PLC与光电开关接线
PLC与常用输入输出电气元件的连接
PLC与常用输入输出电气元件的连接
一、PLC与输入元件的连接
PLC常见的输入元件有按钮、行程开关、接近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。
正确地连接输入和输出电路,是保证PLC安全可靠工作的前提。
与主令电器元件连接1
如下图所示是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。
图中的PLC为直流汇点式输入,即所有输入点共用一个公共端COM,同时COM端内带有DC24V 电源。
若是分组式输入,也可参照下图的方法进行分组连接。
与旋转编码器连接2
旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。
因些可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。
不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A 相。
如上图所示是输出两相脉冲的旋转编码器与FX系列PLC的连接示意图。
编码器有4条引线,其中2条是脉冲输出线,1条是COM端线,1条是电源线。
编码器的电源可以是外接电源,也可直接使用PLC的DC24V电源。
电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。
编码器的COM端与PLC输入COM端连接,A、B两相脉冲输出线直接与PLC的输入端连接,连接时要注意PLC输入的响应时间。
有的旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地。
与传感器连接3
传感器的种类很多,其输出方式也各不相同。
当采用接近开关、光电开关等两线式传感器。
光电开关接线图
1)接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP型,它们的接线是不同的。
请见下图所示:
2)两线制接近开关的接线比较简单,接近开关与负载串联后接到电源即可。
3)三线制接近开关的接线:红(棕)线接电源正端;蓝线接电源0V端;黄(黑)线为信号,应接负载。
而负载的另一端是这样接的:对于NPN型接近开关,应接到电源正端;对于PNP型接近开关,则应接到电源0V端。
4)接近开关的负载可以是信号灯、继电器线圈或可编程控制器PLC的数字量输入模块。
5)需要特别注意接到PLC数字输入模块的三线制接近开关的型式选择。
PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开关。
千万不要选错了。
6)两线制接近开关受工作条件的限制,导通时开关本身产生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。
三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。
7)有的厂商将接近开关的“常开”和“常闭”信号同时引出,或增加其它功能,此种情况,请按产品说明书具体接线。
自动生产线应用技术--装配单元的安装与调试
向装置集合而成。导向气缸用于驱动装配机械手沿导杆水平 方向移动,其外形如图所示。
导向气缸的外形
任务一 装配单元的装配与测试
导向气缸由带双导杆的直线运动气缸和其他附件组成。安 装支架用于导杆导向件的安装和导向气缸整体的固定,连接件 安装板用于固定其他需要连接到该导向气缸上的工件,并将两 导杆和直线气缸的活塞杆的相对位置固定。当直线气缸的一端 接通压缩空气后,活塞被驱动做直线运动,活塞杆也一起移动, 被连接件安装板固定到一起的两导杆也随活塞杆伸出或缩回, 从而实现导向气缸的整体功能。安装在导杆末端的行程调整板 用于调整该导杆气缸的伸出行程,具体调整方法是松开行程调 整板上的紧定螺钉,让行程调整板在导杆上移动,当达到理想 的伸出距离以后,再完全锁紧紧定螺钉,完成行程的调节。
装配单元的气动系统主要包括气源、气动汇 流板、直线气缸、摆动气缸、气动手指、单电控 5/2换向阀、单向节流阀、消声器、快插接头、 气管等,它们的主要作用是完成推料、挡料、机 械手抓取、工件装配和工件送取到位等。
任务一 装配单元的装配与测试
装配单元的气动执行元件由4个双作用气缸、1个摆动气缸和1个气动手 指组成。其中,1B1、1B2为安装在顶料气缸上的2个位置检测传感器(磁 性开关);
2)光电开关的接线 光电开关的输出为3线(棕色+;蓝色-;黑 色NO输出),棕色线与直流电源的“+” 连接; 蓝色线与直流电源的“-”连接;黑色线与PLC的 输入点I0.0、I0.1、I0.2、I0.3、I0.4连接。
任务一 装配单元的装配与测试
四、 装配单元PLC的安装与接线 1. 装配单元电气控制原理图
任务一 装配单元的装配与测试
光电开关几线制
四线制(即有4根线)一般接法:棕色接+24V、蓝色接-24V(即0V)、黑色是常开点、白色是常闭点(同样特别要注意是输出型PNP还是NPN)。
五线制(即有5根线)一般接法:棕色接+24V、蓝色接-24V(即0V)、一根接COM端、另2根接常开和常闭点(相当于一个开关的3个触点)。
具体接法要参考说明书,如无说明书则参考光电传感器上的接线法图,如光电传感器上无接线法图,那只能用电源(24V)调试,并用万用表确定输出是什么类型。
回答
1,不能说哪一种用得最为广泛,也不能说二线制的传感器最方便简单,更不能说几线制的传感器多。每一种都有他的优点(例如5线制,接线相当灵活,COM线可接选一种任意需要的电压),也有他的缺点(例如3线制,它不是PNP就是NPN)。至于“为什么这多种?”,是因为每一种光电传感器的本身的结构、材料所决定的(例如2线制,它的基本构造是一个管簧管或类似于管簧管;,那么只需2线即可;3线制4线制5线制它的最基本构造是三极管放大原理,必须3线以上)。
但每一台设备,从设计、安装、维修等多方面因素出发,一般采用同一种光电传感器(例如PNP的3线制常开光电传感器、或者2线制常开传感器)。
目前市场上有12V—220VAC/DC交直流通用的光电传感器,但价格不菲(一个光电要几百甚至上千、几千元)。
2,可以这么说。PLC的输入端,这个输入量一般是常开;但也有感器按线制分二线制(即只有2根线),三线制,四线制,五线制等。按输出型号有PNP、NPN,按功能分电容式、电感式、霍尔式等。
二线制(即只有2根线)一般接法:一根接PLC输入的COM端,另一根接PLC输入端。
项目二:加工单元的安装与调试
磁性开关的输出为2线(棕色+; 蓝色-),连接时,1B、2B1、2B2、 3B1、3B2的棕色线分别与PLC的I0.1、 I0.2、I0.3、I0.4、I0.5输入点相连, 蓝色线与直流电源的“-”相连。
任务一 加工单元的装配与测试
2. 光电开关的安装与接线
1)光电开关的安装 加工单元中的光电开关主要用于加工台物料检 测,光电开关的安装方法与供料单元中光电开关的 安装方法相同。
自动生产线应用技术
项目二 加工单元的安装与调试
加工单元的装配与测设 加工单元的编程与单机调试
项目二 加工单元的安装与调试
一、 项目综述
加工单元是YL-335B自动生产线的第二个工作 站,负责加工原料(或工件)。加工单元除了可以 独立工作外,还可以协同其他工作单元联动,形成 自动生产线的整体运行。本项目的主要工作任务是 对加工单元实施机电安装、编程调试及运行等操作, 其目的是锻炼学生识图、安装、布线、编程及装调 的综合能力。
