全国名校高考数学经典复习题汇编(附详解)专题:虚数的运算

合集下载

高三数学总复习专题试题及答案详解:虚数

高三数学总复习专题试题及答案详解:虚数

高三数学总复习专题试题及答案详解:虚数1.(2012·河南省三市调研)已知i 为虚数单位,复数z =2+i 1-2i ,则|z |+1z =() A .iB .1-i C .1+i D .-i 解析:选B.由已知得z =2+i 1-2i =-2i 2+i 1-2i =i (1-2i )1-2i=i ,|z |+1z =|i|+1i =1-i ,选B. 2.设a ·b =4,若a 在b 方向上的投影为2,且b 在a 方向上的投影为1,则a与b 的夹角等于() A.π6 B.π3C.2π3D.π3或2π3解析:选B.由题意知|a |=4,|b |=2,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=44×2=12,∴θ=π3. 3.(2012·高考四川卷)设a 、b 都是非零向量,下列四个条件中,使a |a |=b |b |成立的充分条件是() A .a =-b B .a ∥bC .a =2bD .a ∥b 且|a |=|b | 解析:选C.a |a |表示与a 同向的单位向量,b |b |表示与b 同向的单位向量,只要a 与b 同向,就有a |a |=b |b |,观察选择项易知C 满足题意.4.(2012·高考大纲全国卷)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a ·b =0,|a |=1,|b |=2,则AD →=()A.13a -13b B.23a -23b C.35a -35b D.45a -45b 解析:选D.如图,∵a ·b =0,∴a ⊥b ,∴∠ACB =90°,∴A B =AC 2+BC 2= 5. 又CD ⊥AB ,∴AC 2=AD ·AB ,∴AD =455. ∴AD →=45AB →=45(a -b )=45a -45b . 5.(2012·福州市质检)如图,已知点O 是边长为1的等边三角形ABC 的中心,则(OA →+OB →)·)·((OA →+OC →)等于( ) A.19 B .-19C.16 D .-16解析:选D.∵点O 是边长为1的等边三角形ABC 的中心,∴|OA →|=|OB →|=|OC →|=33, ∠AOB =∠BOC =∠AOC =2π3, ∴(OA →+OB →)·)·((OA →+OC →)=OA →2+OA →·OC →+OA →·OB →+OB →·OC →=(33)2+3×(33)2cos 2π3=-16. 6.(2012·高考湖北卷)若3+b i 1-i=a +b i(a ,b 为实数,i 为虚数单位),则a +b =________. 解析:3+b i 1-i =(3+b i )(1+i )(1-i )(1+i )=3+3i +b i -b 2=a +b i ,∴îïíïïì 3-b 2=a , ①3+b 2=b , ② ①+②得a +b =3. 答案:3 7.(2012·高考安徽卷)设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a |=________. 解析:a +c =(1,2m )+(2, m )=(3,3m ).∵(a +c )⊥b ,∴(a +c )·b =(3,3m )·)·((m +1,1)=6m +3=0, ∴m =-12. ∴a =(1,-1),∴|a |= 2. 答案:2 8.(2012·高考安徽卷)若平面向量a ,b 满足|2a -b |≤3,则a ·b 的最小值是________. 解析:由|2a -b |≤3可知,4a 2+b 2-4a ·b ≤9,所以4a 2+b 2≤9+4a ·b ,而4a 2+b 2=|2a |2+|b |2≥2|2a |·|·||b |≥-4a ·b ,所以a ·b ≥-98,当且仅当2|a |=|b |,〈a ,b 〉=π时取“=”号.时取“=”号.答案:-989.已知向量AB →=(3,1),AC →=(-1,a ),a ∈R. (1)若D 为BC 中点,AD →=(m,2),求a 、m 的值;的值;(2)若△ABC 是直角三角形,求a 的值.的值.解:(1)因为AB→=(3,1),AC →=(-1,a ), 所以AD →=12()AB →+AC →=èçæø÷ö1,1+a 2. 又AD →=(m,2),所以îíì m =1,1+a =2×2,解得îíìa =3,m =1. (2)因为△ABC 是直角三角形,所以A =90°或B =90°或C =90°90°. . 当A =90°时,由AB →⊥AC →, 得3×(-1)+1·a =0,所以a =3;当B =90°时,因为BC →=AC →-AB →=(-4,a -1),所以由AB →⊥BC →,得3×(-4)+1·1·((a -1)=0,所以a =13; 当C =90°时,由BC→⊥AC →,得-1×(-4)+a ·(a -1)=0,即a 2-a +4=0,因为a ∈R ,所以无解.,所以无解.综上所述,a =3或a =13. 10.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值;的值;(2)若|a |=|b |,0<θ<π,求θ的值.[来源:]解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ,即4sin θ=cos θ,故tan θ=14. (2)由|a |=|b |知,知, s in 2θ+(cos θ-2sin θ)2=12+22, 所以1-2sin2θ+4sin 2θ=5. 从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,所以sin èçæø÷ö2θ+π4=-22. 又由0<θ<π知,π4<2θ+π4<9π4, 所以2θ+π4=5π4或2θ+π4=7π4. 故θ=π2或θ=3π4. 11.已知向量m =(3sin x 4,1),n =(cos x 4,cos 2x 4).(1)若m ·n =1,求cos(2π3-x )的值;的值;(2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a-c )cos B =b cos C ,求函数f (A )的取值范围.的取值范围.解:(1)m ·n =3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin(x 2+π6)+12. 又∵m ·n =1,[来源:ZXX K] ∴sin(x 2+π6)=12, cos(x +π3)=1-2sin 2(x 2+π6)=12,cos(2π3-x )=-cos(x +π3)=-12. (2)∵(2a -c )cos B =b cosC , 由正弦定理得,(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴si n(B +C )=sin A ,且sin A ≠0. ∴cos B =12,B =π3. ∴0<A <2π3.∴π6<A 2+π6<π2, 12<sin(A 2+π6)<1. 又∵f (x )=m ·n =sin(x 2+π6)+12, ∴f (A )=sin (A 2+π6)+12. 故函数f (A )的取值范围是(1,32).。

高考数学《复数》专项练习(含答案)

高考数学《复数》专项练习(含答案)

【复数】专项练习参考答案1.〔2021全国Ⅰ卷,文2,5分〕设(12i)(i)a ++的实部与虚部相等,其中a 为实数,那么a =( )〔A 〕−3 〔B 〕−2 〔C 〕2 〔D 〕3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由,得a a 212+=-,解得3-=a ,选A .2.〔2021全国Ⅰ卷,理2,5分〕设(1i)1i x y +=+,其中x ,y 是实数,那么i =x y +( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |x x y x y x x y +==+=所以故应选B .3.〔2021全国Ⅱ卷,文2,5分〕设复数z 满足i 3i z +=-,那么z =( ) 〔A 〕12i -+ 〔B 〕12i - 〔C 〕32i + 〔D 〕32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,应选C .4.〔2021全国Ⅱ卷,理1,5分〕(3)(1)i z m m =++-在复平面内对应的点在第四象限,那么实数m 的取值范围是( )〔A 〕(31)-, 〔B 〕(13)-, 〔C 〕(1,)∞+ 〔D 〕(3)∞--,5.〔2021全国Ⅲ卷,文2,5分〕假设43i z =+,那么||zz =( ) 〔A 〕1 〔B 〕1- 〔C 〕43i 55+ 〔D 〕43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.那么43i ||55z z ==-,应选D .6.〔2021全国Ⅲ卷,理2,5分〕假设z =1+2i ,那么4i1zz =-( ) (A)1 (B)−1 (C)i (D)−i 【答案】C【解析】∵z =1+2i ,∴z =1-2i ,那么4i 4ii (12i)(12i)11zz ==+---,应选C . 7.〔2021全国Ⅰ卷,文3,5分〕复数z 满足(z -1)i =1+i ,那么z =( )A .-2-iB .-2+iC .2-iD .2+i【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z =1+2i i=(1+2i)i i 2=2-i .应选C .【解析二】(z -1)i =1+i ⇒ z -1=1+i i⇒ z =1+i i+1 ⇒z =(1+i)i i 2+1=2-i .应选C .8.〔2021全国Ⅰ卷,理1,5分〕设复数z 满足1+z1z-=i ,那么|z|=( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】A 【解析一】1+z1z-=i ⇒ 1+z =i(1-z) ⇒ 1+z =i -zi ⇒ z +zi =-1+i ⇒ (1+i)z =-1+i ⇒9.〔2021全国Ⅱ卷,文2,5分〕假设a 为实数,且2+ai 1+i=3+i ,那么a =( )A .-4B .-3C .3D .4 【答案】D【解析】由得2+ai =(1+i)(3+i)=2+4i ,所以a =4,应选D .10.〔2021全国Ⅱ卷,理2,5分〕假设a 为实数,且(2+ai)(a -2i)=-4i ,那么a =( )A .-1B .0C .1D .2 【答案】B【解析】(2+ai)(a -2i)=-4i ⇒ 2a -4i +a 2i +2a =-4i ⇒ 2a -4i +a 2i +2a +4i =0⇒ 4a +a 2i =0 ⇒ a =0.11.〔2021全国Ⅰ卷,文3,5分〕设z =11+i+i ,那么|z|=( )A .12 B .√22 C .√32 D .2 【答案】B 【解析】z =11+i+i =1-i 2+i =12+12i ,因此|z|=√(12)2+(12)2=√12=√22,应选B .12.(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i)(1-i )2·=(1+i 2+2i)(1+i)1+i 2-2i==2i(1+i)-2i=-(1+i)=-1-i ,应选D .13.〔2021全国Ⅱ卷,文2,5分〕1+3i 1-i=( )A .1+2iB .-1+2iC .1-2iD .-1-2i【答案】B 【解析】1+3i 1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i 2=-1+2i ,应选B .14.〔2021全国Ⅱ卷,理2,5分〕设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,那么z 1z 2=( )A .-5B .5C .-4+iD .-4-i【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,应选A .15.〔2021全国Ⅰ卷,文2,5分〕1+2i (1-i )2=( )A .-1-12i B .-1+12i C .1+12i D .1-12i 【答案】B 【解析】1+2i(1-i )2=1+2i -2i=(1+2i )i (-2i )i=-2+i 2=-1+12i ,应选B .16.〔2021全国Ⅰ卷,理2,5分〕假设复数z 满足(3-4i)z =|4+3i|,那么z 的虚部为( )A .-4B .-45 C .4 D .45 【答案】D【解析】∵|4+3i|=√42+32=5,∴(3-4i)z =5,∴z=53-4i=5(3+4i )25=35+45i ,虚部为45,应选D .17.〔2021全国Ⅱ卷,文2,5分〕|21+i|=( )A .2√2B .2C .√2D .1【答案】C 【解析】|21+i|=|2(1-i )2|=|1-i|=22)1(1-+=√2.选C .18〔2021全国Ⅱ卷,理2,5分〕设复数z 满足(1-i)z =2i ,那么z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =2i1-i=2i ·(1+i )(1−i )(1+i)=2i +2i 22=2i−22=-1+i ,应选A .19.〔2021全国卷,文2,5分〕复数z =-3+i 2+i的共轭复数是( ) A .2+i B .2-I C .-1+iD .-1-i【答案】D【解析】z =-3+i 2+i=(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,∴z =-1-i ,应选D .20.〔2021全国卷,文2,5分〕复数5i1-2i=( )A .2-iB .1-2iC .-2+iD .-1+2i【答案】C 【解析】5i 1-2i=5i (1+2i )(1-2i )(1+2i )=5(i -2)5=-2+i ,应选C .21.〔2021北京,文2,5分〕复数( ) 〔A 〕i 〔B 〕1+i 〔C 〕 〔D 〕【答案】A 【解析】,应选A .22.〔2021北京,理9,5分〕设,假设复数在复平面内对应的点位于实轴上,那么_____________. 【答案】-1【解析】(1+i)(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a)=0,解得a =-1. 23.〔2021江苏,文/理2,5分〕复数其中i 为虚数单位,那么z 的实部是____.【答案】524.〔2021山东,文2,5分〕假设复数21iz =-,其中i 为虚数单位,那么z =( ) 〔A 〕1+i〔B 〕1−i〔C 〕−1+i 〔D 〕−1−i【答案】B25.〔2021山东,理1,5分〕假设复数z 满足232i,z z +=- 其中i 为虚数单位,那么z =( )〔A 〕1+2i 〔B 〕1-2i 〔C 〕12i -+ 〔D 〕12i --【答案】B26.〔2021上海,文/理2,5分〕设32iiz +=,其中i 为虚数单位,那么z 的虚部等于_______. 【答案】-312i=2i+-i -1i -12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+a ∈R (1i)(i)a ++a =(12i)(3i),z =+-【解析】32i 23i,iz +==-故z 的虚部等于−3.27.〔2021四川,文1,5分〕设i 为虚数单位,那么复数(1+i)2=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C【解析】22(1i)12i i 2i +=++=,应选C .28.〔2021天津,文9,5分〕i 是虚数单位,复数z 满足(1i)2z +=,那么z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.〔2021天津,理9,5分〕,a b ∈R ,i 是虚数单位,假设(1+i)(1-b i)=a ,那么ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。

