《分式的基本性质》教案

合集下载

《分式的基本性质》教案

《分式的基本性质》教案

《分式的基本性质》教案6知能演练提升一、能力提升1.在分式4y+3x4x ,x2-1x4-1,x2-xy+y2x+y,a2+2abab-2b2中,最简分式有()A.1个B.2个C.3个D.4个2.当x=6,y=-2时,式子x2-y2(x-y)2的值为()A.2B.43C.1 D.123.不改变分式2-3x 2+x-5x 2+2x -3的值,使分子、分母的最高次项的系数为正数的结果是( )A.3x 2+x+25x 2+2x -3 B.3x 2-x+25x 2+2x -3 C.3x 2+x -25x 2-2x+3D.3x 2-x -25x 2-2x+34.下列各题中,所求的最简公分母错误的是( ) A.13x 与a6x 2的最简公分母是6x 2 B.13a 2b 3与13a 2b 3c 的最简公分母是3a 2b 3cC.1m+n 与1m -n 的最简公分母是m 2-n 2D.1a (x -y )与1b (y -x )的最简公分母是ab (x-y )(y-x )5.等式-m m -n =-mnmn -n 2,从左到右的变形中需加的条件是 . 6.将分式的分子与分母中各项系数化为整数,则0.2x -12y14x+23y = .7.已知4x=y (y ≠0),则分式4x 2-y 2xy的值是 .8.化简求值:(1)a+3ba 2-9b 2,其中a=4,b=1; (2)b 3-9a 2bb 3+9a 2b -6ab 2,其中a=2,b=12.二、创新应用★9.从三个式子:①a 2-2ab+b 2,②3a-3b ,③a 2-b 2中任意选择两个构造成分式,然后进行化简,并求当a=6,b=3时该分式的值.知能演练·提升一、能力提升1.C 本题考查最简分式的概念.x 2-1x 4-1=1x 2+1,其余三个分式的分子、分母都不能再约分,故选C .2.D3.D2-3x 2+x-5x 2+2x -3=-(3x 2-x -2)-(5x 2-2x+3)=3x 2-x -25x 2-2x+3.4.D 本题考查分式最简公分母的确定.b (y-x )可化为-b (x-y ),与a (x-y )中有公因式(x-y ),取所有因式的积-ab (x-y ),即为最简公分母,D 错误,故选D .5.n ≠06.12x -30y15x+40y 原式=(0.2x -12y)×60(14x+23y)×60=12x -30y15x+40y .7.-3 原式=4x 2-(4x )2x ·4x=-12x 24x 2=-3.8.解 (1)原式=a+3b(a+3b )(a -3b )=1a -3b . 当a=4,b=1时,原式=14-3×1=1. (2)原式=b (b 2-9a 2)b (b 2+9a 2-6ab )=b (b+3a )(b -3a )b (b -3a )2=b+3a b -3a.当a=2,b=12时,原式=12+3×212-3×2=-1311.二、创新应用9.解 共有六种计算方法和结果,分别是: (1)a 2-2ab+b 23a -3b=a -b 3=1.(2)交换(1)中分式的分子和分母的位置,结果也为1. (3)a 2-b 23a -3b =a+b 3=3.(4)交换(3)中分式的分子和分母的位置,结果为13. (5)a 2-2ab+b 2a 2-b 2=a -b a+b =13.(6)交换(5)中分式的分子和分母的位置,结果为3. (任选其一作答即可)。

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案一、教学内容本节课选自初中数学教材第九章第二节,主要详细讲解分式的基本性质。

内容包括分式的定义、分式的基本性质、分式的简化以及分式在生活中的应用等。

二、教学目标1. 理解并掌握分式的定义,能够识别并运用分式的基本性质。

2. 学会简化分式,并能运用简化后的分式解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力,激发学生对数学学习的兴趣。

三、教学难点与重点教学难点:分式的基本性质的理解与应用。

教学重点:分式的定义、简化分式的方法以及分式的实际应用。

四、教具与学具准备1. 教具:黑板、粉笔、教学课件。

2. 学具:学生用书、练习本、计算器。

五、教学过程1. 实践情景引入利用生活中的例子(如水果分配、时间计算等)引出分式的概念。

2. 知识讲解(1)分式的定义:讲解分式的构成,分子、分母、分数线等。

(2)分式的基本性质:讲解分式的分子分母同乘(除)一个不等于0的数,分式的值不变。

(3)简化分式:讲解如何将分式简化,并举例说明。

3. 例题讲解结合教材例题,详细讲解分式的简化过程。

4. 随堂练习(1)让学生独立完成练习题,巩固分式的简化方法。

(2)小组讨论,解决实际问题,培养学生的合作意识。

5. 课堂小结六、板书设计1. 分式的定义2. 分式的基本性质3. 简化分式的步骤4. 例题及解答七、作业设计1. 作业题目2x^2 / 4x, (x+1)^2 / (x+1), 6x^3 / 3x^2(2)运用分式的性质,解决实际问题。