(3)装配型材支撑架时,注意调整好各条边的平行度及垂直度, 然后再锁紧螺母。
(4)铝合金型材支撑架上的螺栓一般是具有空间对称的结构的成 组螺栓,锁紧螺栓时一定要成组螺栓的“对角线"装配,以免造成局部应 力集中,长时间会影响铝合金型材的形状。
任务一 加工单元的装配与测试
3)推料机组件的安装方法
安装时,需要注意出料口 的方向向前且与挡料板方向一 致;要手动调整推料气缸和挡 料板位置螺栓,若位置不当将 引起工件推偏。
任务一 加工单元工单元通电(接通气源), 用手按动停止按钮、起动按钮、急停开关、单机/联机转 换开关,观察PLC I1.2、I1.3、I1.4、I1.5的LED是否亮( 灭),若不亮(灭)应检查对应按钮及连接线。
S7-200SMART系列全套接线说明
S7-200SMART系列全套接线说明对于刚接触PLC或电⽓相关⼯作的⼩伙伴来说,有时对⼀些接线图没办法看懂,今天我们针对SMART系列的PLC接线做⼀个说明!⼀、电源接线电源接线针对不同型号的PLC电压等级也是不同的,主要看具体型号及PLC外壳的电源标识;如下图是ST20的PLC,⾃带24V输出和⼯作电源不能搞混淆如上图所⽰ L+与DC24V正极接⼀起,M端和DC24V负极接⼀起,这样CPU的供电就完成了。
那对于继电器型的PLC来说,供电电源和晶体管型的就不⼀样了,继电器型的PLC供电电源是AC85-264V及47-63HZ的交流电对于电源接线来说,也是⽐较简单的,但不能交流接直流;直流接交流⼆、输⼊接线输⼊接线分为有源信号输⼊和⽆源信号的输⼊;⽆源输⼊:表⽰只需要⼯作电源,不需要控制电源(如按钮,⾏程开关等)如下图所⽰为⽆源输⼊种类有源信号的输⼊:除了控制电源以外还需要单独提供⼯作电源(如接近开关、光电开关等)如下图所⽰为有源信号的种类S7-200SMART的输⼊接线分为源型和漏型两种;1M为公共端,即可以接正极也可以接负极,所以有了源型和漏型之说。
在S7-200SMART系列PLC中,当1M 接电源正极时,信号从公共端1M流⼊则是源型接法(也称为共阳极接法)当1M 接电源负极时,信号从公共端1M流出则是漏型接法(也称为共阴极接法)如下图所⽰接近开关等有源信号的种类按输出类型分为PNP和NPN两种,对于PLC来说,选择PNP和NPN型的传感器在接⼊到PLC时的接线⽅式是不⼀样的,这⼀块对于学习PLC的电⽓⼈员来说是必须要掌握的⼀点。
常⽤的接PNP或NPN型传感器为三线制的居多(如下图所⽰)棕⾊和蓝⾊分别表⽰24V的正负极,⿊⾊表⽰信号的输出;从图中可看出,NPN型在导通时,⿊⾊和蓝⾊类似于连接在⼀起,输出⿊⾊线接PLC输⼊点时为0V,所以信号输出为低电平,也称之为源型输⼊(共阳极输⼊)⽽对于PNP型来说导通时,⿊⾊和棕⾊类似于连接在⼀起,输出⿊⾊线接PLC输⼊点时为24V,所以信号输出为⾼电平,也称之为漏型输⼊(共阴极)三、输出接线如上图所⽰为输出接线的元器件种类输出分为两种,分别是继电器输出型和晶体管输出型。
白话说电气_PLC输入接线详解(三菱FX2N,西门子)
1,看图,首先要搞清楚PLC内部大致结构(三菱FX2N为例):如图:AC/DC转换器,一次回路,二次回路。
转换器为一二次回路供电,一二次回路通过光耦连接。
2,AC/DC转换器外部输入220V转出24V和5V,供内部使用。
24V:要非常熟悉,并且要区分好24V的这两个用途,很多兄弟就是在这个地方混淆了,迷失了。
下面分别介绍这两个用途。
A,为一次回路驱动接口电路供电,驱动各个信号通道的发光二极管工作。
从图上看,X和COM这两个端子,如果这两个端子闭合的话讲形成回路电流,经过正向二极管,发光二极管发光,流回COM端,也就是24V的负极。
当发光二极管工作,就光电耦合到二次回路,完成信号输入。
每个通道会消耗掉7ma的电流。
一个FX2N-24mr的PLC 的AC/DC转换器24V电源容量为250ma。
该电流与外部传感器没有关系,就负责当有信号回路时让发光二极管发光。
B,为外部负载提供工作电源。
很少这样使用。
从图上看,我用虚线画了一条线,端子为24V+。
这个端子在三菱PLC上都是有的。
是PLC为我们提供的一个24V负载电源,可以驱动一些光电开关之类。
这个转换器容量不大,fx2n24MR为250mA,如果后面不接扩展的话,这些容量就都可以拿来供外接传感器工作。
所以要充分考虑到外接开关的工作电流。
不能超过转换器的容量。
一般情况,可以带几个微型传感器。
举个例,一个光电传感器工作负载电流100ma,空载电流30ma。
那么就可以带250除以100=2个这样的传感器。
当然,只带2个传感器没什么用,而且与PLC共电源比较危险,所以我们一般在输入端外加开关电源,很少直接挂负载。
这部分后面会讲。
这就是内部24V的两个作用。
5V,二次回路硬件工作电压及主板工作电压,这里我们不讨论。
就像西门子的PS模块一样,需要产生一个工作电压给整个PLC系统,包括给后面的扩展模块。
需要考虑容量的问题,这里不讨论。
3,一次回路,如图,前面说的基本都是一次回路。
反射型光电开关接法
反射型光电开关接法
反射型光电开关通常有两线制、三线制和四线制几种类型,下面以常见的三线制NPN型和PNP型光电开关为例说明接线方法:三线制NPN型反射光电开关的接线方法:
蓝色或黑色线:连接0V(接地或负极)。
棕色或红色线:连接正电源,例如24VDC。
黑色或黄色线:信号输出线,连接到负载(如PLC输入点或其他控制电路),当物体进入检测范围时,该线会从高电平变为低电平。
三线制PNP型反射光电开关的接线方法:
蓝色或黑色线:连接正电源,例如24VDC。
棕色或红色线:连接0V(接地或负极)。
黑色或黄色线:信号输出线,当无物体或光线被中断时,该线输出为低电平,有物体在检测范围内时,输出变为高电平并连接至负载。
注意事项:
1.在接线前务必确认光电开关的工作电压,并确保电源与负载能够匹配。
2.确保正确区分是NPN还是PNP型光电开关,因为它们的输出状态相反。
3.根据实际应用,可能需要通过中间继电器转换信号,或者直接连接到能处理相应电平信号的控制器上。
在使用过程中,如果光电开关工作正常,当有反光物体进入其检测范围时,会根据光电开关类型触发相应的输出信号。
PLC输入、输出源型、漏型接线的区别
PLC输入、输出源型、漏型接线的区别源型、漏型是指直流输入/输出型plc而言,针对于PLC的是输入点/输出点的公共端子COM口,当公共点接入负电位时,就是源型接线;接入正电位时,就是漏型接线。
或者换种说法源型是高电平有效,漏型是低电平有效。
源型输入是指输入点接入直流正极有效漏型输入是指输入点接入直流负极有效。
源型输出是指输出的是直流正极漏型输出是指输出的是直流负极。
源型与漏型的选择决定了使用那种传感器,他决定了COM端口的电压为正或是为负。
PLC的输入类型是分漏式和源式的,前者指的是正信号输入(可直接用PNP),后者指的是负信号输入(可直接用NPN),否则必须用继电器转换后输入。
传感器的型式不一而足,不过一般用得最多的是两线跟三线的,两线的跟负载串联。
三线的多为开集极输出,三根线分别为正负电源和输出晶体管的集电极。
传感器的NPN和PNP是根据输出晶体管的型号来的。
NPN的负载是接在正电源与集电极之间,而PNP是接在集电极与负电源之间的。
