); (B)r ;r s ≤s ≥(C)秩(12,,,r ααα )≤秩(12,,,s ββ β); (D)秩(12,,,r ααα ≥)秩(12,,,s ββ β)。

3.设,A B 为阶矩阵,且n A 与B 相似,E 为阶单位矩阵,则下列说法正确的是( )。

n (A)E A E B λλ−=−;(B)A 与B 有相同的特征值和特征向量; (C)A 与B 都相似于一个对角矩阵;(D)对任意常数,与k kE A −kE B −相似。

4.设123,,ααα为3R 的一组基,则下列向量组中,( )可作为3R 的另一组基。

(A)11212,,3ααααα−−; (B)1212,,2αααα+; (C)12231,,3αααααα++−; (D)12231,,3αααααα+++。

安徽省2017—2018学年高一数学下学期期末考试试卷(一)

安徽省2017—2018学年高一数学下学期期末考试试卷(一)

安徽省2017—2018学年高一数学下学期期末考试试卷(一)(考试时间100分钟满分120分)一、单项选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知实数m,n满足m<0,n>0,则下列说法一定正确的是()A.log2(﹣m)>log2n B.C.|m|<|n|D.2.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是()A.B.C.D.3.将甲、乙两名同学8次数学测验成绩统计如茎叶图所示,若乙同学8次数学测试成绩的中位数比甲同学8次数学测验成绩的平均数多1,则a=()A.4 B.5 C.6 D.74.已知△ABC中,BC=6,AC=8,cosC=,则△ABC的形状是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形5.已知﹣1,a1,a2,8成等差数列,﹣1,b1,b2,b3,﹣4成等比数列,那么的值为()A.﹣5 B.5 C.D.6.某产品的广告费用x与销售额y的统计数据如表:广告费用x(万元) 4 2 3 5销售额y(万元)49 26 39 54根据上表可得回归方程=x+中的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.67.7万元C.65.5万元D.72.0万元7.已知等差数列{a n}的前n项和为S n,且S9=18,则下列说法正确的是()A.有最小值﹣3B.有最小值3C.有最大值﹣3D.有最大值38.执行如图的程序框图,则输出的q的值为()A.10 B.34 C.36 D.1549.已知实数x,y满足约束条件,若z=2x+y的最小值为3,则实数b=()A.B.C.1 D.10.如图所示,四边形MNQP被线段NP切割成两个三角形分别为△MNP和△QNP,若MN⊥MP,sin(∠MPN+)=,QN=2QP=2,则四边形MNQP的最大值为()A.B.C.D.二、填空题(每小题5分满分25分)11.已知集合A={x|1+2x﹣3x2>0},B={x|2x(4x﹣1)<0},则A∩(∁R B)=12.已知数列{a n}满足a1=4,a n+2a n+1=6,则a4=.13.一艘客轮自北向南航行,上午8时在灯塔P的北偏东15°位置,且距离灯塔34海里,下午2时在灯塔P的东南方向,则这只船航行的速度为海里/小时.14.如图所示,正方形ABCD内接于圆O,且AE=BE=CG=DG,AH=CF=AD,则往圆O 内投掷一点,该点落在四边形EFGH内的概率为.15.已知数列{a n}满足a1=10,a n+1﹣a n=2n(n∈N*),则的最小值为.三、解答题(本大题共5小题,共55分.解答应写出文字说明、证明过程或演算步骤.)16.随着网络信息时代的来临,支付宝已经实现了许多功能,如购物付款、加油付款、理财产品等,使得越来越多的人在生活中使用手机支付的便捷功能,阿里巴巴公司研究人员对某地区年龄在10~60岁间的n位市民对支付宝的使用情况作出调查,并将调查的人员的年龄情况绘制成频率分布直方图如图所示.(1)若被调查的年龄在20~30岁间的市民有600人,求被调查的年龄在40岁以上(含40岁)的市民人数;(2)若按分层抽样的方法从年龄在[20,30)以及[40,50)内的市民中随机抽取5人,再从这5人中随机抽取2人进行调查,求抽取的2人中,至少1人年龄在[20,30)内的概率.17.已知数列{a n}的前n项和为S n,且S n=n2+2n.(1)证明:数列{a n}是等差数列,并求出数列{a n}的通项公式;(2)求数列{}的前n项和为T n.18.已知实数x,y的取值如表所示.x 0 1 2 3 4 y 1 2 4 6 5 (1)请根据上表数据在网格纸中绘制散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+.注:回归方程为=x+,其中=,a=.19.已知△ABC中,角A,B,C所对的边分别为a,b,c,若向量=(2a,1﹣sin2),=(cos2,2c),=3b.(1)证明:sinA,sinB,sinC成等差数列;(2)若b=8,B=,求△ABC的面积S.20.已知正项等比数列{a n}的前n项和为S n,且=10,a3=9.(1)求数列{a n}的通项公式与前n项和为S n;(2)若数列{b n}的通项公式为=n﹣3,(ⅰ)求数列{b n}的前n项和为T n;(ⅱ)探究:数列{b n}是否有最小项?若没有,请通过计算得到最小项的项数;若没有,请说明理由.参考答案一、单项选择题:1.B 2.C 3.C.4.D.5.A 6.C.7.C.8.B.9.A 10.B.二、填空题11.答案为:12.答案为:.13.答案为:.14.答案为:.15.答案为:.三、解答题16.解:(1)依题意,所求人数为.(2)依题意,年龄在[20,30)内的有3人,记为A,B,C,年龄在[40,50)内的有2人.记为1,2;随机抽取2人,所有可能的情况为:(A,B),(A,C),(A,1),(A,2),(B,C),(B,1),(B,2),(C,1),(C,2),(1,2),共10种情况,其中年龄都不在[20,30)内的情况是(1,2),故所求概率p=1﹣=.17.(1)证明:S n=n2+2n,可得a1=S1=3,n>1时,a n=S n﹣S n=n2+2n﹣(n﹣1)2﹣(n﹣1)=2n+1.﹣1综上可得a n=2n+1(n∈N*),=2,即a n﹣a n﹣1则数列{a n}是首项为3和公差为2的等差数列,数列{a n}的通项公式a n=2n+1;(2)解:==(﹣),即有前n项和为T n=(﹣+﹣+﹣+…+﹣)=(﹣)=.18.解:(1)散点图如下:(2),,,,故==1.2,则=3.6﹣1.2×2=1.2,所以回归直线的方程为=1.2x+1.2.19.(1)证明:∵=3b,∴,由正弦定理得:,∴sinA(cosC+1)+sinC(cosA+1)=3sinB,∴sinA+sinC=2sinB,故sinA,sinB,sinC成等差数列.(2)解:由余弦定理,b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac,由(1)可知,a+c=2b,又b=8,解得ac=64,故△ABC的面积.20.解:(1)显然数列{a n}的公比不为1,故,解得q=3(q=﹣3舍去),所以,故,.(2)(ⅰ)依题意,,,,两式相减,,故,即.(ⅱ)法一:假设数列{b n}中第k项最小,则,即,解得,因为k∈N*,故k=2,则数列{b n}有最小项,最小项是第2项.法二:由(ⅰ)知,,且3n﹣1>0,则当n>3时,b n>0,当n=3时,b n=0,当0<n<3时,b n<0,又b1=﹣4,b2=﹣10,所以数列{b n}有最小项,最小项是第2项.。

