(完整版)抛物线常用性质总结
(完整版)抛物线的性质归纳及证明
抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-=+=p p x AF ;②焦半径αcos 12||2+=+=pp x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α2sin 2p ;特别地,当x 1=x 2(α=90︒)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =αsin 22p .证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p2,| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ, ∴| AF |=| RF |1-cos θ=p1-cos θ同理,| BF |=| RF |1+cos θ=p1+cos θ∴| AB |=| AF |+| BF |=p 1-cos θ+p 1+cos θ=2psin 2θ.S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p2·(| y 1|+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =p 4| y 1-y 2 |=p 4(y 1+y 2)2-4y 1y 2=p 44m 2p 2+4p 2=p 221+m 2=p 22sin θ.2.求证:①2124p x x =;②212y y p =-;③ 1| AF |+1| BF |=2p .当AB ⊥x 轴时,有 AF BF p ==,成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程: 2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.(122111212111111222x x p p pp AF BF AA BB x x x x +++=+=+=+++()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++. 3.求证:=∠=∠'''FB A B AC Rt ∠.先证明:∠AMB =Rt ∠【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD | ∴| BE |=| BC |+| CE |=| BC |+| AD | =| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点, ∴BM ⊥AE ,即∠AMB =Rt ∠ 【证法二】取AB 的中点N ,连结MN ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |,∴| MN |=| AN |=| BN |∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=p y 1,同理k BM =py 2 ∴k AM ·k BM =p y 1·p y 2=p 2y 1y 2=p 2-p 2=-1∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-p 2,y 2)、D (-p2,y 1),由此得M (-p 2,y 1+y 22). ∴MA →=(x 1+p 2,y 1-y 22),MB →=(x 3+p 2,y 2-y 12)∴MA →·MB →=(x 1+p 2)(x 2+p 2)+(y 1-y 2)(y 2-y 1)4=x 1x 2+p 2(x 1+x 2)+p 24-(y 1-y 2)24=p 24+p 2(y 212p +y 222p )+p 24-y 21+y 22-2y 1y 24=p 22+y 1y 22=p 22+-p 22=0 ∴MA →⊥MB →,故∠AMB =Rt ∠.【证法五】由下面证得∠DFC =90 ,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4 ∴∠1=∠2,同理∠3=∠4∴∠2+∠3=12×180︒=90︒∴∠AMB =Rt ∠. 接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α, 同理,设∠BFC =∠BCF =∠CFR =β, 而∠AFD +∠DFR +∠BFC +∠CFR =180︒ ∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒ 【证法二】取CD 的中点M ,即M (-p 2,y 1+y 22)由前知k AM =py 1,k CF =-y 2+p 2+p 2=-y 2p =p y 1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵DF →=(p ,-y 1),CF →=(p ,-y 2),∴DF →·CF →=p 2+y 1y 2=0 ∴DF →⊥CF →,故∠DFC =90︒.【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=| RF || RC |,且∠DRF =∠FRC =90︒ ∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒ ∴∠DFR +∠RFC =90︒ ∴∠DFC =90︒4. C ’A 、C ’B 是抛物线的切线【证法一】∵k AM =p y 1,AM 的直线方程为y -y 1=p y 1(x -y 212p)图6与抛物线方程y 2=2px 联立消去x 得y -y 1=p y 1(y 22p -y 212p),整理得y 2-2y 1y +y 21=0可见△=(2y 1)2-4y 21=0,故直线AM 与抛物线y 2=2px 相切, 同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x 求导,(y 2)'x=(2px )'x , 得2y ·y 'x=2p ,y 'x =py,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=y 'x | y =y 1=p y 1. 又k AM =py 1,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-p 2,y 1+y 22)代入左边=y 1·y 1+y 22=y 21+y 1y 22=2px 1-p 22=px 1-p 22,右边=p (-p 2+x 1)=-p 22+px 1,左边=右边,可见,过点A 的切线经过点M ,即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C ’A 、C ’B 分别是∠A ’AB 和∠B ’BA 的平分线. 【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE , ∴∠DAM =∠AEB =∠BAM ,即AM 平分∠DAB ,同理BM 平分∠CBA . 【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-p 2,y 1+y 22)图9∵tan α=k AB =y 2-y 1x 2-x 1=y 2-y 1 y 222p -y 212p=2py 1+y 2. tan β=k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=py 1. ∴tan 2β=2tan β1-tan 2β=2py 11-(p y 1)2=2py 1y 22-p 2=2py 1y 22+y 1y 2=2py 1+y 2=tan α ∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC ’、A ’F 、y 轴三线共点,BC ’、B ’F 、y 轴三线共点 【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线, ∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2, 易知,| DD 1 |=| OF |,DD 1∥OF , 故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=p y 1(x -y 212p),令x =0得AM 与y 轴交于点G 1(0,y 12),又DF 的直线方程为y =-y 1p (x -p 2),令x =0得DF 与y 轴交于点G 2(0,y 12)∴AM 、DF 与y 轴的相交同一点G (0,y 12),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形.图107. A 、O 、B ’三点共线,B 、O 、A ’三点共线. 