要用万用表来判断传感器的型号,需要先给它一个负载,再根据它的输出电压来判断。
源型、漏型是指直流输入/输出PLC而言,针对的是输入点/输出点的COM端,当公共点接入负电位时,就是源型接线;接入正电位时,就是漏型接线。
或者换种说法源型是高电平有效,漏型是低电平有效。
源型输入是指输入点接入直流正极有效漏型输入是指输入点接入直流负极有效源型输出是指输出的是直流正极漏型输出是指输出的是直流负极。
源型与漏型的选择决定了使用那种传感器,他决定了COM端口的电压为正或是为负接近开关npn,pnp区别先要搞清楚PNP、NPN 表示的意思是什么。
P表示正、N表示负。
PNP表示平时为高电位,信号到来时信号为负。
NPN表示平时为低电位,信号到来时信号为高电位输出.接近开关和光电开关只是检测电路不同输出相同。
至于PLC接线,一般用NPN的较多。
但多数的日本的PLC有日本型、世界型、和通用型。
光电开关传感器接线图【图解】
光电开关在生活中的使用越来越广泛,它是一种传感器,是光电接近开关的简称,它的原理是将发射端和接收端之间光的强弱变化转化为电流的变化,从而达到探测的目的。
那么安装的时候,光电开关的接线复杂吗?相信这是许多学习电气及PLC控制的人都想了解的。
今天就向大家介绍光电开关接线图,连接的方式也会略有不同,这会对安装有不小的帮助。
光电开关传感器双线直流接线方法光电开关传感器电路原理图接线电压:10—65V直流常开触点(NO)无极性防短路的输出漏电电流≤0.8mA电压降≤5V注意不允许双线直流传感器的串并联连接光电开关传感器三线直流接线图电路原理图接线电压:10—30V直流常开触点(NO)电压降≤1.8V防短路的输出完备的极性保护三线直流与四线直流传感器的串联当串联时,电压降相加,单个传感器的准备延迟时间相加。
四线直流光电开关传感器接线方法电路原理图接线电压:10—65V切换开关防短路的输出完备的极性保护电压降≤1.8V三线直流与四线直流光电开关传感器的并联接线图光电开关传感器双线交流接线方法电路原理图常开触点(NO)常闭触点(NC)接线电压:20—250V交流漏电电流≤1.7mA电压降≤7V(有效值)双线交流传感器的串联常开触点:“与”逻辑常闭触点:“或非”逻辑当串联时,在传感器上的电压降相加,它减低了负载上可利用的电压,因此要注意:不能低于负载上的最小工作电压(注意到电网电压的波动)。
机械开关与交流光电开关传感器串联接线方法断开的触点中断了传感器的电源电压,若在传感器被衰减期间内机械触点闭和的话,则会产生一个短时间的功能故障,传感器的准备延迟时间(t≤80ms)避免了立即的通断动作。
补偿方法:将一电阻并联在机械触点上(当触点断开时也是一样),此电阻使传感器的准备时间不再起作用,对于200V交流,此电阻大约为82KΩ/1w。
电阻的计算方法:近似值大约为400Ω/V当并联时,在传感器上的电压降相加,它减低了负载上可利用的电压,因此要注意:不能低于负载上的最小工作电压(注意到电网电压的波动)。
PLC与接近光电开关的接线问题
PLC与接近、光电开关的接线问题一:引言PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输;因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输;目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点Com的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点S/S可选型,根据需要单端共点可以接负极也可以接正极;由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础;二:输入电路的形式1、输入类型的分类PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINKsink Current 拉电流,单端共点接电源负极为SRCEsource Current 灌电流;2、术语的解释SINK漏型SOURCE源型SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器;SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器;国内对这两种方式的说法有各种表达:1、根据TI的定义,sink Current 为拉电流,source Current为灌电流,2、由按接口的单端共点的极性,共正极与共负极;这样的表述比较容易分清楚;3、SINK为NPN接法,SOURCE为PNP接法按传感器的输出形式的表述;4、SINK为负逻辑接法,SOURCE为正逻辑接法按传感器的输出形式的表述;5、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效按传感器的输出状态的表述;这种表述的笔者接触的最多,也是最容易引起混淆的说法;接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平对内部有上拉电阻而言,当有检测信号,内部NPN管导通,开关输出为低电平;对于无检测信号时PNP的接近开关与光电开关输出为低电平对内部有下拉电阻而言,当有检测信号,内部PNP管导通,开关输出为高电平;以上的情况只是针对,传感器是属于常开的状态下;目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平;因此用户在选型上与供应商配合上经常产生偏差;另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改;原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大关系;并非所有的传感器与PLC都可以通用,对于此类问题可以参考笔者的另一文接近开关、光电开关的输出与负载接口问题,在此不再赘述;SINK漏型、SOURCE源型在下文有详细图解描述;三、按电源配置类型、直流输入电路如图1,直流输入电路要求外部输入信号的元件为无源的干接点或直流有源的无触点开关接点,当外部输入元件与电源正极导通,电流通过R1,光电耦合器内部LED,VD1接口指示到COM端形成回路,光电耦合器内部接收管接受外部元件导通的信号,传输到内部处理;这种由直流电提供电源的接口方式,叫直流输入电路;直流电可以由PLC内部提供也可以外接直流电源提供给外部输入信号的元件;R2在电路中的作用是旁路光电耦合器内部LED的电流,保证光电耦合器LED不被两线制接近开关的静态泄漏电流导通;、交流输入电路如图2,交流输入电路要求外部输入信号的元件为无源的干接点或交流有源的无触点开关接点,它与直流接口的区分在光电耦合器前加一级降压电路与桥整流电路;外部元件与交流电接通后,电流通过R1,C2经过桥整流,变成降压后的直流电,后续电路的原理与直流的一致;交流PLC主要适用相对环境恶劣,,布线技改变动不大等场合;如接近开关就用交流两线直接替代原来行程开关;4:按端口类型单端共点Comcon数字量输入方式为了节省输入端子,单端共点输入的结构是在PLC内部将所有输入电路光电耦合器的一端连接在一起接到标示为COM的内部公共端子internal comcon