2. 答案(1)简化后的分式分别为:x / 2, x+1, 2x(2)实际问题答案根据具体情况而定。

八、课后反思及拓展延伸2. 拓展延伸:引导学生探索分式在生活中的其他应用,提高学生的创新意识和应用能力。

重点和难点解析1. 分式的基本性质的理解与应用。

2. 简化分式的方法。

3. 实际问题的解决。

4. 板书设计。

5. 作业设计与答案。

一、分式的基本性质的理解与应用分式的分子分母同乘(除)一个不等于0的数,分式的值不变。

分式的基本性质 优秀教案

分式的基本性质 优秀教案

分式的基本性质教学 目标知识与技能1.使学生理解分式的基本性质,并会运用分式的基本性质将分式进行变形;2.利用分式的基本性质归纳,归纳理解粉饰的变号法则,并灵活应用。

过程与方法通过对比分数和分式基本性质的异同点,渗透类比的思想方法。

情感态度与价值观通过学习中的研究、讨论、交流,提高学生的学习能力和与人合作、交流的能力。

并体会发现、成功的美。

教学重点: 正确理解分式的基本性质。

教学难点: 运用分式的基本性质,将分式进行变形。

教学方法: 启发式教学过程教学活动学生活动 教学意图 (一)引导学生复习分式的有关概念1.指定两名学生就下列各式分别回答哪些是整式、分式,请其他学生判断其答案的正误,并说明原因。

52+x , mn, 2a-3b , 32-y y ,)2)(1(92---x x x , 53-2.指定学生分别回答上列各分式何时有意义,请其他学生判断其答案的正误,并说明原因。

(二)讲解分式的基本性质1.引导学生回忆分式的意义是对照分数的意义明确的,因此继续学习分式的知识也对照着分数的知识来学习。

再使学生回忆分数的知识;约分、通分、加减、乘除法等,都是以分数的基复习与分数进与分数类比,培养学生独立获取知识的能力。

本性质为根据,从而引出继续学习分式的知识,也从学习分式的基本性质开始。

2.指定学生叙述分数的基本性质,并以21等为例说明:MM ⨯⨯==-⨯-⨯=⨯⨯=21)3(2)3(1222121 (M 表示不等于零的数)MM ⨯⨯==-⨯-⨯=⨯⨯=32)3(3)3(2232232 (M 表示不等于零的数)MB M A B A B A B A ⨯⨯==-⨯-⨯=⨯⨯= )3()3(22 上式当BA表示分数时,M 是不等于零的数;若BA表示的是分式,则M 可以表示不等于零的整式。

以“把各式中的‘×’号换成‘÷’号,还对吗?”提问,指定学生回答,订正后明确M B MA B A ÷÷=。

八年级数学上册《分式的基本性质》教案、教学设计

八年级数学上册《分式的基本性质》教案、教学设计
-设计意图:使学生在实践中掌握分式的运算方法,提高学生的运算能力。
6.课后拓展:布置具有挑战性的拓展题,鼓励学生进行深度思考,提高学生的数学思维能力。
-设计意图:培养学生的创新意识,提高学生的数学素养。
7.教学评价:结合课堂表现、练习成绩和课后拓展成果,全面评价学生的学习效果。
-设计意图:关注学生的全面发展,激发学生的学习积极性,提高教学质量。
-设计意图:从生活实例出发,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.问题驱动:提出问题“分数可以表示什么?分式与分数有什么联系和区别?”让学生思考并回答,为新课的学习做好铺垫。
(二)讲授新知
1.分式的定义:讲解分式的概念,强调分式的三个要素:分子、分母和分数线。通过具体实例,解释分式的意义和表示方法。
-题目2:(x^3 - 2x^2 + x) / (x^2 - 1) × (x^2 + 1) / (x - 1)
-设计意图:通过拓展挑战题,锻炼学生的运算能力,提高学生的数学思维。
4.小组合作题:分组讨论并完成以下问题:
-问题:已知一个分数的分子和分母分别是两个连续的整数,且它们的和为17,求这个分数。
八年级数学上册《分式的基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分式的定义,掌握分式的表示方法,能够正确书写分式。
2.掌握分式的基本性质,如约分、通分、乘除法则等,并能够灵活运用这些性质解决相关问题。
3.能够运用分式进行简单的代数运算,解决实际问题,提高学生的运算能力和解决问题的能力。
-分式的基本性质有哪些?
-分式的运算方法有哪些?
-如何运用和评价。
-设计意图:通过小组讨论,培养学生的合作精神和交流能力,提高学生对分式知识的理解。