高考数学 真题分类汇编:专题(15)复数(理科)及答案

高考数学 真题分类汇编:专题(15)复数(理科)及答案

专题十五 复数1.【20xx 高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【20xx 高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【20xx 高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【20xx 高考新课标1,理1】设复数z 满足11z z+-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【20xx 高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【20xx 高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【20xx 高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.8.【20xx 高考安徽,理1】设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.【20xx 高考重庆,理11】设复数a +bi (a ,b ∈R ),则(a +bi )(a -bi )=________.【答案】3【解析】由a +得=,即223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【20xx 高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【20xx 江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【20xx 高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【20xx 高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i a b z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【20xx 高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。

高考复数专题及答案百度文库

高考复数专题及答案百度文库

一、复数选择题1.已知复数2z i =-,若i 为虚数单位,则1iz+=( ) A .3155i + B .1355i + C .113i +D .13i + 2.若20212zi i =+,则z =( )A .12i -+B .12i --C .12i -D .12i +3.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5B C .D .5i4.已知i 是虚数单位,则复数41ii+在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.已知复数5i5i 2iz =+-,则z =( )A B .C .D .6.已知i 为虚数单位,复数12i1iz +=-,则复数z 在复平面上的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 7.若复数1z i =-,则1zz=-( )A B .2C .D .48.若复数z 满足()322iz i i -+=+,则复数z 的虚部为( ) A .35B .35i -C .35D .35i9.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④zz,其结果一定是实数的是( ) A .①②B .②④C .②③D .①③10.若复数()41i 34iz +=+,则z =( )A .45B .35C .25D .511.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2C .10D12.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( ) A .22z +=B .22z i +=C .24z +=D .24z i +=13.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( ) A .6π B .3πC .23π D .43π 14.已知i 是虚数单位,设11iz i,则复数2z +对应的点位于复平面( ) A .第一象限B .第二象限C .第三象限D .第四象限15.题目文件丢失!二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.已知复数z 满足220z z +=,则z 可能为( ) A .0B .2-C .2iD .2i -18.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 19.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点20.下面是关于复数21iz =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 21.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限22.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =23.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限24.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z =- B .若复数2z =,则m C .若复数z 为纯虚数,则1m =± D .若0m =,则2420z z ++= 26.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =28.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于129.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】利用复数的除法法则可化简,即可得解. 【详解】 ,. 故选:B. 解析:B 【分析】利用复数的除法法则可化简1iz+,即可得解. 【详解】2z i =-,()()()()12111313222555i i i i i i z i i i +++++∴====+--+. 故选:B.2.C 【分析】根据复数单位的幂的周期性和复数除法的运算法则进行求解即可. 【详解】由已知可得,所以. 故选:C解析:C 【分析】根据复数单位i 的幂的周期性和复数除法的运算法则进行求解即可. 【详解】 由已知可得202150541222(2)21121i i i i i i z i i i i i i ⨯+++++⋅-======-⋅-,所以12z i =-. 故选:C3.B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】 ,所以, 故选:B解析:B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】(2)21z i i i =+=-,所以|z |=故选:B4.A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】,所以复数对应的坐标为在第一象限, 故选:A解析:A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A 5.B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】 由题,得,所以. 故选:B.解析:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.6.C 【分析】利用复数的除法法则化简,再求的共轭复数,即可得出结果. 【详解】 因为, 所以,所以复数在复平面上的对应点位于第三象限, 故选:C.解析:C 【分析】利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果. 【详解】 因为212(12)(1)11i i i z i i +++==-- 1322i =-+,所以1322z i =--, 所以复数z 在复平面上的对应点13(,)22--位于第三象限, 故选:C.7.A 【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】 由,得, 则, 故选:A.解析:A 【分析】 将1z i =-代入1zz-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由1z i =-,得2111z i i ii z i i---===---,则11zi z=--==-,故选:A.8.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】由题意,得, 其虚部为, 故选:A.解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z ii i i i ----====-++-+, 其虚部为35, 故选:A.9.D 【分析】设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.解析:D 【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.10.A 【分析】首先化简复数,再计算求模. 【详解】 , .解析:A 【分析】首先化简复数z ,再计算求模. 【详解】()()()2242112434343434i i i z i i i i⎡⎤++⎣⎦====-++++ ()()()()43443412163434252525i i i i i --=-=-=-++-,45z ∴==.故选:A11.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.12.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B利用复数模的计算公式即可判断出结论. 【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B13.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为, 故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cos sin )332Z i O OZ ππ=+=2111()2222z z i --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.【分析】由复数的除法求出,然后得出,由复数的几何意义得结果. 【详解】 由已知,,对应点为,在第一象限, 故选:A.解析:A 【分析】由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果. 【详解】 由已知(1)(1)(1)(1)i i z i i i --==-+-,222z i i +=-+=+,对应点为(2,1),在第一象限,故选:A.15.无二、多选题 16.BC 【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC 【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z,利用复数的概念可判断D 选项的正误. 【详解】 对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.19.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.20.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A错误;,B正确;z的共轭复数为,C错误;z的虚部为,D正确.故选:BD.【点解析:BD【分析】把21iz=-+分子分母同时乘以1i--,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:22(1)11(1)(1)iz ii i i--===---+-+--,||z∴=A错误;22iz=,B正确;z的共轭复数为1i-+,C错误;z的虚部为1-,D正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.21.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.22.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.23.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确;2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222222ωωω⎛⎫⎛⎫⎛⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;221111222212ω---====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.24.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 25.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m=时,1z =-,则1z =-,故A 错误;对于B ,若复数2z=,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z 为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.【点睛】本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确;对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 29.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误.故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

2023届高考复习数学专项(复数及推理与证明)好题练习(附答案)

2023届高考复习数学专项(复数及推理与证明)好题练习(附答案)

2023届高考复习数学专项(复数及推理与证明)好题练习1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()A.二的实部是2B.=的虚部是2iC.乞=1-2i2.已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD.z在复平而上对应点在第四象限3.下面四个命题中的真命题为()1A.若复数z满足-ER,则zERB.若复数z满足/ER,则zERC.若复数Z1,Z2满足z亿2ER,则z1=D.若复数zE R,则豆ER Z2D.lzl=✓S4.已知复数二满足i2k+1z=2+i,-(kE z), 则z在复平面内对应的点可能位于()A.第一象限B.第二象限C.第三象限D.第四象限5.设z是复数,则下列命题中的真命题是()A.若z2�o.则z是实数B.若z2<o,则z是虚数C.若z是虚数,则z2�oo.若z是纯虚数,则z2<o6.已知Z1与Z-2是共枙虚数,以下四个命题一定正确的是()2 2A. Z l <i z2B. zi z2=z Z2C.z1+z2E Rz+l.7设复数z满足——=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为一-i2C.在复平而内,z对应的点位千第二象限D.z=-—ZtD .• —ERZ28.某大学进行自主招生测试,盂要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是( )A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 9.在0,0a b >>的条件下,下列四个结论正确的是( ) A .22a b aba b+≥+B .2a b +≤C .22a b a b b a+≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快参考答案1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()D.lzl=✓S A. 二的实部是2 B.=的虚部是2i C.乞=1-2i【参考答案】CD3 +i(3 +i)(l +i) 2 + 4i—= = = 1+2i,【答宋解析】z=l—1 2 2即二的实部是1,虚部是2'故A错误,B铅误,又亏=1—2i,121 =✓1三了-= Js'故C,D均正确故选CD2. 已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD. z在复平面上对应点在第四象限【参考答案】ABD【答案解析】:;=3-4i, 则仁l=F五二正=5.故A正确;�=3+4i, 故B正确;二的虚部为4,故C铅误;二在复平面上对应点的坐标为(3,-4), 在第四象限,故D正确.:.命题中正确的个数为3.故选ABD.3.下而四个命题中的真命题为()1A. 若复数z满足-E R,则zE RB.若复数z满足/E R,则zE RC. 若复数Z1,Z2满足z亿2R,则z=22D.若复数zE R,则�E R【参考答案】AD1【答案解析】若复数二满足-E R,则二E R,故命题A为真命题;复数z =i 满足z 2=﹣1∈R ,则z ∉R ,故命题B 为假命题; 若复数z 1=i ,z 2=2i 满足z 1z 2∈R ,但z 1≠,故命题C 为假命题;若复数z ∈R ,则=z ∈R ,故命题D 为真命题. 故选:AD .4.已知复数z 满足212k i z i +=+,()k z ∈,则z 在复平面内对应的点可能位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【参考答案】BD【答案解析】212k i z i +=+ ,212k iz i ++∴=15i i i === ,37i i i ===-当k 为奇数时 ()2122212k i ii i z i i i i i++++∴====-+--⨯ 在复平面上对应的点为()1,2-位于第二象限; 当k 为偶数时 ()2122212k i ii i z i i i i i++++∴====-⨯ 在复平面上对应的点为()1,2-位于第四象限;故复数z 在复平面内对应的点位于第二象限或第四象限. 故选BD5.设z 是复数,则下列命题中的真命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 【参考答案】ABD【答案解析】设z =a +bi ,a ,b ∈R ,z 2=a 2﹣b 2+2abi , 对于A ,z 2≥0,则b =0,所以z 是实数,真命题;对于B ,z 2<0,则a =0,且b ≠0,⇒z 是虚数;所以B 为真命题; 对于C ,z 是虚数,则b ≠0,所以z 2≥0是假命题.对于D ,z 是纯虚数,则a =0,b ≠0,所以z 2<0是真命题;故选ABD.6.已知z1与z2是共轭虚数,以下四个命题一定正确的是( )A.z12<|z2|2B.z1z2=|z1z2| C.z1+z2∈R D.∈R【参考答案】BC【答案解析】解:z1与z2是共轭虚数,设z1=a+bi,z2=a﹣bi(a,b∈R).z12<|z2|2;=a2﹣b2+2abi,复数不能比较大小,因此A不正确;z1z2=|z1z2|=a2+b2,B正确;z1+z2=2a∈R,C正确;===+i不一定是实数,因此D不一定正确.故选:BC.7.设复数z满足,则下列说法错误的是( )A.z为纯虚数B.z的虚部为C.在复平面内,z对应的点位于第二象限D.|z|=【参考答案】ABC【答案解析】∵z+1=zi,设z=a+bi,则(a+1)+bi=﹣b+ai,∴,解得.∴z=.∴|z|=,复数z的虚部为,8.某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是()A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 【参考答案】AC【答案解析】根据图示,可得甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前, 他的阅读表达成绩排名靠后.故选AC.9.在0,0a b >>的条件下,下列四个结论正确的是( )A .22a b aba b+≥+ B .2a b +≤C .22a b a b b a +≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 【参考答案】ABD 【答案解析】选项A:222()4()22022()2()220,0a b ab a b ab a b a b ab a b aba b a b a b a b a b a b++--++-==∴-≥∴≥+++>+>+ ,故本选项是正确的;选项B:因为0,0a b >>,22222222()()02244a b a b a b ab a b ++++--=-=≥,所以2a b +≤,因此本选项是正确的; 选项C:222233222()()()()()a b a b ab a b a b a b a b a b b a a b b a ab ab ab +---+-+-+-+===-,因为0,0a b >>,所以22222()()()0a b b a b a a b a b a b b a ab b a+-+-+=-≤⇒+≥+,因此本选项是不正确的;选项D:根据本选项特征,用反证法来解答.假设三个数111,,a b c b c a+++至少有一个不小于2不成立,则三个数111,,a b c b c a+++都小于2,所以这三个数的和小于6,而111111()(()6a b c a b cb c a a b c+++++=+++++≥++=(当且仅当1a b c===时取等号),显然与这三个数的和小于6矛盾,故假设不成立,即三个数111,,a b cb c a+++至少有一个不小于2,故本选项是正确的.故选:ABD10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是()A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快【参考答案】ABD【答案解析】对于选项A,从图可以看出同比涨跌幅均为正数,故A正确;对于选项B,从图可以看出环比涨跌幅有正数有负数,故B正确;对于选项C,从图可以看出同比涨幅最大的是2018年9月份和2018年10月份,故C错误;对于选项D,从图可以看出2019年3月全国居民消费价格环比变化最快,故D正确.故选ABD.。