terminal,各输入电路的另一端才接到其对应的输入端子X0、X1、X2、....,com共点与N个单端输入就可以做N个数字量的输入N+1个端子,因此我们称此结构为"单端共点"输入;用户在做外部数字量输入组件的接线时也需要同样的作法,需要将所有输入组件的一端连接在一起,叫输入组件的的外部共线external comcon wire;输入组件的另一端才接到PLC的输入端子X0、X1、X2、....;如果COM为电源24V+正极,外部共线就要接24V-负极,此接法称SINKsink Current 拉电流输入方式;也称之PLC接口共电源正极;如果COM为电源24V-负极,外部共线就要接24V+正极,此接法称SRCEsource Current 灌电流输入方式;也称之PLC接口共电源负极;SINKsink Current 拉电流输入方式,可接NPN型传感器,即X端口与负极相连;SRCEsource Current 灌电流输入方式,可接PNP型传感器;即X端口与整机极相连;为了适应各地区的使用习惯,内部公共端子有的厂家的PLC是采用S/S端子,此端子可以与电源的24V+正极或24V-负极相连,结合外部共线接线变化使PLC可以SINKsink Current 拉电流输入方式,可接NPN型传感器和SRCEsource Current 灌电流输入方式,可接PNP型传感器;较采用COM端的PLC更灵活;S/S端子的发展是为了适用日系与欧系PLC混合使用工控场合,起到通用的作用,S/S端子也称之 SINK/SRCE可切换型;外部输入组件可以为按钮开关、行程开关、舌簧开关、霍尔开关、接近开关、光电开关、光幕传感器、继电器触点、接触器触电等开关量的元件;4.1.1 SINKsink Current 拉电流输入方式●单端共点SINK输入接线内部共点端子COM→24V+,外部共线→24V-;如图3:4.1.2 SRCEsource Current 灌电流输入方式●单端共点SRCE输入接线内部共点端子COM→24V-,外部共线→24V+;如图4:4.1.3 SINK/SRCE可切换输入方式S/S端子与COM端不同的是,COM是与内部电源正极或负极固定相连,S/S 端子是非固定相连的,根据需要才与内部电源或外部电源的正极或者负极相连;●单端共点SINK输入接线内部共点端子S/S→24V+,外部共线→24V-;●单端共点SRCE输入接线内部共点端子S/S→24V-,外部共线→24V+;:当有源输入元件霍尔开关、接近开关、光电开关、光幕传感器等数量比较多,消耗功率比较大,PLC内置电源不能满足时,需要配置外置电源;根据需求可以配24VDC,一定功率的开关电源;外置电源原则上不能与内置电源并联,根据COM与外部共线的特点, SINKsink Current 拉电流输入方式时,外置电源与内置电源正极相连接; SRCEsource Current 灌电流输入方式时,外置电源与内置电源负极相连接;:简单判断SINKsink Current 拉电流输入方式,只需要Xn端与负极短路,如果接口指示灯亮就说明是SINK输入方式;共正极的光藕合器,可接NPN型的传感器; SRCEsource Current 灌电流输入方式,将Xn端与正极短路,如果接口指示灯亮就说明是SRCE输入方式;共负极的光藕合器,可接PNP型的传感器;:对于2线式的开关量输入,如果是无源触点,SINK与SRCE按上图的输入元件接法,对于2线式的接近开关,需要判断接近开关的极性,正确接入;我公司部分2线式的LJK系列接近开关也有不分极性即可接入接口的,具体参考附带产品说明书;、超高速双端输入电路主要用于硬件高速计数器HHSC的输入使用,接口电压为5VDC,在应用上为确保高速及高噪音抗性通常采用双线驱动方式Line-Drive;如果工作频率不高与噪音低也可以采用5VDC的单端SINK或者SRCE接法,串联一个限流电阻转换成24VDC的单端SINK或者SRCE接法;4.2.2、5VDC的单端SINK或者SRCE接法;注:24VDC供电的传感器,在输入回路上需要串联限流电阻,R1为10Ω,R2为2KΩ,不串联限流电阻,将烧毁接口回路,限流电阻取值Ω;四:外部输入元件1:无源干接点按钮开关、行程开关、舌簧磁性开关、继电器触点等无源干接点比较简单,接线容易;不存在电源的极性,压降等因素,上图3-6中的输入元件这是此类型;这里不重复介绍;2:有源两线制传感器接近开关、有源舌簧磁性开关有源两线接近开关分直流与交流,此传感器的特点就是两根线,传器输出端导通后,为了保证电路正常工作需要一个保持电压来维持电路工作,通常在的压降,静态泄露电流要小于1mA,这个指标很重要;如果过大,在接近开关没检测信号时,就使PLC的输入端的光电耦合器导通;我公司的LJK系列两线制接近开关静态泄露电流控制在之间适应各类型PLC;直流两线制接近开关分二极管极性保护与桥整流极性保护,前者在接PLC时需要注意极性,后者就不需要注意极性;有源舌簧磁性开关主要用在汽缸上做位置检测,由于需要信号指示,内部有双向二极管回路,因此也不需要注意极性;交流两线制接近开关就不需要注意极性;如图10:、单端共点SINK输入接线内部共点端子COM→24V+,外部共线→24V-;如图11、单端共点SRCE输入接线内部共点端子COM→24V-,外部共线→24V+;如图12:、S/S端子接法参考图5-图6以及图11-图12;3:有源三线传感器电感接近开关、电容接近开关、霍尔接近开关、光电开关等直流有源三制线接近开关与光电开关输出管使用三极管输出,因此传感器分NPN和PNP输出,有的产品是四线制,有双NPN或双PNP,只是状态刚好相反,也有NPN和PNP结合的四线输出;NPN型当传感器有检测信号VT导通,输出端OUT的电流流向负极,输出端OUT 电位接近负极,通常说的高电平翻转成低电平;PNP型当传感器有检测信号VT导通,正极的电流流向输出端OUT,输出端OUT电位接近正极,通常说的低电平翻转成高电平;电路中三极管的发射极上的电阻为短路保护采样电阻2-3Ω不影响输出电流;三极管的集电极的电阻为上拉与下拉电阻,提供输出电位,方便电平接口的电路,另一种输出的三极管集电极开路输出不接上拉与下拉电阻,更多问题可以参考接近开关、光电开关的输出与负载接口问题的文章;简单说当三极管VT导通,相当与一个接点导通,如图13:单端共点SINK输入接线内部共点端子COM→24V+,外部共线→24V-;如图14: 、单端共点SRCE输入接线内部共点端子COM→24V-,外部共线→24V+;如图15:、S/S端子接法参考图5-图6、图11-图12以及图14-图15;五、结束语PLC输入接口电路形式和外接元件传感器输出信号形式的多样性,因此在PLC 输入模块接线前必要了解PLC输入电路形式和传感器输出信号的形式,才能确保PLC输入模块接线正确无误,在实际应用中才能游刃有余,后期的编程工作和系统稳定奠定基础;六、参考文献1:接近开关、手册 TEOPTO 