《5.1认识分式--分式的基本性质》教案

《5.1认识分式--分式的基本性质》教案
《5.1认识分式- -分式的基本性质》教案
一、教学内容
《5.1认识分式-分式的基本性质》教案,本节课将围绕以下内容展开:
1.分式的定义:根据教材,引导学生理解分式的概念,明确分子和分母的关系。
2.分式的性质:
(1)分式中的分子与分母同乘(或除以源自一个不等于0的整式,分式的值不变。
(2)分式的分子与分母互换,分式的值不变。
(3)分式的乘方与开方:对于分式的乘方和开方运算,学生可能会忽略分子分母分别进行运算。
-举例:分式(2/3)^3,学生可能会直接将2^3和3^3相除,得到8/27,而实际上应为8/27×(1/9)。
(4)分式在实际问题中的应用:学生可能难以将实际问题转化为分式问题,无法正确运用所学知识解决问题。
-举例:在速度、比例等问题中,学生可能不理解如何将问题转化为分式形式进行解答。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式的基本概念。分式是由两个整式构成的数学表达式,其中上面的整式称为分子,下面的整式称为分母。分式是表达比例关系的重要工具,它在数学和现实生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有3个苹果要平均分给4个小朋友,我们可以用分式3/4来表示每个小朋友能得到的苹果数量。这个案例展示了分式在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的定义、基本性质以及它在实际中的应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活和学习中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

分式的基本性质教案

分式的基本性质教案

分式的基本性质教案一、分式的定义分式是由两个整数构成的符号,中间用水平线分隔开,形如a/b的表达式,其中a称为分子,b称为分母,a和b都可以是整数(b≠0)。

二、分式的化简与约分1. 化简分式:当分子和分母均为整数时,可以化简为最简分式,即分子和分母的公约数只有1。

例如:4/8可以化简为1/2,因为4和8的最大公约数是4。

当分子和分母含有变量时,需要根据某些规则化简,如可以提取公因子等。

例如:12a^2/(6a)可以化简为2a,因为12和6有公因子6,a^2可以化简为a。

2. 约分分式:根据最大公约数的性质,可以通过求分子和分母的最大公约数,然后分子和分母同时除以最大公约数的方式进行约分分式。

例如:8/12可以约分为2/3,因为8和12的最大公约数是4,分子和分母同时除以4得到2和3。

三、分式的运算1. 分式的加减运算:加减分式的基本原则是:分母相同的分式可以直接相加或相减,分母不同的分式需要先找到它们的公倍数,然后将分子乘以相应的倍数,使得它们的分母相同,然后再进行加减运算。

例如:1/3 + 1/4 = 4/12 + 3/12 = 7/12。

2. 分式的乘除运算:乘除分式的基本原则是:分子乘以分子,分母乘以分母,乘法除法运算时最好化简分式。

例如:(1/3) * (4/5) = (1*4)/(3*5) = 4/15;(2/3) ÷ (1/4) = (2/3) * (4/1) = (2*4)/(3*1) = 8/3。

四、实际问题中的分式运用1. 比例问题:比例问题可以通过分式来表示,如某一物品的价格是X元,已知该物品的价格和数量成比例关系,可以用X/1表示价格,1/数量表示单位价格。

两者的比例关系可以用分式表示。

2. 分数运算问题:分数运算问题中可以通过分式的加减乘除来解答,如某工程师一天完成1/3的工作量,另一工程师一天完成1/4的工作量,两人一起工作一天可以完成多少工作量,可以通过1/3 + 1/4的加法运算来解答。

2024年分式的基本性质课时教案

2024年分式的基本性质课时教案

2024年分式的基本性质课时教案一、教学内容本节课选自人教版数学八年级下册第十四章《分式》第一节《分式的基本性质》。

具体内容包括分式的概念、分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变、分式的分子与分母同乘(除)一个不等于0的整式,分式的约分等。

二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质进行分式的化简和运算。

2. 培养学生的逻辑思维能力和抽象思维能力,提高学生的数学素养。

3. 培养学生运用分式基本性质解决实际问题的能力,增强学生的应用意识。

三、教学难点与重点教学难点:分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变;分式的约分。

教学重点:分式的基本性质及其运用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:学生用书、练习本、文具。

