55〓应用一元一次方程希望工程义演
5.5 应用一元一次方程——“希望工程”义演
这是一双对知识 充满渴求的眼睛, 二十年前,这双 眼睛感动了整整 一代人.
这个已到上学年龄却 上不起学,只能帮父母 拾柴火的孩子,你读 到他的无奈了吗?
1989年成立的“希望工程”让他们 圆了上学梦.
但你可能不会想到:二十年后的今天, 依然有没教室的同龄人,他们只能盘腿 坐在炕上读书;
①今天我们遇到的问题比前面的问题 复杂,含有两个未知量,两个等量关系, 可以把其中一个未知量设为未知数,另 一个未知量就用其中的一个等量关系表 示为含未知数的代数式,而另一个等量 关系则用来列方程.
②我们可以采用列表格的方法搞清较 复杂问题中的各个量之间的关系.
如果票价不变,那么售出1000张票 所得 票款可能是6930元吗?为什么?
解得y=___8_0__
因此,40瓦的灯泡有__2_____个,60瓦的灯泡 有___3___个.
1.通过对“希望工程”的了解,我们要更加珍惜 自己的学习时光,并尽力去帮助那些贫困地区的失 学儿童.
2.遇到较为复杂的实际问题时,我们可以借助表格 分析问题中的等量关系,借此列出方程,并进行方程 解的检验.
40瓦的灯泡个数+60瓦的灯泡个数=5个 ①
40瓦灯泡总瓦数+60瓦灯泡总瓦数=260瓦 ②
设40瓦的灯泡瓦数为y瓦,
数(瓦)
y/40 (260-y)/60
y
(260-y)
根据等量关系2,可列出方程:
___y_/_4_0__+_(_2_6__0_-_y_)_/6__0_=__5__
你更不会想到,依然有四处漏风、光 线昏暗在狂风中摇曳的教室;
当你坐在明亮的教室, 有人却点着蜡烛苦读;
有 人 却 奔 波 在 十 几 里 的 上 下 学 路 上
5.5 应用一元一次方程——“希望工程”义演
5.5 应用一元一次方程——“希望工程”义演【学习目标】1.通过分析复杂问题的已知量和未知量之间的等量关系,从而建立方程模型解决实际问题. 2.掌握应用一元一次方程解决实际问题的一般步骤. 【学习重点】找出问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题. 【学习难点】 找等量关系.行为提示:学生先独立完成计算,再与同伴交流,最后教师讲评.行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.情景导入 生成问题为了帮助地震灾区重建家园,校委会在学校进行了募捐,七、八、九年级的同学都参加了募捐.七年级捐款数是捐款总数的16,八年级捐款数是捐款总数的13,九年级捐款1200元,三个年级共捐款多少元?【说明】学生从非常熟悉的例子中感受教学与生活的紧密联系.自学互研 生成能力知识模块一 应用一元一次方程解决数量分配问题认真研读教材第147页“议一议”上面的内容,完成下面问题1的学习与探究. 【说明】学生观察、分析,结合图中信息,解决下面的问题. 问题1 上面的问题中包含哪些等量关系?售出的票包括成人票和学生票,所得票款包括成人票款和学生票款,因此这个问题中包含着下面两个等量关系:成人票数+学生票数=1000(张),① 成人票数+学生票数=6950(元).②说明:学生很容易得出把上面问题中的6950换成6930,然后求解,再探讨求出的解是否符合实际意义.行为提示:教师结合各组反馈的疑难问题分配展示任务,各组展示过程中,教师引导其他组进行补充、纠错,最后进行总结评分.展示目标:知识模块一主要展示应用一元一次方程解决数量分配问题的方法技巧与规范格式;知识模块二主要展示一元一次方程解决实际问题的一般步骤. 设售出的学生票为x 张,填写下表:学生 成人 票数/张 x 100-x 票款/元5x6950-5x根据等量关系②,可列出方程:8(1000-x)=6950-5x .解得x =350, 因此,售出成人票650张,学生票350张. 设所得的学生票款为y 元,填写下表:学生 成人票数/张 y 5 1000-y 5票款/元y6950-y根据等量关系①,可列出方程:8⎝⎛⎭⎫1000-45=6950-y , 解得y =1750,因此,售出成人票650张,学生票350张.【归纳结论】对于数量分配问题,一般包含两个等量关系,一个用来设未知数,另一个用来列方程.师生合作共同完成下面问题2的学习与探究.问题2 如果票价不变,那么售出1000张票所得票款可能是6930元吗?为什么?【归纳结论】利用方程解决实际问题时,不仅要注意列、解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.知识模块二 一元一次方程解决实际问题的一般步骤师生合作共同完成下面问题3的学习探究.问题3 用一元一次方程解决实际问题的一般步骤是什么?【说明】学生结合前面的例子,归纳用一元一次方程解决实际问题的一般步骤. 【归纳结论】教材第148页“议一议”的图示.交流展示 生成新知1.小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑; 2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行板书规划.知识模块一 应用一元一次方程解决数量分配问题 知识模块二 一元一次方程解决实际问题的一般步骤检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
5.5 应用一元一次方程—“希望工程”义演
y
5
8
(6950-y)
y
解:设所得的成人票款为 y 元.