2005年电子版2:FETEK-使用手册3:MITSUBISHI-手册4:SIEMENS-手册光电开关原理的定义:此种产品以光源为介质、应用光电效应,当光源受物体遮蔽或发生反射、辐射和遮光导致受光量变化来检测对象的有无、大小和明暗,而向产生接点和无接点输出信号的开关元件;光电开关包括几种类型,自身不具备光源,利用被测物体发射的光的变化量进行检测的;利用自然光对光电开关的照射,物体遮蔽自然光产生的关变化量;光电开关自身具备光源,发射的光源对被检测物体反射、吸收、和透射光的变化量进行检测;常用的光源为紫外光、可见光、红外光等波段的光源,光源的类型有灯泡、LED、激光管等;输出信号有开关量或模拟量和通讯数据信息等;光电开关的叫法,主要是输出为开关量的开关元件;光电传感器的叫法,涵盖了输出开关量、模拟量、通讯数据等;目前市面光电开关的叫法有分光源、检测形式、用途、结构等命名的;如:利用红外光源的叫红外光电开关、红外线光电开关、红外线光电传感器等;利用自然光的叫光控开关、光电继电器等;利用激光为光源的叫激光光电开关、激光光电传感器等;利用检测形式叫热金属检测器,俗称热检等;利用用途的叫光电距离传感器、安全光幕传感器等;利用结构的叫光幕传感器等;这里就简要举几个例子,还有很多的叫法,在此无法一一介绍;一、原理与分类1:按检测形式的分类1对射式是由一个发射器与一个接收器相对配置的,发射器发射出的光指向接收器,发射器与接收器之间组成一个闭合光路,通过对光路的光被遮断或光衰减来进行检测的一种检测形式;这种检测形式作用距离比较长,但需要一个发射器并需要配电;在某些应用场合比如空间狭小,不合适配电的运用上比较麻烦;如图1a:图1a②发射器与接收器一体化,光传输为直流方式的非调制信号,主要小型缝隙光电开关,如U型、C型的槽型光电开关;如图1b:图1b2这种方式是把发射器与接收器构为一体,发射器发射的光直接照射到被检测物上,根据反射光的变化情况来进行检测的;可以说是近似人的眼睛的一种检测器;与对射式相比作用距离比较短,只需要单线配电即可,属于通用检测器;如图2:图23①这种方式是把发射器与接收器构为一体,光电开关对置反角矩阵射镜,发射器的光被反射镜后反馈回接收器,与角矩阵反射镜多棱镜形成闭合光路,通过对光路的光被遮断或光衰减来进行检测的一种检测形式,这种检测形式作用距离比对射式短,比直接反射式较长;只需要单线配电即可,由于采用反射镜光轴的调整比对射式容易;反射镜由多棱镜角矩阵板或微晶玻璃颗粒反射膜等;如图3a:图3a②°,采用互相垂直的偏振光膜片放在双镜头前,所以使用角矩阵反射器,光路闭合;如果是平面镜或反光率比较的物体如:玻璃瓶等不能改变偏振方向,由它阻挡而产生的反射光不能进入受光器,因此它可以很容易被检测到,从而解决了由它表面反射而它引起的误动作问题;如图3b:图3b4通过对被检测物体辐射出的光进行检测的形式;如用于钢铁行业的对加热的铁辐射出的红外线进行检测的光电开关;如图4:图45这种方式是把发射器与接收器构为一体,发射器与接收器形成一个角度,发射光轴与接收光轴交叉区域灵敏度最佳;如图5:图56这种方式是把发射器与接收器构为一体,发射器与接收器形成一个角度,发射光聚焦点与接收光聚焦交叉区域检测物体,用于精细检测,如标记检测等;如图6:图67这种方式是把发射器与接收器构为一体,发射光通过镀膜的半透明镜片45°折射后通过镜头聚焦发射出去,接收光线通过聚焦镜头入射到接收器,主要用于标志检测;目前主流的颜色传感器、标志传感器大多采用这样方式;如图7:图78光导纤维简称光纤,目前光纤式光电开关的光纤基本是两种,一种塑料光纤,价位比较低,普通检测使用;另一种玻璃光纤,价位比较高,一些检测精度比较高的场合;①:对射式,把光纤套入发射器,把光纤套入接收器,光纤检测头相对安置;如图8a:图8a②:直接反射式,发射器与接收器构为一体,把光纤套入发射器与接收器光纤放大器,光纤头为两根光纤并行,直接检测物体;如图8b:图8b③:同轴反射,发射器与接收器构为一体,把光纤套入发射器与接收器光纤放大器;光纤头为两根光纤并为一根的形式,发射光纤在中间,接受光纤围着其圆周排列;可以直接反射与镜面反射,取决于光纤放大器的光学结构;如图8c:图8c2:1光量法目前大多数光电开关用来检测物体有无的均为光量方式,既光源受物体遮蔽或发生反射、辐射和遮光导致受光量变化来检测对象的有无;2三角测距法光量方式容易受到物体表面的光洁度、粗糙度、颜色所影响,因此在一些要求比较高的场合就需要采用距离法检测;3激光测量法由激光器对被测目标发射一个光信号, 然后接受目标反射回来的光信号,通过测量光信号往返经过的时间, 计算出目标的距离;3:按光源种类的分类光源目前采用的大多是发光二极管LED,根据不同使用目的的区别使用;1白炽灯式可见光用于需要白光的标志检测器,由于寿命与抗震性能,现在使用比较少;2发光二极管LED式可见光、近红外光具有调制容易、寿命长、小型、功耗小、抗震等优点是光电开关理想的光源,可用于各种用途;3荧光式可见光主要用于需要长度的光电系统图像传感器等4紫外光式不可见光通过照射紫外线用于检测发生可见光的物体荧光整理疵点、食品中的异物等;5气体激光式可见光光束比较强,用于探伤系统、条形码系统、及强光衰减大的场合,如蒸汽、烟雾、火焰等场合;6半导体激光式红光、近红外光具有较强的透射率和容易调制的特性,用于如蒸汽、烟雾、火焰等场合钢铁行业与安防; 4:1直流光式使发射器的光线为不变的直流光,包括白炽灯和用直流驱动的发光二极管;这种方式有线路简单、响应速度快的特点,但是抗光干扰比较弱,目前仅在较短的距离检测中使用; 2调制式①、脉冲调制式使发射器发的出光线为具有一定频率的脉冲波,一般称为调制光,采用这种方式除了可以获得峰值很高的光脉冲功率外,还可以对接收器输出采用具有频率选择的交流放大器进行放大,从而减少周围光线和电气噪声的影响,这是目前国内外使用最广的一种方式;②机械旋转调制式对光源用棱镜或转盘孔旋转后,提取脉冲信号,如用于区域检测和热金属辐射的扫描检测等;③、扫描式将多个发射器与接收器组合,通过同步信号逐一扫描,防止相互干扰;如用于光幕传感器;5:1直流式采用直流电压供电的形式,一般大多采用12-24V10-30V的直流电压的供电;2交流式采用交流电压供电,电压范围为90-240V交流电,满足110VAC与220VAC场合的供电3直流交流混合式直流电压与交流电压都可以直接接入同一个供电回路的形式,直流电压范围12-240V,交流电压范围24-240V,此形式适应性比较灵活,不需要考虑配电的问题;6:按输出种类的分类1三极管NPN输出2三极管PNP输出3三极管NPN与PNP混合输出4固态隔离无触点输出5继电器触点输出6可控硅输出7模拟电压8模拟电流9数据信号7:1内藏放大器式即把发光、感光元件和放大电路、信号处理电路、开关驱动电路装配在一个壳体里,接通直流电源就可以获取ON-OFF开关输出,不需要专用放大器,抗噪音能力强,寿命长,电缆线可延长等优点,是主流的一种光电开关;2放大器分离式这是种早期采用比较多的方式,发光、感光元件装在探头内,用屏蔽线与专用放大器光电开关主体连接;主要是探头可以安装在比较狭小的空间对比较小的物体进行检测,但是有抗噪声能力的问题;随着技术的发展,内藏放大器式的光电开关的体积越来越小;这种形式采用相对较少,尤其是光纤传感器的发展;3光纤式这种光电开关是放大器分离式与内藏放大器式结合的产品,通过光纤才传输光信号,光电开关主体上套上光纤线,另一头光纤探头可以对被检测物体进行检测,其优点光纤探头比较小,可以检测比较微小的物体,光纤线传输的只是光信号,所以不用考虑放大器分离式那样需要考虑抗噪声能力的问题;4自控式这种光电开关是具有一定功能性的;把发光、感光元件和放大电路、信号处理电路、开关驱动电路、电源、继电器等都装配在一起,接上交流或直流电源就可以工作;同时还具有其他一些功能如动作信号的延时、光电开关的信号灵敏度调节等;光电开关工作原理红外传感器原理光电开关是通过把光强度的变化转换成电信号的变化来实现控制的;光电开关在一般情况下,有三部分构成,它们分为:发送器、接收器和检测电路;发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