五、教学过程1. 实践情景引入通过一个关于实际问题的情景,如“计算两个长方形的面积比”,引出分式的概念。

2. 例题讲解(1)讲解分式的定义,通过具体的例子让学生理解分式的组成。

(2)讲解分式的基本性质,结合例题让学生掌握分子与分母同乘(除)一个不等于0的整式,分式的值不变。

(3)讲解分式的约分,通过例题使学生掌握约分的方法。

3. 随堂练习让学生独立完成教材第14页练习题1、2、3。

5. 课堂小结六、板书设计1. 分式的概念2. 分式的基本性质3. 分式的约分4. 例题及解答过程七、作业设计1. 作业题目:(1)教材第14页习题1、2、3。

(2)已知分式 $\frac{a}{b}$ 的值,求 $\frac{2a}{3b}$、$\frac{3b}{2a}$ 的值。

2. 答案:(1)见教材。

(2)$\frac{2a}{3b}$ 的值为 $\frac{2}{3} \times\frac{a}{b}$,$\frac{3b}{2a}$ 的值为 $\frac{3}{2} \times\frac{b}{a}$。

八、课后反思及拓展延伸1. 反思:关注学生在课堂上的表现,及时发现问题,调整教学方法,提高教学效果。

分式的基本性质教案

分式的基本性质教案

分式的基本性质优秀教案一、教学内容本节课我们将探讨《数学》教材第十五章第一节“分式的基本性质”。

具体内容包括分式的定义、分式的基本性质、分式的乘除法运算以及分式的约分。

二、教学目标1. 理解并掌握分式的定义及基本性质。

2. 学会分式的乘除法运算,并能熟练运用。

3. 能够对分式进行约分,并解释其约分原理。

三、教学难点与重点教学难点:分式的乘除法运算及约分。

教学重点:分式的定义、基本性质以及相关运算法则。

四、教具与学具准备1. 教具:PPT、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中分式的应用,如分数蛋糕、速度等,引发学生对分式的兴趣。

2. 分式的定义及性质(10分钟)讲解分式的定义,并通过例题讲解分式的基本性质。

3. 分式的乘除法运算(15分钟)介绍分式的乘除法运算规则,并进行例题讲解。

接着,布置随堂练习,让学生独立完成。

4. 分式的约分(10分钟)讲解分式约分的原理及方法,并进行例题演示。

随后,让学生进行随堂练习。

5. 小结与巩固(5分钟)6. 互动环节(10分钟)学生提问,教师解答。

针对学生在学习过程中遇到的问题进行解答。

七、作业设计1. 作业题目:2. 答案:(1)2(2)5/4(3)3/2八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生对分式的定义、基本性质及运算法则有了更深入的理解,但仍有个别学生在约分环节存在困难,需要在课后进行个别辅导。

2. 拓展延伸:鼓励学生探索分式在其他数学领域的应用,如函数、不等式等,提高学生的综合运用能力。

重点和难点解析:1. 分式的定义及性质2. 分式的乘除法运算3. 分式的约分4. 互动环节5. 作业设计一、分式的定义及性质分式的定义:分式是由两个整式相除得到的表达式,其中被除数称为分子,除数称为分母。

分式的基本性质包括:1. 分式的分子与分母同时乘以(或除以)同一个非零整式,分式的值不变。

《分式的基本性质》教学设计五篇范文

《分式的基本性质》教学设计五篇范文

《分式的基本性质》教学设计五篇范文第一篇:《分式的基本性质》教学设计《分式的基本性质》教学设计黄大恩教材与目标1、教材的地位及作用分式的基本性质是分式本章的重点内容之一,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。

2、学情分析本节课是在学生学习了分数的基本性质的基础上进行的,学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定归纳总结的能力。

3、教学目标(1)了解分式的基本性质。

灵活运用“性质”进行分式的变形。

(2)通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

(3)通过探索分式的基本性质,积累数学活动经验。

(4)通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。

4、教学重难点分析重点:理解并掌握分式的基本性质。

难点:灵活运用分式的基本性质,进行分式化简、变形。

二、教法与学法1、教学方法基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。

学法指导本节课采用学生自主探索,讨论交流,观察发现,师生互动的学习方式。

学生通过自主探究-自主总结-自主提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

同时强化了学生以旧知识类比得出新知识的能力。

三.教学过程(一)情景引入观察、对比各图形(课件展示)中的阴影部分面积,你能发现什么结论?(直观得出结论)问题:(1)若图中大正方形的面积为1,则上面三幅图的面积分别表示为?(师生共同完成)(设计意图:通过复习分数的的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。