高考数学复数典型例题附答案

高考数学复数典型例题附答案

1, 已知复数求k的值。

的值。

解:解:,∴由的表示形式得k=2 即所求k=2 点评:点评:(i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小,均为实数。

均为实数。

比较大小,更无正负之分,因此,(ii)虚数不能与0比较大小,更无正负之分,因此,对于任意复数z,且R;且R。

2, 若方程有实根,求实数m的值,并求出此实根。

的值,并求出此实根。

解:设为该方程的实根,将其代入方程得由两复数相等的定义得,消去m得,故得当时得,原方程的实根为;当时得,原方程的实根为。

点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。

充要条件求解。

3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。

的取值范围。

解:设,。

由得①对应点在第二象限,故有对应点在第二象限,故有②又由①得③由③得,即,∴,∴④于是由②,④得 ,即于是由②,④得再注意到a<0,故得即所求a的取值范围为点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。

此外,这里对于有选择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。

4, 求同时满足下列两个条件的所有复数:(1);的实部与虚部都是整数。

(2)z的实部与虚部都是整数。

,则解:设,则由题意,∴∴y=0或(Ⅰ)当y=0时,,,∴由 得①∴由注意到当x<0时,;当x>0时,,此时①式无解。

此时①式无解。

(Ⅱ)当时,由得∴又这里x,y均为整数均为整数∴x=1,或x=3,,∴或于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。

的值。

(2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。

特征。

解:解:(1)解法一:解法一:由于∴由解:由题意得1z的两个方程R∴=122ab2|=2∴4=4=1=41515i151zz z=02z,下同解法一这些都是解决复数问题的常用方法2的最小值|=11)i133=1时,上式取等号zz 2200220001452225x x x x x æö+++++ç÷èø455225+222z 224(4)4z a -+132(4)413a -+222AC ABz z w ()(03313333z z yi y x x - 33333x )33设直线上任意一点(),P x y 经过变换后得到的()3,3Q x y x y +-仍然在该直线上仍然在该直线上 ()()()33313x y k x y b k y k x b Þ-=++Þ-+=-+当0b ¹时,方程组()3113k k kì-+=ïíï-=î无解无解 当0b =时,()231333230313或k k k k k k-+-=Þ+-=Þ=-Þ存在这样的直线,其方程为333或y x y x ==-16, 判断下列命题是否正确 (1) (1)若若C z Î, , 则则02³z (2) (2)若若,,21C z z Î且021>-z z,则21z z > (3) (3)若若b a >,则i b i a +>+17, 满足条件512=++-z i z 的点的轨迹是(的点的轨迹是( ))A.A.椭圆椭圆椭圆B. B. B.直线直线直线C. C. C.线段线段线段D. D. D.圆圆 18,.211<<-+=w w 是实数,且是虚数,设z z z.的实部的取值范围的值及求z z 解析解析 是虚数z yix yi x z z +++=+=\1)(1w 可设 i yx y y y x x x y x yi x yix)()(222222+-+++=+-++=,0¹y 是实数,且w 1,0112222=+=+-\y x y x 即 ,1=\zx 2=w 此时22121<<-<<-x 得由w)1,21(,121-<<-\的实部的范围是即z x圆锥曲线圆锥曲线一、在椭圆中一般以选择题或填空题的形式考查考生对椭圆的两个定义、焦点坐标、准线方程等基础知识的掌握情况;以解答题的形式考查考生在求椭圆的方程、直线与椭圆的位置关系等涉及分析、探求的数学思想的掌握情况.数学思想的掌握情况.例1.从集合{1,2,3,,11,11}} 中任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||1111,,||9B x y x y =<<内的椭圆的个数是(内的椭圆的个数是( )A 、43B 43 B、、72C 72 C、、86D 、90解:解:根据题意,根据题意,m 是不大于10的正整数、n 是不大于8的正整数.的正整数.但是当但是当m n =时22221x y m n +=是圆而不是椭圆.先确定n ,n 有8种可能,对每一个确定的n ,m 有1019-=种可能.故满足条件的椭圆有8972´=个.本题答案选B .例2.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=______________.. 解:如图,根据椭圆的对称性知,117111122PF P F PF PF a +=+=, 同理其余两对的和也是2a ,又41P F a =,∴1234567735PF P F P F P F P F P F P F a ++++++== 例3.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;的最大值;(Ⅱ)当2AB =,1S =时,求直线AB 的方程.的方程. 解:(Ⅰ)设A 1()x b ,,B 2()x b ,,由2214x b +=,解得21221xb =±-,,所以1212S b x x =- 2222111b b b b =-£+-= .当且仅当22b =时,S 取到最大值1. (Ⅱ)由2214y kx bx y =+ìïí+=ïî,得2221()2104k x kbx b +++-=,2241k b D =-+① 2121AB k x x =+- 2222411214k b k k -+=+=+.②.②AyxOB例3图设O 到AB 的距离为d ,则21Sd AB ==,又因为21b d k=+, 所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0D >,故直线AB 的方程是的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.点评:本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.方法和综合解题能力.二、在双曲线中常以一道选择题或填空题的形式考查双曲线的两个定义、焦点坐标、准线方程以及渐近线方程等基础知识;解答题中往往综合性较强,在知识的交汇点出题,对双曲线的基础知识、解析几何的基本技能和基本方法进行考查.的基本技能和基本方法进行考查.例4.已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,右准线与一条渐近线交于点A ,OAFD 的面积为22a (O 为原点),则两条渐近线的夹角为(,则两条渐近线的夹角为( )A .30º.30ºB .45º.45ºC .60º.60ºD .90º.90º解:解:D D .双曲线222221(0,0)(,0),x y a a b F c x abc-=>>=的焦点右准线方程,x ab y =渐近线,则),(2c ab c a A ,所以2212a c ab c S OAF =´´=D ,求得a b =,所以双曲线为等轴双曲线,则两条渐进线夹角为90°,故选D .点评:本题考查双曲线中焦距,本题考查双曲线中焦距,准线方程,准线方程,准线方程,渐近线方程,渐近线方程,渐近线方程,三角形面积,三角形面积,三角形面积,渐近线夹角等知识的综合运用.渐近线夹角等知识的综合运用.例5. P 是双曲线221916x y -=的右支上一点,M、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为(的最大值为( ))A. 6B.7C.8D.9解:设双曲线的两个焦点分别是1(5,0)F -与2(5,0)F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时三点共线时所求的值最大,此时12(2)(1)1019PM PN PF PF -=---=-=,故选B .例例6.已知双曲线222x y -=的左、的左、右焦点分别为右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.点.(Ⅰ)若动点M 满足1111F M F A F B FO=++(其中O 为坐标原点),求点M 的轨迹方程;的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA ·CB为常数?若存在,求出点C 的坐标;若不存在,请说明理由.明理由.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.(Ⅰ)设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++得121226x x x y y y +=++ìí=+î,即12124x x x y y y +=-ìí+=î,,于是AB 的中点坐标为422x y -æöç÷èø,. 当AB 不与x 轴垂直时,121224822yy y yxx x x-==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(Ⅱ)假设在x 轴上存在定点(0)C m ,,使CA CB为常数.为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-¹±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k mm m m k k -+-=+=-++--.因为CA CB是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-. 当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1CA CB =-=-,,.故在x 轴上存在定点(10)C ,,使CA CB 为常数.为常数.三、抛物线是历年高考的重点,在高考中除了考查抛物线的定义、标准方程、几何性质外,还常常与函数问题、应用问题结合起来进行考查,难度往往是中等.函数问题、应用问题结合起来进行考查,难度往往是中等.例例7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(的纵坐标是( )A .1716 B .1516 C .78D .0 解:由题意抛物线为:y x 412=,则焦点为1(0,)16F ,准线为:116y =-;由抛物线上的点00(,)M x y 到焦点的距离与到准线的距离相等,推得:16150=y,即M 点的纵坐标为1516,故选B .例8.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(0)l >.过A 、B 两点分别作抛物线的切线,设其交点为M.两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM AB为定值;为定值;(Ⅱ)设△ABM 的面积为S ,写出()S f l =的表达式,并求S 的最小值.的最小值.解:(Ⅰ)由已知条件,得(0,1)F ,0l >.设11(,)A x y ,22(,)B x y .由AF →=λFB →, 即得1122(,1)(,1)x y x y l --=-,îïíïì-x 1=λx 2 ①①1-y 1=λ(y 2-1) 1) ②② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得y 1=λ2y 2 ③③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-=-44λy 2=-=-44,抛物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A 、B 两点的切线方程分别是两点的切线方程分别是y =12x 1(x (x--x 1)+y 1,y =12x 2(x (x--x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为的坐标为((x 1+x 22,x 1x 24)=(x 1+x 22,-,-1)1)1)..所以FM →·AB →=(x 1+x 22,-,-2)2)2)··(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0所以FM →·AB →为定值,其值为0.(Ⅱ)由(Ⅰ)知在△(Ⅱ)由(Ⅰ)知在△ABM ABM 中,中,FM FM FM⊥⊥AB AB,因而,因而S =12|AB||FM||AB||FM|..|FM||FM|==(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)4)++4=λ+1λ+2=λ+1λ.++λ+λ)=|AB||FM||AB||FM|=(λ+λ)λ+1λ≥2m ÷ø,m+=m +=2my -,2my -,211-+122y y +-24m - Oyx1 1- l FP B QMFO Axyyy P BOA 1d 2d2q解:(Ⅰ)在P AB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.方程为:2211x y l l -=-.(Ⅱ)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即21115110112l l ll l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l l ì-=ï-íï=-î得:2222(1)2(1)(1)()k x k x k l l l l l éù--+---+=ëû,由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--.于是:22212122(1)(1)(1)k y y k x x k l l l =--=--. 因为0OM ON = ,且M N ,在双曲线右支上,所以在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l l l -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -£<.。