【证法一】如图11,k OA =y 1x 1=y 1 y 212p=2py 1,k OC =y 2 -p 2 =-2y 2p =-2py 2p 2=-2py 2-y 1y 2=2p y 1∴k OA =k OC ,则A 、O 、C 三点共线, 同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴| RO ' || AD |=| CO ' || CA |=| BF || AB |,| O 'F || AF |=| CB || AB |, 又| AD |=| AF |,| BC |=| BF |,∴| RO ' || AF |=| O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O ',RF ∥BC ,| O 'F || CB |=| AF || AB |,∴| O 'F |=| CB |·| AF || AB |=| BF |·| AF || AF |+| BF |=1 1| AF |+1| BF |=p2【见⑵证】∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线. 【证法四】∵OC →=(-p 2,y 2),OA →=(x 1,y 1),∵-p 2·y 1-x 1 y 2=-p 2·y 1-y 212p y 2=-py 12-y 1y 2y 12p =-py 12+p 2y 12p =0∴OC →∥OA →,且都以O 为端点∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:图118. 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=m -nm +n ;【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t ∴在Rt △ABE 中,cos ∠BAE =| AE || AB |= (m -n )t (m +n )t =m -nm +n∴cos θ=cos ∠BAE =m -nm +n.【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为 .则E 的坐标为( p2+x 1 2,y 12),则点E 到y 轴的距离为d = p2+x 1 2=12| AF |故以AF 为直径的圆与y 轴相切, 同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |则圆心M 到l 的距离| MN |=12| AB |,故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (y 212p ,y 1),B (y 222p ,y 1),则C (-p 2,y 2),D (-p 2,y 1),M (-p 2,y 1+y 22),N (y 21+y 224p ,y 1+y 22),设MN 的中点为Q ',则Q ' ( -p 2+y 21+y 224p 2,y 1+y 22)∵ -p 2+y 21+y 224p 2= -2p 2+y 21+y 22 8p = 2y 1y 2+y 21+y 228p = ⎝⎛⎭⎫y 1+y 222 2p∴点Q ' 在抛物线y 2=2px 上,即Q 是MN 的中点.图16。
完整版)抛物线知识点归纳总结
完整版)抛物线知识点归纳总结抛物线是一种经典的二次函数图像,具有许多重要的特点和性质。
以下是对抛物线知识点的详细总结。
1.定义:抛物线是平面上一点P到定点F的距离等于点P到定直线上一点的距离的轨迹。
2.构成:抛物线由平面上的点集组成,由对称轴与焦点决定。
3. 表达式:一般形式的抛物线方程是y=ax^2 + bx + c,其中a、b、c是实数且a不等于0。
4.开口方向:抛物线开口方向由a的正负决定,如果a大于0,抛物线开口向上;如果a小于0,抛物线开口向下。
5.对称轴:抛物线的对称轴是一条与抛物线的开口方向垂直的直线,由方程x=-b/2a给出。
6. 焦点:抛物线的焦点是与抛物线上任意一点的距离相等的定点F,其坐标为((-b/2a), (4ac-b^2)/4a)。
7.直径:抛物线的直径是通过焦点且与抛物线相交于两点的直线。
8.非退化抛物线:当a不等于0时,抛物线是非退化的,并且它的对称轴是直线x=-b/2a。
9.顶点:抛物线的顶点是抛物线上最高或最低的点,它是通过对称轴的纵坐标最小(或最大)的点。
10.切线:抛物线上任意一点的切线是通过该点并且与抛物线仅有一个交点的直线。
11.弦:抛物线上的弦是通过抛物线上两个点并且与抛物线仅有两个交点的线段。
12. 与X轴交点:抛物线与X轴的交点可通过求解方程ax^2 + bx +c = 0得到。
13.与Y轴交点:抛物线与Y轴的交点是抛物线上当x=0时的点,即把x替换为0后求解方程得到。
14.对称性:抛物线具有关于对称轴对称的性质,即对称轴上的一点关于对称轴上的另一点的映射是自身。
15.焦点和直角三角形:抛物线上两点和焦点构成的三角形是直角三角形。
16.抛物线的图像:抛物线的图像是一个开口朝上或朝下的弧线,形状可以通过方程中的系数来确定。
17.抛物线的平移:抛物线可以通过平移来改变其位置,平移的方式是通过方程中的常数项来实现。
18.抛物线的拉伸/压缩:通过改变抛物线方程中的a的值,可以改变抛物线的宽度。
(完整版)抛物线常用性质总结
结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112=AF BF p+。
结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。
证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =。
则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN切。
证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。
由抛物线定义:AM AF =,BN BF =, ∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。
抛物线经典性质总结30条
抛物线经典性质总结30条抛物线焦点弦性质总结30条基础回顾1.以AB为直径的圆与准线L相切;2.W上;43∙y∣∙^2 = -p2;4∙AAC1B = W;5.SFBy 90;6.I^I = X l+x2÷p = 2(x3 + ⅜= 2f2 Sln α7 _Li=I・PFI IBFI P,8.A、0、B三点共线;10.29.B、0、A三点共线;P2SbAoB = ---- ;2sinα10.3切线方程 y 0y m xx质深究 )焦点弦与切线 1、过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置 有何特殊之处?结论 1:交点在准线上 先猜后证:当弦 AB x 轴时,则点 P 的坐标为2p ,0在准线上.证明 : 从略2.PP;AF1 cosBF 1 cos4. 5. 6. 7. 8. 9. 10 1 2 PK AB = y3 tanCC' 1AB ( AA' BB');11 12A'B' C'F y 2; p x 2-24 AF BF ;1 A'B' . 213. 性 (P2)3(定值); 3. BC '垂直平分 B 'F ;AC '垂直平分 A 'F ; C 'F AB;AB 2P ;S V2AOBAB结论 2 切线交点与弦中点连线平行于对称轴结论 3 弦AB不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.2、上述命题的逆命题是否成立?结论 4 过抛物线准线上任一点作抛物线的切,则过两切点的弦必过焦点先猜后证:过准线与x 轴的交点作抛物线的切,则过两切点AB的弦必过焦点.结论 5 过准线上任一点作抛物线的切线,过两切的弦最短时,即为通径.3、AB是抛物线y22px (p> 0)焦点弦,Q 是的中点,l 是抛物线的准线,AA 1ABBB1 l ,过A, B 的切线相交于P,与抛物线交于点M.则有结论6PA⊥ PB.结论7PF⊥ AB.结论8 M平分PQ.结论9 PA平分∠ A1AB,PB平分∠ B1BA.结论10FA FB 2 PF二) 非焦点弦与切线思考:当弦 AB 不过焦点,切线交于 P 点时, 也有与上述结论类似结果:相关考题1、已知抛物线 x 24y 的焦点为 F ,A ,B 是抛物线上 的两动点,且 AF FB ( >0),过 A ,B 两点分别作 抛物线的切线,设其交点为 M ,1)证明: FM AB 的值;( 2)设 ABM 的面积为 S ,写出 S f 的表达式,并 求 S 的最小值.2、已知抛物线 C 的方程为 x 24 y ,焦点为 F ,准结论 11 SPAB min结论 12结论 13 结论 14 结论 15 结论 16 xpy 1y2 ,2py py 1 y 22PA 平分∠ A 1AB ,同理 PB 平分∠ B 1BA . PFA PFB 点 M 平分 PQ FA FB PF线为l ,直线m交抛物线于两点A,B;(1)过点A 的抛物线C的切线与y 轴交于点D,求证:AF DF ;(2)若直线m过焦点F,分别过点A,B 的两条切线相交于点M,求证:AM⊥BM,且点M在直线l 上.3、对每个正整数n,A n x n,y n 是抛物线x24y上的点,过焦点F的直线FA n交抛物线于另一点B n s n,t n ,(1)试证:x n s n 4(n≥1)(2)取x n 2n,并C n为抛物线上分别以A n 与B n 为切点的两条切线的交点,求证:FC1 FC2 FC n 2n2 n 11(n≥ 1)抛物线的一个优美性质几何图形常常给人们带来直观的美学形象,我们在研究几何图形时也会很自然地想得到有关这个几何图形的美妙的性质,作为几何中的圆锥曲线的研究,正是这方面的一个典型代表,作为高中数学中的必修内容,对于培养学生对于数学美的认识,起着相当重要的作用。
抛物线性质和知识点总结
抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
超详细抛物线知识点归纳总结