2018版高考数学(理)一轮复习文档:第十一章统计与概率11.1含解析

2018版高考数学(理)一轮复习文档:第十一章统计与概率11.1含解析

1.简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样方法有两种--抽签法和随机数法.2.系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体编号;(2)确定分段间隔k,对编号进行分段.当错误!(n是样本容量)是整数时,取k=错误!;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.3.分层抽样(1)定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)简单随机抽样是一种不放回抽样.(√)(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( ×)(3)抽签法中,先抽的人抽中的可能性大.(×)(4)系统抽样在第1段抽样时采用简单随机抽样.( √)(5)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.(×)(6)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(×)1.(教材改编)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为()A.33,34,33 B.25,56,19C.20,40,30 D.30,50,20答案B解析因为125∶280∶95=25∶56∶19,所以抽取人数分别为25,56,19.2.(2015·四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A.抽签法B.系统抽样法C.分层抽样法D.随机数法答案C解析根据年级不同产生差异及按人数比例抽取易知应为分层抽样法.3.(1)某学校为了了解2016年高考数学学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法Ⅱ。

2020年安徽大学822高等代数考研精品资料

2020年安徽大学822高等代数考研精品资料

2020年安徽大学822高等代数考研精品资料说明:本套考研资料由本机构多位高分研究生潜心整理编写,2020年考研初试首选资料。

一、安徽大学822高等代数考研真题汇编及考研大纲0.安徽大学822高等代数2004-2010、2012-2017、(回忆版)2018年考研真题1.安徽大学822高等代数2004-2010、2012-2017年考研真题参考答案。