高考数学压轴专题最新备战高考《复数》全集汇编附答案

高考数学压轴专题最新备战高考《复数》全集汇编附答案

【高中数学】数学《复数》复习知识点一、选择题1.设3i z i+=,i 是虚数单位,则z 的虚部为( ) A .1B .-1C .3D .-3 【答案】D【解析】因为z=3i i+13i =-∴z 的虚部为-3,选D.2.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【答案】A【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】 Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题3.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( )A B C .3 D .5【答案】B【解析】(2)2z i i i i =-=-==B .4.若43i z =+,则z z=( ) A .1B .1-C .4355i +D .4355i - 【答案】D【解析】【详解】由题意可得 :5z ==,且:43z i =-, 据此有:4343555z i i z -==-. 本题选择D 选项.5.已知z 是复数,则“2z 为纯虚数”是“z 的实部和虚部相等”的( )A .充分必要条件B .充分不必要条C .必要不充分条件D .既不充分也不必要条件 【答案】D【解析】【分析】设z a bi =+,2z 为纯虚数得到0a b =±≠,得到答案.【详解】设z a bi =+,,a b ∈R ,则()2222z a b abi =-+,2z 为纯虚数220020a b a b ab ⎧-=⇔⇔=±≠⎨≠⎩,z 的实部和虚部相等a b ⇔=. 故选:D.【点睛】本题考查了既不充分也不必要条件,意在考查学生的推断能力.6.若复数z 的虚部小于0,|z |=4z z +=,则iz =( )A .13i +B .2i +C .12i +D .12i -【答案】C【解析】【分析】 根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解.【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±.又z 的虚部小于0,所以2z i =-,12iz i =+.故选:C【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.7.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数【答案】C【解析】【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】 ()2222110t t t ++=++>Q ,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z Q 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.8.已知2a i b i i +=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1B .1C .2D .3【答案】B【解析】【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果.【详解】 因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.9.已知复数z 满足21zi z i +=-,则z =A .12i +B .12i -C .1i +D .1i -【答案】C【解析】【分析】设出复数z ,根据复数相等求得结果.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故()()()()22221zi z a bi i a bi b a a b i i +=++-=-++-=-, 故2121b a a b -+=⎧⎨-=-⎩,解得11a b =⎧⎨=⎩. 所以1z i =+.故选:C .【点睛】本题考查复数的运算,共轭复数的求解,属综合基础题.10.在复平面内,复数21i z i =+ (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】分析:首先求得复数z ,然后求解其共轭复数即可. 详解:由复数的运算法则有:()()()()2121211112i i i i i z i i i i --====+++-, 则1z i =-,其对应的点()1,1-位于第四象限.本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.11.设复数z 满足()13i z i +=+,则z =( )AB .2C .D 【答案】D【解析】分析:先根据复数除法得z ,再根据复数的模求结果.详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+, 因此5,z =选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭为.-a bi12.在复平面内,复数121i z i -=+对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】 试题分析:1213122i i i -=--+在复平面内所对应的点坐标为,位于第三象限,故选C .考点:复数的代数运算及几何意义.13.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1B .-1C .12D .12- 【答案】A【解析】【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】 ()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.14.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是( )A .1BC .2 D【答案】A【解析】 分析:先根据已知336z i z i ++-=找到复数z 对应的点Z 的轨迹,再利用数形结合求 1z i ++的最小值.详解:设复数z 对应的点Z(x,y),6=,它表示点Z 到A (0,-3)和B (0,3)的距离和为6,所以点Z 的轨迹为线段AB, 因为1z i ++Z 到点C (-1,-1)的距离,所以当点Z 在点D(0,-1)时,它和点C (-1,-1)的距离最小,且这个最小距离为1. 故答案为:A点睛:(1)本题主要考查复数的几何意义,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)z a bi ++表示复数z 对应的点到(-a,-b )的距离,类似这样的结论还有一些,大家要结合直角坐标理解它的几何意义,并做到能利用它解题.15.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,4ii e e ππ表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】 根据欧拉公式计算4i i e e ππ,再根据复数几何意义确定象限.【详解】因为444iie cos isincos isineππππππ+===+,所以对应点22-(,,在第二象限,选B.【点睛】本题考查复数除法以及复数几何意义,考查基本分析求解能力,属基本题.16.已知i为虚数单位,,a b∈R,复数12ii a bii+-=+-,则a bi-=()A.1255i-B.1255i+C.2155i-D.21i55+【答案】B【解析】【分析】由复数的除法运算,可得(1)(2)12(2)(2)55i ii ii ia b i=+++-=--+,即可求解a b i-,得到答案.【详解】由题意,复数12ii a bii+-=+-,得(1)(2)1312(2)(2)555i ia b i=ii i ii i++++-=-=--+,所以1255a b i=i-+,故选B.【点睛】本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.17.设i是虚数单位,则2320192342020i i i i+++⋅⋅⋅+的值为()A.10101010i--B.10111010i--C.10111012i--D.10111010i-【答案】B【解析】【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i=+++⋅⋅⋅+,可得:24201920320023*********iS i i i i i=++++⋅⋅⋅++,则24201923020(1)22020i S i i i i i i-=++++⋅⋅⋅+-,2019242019202023020(1)(1)202020201i ii S i i i i i i i i ii--=+++++⋅⋅⋅+-+-=-,可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.18.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i --B .1i +C .312i -D .312i + 【答案】D【解析】 21z z +=-323122i i i -=+- ,选D.19.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.20.若复数z 满足()12z i i +=(i 为虚数单位),则z =( )A .1B .2CD .【答案】C【解析】试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1z i =+= 考点:复数的模。

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。

2023届高考二轮总复习试题(适用于老高考旧教材) 数学(理)复数、平面向量(含解析)

2023届高考二轮总复习试题(适用于老高考旧教材) 数学(理)复数、平面向量(含解析)

2.复数、平面向量考向1 复数的概念、运算及几何意义1.(2022·河南开封一模)设(1+i 4n+3)z=i,n ∈Z ,则在复平面内,复数z 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(2022·全国甲·理1)若z=-1+√3i,则zz -1=( )A.-1+√3iB.-1-√3iC.-13+√33iD.-13−√33i3.(2022·全国乙·理2)已知z=1-2i,且z+a z +b=0,其中a ,b 为实数,则( ) A.a=1,b=-2 B.a=-1,b=2 C.a=1,b=2 D.a=-1,b=-24.(2022·山东潍坊一模)已知复数z 满足z+3=4z +5i,则在复平面内复数z 对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限 5.(2022·新高考Ⅰ·2)若i(1-z )=1,则z+z =( ) A.-2B.-1C.1D.2考向2 平面向量的概念及线性运算6. (2022·河南名校联盟一模)如图,在△ABC 中,点M 是AB 上的点且满足AM ⃗⃗⃗⃗⃗⃗ =3MB ⃗⃗⃗⃗⃗⃗ ,P 是CM 上的点,且MP ⃗⃗⃗⃗⃗⃗ =15MC ⃗⃗⃗⃗⃗⃗ ,设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,则AP ⃗⃗⃗⃗⃗ =( )A.12a +14b B.35a +15b C.14a +12bD.310a +35b7.(2022·河南名校联盟一模)下列关于平面向量的说法正确的是( ) A.若AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线,则点A ,B ,C ,D 必在同一直线上 B.若a ∥b 且b ∥c ,则a ∥cC.若G 为△ABC 的外心,则GA ⃗⃗⃗⃗⃗ +GB⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0 D.若O 为△ABC 的垂心,则OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ 8.(2022·新高考Ⅰ·3)在△ABC 中,点D 在边AB 上,BD=2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ =( ) A.3m -2nB.-2m +3nC.3m +2nD.2m +3n9.(2022·河南许昌质检)正方形ABCD 中,P ,Q 分别是边BC ,CD 的中点,AP ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y BQ ⃗⃗⃗⃗⃗ ,则x=( ) A.1113B.65C.56D.3210.(2022·河南名校联盟一模)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,向量OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°,且|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=1,|OC ⃗⃗⃗⃗⃗ |=√2.若OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ∈R ,n ∈R ),则n-m= . 考向3 平面向量的数量积11.(2022·新高考Ⅱ·4)已知向量a =(3,4),b =(1,0),c =a +t b ,若<a ,c >=<b ,c >,则实数t=( ) A.-6 B.-5C.5D.612. (2022·新高考八省第二次T8联考)如图,在同一平面内沿平行四边形ABCD 两边AB ,AD 向外分别作正方形ABEF ,正方形ADMN ,其中AB=2,AD=1,∠BAD=π4,则AC ⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗=( )A.-2√2B.2√2C.0D.-1 13.(2022·山东威海期末)已知向量a ,b 满足|a |=|b |=2,且a -b 在a 上的投影为2+√3,则<a ,b >=( )A.π6 B.π3C.2π3D.5π614.(2022·山东潍坊期末)已知正方形ABCD 的边长为2,MN 是它的内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ 的取值范围是( ) A.[0,1]B.[0,√2]C.[1,2]D.[-1,1]15.(2022·山东济宁一模)等边三角形ABC 的外接圆的半径为2,点P 是该圆上的动点,则PA⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ 的最大值为( ) A.4 B.7C.8D.111 3,且|a|=1,|b|=3,则(2a+b)·b=.16.(2022·全国甲·理13)设向量a,b的夹角的余弦值为2.复数、平面向量1.B 解析: ∵i 4n+3=i 4n ·i 3=-i, ∴(1+i 4n+3)z=(1-i)z=i, ∴z=i1-i =i (1+i )(1-i )(1+i )=-12+12i,∴复数z 在复平面内对应的点为-12,12位于第二象限. 故选B . 2.C 解析: zz -1=√3i(-1+√3i )(-1-√3i )-1=√3i(-1)2+(√3)2-1=-13+√33i,故选C .3.A 解析: ∵z=1-2i, ∴z =1+2i,∴z+a z +b=1-2i +a (1+2i)+b=a+b+1+(2a-2)i =0, ∴{a +b +1=0,2a -2=0, 解得{a =1,b =-2.故选A .4.A 解析: 设z=x+y i,x ,y ∈R ,则z =x-y i,由z+3=4z +5i 得(x+y i)+3=4(x-y i)+5i,即(x+3)+y i =4x+(5-4y )i,于是得{x +3=4x ,y =5-4y ,解得x=y=1,则有z=1+i 对应的点为(1,1),所以在复平面内复数z 对应的点在第一象限. 故选A .5.D 解析: ∵i(1-z )=1, ∴z=i -1i=1+i, ∴z =1-i . ∴z+z =2. 故选D .6.B 解析: AP ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +MP ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +15MC ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +15(AC ⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ )=45AM ⃗⃗⃗⃗⃗⃗ +15AC ⃗⃗⃗⃗⃗ =45×34AB ⃗⃗⃗⃗⃗ +15AC ⃗⃗⃗⃗⃗ =35a +15b .7.D 解析: 若AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线,则直线AB 与CD 平行或重合,∴点A ,B ,C ,D 不一定在同一直线上,A 错;当b =0时,满足a ∥b 且b ∥c ,不能得出a ∥c ,B 错; 当G 为△ABC 的重心,则GA⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0,C 错; 若O 为△ABC 的垂心,则OB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,∴OB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0, 即OB ⃗⃗⃗⃗⃗ ·(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=0,∴OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ ,同理OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ ,∴D 正确,故选D . 8.B解析: 如图.∵BD=2DA ,∴AB ⃗⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ ,∴CB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +3AD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +3(CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ )=-2CA ⃗⃗⃗⃗⃗ +3CD ⃗⃗⃗⃗⃗ . 又CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,所以CB ⃗⃗⃗⃗⃗ =-2m +3n . 故选B .9.C 解析: ∵P ,Q 分别是正方形边BC ,CD 的中点,∴AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +A D ⃗⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ ,BQ ⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,∴AP ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y BQ ⃗⃗⃗⃗⃗ =x (AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )+y -12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =x-12y AB ⃗⃗⃗⃗⃗ +(x+y )AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ ,∴{x -12y =1,x +y =12,∴{x =56,y =-13,故选C . 10.12解析: 由题意在题图中以O 为原点,OA ⃗⃗⃗⃗⃗ 方向为x 轴非负半轴,过O 与OA 垂直向上为y 轴正方向建立平面直角坐标系(图略),则A (1,0),∵向量OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α, tan α=7,∴cos α=√210,sin α=7√210, 又|OC ⃗⃗⃗⃗⃗ |=√2,∴C15,75,cos(α+45°)=-35,sin(α+45°)=45,∴B -35,45, ∵OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ ,∴15,75=m (1,0)+n -35,45,∴{m -35n =15,45n =75,解得{m =54,n =74,∴n-m=12. 11.C 解析: 由题意得c =(3+t ,4),cos <a ,c >=cos <b ,c >,故9+3t+16|c |×5=3+t|c |×1,解得t=5.故选C .12.C 解析: AC ⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(FA ⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·FA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·FA ⃗⃗⃗⃗⃗ +A A ⃗⃗⃗⃗⃗⃗ ·AN ⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·AN ⃗⃗⃗⃗⃗⃗ =0+|AD ⃗⃗⃗⃗⃗ ||FA ⃗⃗⃗⃗⃗ |cos π4+|AB ⃗⃗⃗⃗⃗ ||AN⃗⃗⃗⃗⃗⃗ |cos 3π4+0=√2−√2=0.选C . 13.D 解析: (a -b )·a =|a -b ||a |cos <a -b ,a >=(2+√3)·2, 即a 2-a ·b =4+2√3,a ·b =-2√3.所以|a ||b |cos <a ,b >=-2√3,cos <a ,b >=-√32,<a ,b >=5π6.14.A 解析: 由题当弦MN 长度最大时,即MN 为直径,设弦MN 的中点为O ,由题意,PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ =(PO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(PO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ )=PO ⃗⃗⃗⃗⃗ 2−14MN ⃗⃗⃗⃗⃗⃗⃗ 2=PO ⃗⃗⃗⃗⃗ 2-1=|PO ⃗⃗⃗⃗⃗ 2|-1,由1≤|PO ⃗⃗⃗⃗⃗ |≤√2,得PM ⃗⃗⃗⃗⃗⃗ ·PN⃗⃗⃗⃗⃗⃗ 的取值范围是[0,1]. 15.C解析: 如图所示,建立平面直角坐标系,设△ABC 的边长为a ,则asinA =2R=4(R 为△ABC 外接圆半径),所以a=2√3,A (0,3),B (-√3,0),C (√3,0),△ABC 的外接圆的方程为x 2+(y-1)2=4,设P 点坐标为(2cos θ,1+2sin θ),θ∈R ,PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ (PA ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=4+2√3cos θ+2sin θ=4+4cos θ-π6≤8,当cos θ-π6=1时,等号成立.故选C .。