引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
抛物线及其性质知识点大全推荐文档
抛物线及其性质知识点大全推荐文档1. 抛物线的定义:抛物线是一个平面曲线,其定义式为y = ax^2 + bx + c,其中a、b、c为常数,a不等于0。
2.抛物线的图像:抛物线的图像呈现出对称性,它的开口方向由抛物线的系数a的正负决定。
当a大于0时,抛物线向上开口;当a小于0时,抛物线向下开口。
3.抛物线的顶点:抛物线的顶点为曲线上的最低点(向上开口)或最高点(向下开口)。
顶点的横坐标为x=-b/(2a),纵坐标为y=f(-b/(2a)),其中f(x)为抛物线的函数。
4. 抛物线的焦点:抛物线的焦点是曲线上与直线y = mx + n相交的点的轨迹,其中m、n为常数。
焦点的横坐标为x = -b/(2a),纵坐标为y = c - (b^2 - 1)/(4a)。
5.抛物线的对称轴:抛物线的对称轴是通过顶点和焦点的垂直平分线。
对称轴的方程为x=-b/(2a)。
6. 抛物线的判别式:抛物线的判别式为Δ = b^2 - 4ac,其中Δ的值决定了抛物线的性质。
若Δ大于0,则抛物线与x轴有两个交点,即开口向上或向下的抛物线。
若Δ等于0,则抛物线与x轴有一个交点,即开口向上或向下的抛物线。
若Δ小于0,则抛物线与x轴没有交点,即开口向上或向下的抛物线。
7.抛物线的焦距:焦点到抛物线上任意一点的距离等于该点到对称轴的距离,即焦距等于对称轴到顶点的距离。
8.抛物线的切线:抛物线上任意一点处的切线与该点的切线斜率相等,切线方程为y-y0=f'(x0)(x-x0),其中f'(x)为抛物线函数的导数。
9.抛物线的性质:抛物线是一条连续曲线,它具有对称性、单调性(a的符号决定)、可导性(除去顶点的地方都可导)、增减性(导数的符号决定)、可微性(除去顶点的地方都可微)、凸凹性(a的符号决定)等性质。
10.抛物线的应用:抛物线在物理学中常用于描述自由落体、抛体运动等;在工程学中常用于设计桥梁、铁轨等;在经济学中常用于描述成本、收益等。
抛物线和性质知识点大全
抛物线和性质知识点大全1.抛物线的定义:抛物线是一个平面曲线,其距离一个定点(焦点)和一个定直线(准线)的距离都相等。
2.标准方程:抛物线的标准方程是y = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
3.抛物线的焦点:抛物线的焦点是一个点,其到抛物线上的任意一点的距离与该点到抛物线的准线的距离相等。
4.抛物线的准线:抛物线的准线是一个直线,与抛物线的对称轴平行,并且距离对称轴固定的距离。
5.抛物线的对称轴:抛物线的对称轴是垂直于准线,通过焦点和抛物线的顶点的一条直线。
6.抛物线的顶点:抛物线的顶点是曲线的最高或最低点,即y轴距离最大或最小的点。
7.抛物线的焦距:抛物线的焦距是焦点到顶点的距离。
焦距等于准线与对称轴的距离的两倍。
8.抛物线的直径:抛物线的直径是通过焦点和曲线上两个对称的点的线段。
直径等于焦距的两倍。
9.抛物线的离心率:抛物线的离心率是焦距与准线与顶点的距离的比值。
离心率等于110.抛物线的焦点方程:如果抛物线的焦点为(F,p),则焦点到顶点的距离为p,焦点的横坐标为F,抛物线方程为(x-F)^2=4p(y-c),其中c为抛物线的顶点纵坐标。
11.抛物线的顶点方程:如果抛物线的顶点为(h,k),则抛物线方程为(y-k)=a(x-h)^212.抛物线的对称性:抛物线具有对称性,对称轴将抛物线分成两个对称的部分。
13.抛物线的焦点和准线的关系:抛物线上任意一点的到焦点的距离等于该点到准线的距离的两倍。
14.抛物线的切线:抛物线上任意一点处的切线与该点到焦点的连线重合。
15.抛物线的渐近线:当抛物线的开口向上时,抛物线没有水平渐近线;当抛物线的开口向下时,抛物线有一条水平渐近线。
16.抛物线的面积:抛物线所围成的面积等于焦点到顶点的纵坐标与准线的距离之积的1/317.抛物线的长度:抛物线的长度等于8/3倍焦距的立方根。
18.抛物线的应用:抛物线广泛应用于物理学、工程学和计算机图形学等领域。
抛物线知识点归纳总结
抛物线知识点归纳总结一、抛物线的定义抛物线是平面上的一个几何图形,它的形状像一个弯曲的弧线,其数学定义为:所有到定点的距离等于到直线的距离的点构成的集合。
这个定点称为焦点,直线称为准线,通常用符号来表示抛物线,可以用二次方程来表示:y = ax^2 + bx + c,其中a、b、c为实数,a≠0。
二、抛物线的性质1. 焦点和准线:抛物线的焦点位于开口向上或者向下的一端,准线则位于抛物线的中轴线上。
焦点和准线的位置可以通过二次方程的系数a、b、c来确定。
2. 对称性:抛物线具有轴对称性,即抛物线的焦点和准线关于中轴线对称。
3. 焦点的坐标:抛物线的焦点的坐标可以通过二次方程的系数a、b、c来计算得出。
4. 定点的坐标:抛物线上最低点或者最高点称为定点,定点的坐标可以通过二次方程的顶点公式来计算得出。
5. 法线和切线:抛物线的切线是与抛物线相切的直线,而法线是与切线垂直的直线,它们具有一些特殊的性质和公式。
6. 焦距和焦半径:焦距是焦点到准线的距离,焦半径是焦点到抛物线顶点的距离,它们与抛物线的方程之间存在一些重要的关系。
7. 焦直和准直:焦直是焦点在准线上的投影轴,准直是准线在焦点上的投影轴,它们的位置和形状也与抛物线的方程有关。
8. 定义域和值域:抛物线的定义域和值域是指抛物线上的点的集合,它们与抛物线的方程形式、系数和图像的形态有关。
9. 开口方向:抛物线的开口方向是指向上或者向下,它与抛物线的二次方程的系数a的正负有关。
10. 直线与抛物线的位置关系:抛物线与直线的位置关系有相交、切线和相离三种情况,这与抛物线的方程和直线的方程有关。
三、抛物线的应用抛物线在日常生活和工程技术中有着广泛的应用,如抛物面反射天线、汽车大灯光束设计等。
同时,它也在物理学、天文学、工程学等领域有着重要的作用。
1. 抛物线的运动学应用:抛物线是物体在一个力场中运动的轨迹,它在各种自然和人造的运动中都有着广泛的应用,如抛物线轨道的运动、人造卫星的轨迹等。
抛物线性质总结
抛物线性质总结一、抛物线的定义和基本性质抛物线,是数学中一种经典的曲线。
它具有许多令人着迷的性质,在几何学和物理学等领域都有广泛的应用。
本文将总结抛物线的一些基本性质。
抛物线可由以下二次方程表示:y = ax² + bx + c。
其中a、b、c为实数,且a不等于0。
根据该方程,我们可以得出以下基本性质。
1. 对称性:抛物线是关于y轴对称的。
也就是说,对于任意点(x, y)在抛物线上,横坐标为-x的点(-x, y)同样也在抛物线上。
2. 顶点和焦点:抛物线的图像上存在一个顶点,其横坐标为-x₁ = -b / (2a),纵坐标为y₁ =c - b² / (4a)。
顶点是抛物线的最低点(对于a>0)或最高点(对于a<0)。
此外,抛物线还有一个重要的性质,就是焦点。
焦点是一个点,它到抛物线上任意一点的距离与该点到抛物线的直线称为“准线”的距离相等。
焦点的横坐标为-x₂ = -b / (2a),纵坐标为y₂ = c - (b² - 1) /(4a)。
3. 对称轴:抛物线的对称轴是过顶点且垂直于x轴的直线。
对称轴的方程为x = -b / (2a)。
对于对称轴上任意一点(x, y),其与顶点的距离等于该点到抛物线的任意一点的距离。
二、抛物线的拓展性质除了上述基本性质外,抛物线还有一些拓展性质,值得进一步探讨。
1. 切线与法线:沿着抛物线上的任意一点(x₀, y₀)绘制一条直线,使其与抛物线相切。
这条直线称为该点的切线。
切线的斜率等于抛物线在该点的导数。
类似地,通过抛物线上一点(x₀, y₀)作一个垂直于切线的直线,该直线称为该点的法线。
法线的斜率等于切线的负倒数。
2. 点到抛物线的距离:给定一个点(x, y)和一个抛物线,我们可以求出该点到抛物线的最短距离。
这个最短距离等于点到抛物线的准线的距离。
要计算点(x, y)到抛物线的最短距离,我们可以使用以下公式:d = |y - (ax² + bx + c)| / √(a² + 1)。
(word完整版)抛物线及其性质知识点大全,文档
抛物线及其性质1.抛物线定义:平面内到必然点 F 和一条定直线l 的距离相等的点的轨迹称为抛物线.2.抛物线四种标准方程的几何性质:图形参数 p 几何意义张口方向标准方程焦点位置焦点坐标准线方程范围对称轴极点坐标离心率通径焦半径 A(x1 , y1)焦点弦长AB 焦点弦长AB的补充A(x1, y1 ) B( x2 , y2 )参数 p 表示焦点到准线的距离, p 越大,张口越阔.右左上下y2 2 px( p 0)y22px( p0)x22py( p0)x2 2 py( p 0) X 正X 负Y 正Y 负(p,0)(p,0)(0,p)(0,p) 2222 p p pyp x x y2 222x 0, y R x 0, y R y 0, x R y 0, x R X 轴X 轴Y 轴Y 轴〔0,0〕e12pAFpAF x1pAF y1pAFp x122y1 22 ( x1x2 ) p(x1 x2 ) p( y1y2 ) p( y1y2 ) p以 AB 为直径的圆必与准线l 相切假设 AB 的倾斜角为, 2 p假设 AB 的倾斜角为,那么AB2 pAB2cos2sinx1 x2p2y1 y2p2411AF BF AB2AF BF AF ?BF AF ?BF p3.抛物线y2 2 px( p 0) 的几何性质:(1) 范围:由于 p>0,由方程可知 x≥ 0,因此抛物线在y 轴的右侧,当 x 的值增大时,|y|也增大,说明抛物线向右上方和右下方无量延伸.1(2) 对称性:对称轴要看一次项,符号决定张口方向.(3) 极点〔 0, 0〕,离心率: e 1,焦点 F ( p ,0) ,准线 xp,焦准距 p .22(4) 焦点弦:抛物线 y 22 px( p 0) 的焦点弦 AB , A(x 1 , y 1 ) , B( x 2 , y 2 ) , 那么 | AB | x 1 x 2 p .弦长 |AB|=x 1+x 2+p, 当 x 1=x 2 时,通径最短为 2p 。