说明:分析历年考研真题可以把握出题脉络,了解考题难度、风格,侧重点等,为考研复习指明方向。

2.安徽大学822高等代数考研大纲①2019年安徽大学822高等代数考研大纲。

说明:考研大纲给出了考试范围及考试内容,是考研出题的重要依据,同时也是分清重难点进行针对性复习的首选资料,本项为免费提供。

二、2020年安徽大学822高等代数考研资料3.北京大学主编《高等代数》考研相关资料(1)北京大学主编《高等代数》[笔记+课件+提纲]①安徽大学822高等代数之北京大学主编《高等代数》考研复习笔记。

说明:本书重点复习笔记,条理清晰,重难点突出,提高复习效率,基础强化阶段首选资料。

②安徽大学822高等代数之北京大学主编《高等代数》本科生课件。

说明:参考书配套授课PPT课件,条理清晰,内容详尽,版权归属制作教师,本项免费赠送。

③安徽大学822高等代数之北京大学主编《高等代数》复习提纲。

说明:该科目复习重难点提纲,提炼出重难点,有的放矢,提高复习针对性。

(2)北京大学主编《高等代数》考研核心题库(含答案)①安徽大学822高等代数考研核心题库之填空题精编。

②安徽大学822高等代数考研核心题库之解答题精编。

说明:本题库涵盖了该考研科目常考题型及重点题型,根据历年考研大纲要求,结合考研真题进行的分类汇编并给出了详细答案,针对性强,是考研复习首选资料。

(3)北京大学主编《高等代数》考研模拟题[仿真+强化+冲刺]①2020年安徽大学822高等代数考研专业课六套仿真模拟题。

说明:严格按照本科目最新专业课真题题型和难度出题,共六套全仿真模拟试题含答案解析。

安徽大学期末试卷MK_08-09(2)高数A(二)、B(二)试卷.pdf

安徽大学期末试卷MK_08-09(2)高数A(二)、B(二)试卷.pdf

.
5. 已知 f (x) 是周期为 2π 的周期函数,在 (−π , π ] 上 f (x) 的解析式为
f
(x)
=
⎧−π
⎨ ⎩
x,
,
−π < x ≤ 0 0< x≤π
,则
f
(x)
的傅立叶级数在
x
=
0
处收敛于__
___. __.
二、单项选择题(每小题 2 分,共 10 分)
得分
6.设 y1(x) 、 y2 (x) 、 y3(x) 是非齐次线性方程 y′′ + p(x) y′ + q(x) y = f (x) 的三个线性
无关的解, C1 、 C2 是任意常数,则该非齐次线性方程的通解可表示为 ( ).
A. C1 y1 + C2 y2 + C3 C. C1 y1 + C2 y2 − (1− C1 − C2 ) y3
B. C1 y1 + C2 y2 − (C1 + C2 ) y3 D. C1 y1 + C2 y2 + (1− C1 − C2 ) y3
安徽大学期末试卷
18.将 f (x) = 1 展开为 (x + 2) 的幂级数,并求该幂级数的收敛域. 1+ 2x
四、应用题(本大题共 8 分)
19. 在椭圆 x2 + 4 y2 = 4 上求一点,使该点到直线 2x + 3y −12 = 0 的距离最短.
《高等数学 A(二) 、B(二)》(A 卷) 第 5 页 共 6 页
x
=
0