高中数学复数专题 (含答案)

高中数学复数专题 (含答案)

高考复数专题(1)姓名:1、若a 为实数且(2)(2)4ai a i i +-=-,则a = 02、设i 是虚数单位,则复数32i i-= i.3、若复数()32z i i =- ( i 是虚数单位 ),则z = 23i -4、设复数z 满足11zz+-=i ,则|z|= 15、若复数R ∈i1ai1+-,则实数a = -16、复数()i 2i -= 12i +7、 i 为虚数单位,607i 的共轭复数....为 i8、若复数z 满足1zi i =-,其中i 为虚数为单位,则z = 1i -9.设复数a +bi (a ,b ∈R,则(a +bi )(a -bi )=______3__.高考复数专题(1)作业 姓名:10.i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 2- .11.设复数z 满足234z i =+(i 是虚数单位),则z 的模为12.已知()211i i z-=+(i 为虚数单位),则复数z = 1i --13.若复数z 满足31z z i +=+,其中i 为虚数单位,则z12i + . 14、复数3+2i2-3i= i15、在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是 2+4i16、若复数(m 2-3m -4)+(m 2-5m -6)i 表示的点在虚轴上,则实数m 的值是 -1和417已知复数z =11+i,则z -·i 在复平面内对应的点位于第 二象限18、设i 是虚数单位,则复数21ii-在复平面内所对应的点位于第 二象限高考复数专题(2)姓名:1、复数z 1=3+i ,z 2=1-i ,则z =z 1·z 2在复平面内对应的点位于第 四 象限2、已知复数a =3+2i ,b =4+xi (其中i 为虚数单位),若复数a b ∈R ,则实数x 的值为 83 3、设z =1-i (i 是虚数单位),则z 2+2z = 1-i4、在复平面内,复数21-i对应的点到直线y =x +1的距离是 225、设复数z 满足关系式z +|z -|=2+i ,则z 等于 34+i6 、若复数z =a +i 1-2i(a ∈R ,i 是虚数单位)是纯虚数,则|a +2i |等于 227、若复数z 1=a -i ,z 2=1+i (i 为虚数单位),且z 1·z 2为纯虚数,则实数a 的值为 ________-18、若a 是复数z 1=1+i 2-i的实部,b 是复数z 2=(1-i )3的虚部,则ab 等于________.-25 9、如果复数2-bi1+2i(i 是虚数单位)的实数与虚部互为相反数,那么实数b 等于________. -23高考复数专题(2)作业 姓名:10、已知a R ∈,若(1)(32)ai i -+为纯虚数,则a 的值为 32-11、复数(3i -1)i 的共轭复数....是 -3+i12、已知复数z 满足()()12z i i i -⋅+=-,则z z ⋅=213、已知复数z 满足()1i 2i z -=+,则z 的共轭复数在复平面内对应的点在. 第 四 象限14、设复数z 满足关系i i z 431+-=⋅,那么z =__34i +_______,|z|=___54_______.15、设i 是虚数单位,复数=++iii 123 116、若i x x x )23()1(22+++- 是纯虚数,则实数x 的值是 117、已知复数11z i i=+-,则复数z 的模|z |=218、复数201511i i +⎛⎫⎪-⎝⎭= -i高考复数专题(3)姓名:1、复数21ii-等于 -1+i 2、复数i215+的共轭复数为 1+2i3、已知i 是虚数单位,则复数3(12)z i i =⋅-+的虚部为4、设复数i z 431-=,i z 322+-=,则复数12z z -在复平面内对应的点位于第 二 象限5、若i 是虚数单位,则复数21i z i-=+的实部与虚部之积为 34-6、纯虚数z 满足23z -=,则z 为7、设m ∈R ,222(1)m m m i +-+-是纯虚数,其中i 是虚数单位,则m = 一28、复平面内,复数2)31(i +对应的点位于第 二 象限9、已知复数13i z =+,21i z =-,则复数12zz 在复平面内对应的点位于第 一 象限高考复数专题(3)作业 姓名:10、复数12z a i =+,22z i =-+,如果12||||z z <,则实数a 的取值范围是 11<<-a11、已知ni m i n m ni im+-=+则是虚数单位是实数其中,,,,11的虚部为 112、若)54(cos 53sin -+-=θθi z 是纯虚数,则θtan 的值为 43-13、设a 是实数,且211ii a +++是实数,则=a 114、200811i i +⎛⎫ ⎪-⎝⎭= 115、若复数iia 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 -616、已知复数z = (1 – i )(2 – i ),则| z |的值是 . 1017、复数z 满足i i i z +=-2)(,则 z =i -118、复数z =-3+i2+i 的共轭复数是 -1-i高考复数专题(4)姓名:1、复数11i =+ 1122i -2、若复数i z +=1 (i 为虚数单位) z -是z 的共轭复数 , 则2z +z -²的虚部为 03、复数z = i (i+1)(i 为虚数单位)的共轭复数是 -1-i4、若i bi -+13= a+b i (a ,b 为实数,i 为虚数单位),则a+b =____________.35、设i 为虚数单位,则复数34ii+= 43i -6、复数(2+i )2等于 3+4i7、在复平面内,复数103ii+对应的点的坐标为 (1 ,3)8、i 是虚数单位,复数ii-+435= 1+i9、设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 8 .高考复数专题(4)作业 姓名:10、计算:31ii-=+ i 21-(i 为虚数单位)11、设1z i =+(i 是虚数单位),则22z z+= 1i +12、在复平面内,复数(12)z i i =+对应的点位于第 二象限13、复数31ii--等于 2i +14、复数8+15i 的模等于 1715、已知1iZ+=2+i,则复数z= 1-3i16、i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则乘积ab 的值是 -317、i 是虚数单位,i(1+i)等于 -1+i18、若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为 1-高考复数专题(5)姓名:1、i 是虚数单位,52i i-= -1+2i2、复数 32(1)i i += 23、设a ∈R ,且2()a i i +为正实数,则a = 1-4、已知复数z=1-i, 则12-z z等于 25、若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b = 26、复数211i ii +-+的值是 07、i 是虚数单位,32i 1i=-( 1i - )8、已知复数11i z =-,121i z z =+,则复数2z = i .9、复数322ii +的虚部为____45__.高考复数专题(5)姓名:10、31i i -的共轭复数是 3322i --11、复数1ii+在复平面中所对应的点到原点的距离为 2212、复数()2化简得到的结果是 -l13、若a 为实数,i iai 2212-=++,则a 等于 2 214、若cos sin z i θθ=+(i 为虚数单位),则21z =-的θ值可能是 2π15、若i R b a i b i i a ,)2(∈+=+、,其中是虚数单位,则a+b = -116、2(1)i i += -217、设i 为虚数单位,则=⎪⎭⎫⎝⎛+20081i i 2100418、若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a = 4高考复数专题(6)姓名:1、复数312i i ⎛⎫+ ⎪⎝⎭的虚部为________. -12、若复数()2i bi ⋅+是纯虚数,则实数b = 03、i i -210= -2+4i4、复数3223ii+=- i5、若(2)a i i b i -=+,其中i R b a ,,∈是虚数单位,则a +b =__________ 36、已知x ,y ∈R ,i 是虚数单位,且(x -1)i -y =2+i ,则(1+i )x -y 的值为 -47、若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 3+5i8、已知i 是虚数单位,则31ii+-= 1+2i9、在复平面内,复数z=sin2+icos2对应的点位于第 四 象限10、 若复数12,z z 在复平面内对应的点关于y 轴对称,且i z -=21,则复数21z z = i 5453+-高考复数专题(6)姓名:11、已知复数z 满足28z z i +=+,其中i 为虚数单位,则z = 1712、设a ∈R ,且(a +i )2i 为正实数,则a 等于 -113、若i3i34m m +-(m ∈R )为纯虚数,则)i 2i 2(m m -+ 2 008的值为 114、设复数z 1=1-2i, z 2=1+i, 则复数z =21z z 在复平面内对应的点位于第 三象限15、若(a -2i)i = b -i ,其中a 、b ∈R ,i 是虚数单位,则a 2+b 2等于 516、 |1|11|1|i ii i +++++= 217、设复数z 1=1+i, z 2=x -i(x ∈R ),若z 1·z 2为实数,则x 等于 118、若复数z 满足 Z =i (2-z )(i 是虚数单位),则z = . 1+i19、复数3ii)2i)(1(+--的共轭复数是 . -3+i20、若复数()()i 2ai 1++的实部和虚部相等,则实数a 等于 21。

2023届高考数学复习:历年经典好题专项(复数)练习(附答案)

2023届高考数学复习:历年经典好题专项(复数)练习(附答案)
(1+i)2n=
,
1 i
√2
=
.
参考答案
10
3-i
10(3 i)
=3+i,故选
(3-i)(3 i)
1.D z=
D.
2.D ∵z=2+i,∴ =2-i.
∴z =(2+i)(2-i)=5. 故选 D.
3.D 复数 z 满足|z+1|=|z-i|,∴
1)
(


(-1) ,化简得 x+y=0,故选 D.
A.x=0
B.y=0
C.x-y=0
D.x+y=0
4.(多选)对任意 z1,z2,z∈C,下列结论成立的是(
*
m n
)
)
m+n
A.当 m,n∈N 时,有 z z =z
=0,则 z1=0 且 z2=0
B.当 z1,z2∈C 时,若
C.互为共轭复数的两个复数的模相等,且||2=|z|2=zꞏ
D.z1=z2 的充要条件是|z1|=|z2|
R)的一个根为 1+i(i 为虚数单位),则
A.1-i
B.-1+i
C.2i
D.2+i

=(
1 i
)
π
2
π
2
16.(多选)(历年山东济南高三考前模拟)已知复数 z=1+cos 2θ+isin 2θ - <θ<
,则下列说法正确的是
(
)
A.复数 z 在复平面上对应的点可能落在第二象限
B.z 可能为实数
C.|z|=2cos θ
故选 D.
1 7i
2 i
zi-7i=1-2z,即 z=

历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。

高考数学专题02 复数(解析版)

高考数学专题02 复数(解析版)