(完整版)抛物线的性质归纳及证明(最新整理)
抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为,,倾斜角为,中点为),(11y x A ),(22y x B αC(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A’、B’、C’.1.求证:①焦半径;②焦半径;αcos 12||1-=+=p p x AF αcos 12||2+=+=pp x BF ③+=; ④弦长| AB |=x 1+x 2+p =;特别地,当x 1=x 2(1| AF |1| BF |2p α2sin 2p =90︒)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =.ααsin 22p 证明:根据抛物线的定义,| AF |=| AD |=x 1+,| BF |=| BC |=x 2+,p2p2| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ,∴| AF |==| RF |1-cos θp1-cos θ同理,| BF |==| RF |1+cos θp1+cos θ∴| AB |=| AF |+| BF |=+=.p1-cos θp1+cos θ2psin 2θS △OAB =S △OAF +S △OBF =| OF || y 1 |+| OF || y 1 |=·121212p2·(| y 1 |+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =| y 1-y 2 |====.p 4p4(y 1+y 2)2-4y 1y 2p44m 2p 2+4p 2p 221+m2p 22sin θ2.求证:①;②;③ +=.2124p x x =212y y p =-1| AF |1| BF |2p 当AB ⊥x 轴时,有成立;AF BF p ==,当AB 与x 轴不垂直时,设焦点弦AB 的方程为:.代入抛物线方程:2p y k x ⎛⎫=-⎪⎝⎭.化简得:2222p k x px ⎛⎫-= ⎪⎝⎭()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴.1224k x x ⋅=111211111122p pAF BF AA BB x x +=+=+=++.()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++3.求证:Rt ∠.=∠=∠'''FB A B AC 先证明:∠AMB =Rt ∠【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD |∴| BE |=| BC |+| CE |=| BC |+| AD |=| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点,∴BM ⊥AE ,即∠AMB =Rt ∠【证法二】取AB 的中点N ,连结MN ,则| MN |=(| AD |+| BC |)=(| AF |+| BF |)=| AB |,∴| MN |=| AN |=| BN |121212∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-,y 2)、D (-,y 1),由此得M (-,).p 2p 2p 2y 1+y 22∴k AM =====,同理k BM =y 1-y 1+y 22x 1+p2y 1-y 22·y 212p+pp (y 1-y 2)y 21+p 2p (y 1-\f(-p 2,y 1))y 21+p2py 1p y 2∴k AM ·k BM =·===-1p y 1p y 2p 2y 1y 2p 2-p 2∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-,y 2)、D (-,y 1),由此得M (-p 2p2,).p 2y 1+y 22∴=(x 1+,),=(x 3+,)MA →p 2y 1-y 22MB → p 2y 2-y 12∴·=(x 1+)(x 2+)+MA → MB →p 2p 2(y 1-y 2)(y 2-y 1)4=x 1x 2+(x 1+x 2)+-p 2p 24(y 1-y 2)24=+(+)+-p 24p 2y 212p y 222p p 24y 21+y 22-2y 1y 24=+=+=0p 22y 1y 22p 22-p 22∴⊥,故∠AMB =Rt ∠.MA → MB →【证法五】由下面证得∠DFC =90 ,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4∴∠1=∠2,同理∠3=∠4∴∠2+∠3=×180︒=90︒12∴∠AMB =Rt ∠.接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α,同理,设∠BFC =∠BCF =∠CFR =β,而∠AFD +∠DFR +∠BFC +∠CFR =180︒∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒【证法二】取CD 的中点M ,即M (-,)p 2y 1+y 22由前知k AM =,k CF ===p y 1-y 2+p 2+p 2-y 2p py1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵=(p ,-y 1),=(p ,-y 2),DF → CF →∴·=p 2+y 1y 2=0DF → CF →∴⊥,故∠DFC =90︒.DF → CF →【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=,且∠DRF =∠FRC =90︒| RF || RC |∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒∴∠DFR +∠RFC =90︒∴∠DFC =90︒4. C ’A 、C ’B 是抛物线的切线图6【证法一】∵k AM =,AM 的直线方程为y -y 1=(x -)p y 1p y1y 212p 与抛物线方程y 2=2px联立消去x 得y -y 1=(-),整理得y 2-2y 1y +=0p y 1y 22p y 212py 2 1可见△=(2y 1)2-4=0,y21故直线AM 与抛物线y 2=2px 相切,同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x求导,=,(y 2)'x(2px )'x得2y ·=2p ,=,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=| y 'x y ' x p y y 'x y =y 1=.py1又k AM =,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的py1切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-,)代入p 2y 1+y 22左边=y 1·===px 1-,y 1+y 22y 21+y 1y 222px 1-p 22p 22右边=p (-+x 1)=-+px 1,左边=右边,可见,过点A 的切线经过点M ,p 2p 22即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C’A 、C’B 分别是∠A’AB 和∠B’BA 的平分线.【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE ,∴∠DAM =∠AEB =∠BAM ,E图8即AM 平分∠DAB ,同理BM 平分∠CBA .【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-,)p 2y 1+y 22∵tan α=k AB ===.y 2-y 1x 2-x 1y 2-y 1y 2 22p -y 212p 2py 1+y 2tan β=k AM =====.y 1-y 1+y 22x 1+p 2y 1-y 22·y 2 12p +pp (y 1-y 2)y 2 1+p 2p (y 1-\f(-p 2,y 1))y 2 1+p 2py 1∴tan 2β======tan α2tan β1-tan 2β2p y 11-(\f(p ,y 1))22py 1y 2 2-p 22py 1y 2 2+y 1y 22p y 1+y 2∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC’、A’F 、y 轴三线共点,BC’、B’F 、y 轴三线共点【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线,∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2,易知,| DD 1 |=| OF |,DD 1∥OF ,故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=(x -),py 1y 212p图10令x =0得AM 与y 轴交于点G 1(0,),y 12又DF 的直线方程为y =-(x -),令x =0得DF 与y 轴交于点G 2(0,)y 1p p 2y 12∴AM 、DF 与y 轴的相交同一点G (0,),则AM 、DF 、y 轴三线共点,y 12同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形.7. A 、O 、B’三点共线,B 、O 、A’三点共线.