管LED、激光二极管及红外发射二极管;光束不间断地发射,或者改变脉冲宽度;接收器有光电二极管、光电三极管、光电池组成;在接收器的前面,装有光学元件如透镜和光圈等;在其后面是检测电路,它能滤出有效信号和应用该信号;此外,光电开关的结构元件中还有发射板和光导纤维;三角反射板是结构牢固的发射装置;它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义;它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,还是从这根反射线返回;分类和工作方式⑴槽型光电开关把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电;发光器能发出红外光或可见光,在无阻情况下光接收器能收到光;但当被检测物体从槽中通过时,光被遮挡,光电开关便动作;输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作;槽形开关的检测距离因为受整体结构的限制一般只有几厘米;⑵对射型光电开关若把发光器和收光器分离开,就可使检测距离加大;由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关;它的检测距离可达几米乃至几十米;使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号;⑶反光板型光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式或反射镜反射式光电开关;正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号;⑷扩散反射型光电开关它的检测头里也装有一个发光器和一个收光器,但前方没有反光板;正常情况下发光器发出的光收光器是找不到的;当检测物通过时挡住了光,并把光部分反射回来,收光器就收到光信号,输出一个开关信号一、:1、:与电感式接近开关相比,可以获得很长的检测距离,例如:对射型开关检测距离可达数十米,反射已从几厘米到几米,由于是非接触检测,所以不损伤被测物,也不受其影响;2、检测对象广泛:因为是根据检测对象的反射和透光检测,所以不管是金属、即使是玻璃、橡胶、木材、液体、气体等几乎都可以检测;3、:检测介质本身是高速的,因为几乎不包含机械动作,因而可以获得非常高的检测速度;4、:因为光是直线传播,且波长短,因而分辨率高,适用于微小物体和高精度位置检测;5、:采用了透镜等光学系统,可以比较容易的聚光、扩散和折射,对应不同的检测对象和不同的使用环境,可以适当的选取具有某种检测区域的产品;。
三菱FX2N PLC的外部接线所用工具及电路图
三菱FX2N PLC的外部接线所用工具及电路图一、项目所需设备、工具、材料
见表1。
表1 项目所需设备、工具、材料
二、训练内容
1、项目描述
本项目要求完成以下内容:
(1)根据FX2N-48MR的端子图和PLC控制原理图,画出PLC系统的接线图;(2)完成PLC接线;
(3)将提供的PLC程序利用计算机或手持编程器写入PLC;
(4)按步骤操作,通过PLC系统的运行情况进行调试。
2、接线示意图
FX2N-48MR的输入输出端子如图4-11所示。
传感器采用三线式的接近开关,电容式、电感式、光电式均可。
在操作叙述中以光电开关为例。
图4-12为PLC接线示意图。
3 、操作基本要求
按照图4-13输入控制程序。
按下SB1按钮,指示灯1亮,松开后,指示灯灭。
PLC面板上的LED指示灯与之相反。
按下SB2按钮,指示灯2亮,松开后,指示灯灭。
PLC面板上的LED指示灯与之同步。
将一光亮物体接近光电开关,指示灯3亮。
三线制光电开关接线方法
三线制光电开关接线方法
嗨,宝子们!今天咱们来唠唠三线制光电开关的接线方法,可简单啦。
三线制光电开关呢,一般有棕色线、蓝色线和黑色线。
这棕色线啊,那可是电源正极线呢。
就像是小光电开关的“活力源泉”,要接到电源的正极上哦。
你可以想象它是一个小吸管,从电源正极那里吸取能量。
蓝色线就不一样啦,它是电源的负极线。
它和棕色线就像一对小搭档,一个负责进电,一个负责出电。
把蓝色线接到电源的负极,这样电流就能形成一个小回路啦。
重点来咯,黑色线是信号线。
这根线可神奇啦,它就像是小光电开关的“小嘴巴”,会把探测到的信号传递出去呢。
这个信号线要接到你需要它控制的设备上,比如说继电器或者PLC之类的。
如果光电开关检测到物体了,就会通过黑色信号线把这个消息告诉它连接的设备,然后设备就会根据这个信号做出反应啦。
在接线的时候呢,宝子们一定要小心哦。
先把电源断开,可别在有电的时候就开始乱接线,那可就像在雷区里蹦跶一样危险呢。
接好线之后,再仔细检查一遍,看看有没有接错的地方。
要是你接好线之后,发现光电开关不太正常工作,也别慌。
先看看电源有没有接好,是不是正负极接反了。
有时候就是这么个小失误,就像穿反了鞋子一样,虽然看起来是小事,但是会让整个事情变得很糟糕呢。
再检查一下信号线是不是接到正确的设备上啦。
光电开关的原理与接线方法
光电开关的原理与接线方法光电开关是一种利用光电效应工作的开关装置。
它通过光电传感器将光信号转换为电信号,从而实现对电路的控制。
光电开关的工作原理是基于光电效应,即当光线照射在物质上时,物质会发生电子的光电子效应。
光电开关通常包括一个光源和一个光电传感器两部分。
光源发出的光线照射到物体上,然后被光电传感器接收并转换成对应的电信号,最终通过电路控制相关设备的运行。
一般来说,光电开关可分为发射型和反射型两种类型。
发射型光电开关是指发射器和接收器分开安装的情况,通过照射物体上的目标来接收反射光线实现信号的检测。
反射型光电开关则是指发射器和接收器合二为一,通过发射的光线被反射回来接收来实现信号的检测。
根据实际需求,可以选择合适的光电开关类型。
在接线方法上,首先需要将光源连接到电源上,通常是通过继电器或直接连接电源进行供电。
然后将光电传感器与控制设备连接,控制设备可以是继电器、PLC 或其他相关设备。
接线时需要注意以下几点:1. 确保光源和光电传感器的电源极性正确连接,避免电流反向流动导致设备损坏。
2. 根据实际需求,选择合适的控制方式连接光电传感器与控制设备。
可以使用继电器或PLC作为中间控制元件,方便与其他设备的协调控制。
3. 根据具体应用情况,对光电传感器进行调试和调整。
可以通过调节光源的亮度、位置和角度等参数来优化光电开关的探测效果。
4. 在接线过程中,保持电路的良好接触,避免接线松动或接触不良造成误操作或设备故障。
需要特别注意的是,在现实应用中,光电开关的安装位置和角度与光源的亮度都会对光电开关的探测效果产生明显的影响。
因此,在实际应用中,需要根据具体情况进行现场测试和调整,以达到最佳的探测效果。
在光电开关的应用领域中,由于其高灵敏度、快速响应和无接触控制等特点,被广泛应用于物流、自动化生产线、包装机械、机器人等领域。
比如在自动化生产线上,可以利用光电开关实现对产品的自动检测和计数,从而提高生产效率和质量控制。
PLC光电开关、编码器三极管接线详图
说明1:输入部分有两个相反方向的发光二极管,所以,输入部分无极性限制,输入端子的公共接线端子M接正负都可以,PNP编码器接法如图所示。 说明2:HSCO 模式10 的接法 说明3:HSCO 模式10 的接法,A、B、Z分别接I0.0、I0.1、I0.2
!