专题02 复数一、单选题1.(2022·河北深州市中学高三期末)已知复数()()2i 1i z a =++(其中i 为虚数单位,a R ∈)在复平面内对应的点为()1,3,则实数a 的值为( ) A .1 B .2C .1-D .0【答案】A 【解析】 【分析】先利用复数的乘法化简,再利用复数的几何意义求解. 【详解】因为()()()2i 1i 22i z a a a =++=-++, 又因为复数在复平面内对应的点为()1,3,所以2123a a -=⎧⎨+=⎩,解得1a = 故选:A2.(2022·河北保定·高三期末)()()2212i 1i --+=( ) A .32i -- B .36i -- C .32i - D .36i -【答案】B 【解析】 【分析】根据复数的四则运算计算即可. 【详解】22(12i)(1i)34i 2i 36i --+=---=--.故选:B3.(2022·河北张家口·高三期末)已知12z i =-,则5iz=( ) A .2i -+ B .2i - C .105i -D .105i -+【答案】A 【解析】 【分析】利用复数的除法化简可得结果. 【详解】()()()5i 12i 5i 5i2i 12i 12i 12i z +===-+--+, 故选:A.4.(2021·福建·莆田二中高三期末)复数()()cos2isin3cos isin θθθθ+⋅+的模为1,其中i 为虚数单位,[]0,2πθ∈,则这样的θ一共有( )个. A .9 B .10C .11D .无数【答案】C 【解析】 【分析】先根据复数()()cos2isin3cos isin θθθθ+⋅+的模为1及复数模的运算公式,求得22cos 2sin 31θθ+=即22cos 2cos 3θθ=,接下来分cos2cos3θθ=与cos2cos3θθ=-两种情况进行求解,结合[]0,2πθ∈,求出θ的个数. 【详解】()()cos2isin3cos isin =cos2isin3cos isin 1θθθθθθθθ+⋅++⋅+=,其中cos isin 1θθ+=,所以cos2isin31θθ+=,即22cos 2sin 31θθ+=,222cos 21sin 3cos 3θθθ=-=,当cos2cos3θθ=时,①1232πk θθ=+,1k Z ∈,所以12πk θ=-,1k Z ∈,因为[]0,2πθ∈,所以0θ=或2π;②2232πk θθ=-+,2k Z ∈,所以22π5k θ=,2k Z ∈,因为[]0,2πθ∈,所以0θ=,2π5,4π5,6π5,8π5或2π;当cos2cos3θθ=-时,①()32321πk θθ=++,3k Z ∈,即()321πk θ=-+,3k Z ∈,因为[]0,2πθ∈,所以πθ=,②()42321πk θθ=-++,4k Z ∈,即()421π5k θ+=,4kZ ∈,因为[]0,2πθ∈,所以π5θ=,3π5,π,7π5,9π5,综上:π5mθ=,0,1,10m =,一共有11个. 故选:C5.(2022·山东省淄博实验中学高三期末)设复数z 满足()23i 32i z -=+,则z =( )A.12 B C .1 D 【答案】C 【解析】 【分析】根据给定条件结合复数除法计算复数z ,进而计算z 的模作答. 【详解】因复数z 满足()23i 32i z -=+,则32i (32i)(23i)13ii 23i (23i)(23i)13z +++====--+, 所以1z =. 故选:C6.(2022·山东枣庄·高三期末)已知i 为虚数单位,则2022i =( ). A .1 B .1- C .I D .i -【答案】B 【解析】 【分析】由于41i =,故2022i 可以化简为2i ,即可得到答案. 【详解】20224505+22i i ==i ⨯=1-.故选:B.7.(2022·山东德州·高三期末)已知复数z 满足()121i iz +=-,其中i 为虛数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】根据复数的模长公式以及四则运算得出z =,最后确定复数z 在复平面内所对应的点的象限. 【详解】21i 22|2i |i i +=+=-=z =则复数z 在复平面内所对应的点坐标为⎝⎭,在第一象限.故选:A8.(2022·山东淄博·高三期末)已知复数z 是纯虚数,11iz+-是实数,则z =( ) A .-i B .iC .-2iD .2i【答案】B 【解析】 【分析】由题意设i()z b b R =∈,代入11iz+-中化简,使其虚部为零,可求出b 的值,从而可求出复数z ,进而可求得其共轭复数 【详解】由题意设i()z b b R =∈, 则11i (1i)(1i)(1)(1)i1i 1i (1i)(1i)2z b b b b ++++-++===---+, 因为11iz+-是实数,所以10b +=,得1b =-, 所以i z =-, 所以i z =, 故选:B9.(2022·山东临沂·高三期末)已知复数26i1iz +=-,i 为虚数单位,则z =( )A.B .C .D .【答案】C 【解析】 【分析】利用复数除法运算求得z ,然后求得z . 【详解】 ()()()()()()()()26i 1i 26i 1i 13i 1i 24i1i 1i 2z ++++===++=-+-+,z =故选:C10.(2022·湖北武昌·高三期末)已知复数1i z =-,则2iz=-( ) A .13i 55-B .13i 55--C .13i 55-+D .1355i +【答案】D 【解析】 【分析】先得出z ,由复数的乘法运算可得答案. 【详解】复数1i z =-,则1i z =+则()()()()1i 2i 1i 13i 2i 2i 2i 2i 5z ++++===---+ 故选:D11.(2022·湖北·黄石市有色第一中学高三期末)已知复数数列{}n a 满足12i a =,1i i 1n n a a +=++,N n *∈,(i 为虚数单位),则10a =( ) A .2i B .2i - C .1i + D .1i -+【答案】D 【解析】 【分析】推导出数列{}i n a -是等比数列,确定该数列的首项和公比,即可求得10a 的值. 【详解】由已知可得()1i i i n n a a +-=-,因此,数列{}i n a -是以1i i a -=为首项,以i 为公比的等比数列,所以,91010i i i i 1a -=⋅==-,故101i a =-+.故选:D.12.(2022·湖北江岸·高三期末)已知()12i 43i z -=-,则z =( ) A .10i +B .2i +C .2i -D .25i +【解析】 【分析】利用复数的除法化简复数z ,利用共轭复数的定义可得结果. 【详解】 由已知可得()()()()43i 12i 43i 105i2i 12i 12i 12i 5z -+-+====+--+,因此,2i z =-. 故选:C.13.(2022·湖北襄阳·高三期末)下面是关于复数22i 1i z =-(i 为虚数单位)的命题,其中真命题为( )A .2z =B .复数z 在复平面内对应点在直线y x =上C .z 的共轭复数为11i 22-D .z 的虚部为1i 2-【答案】B 【解析】 【分析】化简复数为代数形式,然后求模,写出对应点的坐标.得其共轭复数及虚部,判断各选项即得. 【详解】∵22i 11i 1i 1i 2z ---===--,所以z =A 错误;所以复数z 在复平面内对应点坐标为11(,)22--,在直线y x =上,B 正确;所以z 的共轭复数为11i 22-+,C 错误;所以z 的虚部为12-,D 错误.故选:B .14.(2022·湖北省鄂州高中高三期末)复数4i1iz =+,则z =( ) A .22i -- B .22i -+C .22i +D .22i -【答案】D 【解析】先计算z ,再根据共轭复数的概念即可求解. 【详解】根据复数除法的运算法则可得41i z i =+()()()414422112i i i i i i -+===+-+ ,所以可得其共轭复数22z i =-.故选:D.15.(2022·湖北·高三期末)已知复数121i,i z z =-=,则复数12z z 的共轭复数的模为( ) A .12 B2C .2 D【答案】D 【解析】 【分析】根据复数的除法运算得121i z z =--,再根据共轭复数的概念与模的公式计算即可. 【详解】解:因为121i,i z z =-=, 所以()121iii 1i 1i z z -==--=--, 所以复数12z z 的共轭复数为1i -+.故选:D16.(2022·湖北·恩施土家族苗族高中高三期末)若1i z =-+.设zz ω=,则ω=( ) A .2i B .2C .22i +D .22i -【答案】B 【解析】 【分析】根据1i z =-+求出1i z =--,结合复数的乘法运算即可. 【详解】由1i z =-+,得1i z =--,所以2(1i)(1i)=(i 1)=2zz ω==-+----. 故选:B17.(2022·湖南常德·高三期末)已知复数z 满足:()1i i z +=,则z z ⋅=( )A .12 B C .1D .i 2【答案】A 【解析】 【分析】首先根据复数的除法运算求出z ,然后根据复数的乘法运算即可求出结果. 【详解】 因为(1)z i i +=, 所以()()i 1i i 1i 11i 1i (1i)1i 222z -+====+++-, 因此11111i i 22222z z ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭⋅=.故选:A.18.(2022·湖南娄底·高三期末)复数()i 3i z =-⋅在复平面内对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】由复数乘法法则计算出z ,然后可得其对应点的坐标,得所在象限. 【详解】∵()3i i 13i z =-=+⋅,∴z 在复平面内对应的点为()1,3,位于第一象限. 故选:A .19.(2022·湖南郴州·高三期末)已知i 为虚数单位,复数z 满足()i 123i 4z +=+,则z 的共轭复数z =( ) A .12i - B .12i +C .2i -D .2i +【答案】B 【解析】根据复数的模和除法运算,即可得到答案; 【详解】 |43i |55(12i)12i 12i 12i 5z +-====-++ ∴12i z =+,故选:B20.(2022·广东揭阳·高三期末)复数z 满足()1i 1i(i z +=-为虚数单位),则z 的模为( ) A.12-B .12C .1 D【答案】C 【解析】 【分析】先做除法运算求出复数z ,再根据复数模的计算公式求其模. 【详解】由()1i 1i z +=-得1ii 1iz -==-+,从而i 1z =-= 21.(2022·广东潮州·高三期末)已知i 为虚数单位,复数21i 1i -=+z ,则z 的虚部为( )A .0B .-1C .-iD .1【答案】B 【解析】 【分析】化简复数z 1i =-, z 的虚部为i 前面的系数,即可得到答案. 【详解】21i 22(1-i)1i 1i 1i (1i)(1-i)z -====-+++.则z 的虚部为-1.故选:B.22.(2022·广东罗湖·高三期末)已知复数()1i i =+⋅z (i 为虚数单位),则z 的共轭复数z =( ) A .1i + B .1i -C .1i -+D .1i --【答案】D 【解析】求出复数z,进而可得其共轭复数.【详解】()1i i=1+iz=+⋅-,则1iz=--故选:D.23.(2022·广东清远·高三期末)已知i为虚数单位,复数z的共轭复数z满足(1i)|1|+=z,则z=()A.1i-B.1i+C.22i-D.22i+【答案】B【解析】【分析】结合复数除法运算求出z,进而得出z.【详解】因为21i1i===-+z,所以1iz=+.故选:B24.(2022·广东汕尾·高三期末)若复数z满足1i12iz+=+其中(i为虚数单位),则复数z的共轭复数为()A.3i5--B.3i5-+C.3i5-D.3i5+【答案】D 【解析】【分析】化简可得3i5z-=,根据共轭复数的概念,即可得答案.【详解】因为1i(1i)(12i)3i12i(12i)(12i)5z++--===++-,所以3i5z+ =,故选:D.25.(2022·江苏通州·高三期末)20221i1i-⎛⎫=⎪+⎝⎭()A .1B .iC .-1D .-i【答案】C 【解析】 【分析】由复数的除法和复数的乘方运算计算. 【详解】21i (1i)i 1i (1i)(1i)--==-+-+, 所以2022202221i (i)i 11i -⎛⎫=-==- ⎪+⎝⎭.故选:C .26.(2022·江苏宿迁·高三期末)已知复数z 满足()1i 4i z +=,则z =( ) A.2 B C .D .【答案】C 【解析】 【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果. 【详解】由已知可得()()()()4i 1i 4i2i 1i 22i 1i 1i 1i z -===-=+++-,因此,z = 故选:C.27.(2022·江苏扬州·高三期末)若复数z =202112i +(i 为虚数单位),则它在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】 化简复数z =202112i +,得到其对应点的坐标即可解决.【详解】z 202112i ==+12i =+2i 21i 555-=-, 则z 在复平面上对应的点为21(,)55Z -,Z 位于第四象限.故选:D28.(2022·江苏海安·高三期末)已知复数z 满足(1-i)z =2+3i (i 为虚数单位),则z =( ) A .-12+52iB .12+52iC .12-52iD .-12-52i 【答案】A 【解析】 【分析】利用复数的运算法则求解. 【详解】 ∵(1-i)z =2+3i, ∴()()()()23i 1i 23i 15i 15i 1i 1i 1i 222z +++-+====-+-+-. 故选:A.29.(2022·江苏如东·高三期末)已知复数z 满足202120222023i 4i 3i z =-,则z =( ) A .4+3i B .4-3iC .3+4iD .3-4i【答案】C 【解析】 【分析】将202120222023i 4i 3i z =-中的202120222023i ,i ,i ,根据41i = 化简,即可得答案. 【详解】 因为41i =,故由202120222023i 4i 3i z =-可得:23i 4i 3i z =-,即4i 334i z =+=+, 故选:C.30.(2022·江苏苏州·高三期末)设i 为虚数单位,若复数(1i)(1i)a -+是纯虚数,则实数a 的值为( ) A .1- B .0C .1D .2【答案】A【解析】 【分析】用复数的乘法法则及纯虚数的定义即可. 【详解】(1i)(1i)1i i 1(1)i a a a a a -+=+-+=++-为纯虚数,10a ∴+=,1a ∴=-,故选:A .31.(2022·江苏无锡·高三期末)已知3i1ia ++(i 为虚数单位,a ∈R )为纯虚数,则=a ( ) A .1- B .1C .3-D .3【答案】C 【解析】 【分析】先利用复数除法法则进行化简,结合纯虚数条件列出方程,求出a 的值. 【详解】3i (3i)(1i)i 3i+31i 22a a a a ++--+==+3(3)i2a a ++-=为纯虚数, 30a ∴+=,3a ∴=-,故选:C. 二、多选题32.(2022·河北唐山·高三期末)已知复数i z a b =+(,a b ∈R 且0b ≠),z 是z 的共扼复数,则下列命题中的真命题是( ) A .z z +∈R B .z z -∈RC .z z ⋅∈RD .zz∈R【答案】AC 【解析】 【分析】由题知i z a b =-,进而根据复数的加减乘除运算依次讨论各选项即可得答案. 【详解】解:对于A 选项,i z a b =+,i z a b =-,所以2z z a +=∈R ,故正确; 对于B 选项,i z a b =+,i z a b =-,2i z z b -=∉R ,故错误;对于C 选项,i z a b =+,i z a b =-,22z z a b ⋅=+∈R ,故正确;对于D 选项,i z a b =+,i z a b =-,()22222222i i i i z a b ab z a a b a b a b b a b --===+-+-+, 所以当0a =时,z z ∈R ,当0a ≠时,zz ∉R ,故错误.故选:AC33.(2022·山东莱西·高三期末)已知复数()21i z a a =+-,i 为虚数单位,a R ∈,则下列正确的为( )A .若z 是实数,则1a =-B .复平面内表示复数z 的点位于一条抛物线上C .zD .若21z z =+,则1a =±【答案】BC 【解析】 【分析】以实数定义求出参数a 判断选项A ;以复数z 对应点的坐标判断选项B ;求出复数z 的模判断选项C ;以复数相等求出参数a 判断选项D. 【详解】选项A :由复数()21i z a a =+-是实数可知210a -=,解之得1a =±.选项A 判断错误;选项B :复数()21i z a a =+-在复平面内对应点2(,1)Z a a -,其坐标满足方程21y x =-,即点2(,1)Z a a -位于抛物线21y x =-上. 判断正确;选项C :由()21i z a a =+-,可得z ===判断正确; 选项D :21z z =+ 即()()221i =2121i a a a a +-+--可得()2221121a a a a =+⎧⎪⎨-=--⎪⎩,解之得1a =-.选项D 判断错误. 故选:BC34.(2022·广东东莞·高三期末)已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是( ) A .若120z z +=,则12=z zB .若21z z =,则12=z zC .若312z z z =,则312z z z =D .若1211z z +=+,则12=z z【答案】ABC 【解析】 【分析】若i z a b =+ ,则i z a b =-,z z ==,利用复数代数运算,可以判断AB ;利用复数的三角运算,可以判断C ;利用数形结合,可以判断D. 【详解】 对于A :若120z z += ,则12z z =-,故122z z z =-=, 所以A 正确; 对于B :若21z z =,则12=z z , 所以B 正确; 对于C :设11(cos i sin )z r αα=+ ,22(cos i sin )z r ββ=+则()()31212cos()i sin z z z r r αβαβ==+++ ,故312z z z = , 所以C 正确; 对于D :如下图所示,若11OA z =+ ,21OB z =+,则1OC z =,2OD z =,故12z z ≠ , 所以D 错误.故选:ABC35.(2022·江苏如皋·高三期末)关于复数12z =- (i 为虚数单位),下列说法正确的是( )A .|z |=1B .z +z 2=-1C .z 3=-1D .(z +1)3=i【答案】AB 【解析】 【分析】根据复数模的计算公式求得复数的模,可判断A;根据复数的乘方运算可判断B,C,D. 【详解】由复数12z =-,可得||1z == ,故A 正确;2211112222z z +=--=-- ,故B 正确;3222111()1222z z z =⋅=--+--=,故C 错误;3221111(1)(1)(1)(((12222z z z ⎛⎫+=++=+=-=- ⎪ ⎪⎝⎭,故D 错误, 故选:AB.36.(2022·江苏苏州·高三期末)下列命题正确的是( ) A .若12,z z 为复数,则1212z z z z =⋅ B .若,a b 为向量,则a b a b ⋅=⋅C .若12,z z 为复数,且1212z z z z +=-,则120z z =D .若,a b 为向量,且a b a b +=-,则0a b ⋅= 【答案】AD 【解析】 【分析】根据复数运算、向量运算的知识对选项进行分析,从而确定正确选项. 【详解】令1i z a b =+,()2i ,,,R z c d a b c d =+∈,,12()i z z ac bd ad bc =-++,12z z ===1z =2z =1212z z z z ∴=⋅,A 对;cos a b a b θ⋅=⋅⋅,cos a b a b a b θ∴⋅=⋅⋅=⋅不一定成立,B 错; 12()()i z z a c b d +=+++,12()()i z z a c b d -=-+-,1212z z z z -=+,0ac bd ∴+=,12(i)(i)()i 0z z a b c d ac bd ad bc =++=-++≠,C 错.将a b a b +=-两边平方并化简得0a b ⋅=,D 对. 故选:AD 三、填空题37.(2021·福建·莆田二中高三期末)设x ∈R ,记[]x 为不大于x 的最大整数,{}x 为不小于x 的最小整数.设集合{}|23,A z z z C =≤⎡⎤≤∈⎣⎦,{}{}|23,B z z z C =≤≤∈,则A B 在复平面内对应的点的图形面积是______ 【答案】5π 【解析】 【分析】依题意表示出集合{}|24,A z z z C =≤<∈,{}|13,B z z z C =<≤∈,从求出A B ,再根据复数的几何意义求出复数z 的轨迹,即可得解; 【详解】解:依题意由23z ≤⎡⎤≤⎣⎦,所以24z ≤<,由{}23z ≤≤,所以13z <≤,所以{}{}|23,|24,A z z z C z z z C =≤⎡⎤≤∈=≤<∈⎣⎦,{}{}{}|23,|13,B z z z C z z z C =≤≤∈=<≤∈,所以{}|23,A B z z z C =≤≤∈设()i ,z x y x y R =+∈,由23z ≤≤,所以23≤,所以2249x y ≤+≤,所以复数z 再复平面内对应的点为在复平面内到坐标原点的距离大于等于2且小于等于3的圆环部分,所以圆环的面积()22325S ππ=-=故答案为:5π38.(2022·广东佛山·高三期末)在复平面内,复数z 对应的点的坐标是(3,5)-.则(1i)z -=___________. 【答案】28i -- 【解析】 【分析】根据给定条件求出复数,再利用复数的乘法运算计算作答. 【详解】在复平面内,复数z 对应的点的坐标是(3,5)-,则35i z =-,所以(1i)(1i)(35i)28i z -=--=--. 故答案为:28i --39.(2022·江苏常州·高三期末)i 是虚数单位,已知复数z 满足等式2i0i z z+=,则z 的模z =________.【解析】 【分析】以复数运算规则和复数模的运算性质对已知条件进行变形整理,是本题的简洁方法. 【详解】 由2i 0i z z +=,可得2i i z z =- 则有2ii z z-=,即i 2i 2z z ⨯=⨯-=,故有z =。