【证法一】如图11,k OA ===,y 1x 1y 1y 212p2py1k OC ==-=-=-=y 2-p22y 2p 2py 2p 22py 2-y 1y 22p y 1∴k OA =k OC ,则A 、O 、C 三点共线,同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴==,=,| RO ' || AD || CO ' || CA || BF || AB || O 'F || AF || CB || AB |又| AD |=| AF |,| BC |=| BF |,∴=| RO ' || AF || O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O ',RF ∥BC ,=,| O 'F || CB || AF || AB |∴| O 'F |====【见⑵证】| CB |·| AF || AB || BF |·| AF || AF |+| BF |11| AF |+1| BF |p 2∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法四】∵=(-,y 2),=(x 1,y 1),OC → p 2OA →∵-·y 1-x 1 y 2=-·y 1- y 2=--=-+=0p 2p2y 212p py 12y 1y 2y 12p py 12p 2y 12p图11∴∥,且都以O 为端点OC → OA →∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:8. 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=;m -nm +n【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t ∴在Rt △ABE 中,cos ∠BAE ===| AE || AB |(m -n )t (m +n )t m -nm +n∴cos θ=cos ∠BAE =.m -nm +n 【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为.【说明】如图15,设E 是AF 的中点,则E 的坐标为(,),p2+x 12y 12则点E 到y 轴的距离为d ==| AF |p2+x 1212故以AF 为直径的圆与y 轴相切,同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=(| AD |+| BC |)=(| AF |+| BF |)=| AB |121212则圆心M 到l 的距离| MN |=| AB |,12故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (,y 1),B (,y 1),则C (-,y 2),D (-,y 1),y 212p y 222p p 2p2M (-,),N (,),p 2y 1+y 22y 2 1+y 224p y 1+y 22设MN 的中点为Q ',则Q ' (,)-p 2+y 21+y 224p 2y 1+y 22∵ ===-p 2+y 21+y 224p 2-2p 2+y 2 1+y 2 28p 2y 1y 2+y 2 1+y 228p (y 1+y 22)22p图16∴点Q 在抛物线y2=2px上,即Q是MN的中点.。
抛物线常用性质总结
抛物线常用性质总结抛物线是二次方程的图像,其常见形式为y = ax^2 + bx + c,其中a,b,c是实数常数且a不等于零。
抛物线有许多重要的性质和特点,以下是一些常用的总结和解释。
1. 对称性:抛物线具有轴对称性。
如果抛物线的方程是y = ax^2 + bx + c,轴对称线的方程将是x = -b/2a。
这意味着抛物线关于垂直于x 轴、通过x = -b/2a的直线对称。
2.最高点或最低点:如果a大于零,则抛物线开口向上,且没有最大值。
如果a小于零,则抛物线开口向下,且没有最小值。
抛物线的顶点或底点即为其最高或最低点。
3. 判别式:抛物线的判别式可以帮助我们确定它的性质。
判别式D = b^2 - 4ac表示了二次方程的解的性质。
如果D大于零,则抛物线与x 轴有两个交点,说明它有两个实根。
如果D等于零,则抛物线与x轴有一个交点,说明它有一个实根。
如果D小于零,则抛物线与x轴没有交点,说明它没有实根。
4.对于抛物线的每一个点(x,y),其关于轴对称线的对称点为(2p-x,y),其中p为抛物线上任意一点的横坐标。
这一性质可以用来确定抛物线上其他点的坐标。
5.零点:抛物线与x轴的交点称为零点或根。
零点可以通过解二次方程来求得。
如果判别式D大于零,那么二次方程有两个不同的实根;如果判别式D等于零,那么二次方程有一个实根;如果判别式D小于零,那么二次方程没有实根。
6.方向:抛物线的方向由二次项的系数a决定。
如果a大于零,抛物线开口向上;如果a小于零,抛物线开口向下。
7.垂直于x轴的焦点与准线:焦点与准线是抛物线的另外两个重要点。
焦点的坐标为(p,q+1/4a),其中p=-b/2a为抛物线的对称轴上任意一点的横坐标,q=c-b^2/4a为抛物线的对称轴上任意一点的纵坐标。
准线的方程为y=c-1/4a。
8.对称性性质的应用:由于抛物线的对称性,我们可以通过求解对称点的坐标来简化计算。
例如,如果我们已经求得抛物线上一个点(x,y)的坐标,那么我们也可以直接求解它关于对称轴的对称点(2p-x,y)。
(完整版)抛物线知识点归纳总结
引言:抛物线是高中数学中重要的曲线之一,具有许多重要的性质和应用。
本文将对抛物线的知识点进行归纳总结,包括抛物线的定义、性质、方程、焦点、准线等。
通过深入理解抛物线的相关概念和性质,读者将能够更好地应用抛物线解决实际问题。
概述:抛物线是一种特殊的曲线,其形状呈现出两侧对称且开口向上或向下的特点。
具体而言,抛物线由一条称为准线的直线和一个称为焦点的特殊点确定。
正文内容:1.抛物线的定义:抛物线是所有到一个定点(焦点)与到一条直线(准线)的距离相等的点的集合。
抛物线也可以通过平面上点的坐标表示,而其坐标满足经典的二次方程形式。
抛物线具有一条对称轴,该对称轴是准线与焦点所在直线的垂直平分线。
2.抛物线的性质:对称性:抛物线是关于对称轴对称的,即对称轴上任意一点关于对称轴上的另一点的坐标对称。
单调性:抛物线开口朝上时,在对称轴上坐标递增;开口朝下时,在对称轴上坐标递减。
切线性质:抛物线上任意一点的切线与焦点到该点的连线垂直,这是抛物线独有的性质。
定理一:抛物线上两个焦点到准线的距离之和等于焦距的两倍。
定理二:抛物线上任意一点到焦点的距离等于该点到准线的距离。
3.抛物线的方程:标准形式:y=ax^2+bx+c,其中a、b、c为实常数,且a≠0。
顶点形式:y=a(xh)^2+k,其中a、h、k为实常数,且a≠0,(h,k)为抛物线的顶点坐标。
焦点形式:4a(yk)=(xh)^2,其中a、h、k为实常数,且a≠0,(h,k)为抛物线的顶点坐标。
4.抛物线的焦点和准线:焦点:抛物线的焦点是准线上一个固定的点,与抛物线的形状和方程相关。
焦距:焦距是焦点到准线的距离,等于焦点到对称轴的距离。
准线:准线是与抛物线的形状和焦点相关的一条直线,与对称轴平行且到焦点的距离等于焦距。
5.抛物线的应用:物理学中的自由落体:抛物线可以用来描述自由落体运动的轨迹,例如抛体的抛射问题。
工程学中的抛物面反射器:抛物面反射器可以将光线从一个点集中集中到另一个点上,常用于太阳能聚焦等应用。
抛物线及其性质知识点大全
抛物线及其性质知识点大全1. 抛物线的定义:抛物线是平面上满足平方差的关系的点的集合,可以用一般式方程表示为 y = ax^2 + bx + c,其中a、b和c是实数且a不为0。
2.抛物线的基本形状:抛物线呈现出一个宽口向上或向下的U形。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
3.抛物线的对称轴:抛物线的对称轴垂直于抛物线的开口方向,可以通过平移和旋转将抛物线移动到一个新的位置,使得抛物线重合于自身。
4.抛物线的顶点:抛物线的顶点是抛物线的最高点(当抛物线开口向下时)或最低点(当抛物线开口向上时)。
顶点的横坐标可以通过将一般式方程的x项系数取反并将结果除以2a得到,纵坐标可以通过将横坐标代入一般式方程得到。
5.抛物线的焦点:抛物线上所有点到定点(焦点)的距离相等。
焦点的坐标可以通过将一般式方程转化为顶点形式方程(y=a(x-h)^2+k)得到,其中焦点的横坐标为(h,k+a)。
6.抛物线的直径:通过顶点并垂直于对称轴的直线,可以将抛物线分成两个等长度的部分,这条直线称为抛物线的直径。
7.抛物线的切线:与抛物线相切的直线称为抛物线的切线。
抛物线的切线与抛物线在切点处的斜率相等。
8.抛物线的弦:从抛物线上任意两点绘制的线段称为抛物线的弦。
9.抛物线的渐近线:抛物线没有直线渐近线。
10.抛物线的拐点:抛物线的凹凸方向发生改变的点称为拐点。
拐点的横坐标可以通过将一般式方程的一阶导数等于0的解代入一般式方程得到。