2024年初中数学精品教案《分式的基本性质》

2024年初中数学精品教案《分式的基本性质》

2024年初中数学精品教案《分式的基本性质》一、教学内容本节课选自人教版初中数学教材八年级下册第十一章第一节《分式的基本性质》。

内容包括分式的概念、分式的分子与分母的关系、分式的基本性质及其应用。

二、教学目标1. 理解分式的概念,掌握分式的分子与分母的关系。

2. 掌握分式的基本性质,并能够运用这些性质进行分式的化简和运算。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点教学难点:分式的基本性质的理解和应用。

教学重点:分式的概念及其分子与分母的关系。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入通过一个实际情景,让学生了解分式的概念。

例题:小明和小红相约去公园玩,他们共带了80元的零花钱。

如果小明花去一半,小红花去三分之一,那么他们各自还剩下多少钱?引导学生列出分式,并解释分式的分子与分母的含义。

2. 例题讲解讲解分式的基本性质,如分子分母同乘(除)一个数,分式的值不变等。

3. 随堂练习(1)化简分式:2/4、5/10、12/18(2)计算:3/4 + 2/3、5/6 1/2、4/5 × 2/3、6/7 ÷ 3/45. 课堂小结六、板书设计1. 分式的概念2. 分子的含义与分母的含义3. 分式的基本性质① 分子分母同乘(除)一个数,分式的值不变② 分式的分子与分母同时乘以(或除以)同一个数,分式的值不变③ 分式的乘法、除法、加法、减法法则七、作业设计1. 作业题目(1)化简分式:4/6、9/12、15/20(2)计算:2/3 + 1/4、5/8 3/4、7/8 × 6/7、4/5 ÷ 2/32. 答案(1)2/3、3/4、3/4(2)11/12、1/8、3/4、6/5八、课后反思及拓展延伸1. 反思本节课通过实践情景引入,让学生了解分式的概念,讲解分式的基本性质,并通过随堂练习巩固所学知识。

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。

二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。

2. 能够运用约分与通分的方法对分式进行运算。

3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。

三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。

难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:教材、练习本、计算器。

五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。

2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。

(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。

(3)通过例题讲解,演示如何运用基本性质简化分式。

3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。

4. 例题讲解:(1)分式的乘除法运算。

(2)分式的乘方运算。

(3)含有绝对值的分式简化。

5. 课堂小结:六、板书设计1. 分式的定义与结构。

2. 分式的基本性质。

3. 分式的约分与通分。

4. 分式的乘除法及乘方运算。

5. 例题及解题步骤。

七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。

(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。

(3)计算分式的乘方:(x^24)/(x+2)^2。

2. 答案:(1)1/(2x4)。

(2)3x(x2)/(2(x+2)(x2))。

(3)(x2)^2/(x+2)^2。

八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。

5.1.2分式的基本性质(教案)

5.1.2分式的基本性质(教案)
-在分式的基本性质教学中,通过具体例题演示分式分子、分母同乘(除)以及同时乘(除)以同一个整式的过程,让学生观察分式值的变化,强化性质的理解。
-在分式约分教学中,详细讲解公因式的概念,并通过多个例题展示如何寻找公因式及约分的过程。
-分式的乘除运算中,通过对比整数乘除运算,突出分式乘除的法则,并配合典型例题进行讲解。
举例解释:
-对于分式的概念抽象,教师需要通过丰富的教学资源和实际例题,帮助学生形象化理解分式的含义。
-在分式约分中,教师应着重讲解如何快速准确地找到公因式,并通过练习让学生熟悉约分的步骤。
-对于分式乘除运算,教师应设计不同难度的题目,逐步引导学生掌握运算规则,特别是分子、分母交叉相乘的步骤。
-在分式乘方运算中,教师应特别强调负指数的意义和运算规则,通过具体例题和练习,帮助学生克服这一难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“5.1.2分式的基本性质”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分割整体或比较比例的情况?”(如:分蛋糕、计算速度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式的奥秘。
5.1.2分式的基本性质(教案)
一、教学内容
本节课选自教材第五章第一节第二部分“5.1.2分式的基本性质”。主要内容为:
1.分式的定义:引入分式的概念,通过具体例子让学生理解分式的组成和意义。
2.分式的性质:
(1)分式的分子、分母同乘(除)一个非零数,分式的值不变;
(2)分式的分子、分母同时乘(除)以同一个整式,分式的值不变;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

初中数学精品教案《分式的基本性质》

初中数学精品教案《分式的基本性质》

初中数学精品教案《分式的基本性质》教案:《分式的基本性质》一、教学内容1. 分式的概念:分式是形如a/b的表达式,其中a和b是整式,且b不为0。

2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

3. 分式的约分和通分:根据分式的基本性质,可以将分式约分或通分。

二、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会运用分式的基本性质对分式进行约分和通分。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点1. 教学难点:分式的基本性质的理解和运用。