高考数学专题《复数》习题含答案解析

高考数学专题《复数》习题含答案解析

专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D 【解析】 因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.2.(2020·全国高考真题(文))(1–i )4=( ) A .–4 B .4 C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( ) A .1i -- B .1i -+C .1i -D .1i +【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果. 【详解】 由题意可得:()()()()2121211112i i z i i i i ++====+--+. 故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( ) A .62i - B .42i -C .62i +D .42i +【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果. 【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( ) A .312i --B .312i -+C .32i -+D .32i --【答案】B 【分析】 由已知得322iz i+=-,根据复数除法运算法则,即可求解. 【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅. 故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( ) A .12i - B .12i +C .1i +D .1i -【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z . 【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( ) A .–34i - B .34i -+C .34i -D .34i +【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值. 【详解】由题意可得:()2434343341i i i i z i i i ++-====--. 故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( ) A .1- B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值. 【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-. 故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( ) ABC .3D .5【答案】D 【解析】∵ 故选D. 10.(2019·全国高考真题(文))设,则=( ) A .2 BCD .1【答案】C 【解析】 因为,所以,所以C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( ) A .-1 B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312i z i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,, 所以,则,故选B. 2.(全国高考真题(理))复数的共轭复数是( ) A . B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( ) A . B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( ) A . B .C .D .【答案】B 【解析】 由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,则( )22222a i ai iai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i -35i ()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i +2i --2i -+R a ∈i z a =+4z z ⋅=a =A .1或 B或 C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( ) A .2i - B .2i -+C .2i +D .2i --【答案】C 【分析】根据复数除法运算求出z ,即可得出答案. 【详解】()2i 34i 5z +=+=, ()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+. 故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】先由欧拉公式计算可得i312e π=,然后根据复数的几何意义作出判断即可. 【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝⎭,在第一象限. 故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =i 为虚数单位),则下列说法正确的是( )A .复数z 在复平面内对应的点坐标为()sin3cos3,sin3cos3+-1-,4z a z z =⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解. 【详解】 复数sin3cos3i sin3cos3z ==++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin3cos30->,所以原式()()sin3cos3i sin3cos3=-++-,所以选项A 错误;复数z ,所以选项B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确. 故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( ) A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限 D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】 对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确. 对选项B ,因为11cos isin cos isin z z θθθθ+=+++ ()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=, 所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>, 所以88cos isin 33z ππ=+在复平面对应的点落在第二象限. 故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ (O 为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______. 【答案】16 ()22cos sin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解:2(cossin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos6sin 61i ωθθ=+=,所以sin 60cos61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( ) A .4 B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-. 【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-. 故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置. 【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限, 故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( ) A .0B .1CD .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=. 故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】C 【解析】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C . 6.(2018·江苏高考真题)若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为________. 【答案】2 【解析】因为i 12i z ⋅=+,则12i2i iz +==-,则z 的实部为2.。

高中数学《复数》基础知识及经典练习题(含答案解析)

高中数学《复数》基础知识及经典练习题(含答案解析)

高中数学《复数》基础知识及经典练习题(含答案解析)一、基础知识:复数题目通常在高考中有所涉及,题目不难,通常是复数的四则运算1、复数z 的代数形式为(),z a bi a b R =+∈,其中a 称为z 的实部,b 称为z 的虚部(而不是bi ),2、几类特殊的复数:(1)纯虚数:0,0a b =≠ 例如:5i ,i 等(2)实数: 0b =3、复数的运算:设()12,,,,z a bi z c di a b c d R =+=+∈(1)21i =−(2)()()12z z a c b d i ±=+++(3)()()()()212z z a bi c di ac adi bci bdi ac bd ad bc i ⋅=+⋅+=+++=−++ 注:乘法运算可以把i 理解为字母,进行分配率的运算。

只是结果一方面要化成标准形式,另一方面要计算21i =−(4)()()()()()()1222a bi c di ac bd bc ad i z a bi z c di c di c di c d +−++−+===++−+ 注:除法不要死记公式而要理解方法:由于复数的标准形式是(),z a bi a b R =+∈,所以不允许分母带有i ,那么利用平方差公式及21i =的特点分子分母同时乘以2z 的共轭复数即可。

4、共轭复数:z a bi =−, 对于z 而言,实部相同,虚部相反5、复数的模:z = 2z z z =⋅ (22z z ≠) 6、两个复数相等:实部虚部对应相等7、复平面:我们知道实数与数轴上的点一一对应,推广到复数,每一个复数(),a bi a b R +∈都与平面直角坐标系上的点(),a b 一一对应,将这个平面称为复平面。

横坐标代表复数的实部,横轴称为实轴,纵轴称为虚轴。

8、处理复数要注意的几点:(1)在处理复数问题时,一定要先把复数化简为标准形式,即(),z a bi a b R =+∈(2)在实数集的一些多项式公式及展开在复数中也同样适用。