根据等量关系①,可列方程
.
解这个方程,得 y = 5200 .
因此售出学生票 350 张,成人票 650 张.
【想一想】
合作研学
如果票价不变,那ቤተ መጻሕፍቲ ባይዱ售出1000张票所得票款
可能是6930元吗?为什么?
解:不能.
设售出的学生票为x张,则:
8(1000-x) +5x=6930,
(2)如果设售出的学生票为 x 张,请完成下表:
x
1000-x
5x
8(1000-x)
解:设售出的学生票为x张. 根据等量关系②,可列方程 5x+8(1000-x)=6950 . 解这个方程,得x = 350 . 因此售出学生票 350 张,成人票 650 张.
合作研学
某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.
为了能让更多的失学儿童回到课堂,社会各界人士都在为 “希望工程”而努力.
现在有一文艺团体就为“希望工程”募捐组织了一场义演.
这节课我们学习应用一元一次方程——“希望工程”义演.
第五章 一元一次方程
第8课 应用一元一次方程—“希望工程”义演
学习目标
1.能在具体“希望工程”义演问题中准确找出等量关系; 2.会解“希望工程”义演问题的应用题。
课堂小结
请同学们说出这节课自己的收获. (1)利用表格分析问题中的数量关系. (2)同一个问题,未知数的设法不同,所列方程的复杂
程度也不同,所以在设未知数时要有所选择. (3)列一元一次方程解决实际问题的一般步骤.
①审➝②设➝③列➝④解➝⑤验➝⑥答.
5.5 应用一元一次方程--“希望工程”义演
1.两个未知量,两个等量关系,如何列方程; 2.寻找中间量; 3.学会用表格分析数量间的关系.
1:甲、乙、丙三个村庄合修一条水渠,计划需要176个 劳动力,由于各村人口数不等,只有按2:3:6的比 例摊派才较合理,则三个村庄各派多少个劳动力?
• 2:某校组织活动,共有100人参加,要把 参加活动的人
等量关系:邮票总张数相等
解:设这个班有学生x人, 据题意得 3x+24=4x-26. 解,得 x=50, 此时,3x+24=150+24=174(张). 答:共有学生50人,邮票174张.
练习2:某工厂三个车间共有180人,第二车间人数是第一车间 人数的3倍还多1人,第三车间人数是第一车间人数的 一半还少1人,三个车间各有多少人?
分析:本题中存在2个等量关系:
总票数=成人总票数+学生总票数;
总票款=成人总票款+学生总票款.
方法1分析:列表
学生
票数(张)
x
票款(元)
5x
成人 1000-x 8(1000-x)
(方法1)解:设学生票为x张, 据题意得 5x+8(1000-x) =6950. 解,得 x=350. 此时,1000-x = 1000-350 = 650(张). 答:售出成人票650张,学生票350张.
(2)成人票款共得6400元,学生票款共得2500元, 成人票和学生票共卖出多少张?
分析:票数=总票款÷票价.
解:64800
2500 5
800
500
1300
(元).
答:成人票和学生票共卖出1300元.
例1:某文艺团体为“希望工程”募捐义演, 成人票8元,学生票5元.
(3)如果本次义演共售出1000张票,筹得票 款6950元,成人票与学生票各售出多少张?