y
=
1及
y
=
x
所围成的区域.
安徽大学期末试卷
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽大学2017—2018学年第一学期
《高等数学A (三)》(概率论与数理统计)考试试卷(A 卷)
(闭卷 时间120分钟)
考场登记表序号
一、 填空题(每小题2分,共10分)
1.设()0.6P A =,()0.4P B =,(|)0.3P A B =,则(|)__________P A B =.
2.设随机变量X 的概率密度函数01,()0,.x f x <<=
其他,λ是(0,1)内的一个实数,且满足
()()P X P X λλ<=>,则λ=____________.
3.某人向同一目标独立重复射击,每次击中目标的概率为(01)p p <<,则此人第4次射击
时恰好第2次命中目标的概率为___________.
4.设X 与Y 是两个独立同分布的随机变量,且1(0)3P X ==,2
(1)3
P X ==,则min(,)Z X Y =
的分布律为________.
5.已知2EX =,3EY =,4DX =,16DY =,()14E XY =,则由切比雪夫不等式可得
(|32|3)P X Y −≤≥___________.
二、选择题(每小题2分,共10分)
6. 设A 和B 为随机事件,则()()()P A B P A P B −=−成立的充要条件是( ). (A )B A ⊂ (B )A B = (C )()0P B A −= (D )()0P A B =
7.设1()F x 和2()F x 都是随机变量的分布函数,则为了使12()()()F x aF x bF x =−是某随机变量的分布函数,在下列给定的各组数值中应取( ).
题 号 一 二 三 四 五 总分
得 分
阅卷人
得分
院/系 年级 专业 姓名 学号
答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------
得分
(A )35a =,25b = (B )23a =,13b =− (C )12a =−,32b = (D )12a =,3
2b =−
8.设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,记(,)f x y 表示(,)X Y 的联合概率密度函数;(),()X Y f x f x 分别表示X ,Y 的边缘概率密度函数;||(|),(|)X Y Y X f x y f y x 分别表示Y y =条件下X 的条件概率密度和X x =条件下Y 的条件概率密度.考虑下列式子: •(,)()()X Y f x y f x f y =; ‚()(,)()
X Y f x f x y f y =; ƒ|(|)()X Y X f x y f x =; ○4|(|)()Y X Y f y x f y =. 其中正确的个数为( ).
(A )1个 (B ) 2个 (C )3个 (D )4个
9.设随机变量X 和Y 有相同且不为零的方差,则相关系数1XY ρ=−的充要条件为( ). (A )(,)0Cov X Y Y −= (B )(,)0Cov X Y X −= (C )(,)0Cov X Y X Y +−= (D )(,)0Cov X Y Y +=
10.设12,,,,n X X X L L 是相互独立的随机变量序列且都服从
区间上的均匀分布,记()x Φ为标准正态分布的分布函数,则( ).
(A
)14lim ()n i i n X P x x n =→∞ −
≤=Φ ∑ (B
)2lim ()n i n X P x x →∞
− ≤=Φ
∑ (C
)lim ()n i n X P x x →∞ ≤=Φ ∑ (D
)lim ()n i n X P x x →∞
≤=Φ

三、分析计算题(每小题13分,共65分)
11.甲袋中有3件正品2件次品,乙袋中有4件正品4件次品.先从甲袋中任取两件产品放入乙袋,再从乙袋中任取1件产品.(1)求取出的该产品是正品的概率;(2)若已知从乙袋中取出的产品是正品,求从甲袋中取出的是一件正品、一件次品的概率.
得分
12.设连续型随机变量X 的概率密度函数为()x f x Ce −=,x −∞<<+∞.
求:(1)常数C 的值;(2)X 的分布函数()F x ;(3)Y X =的概率密度函数.
13.袋中装有5个白球和3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取两个球,用i X 表示第i 次取到的白球数,1,2i =. (1)求12(,)X X 的联合分布律; (2)求事件12{0}X X =的概率;
(3)判断1X 与2X 是否相关,并说明理由.
答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------
14.已知二维随机变量(,)X Y 在以点(0,0),(1,1)−,(1,1)为顶点的三角形区域内服从均匀分布.求:(1)()Y f y ;(2)|(|)X Y f x y ;(3)102P X Y
>>

15. 设总体X 的概率分布为
X
1 2 3 P

2(1)θθ−
2(1)θ−
其中()01θθ<<是未知参数.利用总体X 的如下样本值1、1、2、1、3、2,求θ的矩估计值和极大似然估计值. 四、应用题(每小题10分,共10分)
16.已知一种元件的寿命2~(,)X N µσ,并根据规定其平均寿命为1000小时.现从中随机抽取25个元件,测得样本均值950x =小时,样本标准差150s =小时.
分别在下列两种情况:① 己知100σ=小时;② 未知σ下,检验这批元件是否符合规定要求.(0.05)α=
(其中0.05 1.65u =,0.025 1.96u =,0.05(25) 1.7081t =,0.05(24) 1.7109t =,0.025(25) 2.0595t =,0.025(24) 2.0639t =)
得分
答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------
五、证明题(每小题5分,共5分)
17.设总体X 服从(0,1)N ,()12,,n X X X L 是来自总体的简单随机样本,1
1n
i i X X n ==∑,
()
22
1
11n i
i S X X n ==−−∑分别为样本均值和样本方差,记221T X S n =−. 证明:2
(1)
DT n n =−.
得分。

相关文档
最新文档