2. 教学重点:分式的基本性质的运用,包括约分和通分。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:练习本、尺子、圆规。

五、教学过程1. 实践情景引入:情景:小红购买了一本书,原价是24元,现在打8折,问小红实际支付了多少钱?解答:原价24元,打8折后的价格是240.8=19.2元,小红实际支付了19.2元。

2. 例题讲解:例题1:计算分式2/3+4/5。

解答:找到分母3和5的最小公倍数是15,然后将两个分式的分母都变为15,得到25/35+43/53=10/15+12/15=22/15。

例题2:计算分式6/83/4。

解答:找到分母8和4的最小公倍数是8,然后将两个分式的分母都变为8,得到6/832/42=6//8=0。

3. 随堂练习:练习1:计算分式3/5+2/7。

练习2:计算分式4/91/3。

4. 分式的基本性质:引导学生发现,在例题1和例题2中,我们可以将分式的分子和分母同时乘以(或除以)同一个不为0的整式,使得分式的值不变。

这就是分式的基本性质。

5. 分式的约分和通分:根据分式的基本性质,我们可以将分式约分或通分。

六、板书设计1. 分式的概念:a/b,其中a和b是整式,且b不为0。

2. 分式的基本性质:分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

《分式的基本性质教案 》教案 (公开课获奖)

《分式的基本性质教案 》教案 (公开课获奖)

3.1 分式的基本性质(2)有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。

2、通过实例,探究出有理数除法法则。

会把有理数除法转化为有理数乘法,培养学生的化归思想。

重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。

教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。

教师:引导学生回顾小学知识,根据除法是乘法的逆运算完成上例,要求6÷3即要求3×?=6,由3×2=6可知6÷3=2。

同理(-6)÷3=-2,6÷(-3)=-2,(-6)÷(-3)=2。

根据以上运算,你能发现什么规律?对于两个有理数a,b ,其中b ≠0,如果有一个有理数c 使得c ×b=a ,那么我们规定a ÷b=c ,称c 叫做a 除以b 的商。

2、从有理数的除法是通过乘法来规定,引导学生对比乘法法则,自己总结有理数除法法则,经讨论后,板书有理数除法法则。

分式的基本性质说课稿5篇

分式的基本性质说课稿5篇

分式的基本性质说课稿5篇分式的基本性质说课稿5篇在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,下面给大家分享分式的基本性质说课稿,欢迎阅读!分式的基本性质说课稿精选篇1一、教材分析1、教材的地位及作用“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。

2、教学重点、难点分析:教学重点:理解并掌握分式的基本性质教学难点:灵活运用分式的基本性质进行分式化简、变形3教材的处理学习是学生主动构建知识的过程。

学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。

学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。

本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。

让学生自我构建新知识。

通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用. 最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。

二、目标分析:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。

教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。

为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:1、知识技能:1)了解分式的基本性质2)能灵活运用分式的基本性质进行分式变形2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案一、教学内容本节课我们将学习人教版初中数学教材八年级上册第十二章《分式》第一节“分式的基本性质”。

具体内容包括分式的概念、分式的基本性质以及分式的约分。

二、教学目标1. 理解并掌握分式的概念,能够正确书写分式。

2. 掌握分式的基本性质,能够运用这些性质进行分式的简化。

3. 学会分式的约分方法,能够熟练地进行分式的约分。

三、教学难点与重点教学难点:分式的基本性质以及运用这些性质进行分式的简化。

教学重点:分式的概念、分式的约分。

四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。

2. 学具:练习本、铅笔。

五、教学过程1. 实践情景引入:通过实际生活中的例子,如分数表示的巧克力分享问题,引出分式的概念。

2. 教学新课:(1)讲解分式的定义,让学生理解分式的意义。

(2)通过例题讲解分式的基本性质,如分子分母同乘(除)一个不等于0的整式,分式的值不变。

(3)进行随堂练习,让学生运用分式的基本性质进行分式的简化。

3. 知识巩固:讲解分式的约分方法,让学生通过练习掌握约分技巧。

六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的简化方法4. 分式的约分方法七、作业设计1. 作业题目:(1)化简分式:$\frac{3x^2}{6x}$。

(2)已知分式$\frac{2x4}{3x6}$的值与分式$\frac{x2}{x3}$的值相等,求$x$的值。

2. 答案:(1)$\frac{x}{2}$(2)$x=1$八、课后反思及拓展延伸1. 反思:本节课学生对分式的概念和基本性质掌握情况良好,但对分式的约分方法掌握不够熟练,需要在课后加强练习。