" #$%
þ
Ï[Ì«þ
欧姆龙E3Z光电开关接线图详细
说明:输入部分有两个相反方向的发光二极管,所以,输入部分无极性限制,输入端子的公共接线端子M接正负都可以,NPN光电三极管接法如图所示。
说明1:右上角M L+为PLC CPU单元工作电源用电接入端,分别接直流开关电源的负极与正极。 说明2:每一路输出端子驱动能力为0.75A,而常用DC24V中间继电器线圈一般为1.8W也就是75ma,所以可以直接接。 说明3:直流中间继电器一般有正负极之分,连接的时候主意正负极,接反会无法恒常使用。 说明4:右上角模块接地,是真正的接地可以与交流接地一起接地,不要接零线,接 PE. 说明5:其它M接地,接开关电源的接地即可形成完整的回路。 说明6:输入部分有限流电阻,并且有两个相反方向的发光二极管,所以,输入部分无极性限制,NPN、PNP光电开关都可以接。 说明7:分组是为了减小公共输入端M电流,防止烧坏。 不使用的组可以不接。
说明:输入部分有两个相反方向的发光二极管,所以,输入部分无极性限制,输入端子的公共接线端子M接正负都可以,PNP光电开关接法如图所示。
说明:HSCO 模式10 的接法,A、B、Z分别接I0.0、I0.1、I0.2
说明1:输入部分有两个相反方向的发光二极管,所以,输入部分无极性限制,输入端子的公共接线端子M接正负都可以,NPN编码器接法如图所示。 说明2:HSCO 模式10 的接法 说明3:HSCO 模式10 的接法,A、B、Z分别接I0.0、I0.1、I0.2
三菱FX2N系列PLC的外部接线
COM Y0 Y1 Y2 Y3 COM Y4 Y5 Y6 Y7 COM KM
KM 电磁离合器
接直流负载
2020/3/11
6202Biblioteka /3/11COM Y0 Y1 Y2 Y3 COM Y4 Y5 Y6 Y7 COM KM
KM 电磁阀
接交流负载
7
2、晶体管输出
COM Y0 COM Y1 COM Y2 Y3 Y4 Y5 Y6 KM
接触器 电磁阀
2020/3/11
8
注意:①不要对空端子接线。
②对继电器输出,第4点应使用一只5~15A的熔断器,对
晶体管输出,第4点应使用一只1~2A的熔断器。
③为实现紧急停止,可使用PLC的外部开关切断负载。
④使用晶体管输出或可控硅输出时,由于漏电流,可能
产生输出设备的误动作,这时应在负载两端并联一个泄
2020/3/11
4
二、输入电路连接
1、有源开关量连接
如光电开关等传感器开关器件,其输入部分接直流 电源(可接PLC的内部24V输出电源),其输出部分接 在输入端子和输入公共端子两点之间。见上图。
2、无源开关量连接
无源开关量接在输入端子和输入公共端子两点之间。
2020/3/11
5
三、输出电路连接
扩展单元
2
1、直流电源供电
3A
DC 24V
+
_ 24V 0V COM X0
基本单元
24V
输入扩展 模块
2020/3/11
3
注意:①基本单元和扩展单元的交流电源要相互连接, 接到同一交流电源上,输入公共端S/S(COM)也要相互 连接。基本单元和扩展单元的电源必须同时接通与断开。 ②基本单元与扩展单元的+24V输出端子不能互相连接。 ③基本单元和扩展单元的接地端子互相连接,由基本单 元接地。用截面大于2mm2电线在基本单元的接地端子上 按第3种方式(接地电阻≤100Ω)接地,但不能与强电系 统共接地。 ④为防止电压降低,建议电源使用截面2mm2以上的电线, 电线要绞合使用,并且由隔离变压器供电。有的在电源 线上加入低通滤波器,把高频噪音滤除后再给可编程控 制器供电。应把可编程控制器的供电线路与大的用电设 备或会产生较强干扰的用电设备(如可控硅整流器弧焊 机等)的供电线路分开。 ⑤直流供电的PLC,其内部24V输出不能采用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一:引言PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与部处理电路的传输。
因此,输入端的信号只是驱动光电耦合器的部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。
目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC 习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。
由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。
二:输入电路的形式1、输入类型的分类PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。
2、术语的解释SINK漏型SOURCE源型SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口部的光电耦合器为单端共点为电源正极,可接NPN型传感器。
SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口部的光电耦合器为单端共点为电源负极,可接PNP型传感器。
国对这两种方式的说法有各种表达:1)、根据TI的定义,sink Current 为拉电流,source Current为灌电流,2)、由按接口的单端共点的极性,共正极与共负极。
这样的表述比较容易分清楚。
3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。
4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。
5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。
这种表述的笔者接触的最多,也是最容易引起混淆的说法。
接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平(对部有上拉电阻而言),当有检测信号,部NPN 管导通,开关输出为低电平。
对于无检测信号时PNP的接近开关与光电开关输出为低电平(对部有下拉电阻而言),当有检测信号,部PNP管导通,开关输出为高电平。
以上的情况只是针对,传感器是属于常开的状态下。
目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。
因此用户在选型上与供应商配合上经常产生偏差。
另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。
原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大关系。
并非所有的传感器与PLC都可以通用,对于此类问题可以参考笔者的另一文《接近开关、光电开关的输出与负载接口问题》,在此不再赘述。
SINK漏型、SOURCE源型在下文有详细图解描述。