11.抛物线的面积:抛物线的面积可以通过用定积分计算抛物线与x 轴之间的曲边梯形的面积得到。
12.抛物线的方程:抛物线的方程可以通过已知的关键点(如焦点和顶点)来确定。
13.抛物线的图像:通过绘制坐标平面上一系列点,连接这些点得到的曲线即为抛物线的图像。
14.抛物线的应用:抛物线在真实世界中具有广泛的应用,如物体的自由落体、抛体运动、喷水器的喷射路径等。
完整版抛物线的性质归纳及证明
抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦性质及证明y 2= 2px (p >0)焦点F 的弦两端点为 A(x 1, y 1), B(x 2, y 2),倾斜角为 ,中点为时,弦长|AB|最短,称为通径,长为 鸟卩:⑤^ AOB 的面积S ^OAB =2sin证明:根据抛物线的定义,I AF |= I AD |= x i + p , I BF |= I BC |= X 2+号,| AB |= | AF 1+ | BF |= X 1 + X 2+P如图2,过A 、B 引X 轴的垂线AA i 、BB I ,垂足为A i 、B i ,那么 I RF |= | AD I —I FA 1 |= | AF |- | AF |cos ,•j AF = 1—o^=1—cos同理,I BF |=I RF I=―p—1 + cos 1 + cos•j AB =I AF I+ I BF=血 + 1 + cos = sin 2S5 = SS AF + &OBF = 2| OF II y i |+1OF || y i | =舟-p - (I y i1+1 y i I)■ yi y 2=—P 2,贝y y i 、y 2异号,因此,I y i |+ | y i |= | y i — y 2 |C(x o ,y 0), 1.求证: 分别过A 、B 、C 作抛物线准线的垂线,垂足为 A'、B'、C . ①焦半径I AF I X i 当 一p —:②焦半径|BF I X 2占 2 1 cos2 ③备 +帀十厂p ;④弦长I AB| = X i + X 2+ p =—;特别地,| AF | | BF 丨 psin 2_p_1 cos当 x i =X 2( =90 )过抛物线2p二SgAB = p| y i —y2 | =艸(y i + y2)2—4y i y2 =哲4m2p2+4p2=^p/ i+m2=2Sn32.求证:①XX2 P:②yy4当AB丄x轴时,有AF BF P,成立;当AB与x轴不垂直时,设焦点弦AB的方程为: •代入抛物线方程:k2X22 2PX.化简得: k2x2k22•••方程(1 )之二根为k2AF BFX1 X2 p 2P PX1 4 2 1X2X1 , X2, •-X1X2X1 X2BB1X13.求证:AC'BX2X2 X1X2P1 X2X1 X2 p2A'FB' Rt / .则先证明:/ AMB = Rt /•••△ ABE 为等腰三角形,又 M 是AE 的中点,••• BM 丄 AE ,即/ AMB = Rt / 【证法二】取 AB 的中点N ,连结MN ,则 | MN |= 2(| AD 汁 I BC |)= 2(1 AF |+ | BF |)=弓 AB |,A | MN |= | AN |= | BN |=齐瞪+i +臭沁4P!+ 迤=P!+» = 0•••MA 丄1M B ,故/ AMB = Rt / .【证法五】由下面证得/ DFC = 90,连结FM ,贝U FM = DM .又 AD = AF ,故△ ADMAFM ,如图 4•••/ 1 = / 2,同理/ 3 =/ 4•••△ ABM 为直角三角形,AB 为斜边,AMB = Rt / .【证法三】由已知得 C(— 2, y 2)、D( — 2, y i ).由此得M (—2,宁). --k AM =y i + y 2y i - 2 y i — y 2 p(y 1 — y 2) -P 2p(yi —=) y 1 X 1 + Py 2+p 22- S + p2 2卫=卫一=4 =— 1y 2+p 2 y ,,同理k BM =y • I_p --kAM - kBM = • P2,p p 2 (y 1 — y 2)2=X 1X 2 + 2(X 1 + X 2)+ 4 — —•••/ 2+/ 3 = 2X 180 = 90 •••/ AMB = Rt / .接着证明:/ DFC = Rt /【证法一】如图5,由于I AD |= | AF |, AD // RF,同理,设/ BFC =/ BCF = / CFR =, 而/ AFD + / DFR + /BFC +/ CFR = 180故可设/ AFD =/ ADF =/ DFR =••• 2( + ) = 180,即 + = 90,故/ DFC = 90 【证法二】取CD的中点M,即M(—2,豊产)由前知k AM=弗k cF =^—」—Ry i••• k AM = k CF, AM // CF,同理, BM // D F•••/ DFC =/ AMB = 90 .【证法三】••• "DF = (p, —y1), "C F=(P, -y2),• - DF • CF = p2+ y i y2 = 0•••"D F丄"C F,故/ DFC = 90 .【证法四】由于I RF 2= p2=—y i y2= I DR I - I RC |,即IR-j,且/ DRF = / FRC = 90••• △ DRF F RC•••/DFR = / RCF,而/ RCF+/ RFC = 90•••/ DFR + / RFC= 90•••/ DFC = 904. C ' A、C' B是抛物线的切线【证法一】••• k AM=y1,AM的直线方程为y- y1=y^与抛物线方程y2= 2px联立消去x得2 2y—y i=y i(2p―2p),整理得y2—2y i y+ y2= 0可见△= (2y i)2—4y2= 0,故直线AM与抛物线y2= 2px相切,同理BM也是抛物线的切线,如图8.【证法二】由抛物线方程y2= 2px,两边对x求导, 得2y • y x= 2p, y = p,故抛物线y2= 2px在点=yi = Py i(y2)x= (2p x)x,A(x i, y i)处的切线的斜率为k切=y x| y切线.又k AM =牛,• k切=K AM,即AM是抛物线在点A处的切线,同理BM也是抛物线的【证法三】•••过点A(x i, y i)的切线方程为y i y =p(x + x i),把M(—号,左边=y i •呼=y^=沁』=px i —^2,2右边=p(—p + x i)=—p + px i,左边=右边,可见,过点A的切线经过点M,即AM是抛物线的切线,同理BM也是抛物线的切线.5. C'A、C'B分别是/ A 'AB和/ B 'BA的平分线.【证法一】延长AM交BC的延长线于E,如图9,则^ ADM ECM,有AD // BC, AB= BE,•••/ DAM = / AEB = / BAM ,即AM平分/ DAB,同理BM平分/ CBA.【证法二】由图9可知只须证明直线AB的倾斜角是直线AM的倾斜角的2倍即可,即=2.且M( - p,宁)「tan =k AB=x 2—i= y ¥y 2.2p —环,即AM 平分/ DAB ,同理 BM 平分/ CBA.【证法一】如图10,设AM 与DF 相交于点G i ,由以上证明知I AD |= I AF I , AM 平分/ DAF ,故AG i 也是 • G i 是DF 的中点.设AD 与y 轴交于点D i , DF 与y 轴相交于点 易知,I DD i I = I OF I , DD i // OF ,故^ DD I G 2BA FOG 2 •••I DG 2 |= | FG 2 I ,则 G 2也是 DF 的中点.•- G i 与G 2重合(设为点 G ),贝U AM 、DF 、线共点,y i + y 2y i —tan = k AM =x i + P—P 2=p(yiF=p y 2+p 2 =y i + P 2 = y i••• tan 2=2ta n_ 1 —tan 22 y i— y 2p(y i — y 2) = 2 = 2・ 2■+ p2py i 2py i 2py i 2pi—(P )2 y 2— p y 2+ yi y 2 屮 + y 2 (y i ) =tan6. AC ' A '、 y 轴三线共点,BC ' B '、y 轴三线共点同理BM 、CF 、y 轴也三线共点.G 2(0 ,DF 边上的中线,••• 0与0重合,则即 C 、0、A 三点共线,同理 D 、0、B 三点也共线.【证法四】••• 0C = (-p2^y 2), 0A =(x i , y i ),p p y 2py i y i y 2y i—2 - y i — x i y 2= — 2 - y i — y 2 =—牙一 2p 叫血=02 2p••• OC // OA ,且都以0为端点••• A 、0、C 三点共线,同理 B 、0、D 三点共线.【推广】过定点 P(m , 0)的直线与抛物线 y 2= 2px ( p > 0) 相交于点A 、B ,过A 、B 两 点分别作直线I : x =- m 的垂线,垂足分别为 M 、N ,贝U A 、0、N 三点共线, B 、0、M三点也共线,如下图:7. A 、0、B '三点共线,B 、0、A '三点共线.=I C0 |= I BF I I 0F |= I CB I • I AD I = I CA I = I ABI , I AF | = | AB |,又I AD |= I AF I ,I BC |= I BF |,A 罟古辭共线.