2. 拓展延伸:研究分式的乘除运算,为下一节课的学习打下基础。

重点和难点解析需要重点关注的细节包括:1. 分式基本性质的理解与应用2. 分式约分方法的掌握3. 实践情景引入的有效性4. 作业设计的针对性与难度一、分式基本性质的理解与应用1. 分式的分子和分母同乘(除)一个不等于0的整式,分式的值不变。

10.2分式的基本性质教案

10.2分式的基本性质教案

10.2分式的基本性质教案第一篇:10.2 分式的基本性质教案2014年青优评比上课环节10.2 分式的基本性质(1)教案六合区程桥初级中学张军帅 2014年3月25日【学习目标】1.通过分数类比学习,了解分式的基本性质;2.会运用分式的基本性质进行相关的分式变形; 3.培养学生类比的推理能力.【学习重点】通过分数类比学习,了解分式的基本性质.【学习难点】分式基本性质的简单运用.【教学过程】一.揭示课题:10.2 分式的基本性质(1),并呈现学习目标.板书课题问题情境:问题1.31与是否相等?它的依据是什么呢? 62n2a1n问题2.你认为分式与相等吗?分式与呢?mnm2a2二.探索学习: 1.探索:(1)一辆匀速行驶的汽车,如果t h行驶s km,那么汽车的速度为km/h.如果2t h行驶2s km,那么汽车的速度为km/h.如果3t h行驶3s km,那么汽车的速度为km/h.如果nt h行驶ns km,那么汽车的速度为km/h.(2)这些分式的值相等吗?2.类比分数的基本性质归纳出分式的基本性质:分式的分子和分母都乘(或除以)同一个不等于的整式,分式的值不变.......0....讨论:为什么所乘的整式不能为零呢? 讨论:如果我们用A表示分子,B表示分母,M表示不等于0的整式,你能用式子表示分式的基本性质吗?AA⋅MAA÷M,=(其中M是不等于零的整式).=BB⋅MBB÷M 三.例题教学:2014年青优评比上课环节例1 下列等式的右边是怎样从左边得到的?a3a2bab(2)=.()1=2;abbaa随堂练习一:1、下列运算正确的是()xx(x+2)aa(a2+1)xxaabbA.=;B.=C.=D.=分析各选项错误的原因. 22x-yx-y3b3b(a-1)yyaaa2、填空:a2-b2a-b(a-b)2()a13a()(4)=.(2)(3)2(1)=;=;=;a+b()2ab()a-b2a+b4b4bc3、将3a中的a、b都变为原来的3倍,则分式的值()a-b13A.不变 B.扩大为原来的3倍 C.扩大为原来的9倍 D.缩小到原来的例2不改变分式的值,使下列分式的分子和分母中都不含“—”号:(1)-2a-n(2).(2)两题的解题格式及步骤.;.展示(1)-3bm-3的分子和分母中的首项都不含“—”号.-x+4y不改变分式的值,使分式展示易错处,并加以纠正,同时提醒作业中的注意事项.随堂练习二.:4、不改变分式的值,使下列分式的分子和分母首项都不含“—”号:(1)-2-4(2);.-3xa-3的分子和分母首项都不含“—”号.-x+2y5、不改变分式的值,使分式例3 不改变分式的值,使下列各式的分子.分母中最高次项的系数是整数.y-y2x.展示(1)(2).(2)两题的解题格式及步骤.(1);22y+y1-x随堂练习三:6、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.2a-a2x-2.(2)(1);3-a3-2x22014年青优评比上课环节四.拓展延伸:不改变分式的值,把下列各式的分子与分母的各项系数都化为整数.11x-y0.5a-b5.展示方法及步骤.(2)3(1);10.2a2x+y612a+b2随堂练习四:7、不改变分式的值,使2的分子中不含分数.a+b五.课堂小结:通过本节课的学习,你有哪些收获?六.作业布置:1.课堂作业:见讲义;2.家庭作业:《补充习题》第48-49页第1-6题.第二篇:分式的基本性质教案分式的基本性质教案教学设计思想通过类比分数的基本性质及分数的约分、通分,推测出分式的基本性质、约分和通分,通过例题、练习来巩固这些知识点。