3、按电源配置类型3.1、直流输入电路如图1,直流输入电路要求外部输入信号的元件为无源的干接点或直流有源的无触点开关接点,当外部输入元件与电源正极导通,电流通过R1,光电耦合器部LED,VD1(接口指示)到COM端形成回路,光电耦合器部接收管接受外部元件导通的信号,传输到部处理;这种由直流电提供电源的接口方式,叫直流输入电路;直流电可以由PLC部提供也可以外接直流电源提供给外部输入信号的元件。
R2在电路中的作用是旁路光电耦合器部LED的电流,保证光电耦合器LED不被两线制接近开关的静态泄漏电流导通。
3.1、交流输入电路如图2,交流输入电路要求外部输入信号的元件为无源的干接点或交流有源的无触点开关接点,它与直流接口的区分在光电耦合器前加一级降压电路与桥整流电路。
外部元件与交流电接通后,电流通过R1,C2经过桥整流,变成降压后的直流电,后续电路的原理与直流的一致。
交流PLC主要适用相对环境恶劣,,布线技改变动不大等场合;如接近开关就用交流两线直接替代原来行程开关。
4:按端口类型4.1单端共点(Comcon)数字量输入方式为了节省输入端子,单端共点输入的结构是在PLC部将所有输入电路(光电耦合器)的一端连接在一起接到标示为COM的部公共端子(internal comcon terminal),各输入电路的另一端才接到其对应的输入端子X0、X1、X2、....,com共点与N个单端输入就可以做N个数字量的输入(N+1个端子),因此我们称此结构为"单端共点"输入。
用户在做外部数字量输入组件的接线时也需要同样的作法,需要将所有输入组件的一端连接在一起,叫输入组件的的外部共线(external comcon wire);输入组件的另一端才接到PLC的输入端子X0、X1、X2、....。
如果COM为电源24V+(正极),外部共线就要接24V-(负极),此接法称SINK(sink Current 拉电流)输入方式;也称之PLC接口共电源正极。
如果COM为电源24V-(负极),外部共线就要接24V+(正极),此接法称SRCE(source Current 灌电流)输入方式;也称之PLC接口共电源负极。
SINK(sink Current 拉电流)输入方式,可接NPN型传感器,即X端口与负极相连。
SRCE(source Current 灌电流)输入方式,可接PNP型传感器。
即X端口与整机极相连。
为了适应各地区的使用习惯,部公共端子有的厂家的PLC是采用S/S端子,此端子可以与电源的24V+(正极)或24V-(负极)相连,结合外部共线接线变化使PLC可以SINK(sink Current 拉电流)输入方式,可接NPN型传感器和SRCE(source Current 灌电流)输入方式,可接PNP型传感器。
较采用COM端的PLC更灵活。
S/S端子的发展是为了适用日系与欧系PLC混合使用工控场合,起到通用的作用,S/S端子也称之 SINK/SRCE可切换型。
(外部输入组件可以为按钮开关、行程开关、舌簧开关、霍尔开关、接近开关、光电开关、光幕传感器、继电器触点、接触器触电等开关量的元件。
)4.1.1 SINK(sink Current 拉电流)输入方式●单端共点SINK输入接线(部共点端子COM→24V+,外部共线→24V-)。
如图3:4.1.2 SRCE(source Current 灌电流)输入方式● 单端共点SRCE输入接线(部共点端子COM→24V-,外部共线→24V+)。
如图4:4.1.3 SINK/SRCE可切换输入方式S/S端子与COM端不同的是,COM是与部电源正极或负极固定相连,S/S端子是非固定相连的,根据需要才与部电源或外部电源的正极或者负极相连。
● 单端共点SINK输入接线(部共点端子S/S→24V+,外部共线→24V-)。
● 单端共点SRCE输入接线(部共点端子S/S→24V-,外部共线→24V+)。
4.2.4:当有源输入元件(霍尔开关、接近开关、光电开关、光幕传感器等)数量比较多,消耗功率比较大,PLC置电源不能满足时,需要配置外置电源。
根据需求可以配24VDC,一定功率的开关电源。
外置电源原则上不能与置电源并联,根据COM与外部共线的特点, SINK(sink Current 拉电流)输入方式时,外置电源与置电源正极相连接; SRCE(source Current 灌电流)输入方式时,外置电源与置电源负极相连接。
4.2.5:简单判断SINK(sink Current 拉电流)输入方式,只需要Xn端与负极短路,如果接口指示灯亮就说明是SINK输入方式。
共正极的光藕合器,可接NPN型的传感器。
SRCE(source Current 灌电流)输入方式,将Xn端与正极短路,如果接口指示灯亮就说明是SRCE输入方式。
共负极的光藕合器,可接PNP型的传感器。
4.2.4:对于2线式的开关量输入,如果是无源触点,SINK与SRCE按上图的输入元件接法,对于2线式的接近开关,需要判断接近开关的极性,正确接入。
我公司部分2线式的LJK系列接近开关也有不分极性即可接入接口的,具体参考附带产品说明书。
4.2、超高速双端输入电路主要用于硬件高速计数器(HHSC)的输入使用,接口电压为5VDC,在应用上为确保高速及高噪音抗性通常采用双线驱动方式(Line-Drive)。
如果工作频率不高与噪音低也可以采用5VDC的单端SINK或者SRCE接法,串联一个限流电阻转换成24VDC 的单端SINK或者SRCE接法。
4.2.1、双输入端双线驱动方式(Line-Drive)。
4.2.2、5VDC的单端SINK或者SRCE接法。
4.2.3、24VDC的单端SINK或者SRCE接法。
注:24VDC供电的传感器,在输入回路上需要串联限流电阻,R1为10Ω,R2为2KΩ,不串联限流电阻,将烧毁接口回路,限流电阻取值2.7KΩ。
四:外部输入元件1:无源干接点(按钮开关、行程开关、舌簧磁性开关、继电器触点等)无源干接点比较简单,接线容易。
不存在电源的极性,压降等因素,上图3-6中的输入元件这是此类型。
这里不重复介绍。
2:有源两线制传感器(接近开关、有源舌簧磁性开关)有源两线接近开关分直流与交流,此传感器的特点就是两根线,传器输出端导通后,为了保证电路正常工作需要一个保持电压来维持电路工作,通常在3.5-5V的压降,静态泄露电流要小于1mA,这个指标很重要;如果过大,在接近开关没检测信号时,就使PLC的输入端的光电耦合器导通。
我公司的LJK系列两线制接近开关静态泄露电流控制在0.35-0.5mA之间适应各类型PLC。
直流两线制接近开关分二极管极性保护与桥整流极性保护,前者在接PLC时需要注意极性,后者就不需要注意极性。
有源舌簧磁性开关主要用在汽缸上做位置检测,由于需要信号指示,部有双向二极管回路,因此也不需要注意极性;交流两线制接近开关就不需要注意极性。
如图10:2.1、单端共点SINK输入接线(部共点端子COM→24V+,外部共线→24V-)。
如图112.2、单端共点SRCE输入接线(部共点端子COM→24V-,外部共线→24V+)。
如图12:2.3、S/S端子接法参考图5-图6以及图11-图12。
3:有源三线传感器(电感接近开关、电容接近开关、霍尔接近开关、光电开关等)直流有源三制线接近开关与光电开关输出管使用三极管输出,因此传感器分NPN和PNP输出,有的产品是四线制,有双NPN或双PNP,只是状态刚好相反,也有NPN和PNP结合的四线输出。