【证法三】设 AC 与x 轴交于点0,RF // BC ,I0^= ^TZ-*,1 CB 1 1 AB 1=I AF |+ I BF 1= 丄= 2【见⑵证】 I AF I I BF I【证法一】如图11, k 0A =2p =2py ik 0C ==—p 22y 22py 22py 2 = 2p —y 1y 2 y 1--k oA = k oc , A 、0、C 三点共线,同理D 、 0、 B 三点也共线.【证法二】设 AC 与 x 轴交于点 0 ,••• AD // RF // BC••• I R0 I = I OF I ,贝U 0与0重合,即C 、0、A 三点共线,同理 D 、0、 B 三点也...* 0 F *= I CB • I AF I I BF I • I AF |I AB I于 E ,设 I AF |= mt , | AF |= nt ,则| AD |= I AF I , I BC |= I BF |, | AE |= | AD |- | BC | = (m —n)t•••在 Rt △ ABE 中, cos / BAE =仏口 =血皿 吩 n/• cos = cos / BAE=m —nm + n【例6】设经过抛物线 y 2= 2px 的焦点F 的直线与抛物线相交于两点A 、B ,且I AF I : I BF |= 3: 1,则直线AB 的倾斜角的大小为8.若I AF I : I BF |= m : n , 点A 在第一象限,为直线AB 的倾斜角.则cosm + n【证明】如图14,过A 、B 分别作准线I 的垂线,垂足分别为 D ,C , 过B 作BE 丄ADI AB I (m + n)t m +n【答案】60或120 .9.以AF为直径的圆与y轴相切, 以BF为直径的圆与y轴相切;以AB为直径的圆与准线相切;A' B'为直径的圆与焦点弦A'y -—C' / / 1■bK B' 'O4-/X.IIA'.C'.【说明】如图15,设E是AF的中点,AB相切.11同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作 MN 丄准线I 于N ,则1 1 11 MN |= 1(| AD 汁丨 BC |)= 1(| AF |+ | BF |)=刁 AB |2 【证法二】AM 的直线方程为y — y i =十(x —稽),令x = 0得AM 与y 轴交于点G i (0, y i ),又DF 的直线方程为y =— W (x — p),令x = 0得DF 与y 轴交于点p 2 ••• AM 、DF 与y 轴的相交同一点 G (0,罗),贝U AM 、DF 、8p y 1+ y 22 2pp 十X1 则E 的坐标为(勺一则点E 到y 轴的距离为故以AF 为直径的圆与 y 轴相切,1则圆心M 到I 的距离I MN | = 2| AB故以AB 为直径的圆与准线相切.10. MN 交抛物线于点 Q ,则Q 是MN 的中点.2 2【证明】设 A (21 , y 1), B (22, y 1),则 C (-2,y i ),M(-2,导 N<y 24p y 2 设MN 的中点为 Q ,则 Q ( y 1 + y 2)2 ), -2 . y 1 + y 2—2 十 4p 2 2y轴三线共点,同理BM、CF、y轴也三线共点H .由以上证明还可以得四边形MHFG_ - 2p2+ y2+ y2 2y1y2+ y i + y28p•••点Q在抛物线y2= 2px上,即Q是MN的中点.12。
(完整版)抛物线的几何性质
抛 物 线一、抛物线22(0)y px p =>的简单几何性质1、范围:因为0p >,由方程22y px =可知,这条抛物线上任意一点M 的坐标(),x y 满足不等式0x ≥,所以这条抛物线在y 轴的右侧;当x 的值增大时,y 也增大,这说明抛物线向上方和右下方无限延伸,它的开口向右.2、对称性:以y -代y ,方程22(0)y px p =>不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫作抛物线的轴3、顶点:抛物线和它的轴的焦点叫作抛物线的顶点.在方程22(0)y px p =>中,当0y =时,0x =,因此这条抛物线的顶点就是坐标原点.4、离心率:抛物线上的点到焦点的距离与到准线的距离的比,叫作抛物线的离心率,用e 表示.按照抛物线的定义,1e =知识剖析:抛物线的通径:过焦点且与焦点所在的轴垂直的直线与抛物线交于点12,M M ,线段12M M 叫作抛物线的通径,将02px =代入22y px =得y p =±,故抛物线22y px =的通径长为2p例1、已知点(),M x y 在抛物线28y x =上,则()22,129f x y x y x =-++的取值范围? 分析:本题的实质是将(),f x y 转化为关于x 的二次函数,求二次函数在区间[)0,+∞上的最值. ()()22,812925f x y x x x x =-++=++,又[)0,x ∈+∞,所以当0x =时,(),f x y 取得最小值9,当[)0,x ∈+∞时,()()2,25f x y x =++,无最大值.故()22,129f x y x y x =-++的取值范围为[)9,+∞答案:[)9,+∞二、抛物线的四种标准方程相应的几何性质:知识剖析:(1)通过上表可知,四种形式的抛物线的顶点相同,均为()0,0O ,离心率均为1,它们都是轴对称图形,但是对称轴不同.(2)抛物线和椭圆、双曲线的几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形,抛物线不是中心对称图形; ②顶点个数不同:椭圆有4个顶点、双曲线有2个顶点、抛物线只有1个顶点; ③焦点个数不同:椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率的取值范围不同:椭圆的离心率的取值范围是01e <<,双曲线离心率的取值范围是1e >,抛物线的离心率是1e =;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线,由于抛物线没有渐近线,因此在画抛物线时切忌将其画成双曲线例2、某抛物线的顶点是椭圆22169144x y +=的中心,而焦点为椭圆的左顶点,求此抛物线的标准方程.分析:因为该椭圆的中心在坐标原点,左顶点为()3,0-,所以可直接设抛物线的标准方程,求得p 后可得方程.答案:解:由22169144x y +=得:221169y x +=,所以椭圆的左顶点为()3,0-.由题意设所求抛物线的标准方程为()220y px p =->,由32p=,得6p =,故所求抛物线的标准方程为212y x =-.三、焦点弦问题及其应用 1、焦点弦如图,AB 是抛物线()220y px p =>过焦点F 的一条弦.设点()()1122,,,A x y B x y ,线段AB 的中点为()00,M x y ,过,,A B M 分别向抛物线的准线作垂线,垂足分别为111,,A B M ,则根据抛物线的定义有11AF BF AA BB +=+.又1MM 是梯形11AA B B 的中位线,1112AB AA BB MM ∴=+=.综上可得以下结论: ①121212,,2222p p p p AF x BF x AB x x x x p ⎛⎫⎛⎫=+=+∴=+++=++ ⎪ ⎪⎝⎭⎝⎭,其常被称作抛物线的焦点弦长公式.②022p AB x ⎛⎫=+ ⎪⎝⎭(焦点弦长与中点的关系)③若直线AB 的倾斜角为α,则22sin pAB α= 推导:12AB AF BF x x p =+=++由④的推导知,当AB 不垂直于x 轴时,()1220py y k k+=≠1212122222y y y y p p p x x p p k k k k+∴+=+++=+=+ 222212212tan sin p p AB p p k αα⎛⎫∴=+=+= ⎪⎝⎭当k 不存在时,即90α=时,22sin pAB α=亦成立 ④A B 、两点的横坐标之积、纵坐标之积为定值,即2124p x x =,212y y p =-分析:利用点斜式写出直线AB 的方程,与抛物线方程联立后进行证明.要注意直线斜率不存在的情况. 推导:焦点F 的坐标为,02p ⎛⎫⎪⎝⎭,当AB 不垂直于x 轴时,可设直线AB 的方程为:()02p y k x k ⎛⎫=-≠ ⎪⎝⎭,由222p y k x y px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得:2220ky py kp --= ()2224212212121222,22444y y y y p p y y p x x p p p p ∴=-==== 当AB 垂直于x 轴时,直线AB 的方程为:2px =则222212121212,,224y y p y p y p y y p x x p p ==-⇒=-==⑤11AF BF +为定值2p推导:由焦半径公式知,12,22p pAF x BF x =+=+ ()12212121211112224x x p p pp p AF BF x x x x x x ++∴+=+=+++++又21212,4p x x x x AB p =+=-,代入上式得:()22112424AB p p p AF BF p AB p +==+-+为常数 故11AF BF +为定值2p.2、抛物线中与焦点弦有关的一些几何图形的性质(1)抛物线以过焦点的弦为直径的圆和准线相切(2)抛物线()220y px p =>中,设AB 为焦点弦,M 为准线与x 轴的交点,则AMF BMF ∠=∠ (3)设AB 为抛物线的焦点弦.① 点A B 、在准线上的射影分别为点11A B 、,若P 为11A B 的中点,则PA PB ⊥;②O 为抛物线的顶点,若AO 的延长线交准线于点C ,连接BC ,则BC 平行于x 轴,反之,若过点B 作平行于x 轴的直线交准线于点C ,则,,A O C 三点共线. (4)通径是所有焦点弦(过焦点的弦)中最短的弦.