高考复数专题及答案百度文库

高考复数专题及答案百度文库

一、复数选择题1.设复数1i z i=+,则z 的虚部是( ) A .12 B .12i C .12- D .12i - 2.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97- B .7 C .97 D .7-3.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( )A .1B .0C .-1D .1+i 4.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1 B .1C .-iD .i 5.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( )A .2a >或1a <-B .1a >或2a <-C .12a -<<D .21a -<< 6.已知复数31i z i -=,则z 的虚部为( ) A .1B .1-C .iD .i - 7.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限 8.复数312i z i =-的虚部是( ) A .65i - B .35i C .35 D .65- 9.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 11.设2i z i +=,则||z =( )A B C .2 D .512.已知复数202111i z i-=+,则z 的虚部是( ) A .1-B .i -C .1D .i 13.122i i-=+( ) A .1 B .-1C .iD .-i 14.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( ) A .10 B .9 C .8 D .715.已知i 是虚数单位,设11i z i ,则复数2z +对应的点位于复平面( ) A .第一象限 B .第二象限C .第三象限D .第四象限 二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=17.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( ) A .复数z 在复平面上对应的点可能落在第二象限 B .z 可能为实数C .1z =D .1z的虚部为sin θ 18.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =19.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =20.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z = 21.设复数z 满足1z i z+=,则下列说法错误的是( )A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 22.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 23.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称24.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω>25.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s n n n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =-D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数26.以下为真命题的是( )A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数27.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i -- 28.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数B .若32a bi i -=+,则3,2a b ==C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z - 29.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题1.A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果.【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12. 故选:A .2.B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =. 故选:B【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.3.C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知=,故选C解析:C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知i e π=cos sin 101i ππ+=-+=-,故选C4.B【分析】,然后算出即可.由题意,则复数的虚部为1故选:B解析:B【分析】1i z i-+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B 5.A【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果.【详解】因为,,所以,,所以或.故选:A【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果.【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->,所以2a >或1a <-.故选:A【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题. 6.B【分析】化简复数,可得,结合选项得出答案.【详解】则,的虚部为故选:B解析:B化简复数z ,可得z ,结合选项得出答案.【详解】()311==11i i z i i i i i--=-=+- 则1z i =-,z 的虚部为1-故选:B7.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i=-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.8.C【分析】由复数除法法则计算出后可得其虚部.【详解】因为,所以复数z 的虚部是.故选:C .解析:C【分析】由复数除法法则计算出z 后可得其虚部.【详解】 因为33(12)366312(12)(12)555i i i i i i i i +-===-+--+, 所以复数z 的虚部是35. 故选:C . 9.B利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫-⎪⎝⎭,则对应点位于第二象限 故选:B10.B【分析】先求解出复数,然后根据复数的几何意义判断.【详解】因为,所以,故对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B【分析】先求解出复数z ,然后根据复数的几何意义判断.【详解】因为(1)2z i i -=,所以()212112i i i z i i +===-+-, 故z 对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.11.B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B .解析:B【分析】利用复数的除法运算先求出z ,再求出模即可.【详解】()22212i i i z i i i++===-,∴z ==故选:B .12.C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1ii 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C.13.D【分析】利用复数的除法求解.【详解】.故选:D解析:D【分析】利用复数的除法求解.【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D14.D【分析】根据复数的模的性质求模,然后可解得.【详解】解:,解得.故选:D .【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D【分析】根据复数的模的性质求模,然后可解得a .【详解】 解:()()()()24242422221212501111i i i i aai ai ++++====+--,解得7a =. 故选:D .【点睛】 本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R=+∈,则z =模的性质:1212z z z z =,(*)n n z z n N =∈,1122z z z z =. 15.A【分析】由复数的除法求出,然后得出,由复数的几何意义得结果.【详解】由已知,,对应点为,在第一象限,故选:A.解析:A【分析】由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果.【详解】由已知(1)(1)(1)(1)i i z i i i --==-+-, 222z i i +=-+=+,对应点为(2,1),在第一象限,故选:A.二、多选题16.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈;当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 18.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.19.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 20.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++,因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.21.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.22.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.23.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.24.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.25.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则122z =-,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误. 故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.26.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 27.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.28.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.29.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国名校高考数学经典复习题汇编(附详解)专题:虚数的运算1.若(x +i)2是纯虚数(其中i 为虚数单位),则x =( ) A .±1 B .2 C .-1 D .1答案 A解析 (x +i)2=x 2-1+2xi ,因为(x +i)2是纯虚数,所以x =±1. 2.(全国名校·河北辛集中学月考)若复数2-bi1+2i(b ∈R )的实部与虚部互为相反数,则b 等于( ) A. 2 B.23 C .-23D .2答案 C 解析2-bi 1+2i =(2-bi )(1-2i )(1+2i )(1-2i )=2-2b -(4+b )i5,由题意得2-2b 5-4+b 5=0,得b =-23.3.(全国名校·课标全国Ⅱ,理)3+i1+i =( )A .1+2iB .1-2iC .2+iD .2-i答案 D 解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i ,选择D.4.(全国名校·课标全国Ⅲ,理)设复数z 满足(1+i)z =2i ,则|z|=( ) A.12 B.22C. 2 D .2答案 C解析 z =2i1+i =2i (1-i )(1+i )(1-i )=i(1-i)=1+i ,所以|z|= 2.5.(全国名校·山东,文)已知i 是虚数单位,若复数z 满足zi =1+i ,则z 2=( ) A .-2iB .2iC .-2D .2答案 A解析 ∵zi =1+i ,∴z =1+i i =1i +1=1-i.∴z 2=(1-i)2=1+i 2-2i =-2i.选A.6.(全国名校·湖北黄冈期末)复数z 1,z 2在复平面内分别对应点A ,B ,z 1=3+4i ,将点A 绕原点O 逆时针旋转90°得到点B ,则z -2=( ) A .3-4i B .-4-3i C .-4+3i D .-3-4i答案 B解析 由题意知A(3,4),B(-4,3),即z 2=-4+3i ,z -2=-4-3i. 7.(全国名校·沧州七校联考)已知z 是纯虚数,z +21-i 是实数,那么z 等于( )A .2iB .iC .-iD .-2i 答案 D解析 设纯虚数z =bi(b ≠0),代入z +21-i=bi +21-i =(bi +2)(1+i )(1-i )(1+i )=(2-b )+(b +2)i2,由于其为实数,∴b =-2.8.(全国名校·江西,理)z -是z 的共轭复数,若z +z -=2,(z -z -)i =2(i 为虚数单位),则z =( ) A .1+i B .-1-i C .-1+i D .1-i答案 D9.设a 是实数,且a 1+i +1+i 2是实数,则a =( )A .1 B.12 C.15 D .-15答案 A 解析a 1+i +1+i 2=a (1-i )(1+i )(1-i )+1+i 2=(a +1)+(-a +1)i 2,由于该复数为实数,故-a +1=0,即a =1.10.(全国名校·郑州质量预测)在复平面内与复数z =5i1+2i所对应的点关于虚轴对称的点为A ,则A 对应的复数为( ) A .1+2iB .1-2iC .-2+iD .2+i答案 C解析 依题意得,复数z =5i (1-2i )(1+2i )(1-2i )=i(1-2i)=2+i ,其对应的点的坐标是(2,1),因此点A(-2,1)对应的复数为-2+i ,选C.11.(全国名校·宜昌调研)设复数z 满足1-z1+z =i(i 是虚数单位),则|1+z|=( )A .0B .1 C. 2 D .2 答案 C解析 ∵1-z 1+z =i ,∴z =1-i1+i=-i ,∴|z +1|=|-i +1|= 2.12.(全国名校·山东,理)已知a ∈R ,i 是虚数单位.若z =a +3i ,z ·z -=4,则a =( ) A .1或-1 B.7或-7 C .- 3 D. 3 答案 A解析 方法一:由题意可知z -=a -3i ,∴z ·z -=(a +3i)(a -3i)=a 2+3=4,故a =1或-1.方法二:z·z -=|z|2=a 2+3=4,故a =1或-1. 13.下面是关于复数z =2-1+i的四个命题: p 1:|z|=2, p 2:z 2=2i ,p 3:z 的共轭复数为1+i, p 4:z 的虚部为-1. 其中的真命题为( ) A .p 2,p 3 B .p 1,p 2 C .p 2,p 4 D .p 3,p 4答案 C解析 ∵z =2-1+i =-1-i ,∴|z|=2,z 2=(-1-i)2=(1+i)2=2i ,z 的共轭复数为-1+i ,z 的虚部为-1,综上可知p 2,p 4是真命题.14.(2016·课标全国Ⅰ)设(1+i)x =1+yi ,其中x ,y 是实数,则|x +yi|=( ) A .1 B. 2 C. 3D .2答案 B解析 因为(1+i)x =x +xi =1+yi ,所以x =y =1,|x +yi|=|1+i|=12+12= 2.故选B. 15.已知函数f(x)=x 2,i 是虚数单位,则在复平面中复数f (1-i )2+i 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 f (1-i )2+i =(1-i )2(2-i )(2+i )(2-i )=-2i (2-i )(2+i )(2-i )=-2-4i5,在复平面内对应的点(-25,-45)位于第三象限,故选C. 16.(2016·北京,理)设a ∈R ,若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________. 答案 -1解析 (1+i)(a +i)=(a -1)+(a +1)i ,由已知得a +1=0,解得a =-1. 17.(全国名校·河南许昌高中联考)给出下列四个命题: ①满足:z =1z的复数有±1,±i ;②若a ,b ∈R 且a =b ,则(a -b)+(a +b)i 是纯虚数; ③复数z ∈R 的充要条件是z =z -;④在复平面内,实轴上的点都表示实数,虚轴上的点都表示纯虚数. 其中正确的命题是________. 答案 ③解析 因为i 2=-1,所以命题①不正确;对于命题②,当a =b =0时,不成立,命题②不正确;由共轭复数的定义知,命题③正确;虚轴上的点除原点外都表示纯虚数,命题④不正确.18.i +i 2+i 3+…+i 2 019的值是________. 答案 -1解析 原式=i (1-i 2 019)1-i =i (1-i 3)1-i =i (1+i )1-i =i·i =-1.19.计算:(1)(1+2i )2+3(1-i )2+i ;(2)1-i (1+i )2+1+i (1-i )2; (3)1-3i (3+i )2.答案 (1)15+25i (2)-1 (3)-14-34i解析 (1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i2+i =i (2-i )5=15+25i.(2)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i2=-1.(3)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i=(-i )(3-i )4=-14-34i.1.(全国名校·湖北八校联考)设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 由纯虚数的定义,得⎩⎪⎨⎪⎧x 2-1=0,x +1≠0,所以x =1.故选C.2.复数i1+2i (i 是虚数单位)的实部是( )A.25 B .-25C.15 D .-15答案 A 解析i 1+2i=2+i 5,实部为25.3.(全国名校·四川,理)设i 是虚数单位,则复数i 3-2i =( )A .-iB .-3iC .iD .3i答案 C解析 i 3-2i =-i -2ii2=-i +2i =i ,选C.4.(全国名校·湖南)已知(1-i )2z =1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i 答案 D解析 由题意得z =(1-i )21+i =-2i1+i =-i(1-i)=-1-i ,故选D.6.(全国名校·课标全国Ⅰ,理)(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i答案 D解析 先把分子、分母分别计算,再求解,或利用结论1+i1-i =i.方法一:(1+i )3(1-i )2=(1+i )(1+i )2-2i =(1+i )(1+i 2+2i )-2i=(1+i )2i-2i=-1-i.故选D.方法二:(1+i )3(1-i )2=⎝ ⎛⎭⎪⎫1+i 1-i 2(1+i)=i 2(1+i)=-(1+i). 7.(全国名校·安徽,理)设i 是虚数单位,z 表示复数z 的共轭复数.若z =1+i ,则z i +i ·z=( ) A .-2 B .-2i C .2 D .2i答案 C解析 先根据z 求出z 及zi ,结合复数的运算法则求解.∵z =1+i ,∴z =1-i ,z i =1+i i =i 2+ii 2=1-i.∴zi+i ·z =1-i +i(1-i)=(1-i)+(1+i)=2.故选C. 8.(全国名校·湖北,理)i 为虚数单位,i 607的共轭复数为( ) A .i B .-i C .1 D .-1答案 A 解析 i 607=i 4×151·i 3=-i ,又-i 的共轭复数为i ,选A.9.(2016·课标全国Ⅰ)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A .-3 B .-2 C .2 D .3答案 A解析 (1+2i)(a +i)=(a -2)+(2a +1)i ,由已知条件,得a -2=2a +1,解得a =-3.故选A.。

相关文档
最新文档