分式的基本性质教案

分式的基本性质教案

11.2分式的基本性质教学目标1.理解分式的基本性质及其内涵要点;灵活运用分式的基本性质进行分式的变形.2.根据教师提供的素材,通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行恒等变形时的注意要点,并且在这一过程中获得一些探索定理性质的初步经验.重点:使学生理解并掌握分式的基本性质.难点:灵活运用分式的基本性质进行分式的恒等变形.教学流程一、组织学习任务一.1.提出任务——探究分式的基本性质.(1)阅读材料.分数的基本性质:分数的分子与分母都乘(或除)以同一个不等于零的数,分数的值不变.(2)问题探究.下列从左到右的变形成立吗?为什么?①1144x x⨯=⨯②11mx x m⨯=⨯③11(1)xx x x-=-(3)归纳结论.分式的基本性质:.2.自主探索.3.汇报交流.(1)汇报研究成果.根据学生的认知基础,预测学生会得到以下结论:利用类比法、归纳法得出分式的基本性质的部分内容——即“分式的分子与分母都乘以同一个不等于零的整式,分式的值不变”,不可能得出“分式的分子与分母都除以同一个不等于零的整式,分式的值也不变”的性质,因为教师提供的素材中没涉及到除法.此时,教师提醒学生思考乘除的互逆关系,由学生完善分式的基本性质.(2)提出疑难问题.教师让学生提出小组合作学习中仍然没能解决的问题,组织各小组进行讨论.预测学生的共性问题可能是:“分式的分子、分母都加上(或减去)同一个整式,分式的值变不变?如果分子、分母都平方或立方,分式的值变不变?”此时,教师提供以下素材,组织学生讨论:请同学们判断下列从左到右的变形是否正确,并由此归纳分式的基本性质的要点有哪些.()()322333221292262246330.30.5100.30.5350.20.2102x y x y x x x x x y xy y y xy x y x y x y a b a b a b a b a b a b +++===⨯=---+⨯++==--⨯+ 预测学生归纳出以下要点:①分子、分母应同时做乘或除中的同一种变换;②所乘或除的必须是同一个整式;③所乘或除的整式应该不等于零.二、组织学习任务二.1.自主探究.探究运用分式的基本性质时的注意事项.(1)下列等式的右边是怎样从左边得到的? 22(0) 22a ac a x a c b bc bx b=≠= 反思:为什么①中有附加条件c ≠0,而②中没有附加条件x ≠0?(2)填空:()()()2222+;;.y a b x xy x y x x ab a b x ++=== 反思:做这类题的关键是什么?2.汇报交流.学生可能会总结以下注意事项:(1)应注意分式基本性质的三个要点;(2)要注意题目中是否有隐含条件;(3)要注意变形的技巧,如要先看前后分式的分子或分母是怎么变化的,然后分母或分子也要作相应的变化.3.课堂练习.4.应用拓展.解答下列问题:(1)当x =25时,分式27421x x x ---的值是多少?当x =7呢? 学生自主探究合作交流后得出:当x =7时,分式的值不是110,而是当x =7时,该分式无意义.让其领悟思考问题一定要全面.(2)判断m 取何值时,等式()()()()3323212172x m x x x m +++=---成立?三、课堂小结(师生共同完成).1.分式的基本性质;2.运用分式基本性质进行恒等变形时的注意事项;3.分式基本性质得出的过程;4.解题应注意挖掘题目中的隐含条件.四、作业布置.五、板书设计.3m +2≠0 7-2m ≠0 3m +2=7-2m 所以m =1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§15.1.2 分式的基本性质
一、教学目标
1.使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.
2.通过分式的恒等变形提高学生的运算能力.
3.渗透类比转化的数学思想方法.
二、教学重点和难点
1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.
2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.
三、教学方法
分组讨论.
四、教学手段
幻灯片.
五、教学过程
(一)复习提问
1.分式的定义?
2.分数的基本性质?有什么用途?
(二)新课
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:
2.加深对分式基本性质的理解:
例2 填空:
(1)
()
3
x
xy y
=,
()
2
2
33
6
x xy x y
x
++
=
解:∵x≠0,
同理可化简第二个.
(2)
()()
222 12
,
a b
ab a b a a b
-
==
学生自己解答.
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.
练习1:
化简下列分式(约分)
例3(1)23
225;15a bc ab c - (2) (3)
教师给出定义:
把分式分子、分母的公因式约去,这种变形叫分式的约分. 问:分式约分的依据是什么?
分式的基本性质
在化简分式 时,小颖和小明的做法出现了分歧:
小颖: 小明:
你对他们俩的解法有何看法?说说看!
教师指出:一般约分要彻底, 使分子、分母没有公因式.
彻底约分后的分式叫最简分式.
练习2(通分): 把各分式化成相同分母的分式叫做分式的通分.
229;69x x x -++22
6126.
33x xy y x y -+-y x 20xy 5222x 20x 5y x 20xy 5=x 41xy 5x 4xy 5y x 20xy 52=⋅=。

相关文档
最新文档