例3、已知抛物线的顶点在原点,x 轴为对称轴,经过焦点且倾斜角为4π的直线,被抛物线所截得的弦长为6,求抛物线方程.解:当抛物线的焦点在x 轴正半轴上时,可设抛物线的标准方程为()220y px p =>,则焦点F的坐标为,02p ⎛⎫ ⎪⎝⎭,直线l 的方程为2p y x =-.设直线l 与抛物线的交点为()()1122,,,A x y B x y ,过点,A B 分别向抛物线的准线作垂线,垂足分别为点11A B 、,则有:111212+=622p p AB AF BF AA BB x x x x p ⎛⎫⎛⎫=+=+++=++= ⎪ ⎪⎝⎭⎝⎭,由222p y x y px⎧=-⎪⎨⎪=⎩,消去y ,得222p x px ⎛⎫-= ⎪⎝⎭,即22304p x px -+= 123x x p ∴+=,代入①式得:336,2p p p +=∴= ∴所求抛物线的标准方程为23y x =当抛物线的焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是:23y x =-例4、已知抛物线()220y px p =>的焦点为F ,点()()()111222333,,,P x y P x y P x y 、、在抛物线上,且2132x x x =+,则有( )123.A FP FP FP += 222123.B FP FP FP += 213.2C FP FP FP =+ 2213.D FPFP FP =解析:123P P P 、、在抛物线上,且2132x x x =+,两边同时加上p ,得2132()222p p p x x x +=+++ 即2132FP FP FP =+ 答案:C例5、过抛物线24y x =的焦点作直线交抛物线于()()1122,,,A x y B x y 两点,如果126x x +=,那么AB =?解析:由抛物线定义,得12628AB AF BF x x p =+=++=+=。
抛物线常用性质总结
抛物线常用性质总结抛物线是数学中的一种曲线形状,其方程一般为y=ax^2+bx+c,其中a、b、c为常数。
抛物线在几何学、物理学、工程学等领域中都具有广泛的应用。
下面将总结抛物线的一些常用性质。
1.抛物线的形状:抛物线是一种开口向上或向下的曲线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2.对称性:抛物线与y轴对称,其顶点坐标为(-b/2a,c-b^2/4a)。
抛物线也可以与x轴对称,其对称轴与x轴垂直,并通过顶点。
3.焦点和准线:抛物线的焦点F的坐标为(-b/2a,c-b^2/4a+1/4a),准线的方程为y=(c-b^2/4a)-1/4a。
4.抛物线的平移:抛物线的平移是通过调整方程中的常数b和c来实现的。
平移后的抛物线与原抛物线具有相同的形状,但位置有所变化。
5. 零点:抛物线的零点即为方程的解,可以通过求解ax^2+bx+c=0来得到。
根据一元二次方程的解的性质,当b^2-4ac>0时,抛物线与x轴有两个交点;当b^2-4ac=0时,抛物线与x轴有一个交点;当b^2-4ac<0时,抛物线与x轴无交点。
6.最值:抛物线的最值即为顶点的纵坐标。
当a>0时,抛物线的最小值为c-b^2/4a;当a<0时,抛物线的最大值为c-b^2/4a。
7.切线和法线:在抛物线上的任意一点,其切线的斜率为抛物线在该点的导数值。
切线与抛物线的切点的坐标可以通过求解方程组来得到。
在抛物线上的任意一点,其法线与切线垂直。
8.弧长:抛物线的弧长表示为y=x^2的积分。
计算抛物线上两点间的弧长可以通过积分计算得到。
9.面积:抛物线与y轴之间的面积可以通过求解抛物线和y轴之间的定积分来计算得到。
抛物线的其中一段与x轴之间的面积可以通过求解抛物线和x轴之间的定积分来计算得到。
10.抛物线的应用:抛物线在现实生活中有很多应用。
例如,在物理学中,抛物线可以描述物体的弹道;在工程学中,抛物线可以描述桥梁、拱门等结构的外形;在经济学中,抛物线可以描述成本、产量等指标的关系。
最全抛物线曲线知识点总结
最全抛物线曲线知识点总结抛物线是高中数学中经常讨论的曲线之一,具有很多重要的性质和应用。
本文将总结抛物线曲线的相关知识点,帮助读者更好地理解和应用抛物线。
1. 抛物线的定义抛物线是由平面上到定点(焦点)和一条直线(准线)的距离相等的点构成的曲线。
它的数学表达式通常为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
2. 抛物线的性质- 抛物线的对称轴:对称轴是准线的垂直平分线,方程为:x = -b/(2a)。
- 抛物线的焦点:焦点是到定点最短距离的点,焦点的横坐标为:x = -b/(2a),纵坐标为:y = c - (b^2 - 1)/(4a)。
- 抛物线的顶点:顶点是抛物线的最高(或最低)点,顶点的横坐标为:x = -b/(2a),纵坐标为:y = c - (b^2 - 1)/(4a)。
- 抛物线的开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 抛物线的单调性:当a > 0时,抛物线在对称轴的左侧单调递增,在对称轴的右侧单调递减;当a < 0时,抛物线在对称轴的左侧单调递减,在对称轴的右侧单调递增。
3. 抛物线的应用抛物线在现实生活中有很多应用,例如:- 物体的自由落体运动:自由落体的运动轨迹是一个抛物线。
- 抛射运动:抛掷物体的运动轨迹也是一个抛物线。
- 抛物面反射:光线在抛物面上反射的规律。
4. 抛物线的变形抛物线有一些常见的变形形式,例如:- 平移:在原抛物线的基础上沿 x 轴或 y 轴方向进行平移。
- 缩放:改变抛物线的 a、b、c 的值,实现抛物线的扁平化或拉长。
以上是抛物线曲线的一些基本知识点总结,希望本文能够帮助读者更好地理解和应用抛物线。
如需深入研究,建议参考相关的数学教材和参考资料。
参考文献:。
抛物线性质总结
抛物线性质总结
抛物线是广泛应用在数学中的一条函数曲线,其涉及到诸多的基本性质,常用的有抛物线的根性,关系式,定积分,交点,端点,极值等等。
抛物线的根性:抛物线的轴对称,一般方程通常有两个不同的根,或是称之为把抛物线绳子或扳手弯曲两次;
抛物线的关系式:当方程是幂函数抛物线式时,可以表示成y=ax²+bx+c,a>0,其中a是抛物线下凹,b和c是顶点x和y的坐标,b和c也是抛物线的转折点;
抛物线的定积分:抛物线的定积分可以表示成f(x)=ɑx+1/2∫g(u) du,其中g(u)为定义域内的函数。
抛物线的定积分就是做抛物线上每两个任意点间的积分;
抛物线的交点:抛物线与其他函数交点,只要求解其他函数与抛物线方程的解、公共解得到;
抛物线的端点:抛物线的端点可以通过关系式求出,为左端点x=-b/2a,y=f(-b/2a),右端点x=b/2a,y=f(b/2a)。
抛物线的极值:抛物线的极值可以通过求解关系式x=-b/2a,得出结论,抛物线的极值为y=f(-b/2a)。
以上就是抛物线的总体性质,由此可见抛物线在数学和几何中起着重要作用,由此也可以解决许多学术问题,正如此抛物线总结中所述,受到学术界的广泛认可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论一:若AB 是抛物线2
2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:
2
124
p x x =,212y y p =-。
结论二:已知直线AB 是过抛物线2
2(0)y px p =>焦点F ,求证:112=AF BF p
+。
结论三:(1)若AB 是抛物线2
2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则
22sin P AB α
=
(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:
例:已知直线AB 是过抛物线2
2(0)y px p =>焦点F ,求证:11AF BF
+为定值。
证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+
,22
p
BF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2
124
p x x =。
则:2
12
121211()()
()2224
AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数
证明:结论四: 已知AB 是抛物线2
2(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN
切。
证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结
AP 、BP 。
由抛物线定义:AM AF =,BN BF =, ∴111
()()222
QP AM BN AF BF AB =
+=+=, ∴以AB 为直径为圆与准线l 相切
(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,
∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。
同理,∠BFN=∠NFO ,
∴∠MFN=
1
2
(∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴1
2
MP NP FP MN ===,
∴∠PFM=∠FMP
∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB。