【转】变力做功问题的求法集锦

合集下载

求解变力做功的四种方法

求解变力做功的四种方法
第二次做功:W=F2d′=kd+d′ 2 d′.
联立解得 d′=( 2-1)d. [归纳提升] 当力为变力,应用平均值法求功时,
F
=F1+ F2
2
只能用于 F 与位移 l 成线性关系的情况,不能用于 F 与时间 t
成线性关系的情况 .
*
栏目 导引
图象法求变力做功
第七章 机械能守恒定律*
• 变力做旳功W可用F-l图线与l轴所围成旳面积 表达.l轴上方旳面积表达力对物体做正功旳多 少,l轴下方旳面积表达力对物体做负功旳多少 .
第七章 机械能守恒定律*
• 1.做功旳两个必要原因 • (1)作用在物体上旳力. • (2)物体在力方向上旳位移. • 2.功旳体现式:W=Flcos α,α为力F与位移l旳
夹角. • (1)α<90°时,W>0. • (2)α>90°时,W<0. • (3)α=90°时,W=0.
*
栏目 导引
第七章 机械能守恒定律*
• [答案] 50 J
• [易错提醒] F做功旳位移等于左边绳旳变短旳部分,而 不等于物体旳位移.
*
栏目 导引
[解析] (1)将圆弧 AB 分成很多小段 l1、l2、…、ln,拉力在每 小段上做的功为 W1、W2、…、Wn,因拉力 F 大小不变,方向 始终与物体所在位置的切线方向成 37°角,所以: W1=Fl1cos 37°,W2=Fl2cos 37°,…,Wn=Flncos 37°, 所以 WF= W1+ W2+…+Wn =Fcos 37°(l1+l2+…+ln) =Fcos 37°·π3R=20π J=62.8 J. (2)重力 mg 做的功 WG=-m gR(1-cos 60°)=-50 J. (3)物体受的支持力 FN 始终与物体的运动方向垂直,所以 WFN = 0.

求变力做功的方法

求变力做功的方法
专题:求解变力做功的四种方法
注意:功是标量、过程量 公式只适用恒力做功
1.平均力法 当力 F 的大小随位移 l 呈线性变化时,F 的平均值-F = F1+2 F2,则 F 做的功 W=-F l=F1+2 F2l。
[ 对点训练]
1.用铁锤把钉子钉入木板,设木板对钉子的阻力 F 与钉进木板的深度成正比,已知铁锤
(2)全过程的功应等于两部分面积的代数和。
2.在一家农家乐旅游景点,还保留有驴拉磨的民俗项目。如
图所示,假设驴拉磨的平均用力大小为 500 N,运动的半
径为 1 m,则驴拉磨转动一周所做的功为
(D )
A.0 C.500π J
B.500 J D.1 000π J
[ 例 4 ] 如图所示,一辆拖车(图中未画出)通过光滑定滑轮将一重物 G 匀速提升。当 拖车从 A 点水平移动到 B 点时,位移为 s,绳子由竖直变为与竖直方向成 θ 的角度, 求此过程中拖车对绳子所做的功。
第一次将钉子钉进 d,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第
二次钉子进入木板的深度是
B( )
A.( 3-1)d
B.( 2-1)d
ห้องสมุดไป่ตู้C.
5-1d 2
D.
2 2d
2.图像法 如图所示,在 F-l 图像中,图像与 l 轴所围成的面积表示力 做的功 W。
注意:(1)l 轴上方的面积表示力对物体做正功,应为正值; l 轴下方的面积表示力对物体做负功,应为负值。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法变力做功是指当力的大小和方向随着对象运动的位置而变化时,力对物体所做的功。

下面将介绍六种常见的计算变力做功的方法。

1.通过力的曲线面积计算功:当力的大小和方向随着位置的变化而变化时,可以通过绘制力与位置的曲线图,然后计算曲线下的面积来求得所做的功。

2.利用求和法计算功:将运动过程划分成若干个小的位移段,对每个位移段内力的大小和方向保持不变,然后通过求和法计算每个位移段上力所做的功,最后将所有位移段上力所做的功相加得到总功。

3.应用积分法计算功:对力和位移变化连续的问题,可以利用微积分中的积分法来计算变力做功。

通过计算力在位移方向上的积分,即对力关于位移的函数进行积分,来得到变力做功的结果。

4.利用功率和时间计算功:如果已知物体在一段时间内所受到的平均力和物体的平均速度,可以利用功率和时间的关系来计算功。

功率定义为单位时间内做功的大小,根据功率公式P=W/t,其中W是做功的大小,t是时间,可以通过已知的其它量来计算功。

5.利用速度和质量计算功:在一些特定的情况下,可以利用物体的速度和质量来计算变力做功。

根据力学中的动能定理,物体的动能变化等于外力所做的功,其中动能定义为 K=1/2 mv^2,其中 m 是质量, v 是速度。

6.利用万有引力计算功:当物体受到的力是万有引力时,可以利用万有引力公式来计算变力做功。

万有引力公式为F=GmM/r^2,其中F是力,m和M是物体的质量,G 是万有引力常数,r是两物体之间的距离。

通过将力乘以物体的位移并将结果进行积分,可以得到变力做功的计算结果。

这些是常见的计算变力做功的方法,根据具体问题的条件和要求,选择适合的方法来计算变力做功。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法第一种方法是曲线切线式。

在物体沿曲线运动的情况下,可以通过计算力的切线分量与物体速度的乘积来确定变力做功的大小。

具体计算方法是,首先需要确定物体在其中一时刻的速度,然后取该时刻的力的切线分量(即与物体速度方向相同的力的分量),最后将该切线分量与物体速度的乘积相乘,即可得到变力做功的大小。

第二种方法是常力法。

在物体受到一定的恒定力作用下,可以通过计算力与物体位移方向的夹角的余弦值再乘上力的大小来确定变力做功的大小。

具体计算方法是,首先需要确定力的大小,然后确定物体的位移方向与力的方向之间的夹角,最后将位移方向与力的方向之间夹角的余弦值乘以力的大小,即可得到变力做功的大小。

第三种方法是分力法。

当物体受到多个力的作用时,可以通过计算各个力的分力与物体位移方向之间的夹角的余弦值再分别乘上各个分力的大小来确定变力做功的大小,然后将各个分力的做功求和即可得到变力做功的总大小。

第四种方法是连续变力法。

在物体受到连续变化的力作用下,可以通过将力的大小关于物体位移的函数表示出来,然后对该函数进行积分来确定变力做功的大小。

具体计算方法是,首先需要确定力对物体位移的函数关系式,然后对该函数进行积分,最后得到的积分值即为变力做功的大小。

第五种方法是有功做功法。

在物体受到非保守力作用下,可以通过计算力的非保守分量与物体位移的乘积再加上势能变化的大小来确定变力做功的大小。

具体计算方法是,首先需要确定力的保守分量与非保守分量,然后将非保守分量与位移的乘积相加,再加上势能变化的大小,即可得到变力做功的大小。

第六种方法是负功做功法。

在物体受到反向力作用下,可以通过计算该反向力的绝对值与物体位移的乘积再乘上负一来确定变力做功的大小。

具体计算方法是,首先需要确定反向力的大小,然后将反向力的绝对值与位移的乘积相乘,并将结果乘以负一,即可得到变力做功的大小。

综上所述,变力做功的六种常见计算方法分别是曲线切线式、常力法、分力法、连续变力法、有功做功法和负功做功法。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法在高中阶段,力做功的计算公式是W=FScosα,但是学生在应用时,只会计算恒力的功,对于变力的功,高中学生是不会用的。

下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。

方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。

例题1:如图所示。

质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0。

25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小.解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/R;当拉力为0。

25F时,0.25F=mv22/2R。

此题中,当半径由R 变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定理,求得外力对物体所做的功的大小W=0。

5mv12—0。

5mv22=0。

25RF.方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。

例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2。

25km,速度达到最大值v=54km/h。

假设机车受到的阻力为恒力。

求机车在运动中受到的阻力大小。

解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。

所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。

在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。

由动能定理,Pt—fs=0。

5mv2—0,把P=Fv=fv代入得,阻力f=25000N.方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可.例题3:如图所示。

轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。

(完整版)五种方法搞定变力做功问题

(完整版)五种方法搞定变力做功问题

五种方法搞定变力做功一.微元法思想。

当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w •=来求解,但是可以将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。

例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。

求此过程中摩擦力所做的功。

思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果 图1图2把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功二、平均值法当力的大小随位移成线性关系时,可先求出力对位移的平均值221F F F +=,再由αcos L F W =计算变力做功。

如:弹簧的弹力做功问题。

例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则小物块运动到x 0处时的动能为 ( ) A .0 B .021x F mC .04x F m πD .204x π【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为04m F x π.C 答案正确.三.功能关系法。

功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。

例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体,物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系一定是:A .E KB -E KA =E KC -E KB B .E KB -E KA <E KC -E KB C .E KB -E KA >E KC -E KBD .E KC <2E KBF x 0FxF •Ox 0图2-甲图2乙【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD.四.应用公式Pt W =求解。

解题技巧:变力做功求解五法

解题技巧:变力做功求解五法

一、化变力为 恒力求变力功
变 力 做 功 求 解 五 法
二、用平均力 求变力功
三、用F-x图 象求变力功 四、用动能定 理求变力功 五、利用微元 法求变力功
一、化变力为恒力求变力功
• 变力做功直接求解时,通常都比较复杂, 但若通过转换研究的对象,有时可化为恒 力做功,可以用W=Flcos α求解。此法常 常应用于轻绳通过定滑轮拉物体的问题中。
• [典例1] 如图5-1-6所示,某人用大小不 变的力F拉着放在光滑水平面上的物体,开 始时与物体相连接的绳与水平面间的夹角 是α,当拉力F作用一段时间后,绳与水平 面间的夹角为β。已知图中的高度是h,求 绳的拉力FT对物体所做的功。假定绳的质 量、滑轮质量及绳与滑轮间的摩擦不计。


• • •
•图5-1-9

在这一小段上可 • [解析] 将小球运动的轨迹分割成无数个小段, 看成Ff为恒力, 设每一小段的长度为Δx,它们可以近似看 物体做直线运动。 成直线,且与摩擦力方向共线反向,如图 5 -1-10所示,元功W′=FfΔx,而在小球运 动的一周内小球克服摩擦力所做的功等于各 个元功的和,即 • W=W′=FfΔx=2πRFf。
•图5-1-8
五、利用微元法求变力功
• 将物体的位移分割成许多小段,因小段很 小,每一小段上作用在物体上的力可以视 为恒力,这样就将变力做功转化为在无数 多个无穷小的位移上的恒力所做元功的代 数和。此法在中学阶段, 常应用于求解力的大小不变、方向改变的 变力做功问题。
• [典例5] 如图5-1-9所示,半径为R,孔径 均匀的圆形弯管水平放置,小球在管内以 足够大的初速度在水平面内做圆周运动, 设开始运动的一周内,小球与管壁间的摩 擦力大小恒为Ff,求 • 小球在运动的这一周内, • 克服摩擦力所做的功。 •

关于变力做功的求解方法

关于变力做功的求解方法
1 【答案】 WG=mgl WFT=0 WFf=- Ffπ 2
【解题技巧】
由于变力F保持与速度在同一
直线上,也可把往复运动或曲线运动的路线拉 直考虑.如在抛体运动中,若空气阻力大小不 变,则空气阻力做的功也可采用此法求解.
学 .科 .网
4.转换法 (1)分段转换法:力在全程是变力,但在每一个
阶段是恒力,这样就可以先计算每个阶段的功,再
利用求和的方法计算整个过程中变力做的功. (2)等效替换法:若某一变力的功和某一恒力的功 相等,则可以用求得的恒力的功来作为变力的功.
学.科.网
例4
(2012· 西安八校高一联考 )某人利用如
图 6所示的装置,用 100 N的恒力 F作用于不计
质量的细绳的一端,将物体从水平面上的 A 点
移到 B 点.已知 α1 = 30°, α2 = 37°, h = 1.5 m,不计滑轮质量及绳与滑轮间的摩擦.求绳的 拉力对物体所做的功.
【精讲精析】 拉力总是等于弹簧弹力,与位 移(伸长量)成线性关系,可用平均值法求解. F1+F2 k(x1+x2) F= = 2 2 k(x1+x2) W=Fl= ·(x2-x1) 2 1 2 2 = k(x2-x1). 2 1 2 【答案】 k(x2-x2 1) 2
学.科.网
2.图象(F-l)法 如图 1 所示,在 F - l 图象中,若能求出图线与 l
(1)把变力做的功转化成恒力做功求解; (2) 力 F 做功的位移等于左边绳的变短的部分,
而不等于物体的位移.
由几何关系知,绳的端点的位移为 1 h h l= - = h=0.5 m sin30° sin37° 3 在物体从 A 移到 B 的过程中, 恒力 F 做的功为 W=Fl=100×0.5 J=50 J. 故绳的拉力对物体所做的功为 50 J.

求解变力做功的“五法”

求解变力做功的“五法”

第26点求解变力做功的“五法”1.变力的功=力×路程当力的大小不变而方向始终与运动方向相同或相反时,这类力所做的功等于力和路程的乘积,如滑动摩擦力、空气阻力等做的功.2.变力的功=平均力×x cos α当力的方向不变,大小随位移线性变化时,可先求出力的平均值F=F1+F22,再由W=F x cos α计算.3.变力的功=功率×时间当变力的功率P一定时,可用W=Pt求功.4.变力的功=“面积”作出变力F随位移x变化的图像,图像与横轴所夹的“面积”即为变力做的功,如图1中阴影部分所示.图15.变力的功=动能变化-其他恒力所做的功当物体受到变力(也可只受变力)及其他恒力作用引起物体的动能发生变化时,根据动能定理知,变力的功等于动能变化减去其他恒力所做的功.对点例题如图2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨.假设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?图2解题指导因力F的大小恒定,且始终与运动方向相同,故F的功等于力乘以路程,即W=F·2πL=2πFL答案2πFL一质量为2 kg的物体,在水平恒定拉力的作用下以某一速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图3中给出了拉力随位移变化的关系图像.已知重力加速度g=10 m/s2.根据以上信息能精确得出或估算得出的物理量有()图3A.物体与水平面间的动摩擦因数B.合外力对物体所做的功C.物体匀速运动时的速度D.物体运动的时间答案ABC解析物体做匀速运动时,受力平衡,则f=F=7 N;再由滑动摩擦力公式可求得物体与水平面间的动摩擦因数;故A正确;4 m后物体做减速运动,图像与坐标轴围成的面积表示拉力做的功,则由图像中减速过程包括的方格数可知拉力所做的功;再由摩擦力与位移的乘积求出摩擦力的功;则可求得总功;故B正确;已求出物体合外力所做的功;则由动能定理可求得物体开始时做匀速运动时的速度;故C正确;由于不知道具体的运动情况,无法求出减速运动的时间,故D错误.。

求变力做功的十种方法

求变力做功的十种方法

变力做功的十种方法河南省信阳高级中学 陈庆威功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式θcos FS W =直接求解,但变力做功就不能直接用公式了,这里总结了一些求变力做功的方法,希望能对读者有帮助。

一. 动能定理法例1. 如图所示,质量为m 的物体从A 点沿半径为R 的粗糙半球内表面以的速度开始下滑,到达B 点时的速度变为,求物体从A 运动到B 的过程中,摩擦力所做的功是多少?【解析】物体由A 滑到B 的过程中,受重力G 、弹力和摩擦力三个力的作用,因而有,即,式中为动摩擦因数,v 为物体在某点的速度,为物块与球心的连线与竖直方向的夹角。

分析上式可知,物体由A 运动到B 的过程中,摩擦力是变力,是变力做功问题,根据动能定理有,在物体由A 运动到B 的过程中,弹力不做功;重力在物体由A 运动到C 的过程中对物体所做的正功与物体从C 运动到B 的过程中对物体所做的负功相等,其代数和为零。

因此,物体所受的三个力中摩擦力在物体由A 运动到B 的过程中对物体所做的功,就等于物体动能的变化量,则有:即 可见,如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,此类方法解决问题是行之有效的。

【点评】利用动能定理可以求变力做功,但不能用功的定义式直接求变力功,并且用动能定理只要求始末状态,不要求中间过程。

这也是动能定理比牛顿运动定律优越的一个方面。

二. 微元法对于变力做功,不能直接用θcos FS W =进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F 是恒力,用θcos FS W =求出每一小段内力F 所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,具有普遍的适用性。

例2. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。

求解变力做功的八种方法

求解变力做功的八种方法

求解变力做功的八种方法在物理学中,做功是指力对物体施加作用力并使其产生位移的过程中所做的功。

而当作用力是变化的时候,求解变力做功就变得相对复杂。

本文将介绍八种常用的方法来求解变力做功问题,帮助读者更好地理解这一物理概念。

一、分割法分割法是将变力分割成多个小的力,然后分别计算每个小力在相应的位移上所做的功,再将它们累加起来。

通过将变力离散化,我们可以近似所需求解的变力做功。

二、辅助函数法辅助函数法是将变力关于位移进行积分,得到一个辅助函数,再通过求导的方法求解变力做功。

这个方法需要对变力进行积分和求导,适用于一些特殊的变力情况。

三、力的分解法力的分解法是将变力分解成两个简化的力,一般是平行和垂直于位移的力,然后分别计算每个简化力在相应的位移上所做的功,再将它们相加。

通过将变力进行分解,我们可以将复杂的问题简化为分别求解两个力的功的问题。

四、动能定理法动能定理法利用了动能的变化与外力做功的关系,即外力做功等于物体动能的变化。

通过对物体的动能变化进行分析,我们可以求解变力做功的问题。

五、引入势函数法引入势函数法是将变力与势函数建立联系,通过势函数的导函数来求解变力做功。

这个方法需要找到一个合适的势函数,适用于一些具有简单势函数形式的变力情况。

六、平均值法平均值法是将变力近似为一个平均力,然后计算该平均力在整体位移上所做的功。

虽然这种方法只是对变力做功的近似,但在一些情况下可以提供一个比较准确的结果。

七、图形法图形法是通过绘制力与位移之间的图形来求解变力做功。

通过图形分析,我们可以计算图形下的面积或曲线的积分,进而得到变力做功的值。

八、牛顿第二定律法牛顿第二定律法利用了牛顿第二定律与功的关系,即力乘以位移等于质量乘以加速度乘以位移。

通过将力进行分解,我们可以将变力做功的问题转化为求解加速度和位移的问题。

综上所述,以上八种方法是常用的求解变力做功的方法。

在实际问题中,根据具体情况选择合适的方法求解变力做功问题,可以帮助我们更好地理解力学中的变力概念,并解决具体的物理问题综合上述八种方法,我们可以看出,求解变力做功问题的方法有多种多样,每种方法在不同情况下都有其适用性和限制性。

变力做功的几种解(用)

变力做功的几种解(用)

三. 平均力法
例题3:用铁锤将一铁钉击入木块,设木块 对铁钉的阻力与铁钉钉入木块内的深度成 正比。在铁锤击第一次时,能把铁钉击入 木块内1cm,问击第二次时,能击入多深? (设铁锤每次做功都相等)
▪ 练习:一辆汽车质量为105kg,从静止开始运动,其 阻力为车重的0.05倍.其牵引力的大小与车前进的 距离变化关系为F=103x+f0,f0是车所受的阻力.当 车前进100m时,牵引力做的功是多少?
▪ 最大值和最小值。
▪ (2)此过程中力F所做的功。
练习:两个底面积都是S的圆筒,放在同 一水平面上,桶内装水,水面高度分别为 h1和h2,如图所示,已知水的密度为ρ.现把 连接两桶的阀门打开,最后两桶水面高度 相等,则这过程中重力所做的功等于 .
h1
h2
八. 机械能守恒法
▪ 例8. 如图所示,质量m为2kg的物体,从 光滑斜面的顶端A点以的初速度滑下,在D 点与弹簧接触并将弹簧压缩到B点时的速 度为零,已知从A到B的竖直高度,求弹簧 的弹力对物体所做的功。
N
2
∴W= S=1×105×100J=1×107J。
应用此法,要求变力与位移间须呈一次函数关系.
四. 图象法
▪ 例4. 用铁锤将一铁钉击入木块,设木块对 铁钉的阻力与铁钉钉入木块内的深度成正
比。在铁锤击第一次时,能把铁钉击入木 块内1cm,问击第二次时,能击入多深? (设铁锤每次做功都相等)
▪ 练习:如图所示,图线表示作用在做直线运动 的物体上的合外力与物体运动位移的对应 关系,物体开始时处于静止状态,则当物体在 外力的作用下,运动30m的过程中,合外力对 物体做的功为 200 J.
九. 功能原理法
▪ 例5. 如图所示,质量为m的物体从A点沿 半径为R的粗糙半球内表面以的速度开始 下滑,到达B点时的速度变为,求物体从A 运动到B的过程中,摩擦力所做的功是多 少?

求解变力做功的十种方法

求解变力做功的十种方法

求解变力做功的十种方法变力做功是指力的大小和方向在作功过程中发生变化的情况。

下面将介绍十种常见的变力做功的方法。

1.拉力做功:当一个物体被施加拉力时,拉力在作功过程中的大小和方向都是持续变化的。

通常情况下,拉力的大小会逐渐增加,直到物体被拉到目标位置。

这个过程中拉力所做的功等于力的大小乘以物体的位移。

2.推力做功:推力做功与拉力做功类似,只不过是力的方向相反。

当一个物体被施加推力时,推力也会在作功过程中发生变化,直到物体被推到目标位置。

推力所做的功也等于力的大小乘以物体的位移。

3.弹力做功:当一个物体被施加弹性势能时,弹力会在作功过程中发生变化。

例如,当拉伸弹簧时,弹簧的劲度系数会导致拉力的大小随着弹簧的伸长而增加。

弹力所做的功等于力的大小乘以物体的位移。

4.阻力做功:当一个物体受到空气阻力或其他形式的阻力时,阻力会在作功过程中发生变化。

通常情况下,阻力的大小与物体的速度成正比。

因此,在物体运动时,阻力所做的功等于力的大小乘以物体的速度与位移之积。

5.重力做功:当一个物体被抬高或下落时,重力会在作功过程中发生变化。

抬高物体时,重力的大小会减小,而下落时则会增大。

重力所做的功等于力的大小乘以物体的高度。

6.磨擦力做功:当一个物体受到摩擦力时,摩擦力会在作功过程中发生变化。

通常情况下,摩擦力的大小与物体的接触面积和物体间的粗糙程度有关。

磨擦力所做的功等于力的大小乘以物体的位移。

7.引力做功:当一个物体受到另一个物体的引力作用时,引力会在作功过程中发生变化。

例如,当地球绕太阳运动时,引力的大小会随着地球到太阳的距离的变化而变化。

引力所做的功等于力的大小乘以物体的位移。

8.中心力做功:中心力是指作用在物体上的力总是指向物体的中心。

例如,当一个物体沿着圆形轨道运动时,中心力会在作功过程中发生变化,因为物体距离中心的距离在变化。

中心力所做的功等于力的大小乘以物体的位移。

9.引力做功:引力做功是指一个物体由于受到其他物体的引力而发生位移时,引力所做的功。

求解变力做功问题的七种方法

求解变力做功问题的七种方法

囊 m t , e r s i t 3 m n ㈣ 甜 { 鲫 { 黪


条 简便 的途 径. 运用 功能 关 系求变 力 做功 , 关
键 是分 清 研 究 过 程 中 有 多 少 种 形 式 的 能 转
大, F做 的功是 变力 功 , 小球 上 升 过程 中只 有 化 的量 度 , 我们 可 以根 据 能 量 转 化 的情 况 来
静 例2 如图2 所示, 原
来质 量 为 m 的 小球 用 长 的 细
线悬挂 而静 止在 竖直位 置. 用水
平拉 力 F 将 小 球 缓 慢 地 拉 到 细
线与竖 直 方 向成 角 的位 置 的
过程 中, 拉 力 F做 功为 (
A.
图 1

图2
c o s 0
B. FLs i n O
重 力 和拉 力做 功 , 而 整个 过 程 的 动 能改 变 为 判 断做 功 的情 况 , 则 给求 变 力 做 功 提 供 了一
零, 可用 动能 定理 求解 :
+ = 一EK=0
所 以 WE = 一Wc= m g L ( 1一 c o s O )
化, 即有什 么能 增加 或减 少 , 有 多少个 力 做 了
设 滑轮 距地 面 的高 度为 h 则: h ( c o t 3 0 。 一c o t 6 0 。 )= s
难 点. 求 变 力做 功 的方法 很 多 , 比如用 动 能定 F—s 图象 、 微元 累积法 等来 求变 力 做功.
; 一
人 由 走 到 B的过 程 中 , 重 物 上 升 的高
该过 程其 它力 例1 人 在 A点拉 着绳通 过 一 定 滑 过程 中的初动能 和末动 能可求 , 做功可求 , 那 么该 过程 中变 力做 功 可求 . 运 用 轮 吊起 质 量 m = 5 0 k g的物 体 , 如 图 1所 示 , 动能定理 求变 力 做功 关键 是 了解 哪 些 外力 做

求解变力做功问题的五种方法

求解变力做功问题的五种方法

求解变力做功问题的五种方法在高中阶段,应用做功公式W=FScosα来解题时,公式中F只能是恒力。

如果F是变力,就不能直接应用公式W=FScosα来求变力做功问题。

但是题目中又经常出现变力做功问题,下面介绍五种求解变力做功问题的方法。

一:将变力做功转化为恒力做功来求解我们知道变力做功不可以直接用公式W=FScosα来计算,但有些情况下,将变力转化成恒力做功,就可以用公式直接求解。

例题1:如图1所示,人用大小不变的力F拉着放在光滑平面上的物体,开始时与物体相连的绳子和水平面间的夹角是α,当拉力F作用一段时间后,绳子与水平面的夹角是β,图中的高度是h,求绳子拉力T对物体所做的功,(绳的质量,滑轮的质量和绳与滑轮之间的摩擦均不计)。

分析与解答:在物体向右运动过程中,绳子拉力T是一个变力,是变力做功问题。

但是拉力T大小等于力F的大小,且力F是恒力。

因此,求绳子拉力T对物体所做的功就等于力F所做的功。

由图可知,力F的作用点移动的位移大小为:ΔS=S1-S2。

则:W T=W F=FΔS=F(S1-S2)=Fh(1/sinα-1/sinβ).二:用动能定理来求解我们知道,动能定理的内容:外力对物体所做的功等于物体动能的增量。

如果我们研究物体所受的外力中只有一个是变力,其他力都是恒力,而且这些力做功比较容易求,就可以用动能定理来求变力做功。

例题2:如图2所示,质量为2kg的物体从A点沿半径为R的粗糙半球内表面以10m/s 的速度开始下滑,到达B点时的速度变为2m/s,求物体从A点运动到B点的过程中,摩擦力所做的功是多少?分析及解答:物体从A点运动到B点的过程中,受到重力G、弹力N和摩擦力f三个力作用,在运动过程中,摩擦力f的方向和大小都发生改变,因此摩擦力f是变力,是变力做功问题。

物体从A点运动到B点的过程中,弹力N不做功,重力G做功为零。

物体所受的三个力中摩擦力在物体从A点运动到B点的过程中对物体所做的功,就等于物体动能的变化量,则W外=W f=ΔE k=1/2mV B2-1/2mV A2=-96(J).三:用机械能守恒定律来求解我们知道,物体只受重力和弹力作用或只有重力和弹力做功时,系统的机械能守恒。

变力做功的求解方法

变力做功的求解方法

变力做功的求解方法在求功公式中,F是恒力,即在做功过程中,F的大小、方向都不变。

当F 是变力时,该怎样求功呢?本文介绍以下方法:1. 转化为恒力做功在某些情况下,通过等效变换可以将变力做功转换成恒力做功,于是可以用求解。

例1. 如图1所示,某人用大小不变的力F拉着放在光滑水平面上的物体。

开始时与物体相连的轻绳和水平面间的夹角为α,当拉力F作用一段时间后,绳与水平面间的夹角为β。

已知图1中的高度是h,绳与滑轮间的摩擦不计,求绳的拉力F T对物体所做的功。

图1分析:拉力F T在对物体做功的过程中大小不变,但方向时刻改变,所以这是个变力做功问题。

由题意可知,人对绳做的功等于拉力F T对物体做的功,且人对绳的拉力F是恒力,于是问题转化为求恒力做功。

由图1可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移为:所以绳对物体做功:2. 用动能定理动能定理表达式为,其中是所有外力做功的代数和,△E k是物体动能的增量。

如果物体受到的除某个变力以外的其他力所做的功均能求出,那么用动能定理就可以求出这个变力所做的功。

例2. 如图2所示,质量的物体从轨道上的A点由静止下滑,轨道AB是弯曲的,且A点高出B点。

物体到达B点时的速度为,求物体在该过程中克服摩擦力所做的功。

图2分析:物体由A运动到B的过程中共受到三个力作用:重力G、支持力和摩擦力。

由于轨道是弯曲的,支持力和摩擦力均为变力。

但支持力时刻垂直于速度方向,故支持力不做功,因而该过程中只有重力和摩擦力做功。

由动能定理,其中所以代入数据解得3. 用W=Pt利用此式可求出功率保持不变的情况下变力所做的功。

例3. 质量为5t的汽车以恒定的输出功率75kW在一条平直的公路上由静止开始行驶,在10s内速度达到10m/s,求摩擦阻力在这段时间内所做的功。

分析:汽车的功率不变,根据知,随着速度v 的增大,牵引力将变小,不能用求功,但已知汽车的功率恒定,所以牵引力在这段时间内所做的功JJPt W F 53105.7101075⨯=⨯⨯==再由动能定理得:所以4. 用图象法在图象中,图线和横轴所围成的面积即表示力所做的功。

第29讲 变力做功的6种计算方法(解析版)

第29讲 变力做功的6种计算方法(解析版)

第29讲变力做功的6种计算方法一.知识回顾方法举例说法1.应用动能定理用力F把小球从A处缓慢拉到B处,F做功为W F,则有:W F-mgL(1-cosθ)=0,得W F=mgL(1-cosθ)2.微元法质量为m的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f=F f·Δx1+F f·Δx2+F f·Δx3+…=F f(Δx1+Δx2+Δx3+…)=F f·2πR3.等效转换法恒力F把物块从A拉到B,绳子对物块做功W=F·⎝⎛⎭⎪⎫hsinα-hsinβ4.平均力法弹簧由伸长x1被继续拉至伸长x2的过程中,克服弹力做功W=kx1+kx22·(x2-x1)6.图像法在F­x图像中,图线与x轴所围“面积”的代数和就表示力F在这段位移上所做的功7.功率法汽车恒定功率为P,在时间内牵引力做的功W=Pt二.例题精析例1.如图所示,质量均为m的木块A和B,用一个劲度系数为k的竖直轻质弹簧连接,最初系统静止,重力加速度为g,现在用力F向上缓慢拉A直到B刚好要离开地面,则这一过程中弹性势能的变化量△E p和力F做的功W分别为()A .m 2g 2k,m 2g 2kB .m 2g 2k,2m 2g 2kC .0,m 2g 2kD .0,2m 2g 2k【解答】解:开始时,A 、B 都处于静止状态,弹簧的压缩量设为x 1,由胡克定律有 kx 1=mg ,解得:x 1=mgk物体A 恰好离开地面时,弹簧对B 的拉力为mg ,设此时弹簧的伸长量为x 2,由胡克定律有 kx 2=mg ,解得:x 2=mg k由于弹簧的压缩量和伸长量相等,则弹簧的弹性势能变化为零; 这一过程中,物体A 上移的距离为:d =x 1+x 2=2mgk ,根据功能关系可得拉力做的功等于A 的重力势能的增加量,则有:W =mgd =2m 2g 2k ,故D 正确,ABC 错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变力的功求法集锦第一.平均力法1.基本依据:如果一个过程,若F 是位移l 的线性函数时,即F=k l +b 时,可以用F 的平均值 =F (F 1 +F 2)/2来代替F 的作用效果来计算。

2.基本方法:先判断変力F 与位移l 是否成线性关系,然后求出该过程初状态的力1F 和末状态的力2F ,再求出每段平均力和每段过程位移,然后由αcos l F W =求其功。

【例1】用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉钉入木块内的深度成正比。

在铁锤击第一次时,能把铁钉击入木块内1cm ,问击第二次时,能击入多深?(设铁锤每次做功都相等)解析:铁锤每次做功都是克服铁钉阻力做功,但摩擦阻力不是恒力,其大小与深度成正比。

,可用平均阻力来代替。

如图所示,第一次击入深度为,平均阻力为, 做功为:第二次击入深度为到,平均阻力为:位移为做功为:两次做功相等:解后有:练习1:例如:用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比,已知铁锤第一次将钉子钉进d ,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次进入木板的深度是多少? 解:()22kd kd k d d d d '++'⋅= ∴(21)d d '=-此题也可用图像法:因为木板对钉子的阻力与钉进木板的深度成正比,即F =kd ,其图象为图所示。

铁锤两次对钉子做功相同,则三角形OAB 的面积与梯形ABCD 的面积相等,即[]')(21)(21d d d k kd kd d ⨯'++=⨯解得 (21)d d '=- 练习2:要把长为l 的铁钉钉入木板中,每打击一次给予的能量为E 0,已知钉子在木板中遇到的阻力与钉子进入木板的深度成正比,比例系数为k 。

问此钉子全部进入木板需要打击几次?分析:在把钉子打入木板的过程中,钉子把得到的能量用来克服阻力做功,而阻力与钉子进入木板的深度成正比,先求出阻力的平均值,便可求得阻力做的功。

钉子在整个过程中受到的平均阻力为:F k l k l =+=022钉子克服阻力做的功为:W F l k l F ==122设全过程共打击n 次,则给予钉子的总能量:E n E k l 总==0212 所以n k l E =22 【例2】如图所示,轻弹簧一端与竖直墙壁相连,另一端与一质量为m 的木块连接,放在光滑的水平面上。

弹簧劲度系数为k ,开始时处于自然长度。

现用水平力缓慢拉木块,使木块前进x ,求拉力对木块做FKd+d ′d +d ′kdd C A B D了多少功?解析:在缓慢拉动过程中,力F 与弹簧弹力大小相等,即F=kx 。

当x 增大时,F 增大,即F 是一变力,求变力做功时,不能直接用Fscosα计算,可以用力相对位移的平均值代替它,把求变力做功转换为求恒力做功。

F 缓慢拉木块,可以认为木块处于平衡状态,故拉力等于弹力,即F=kx 。

因该力与位移成正比,可用平均力 kx F 21=求功,故221kx x F W =⋅=。

【例3】如图所示,在盛有水的圆柱形容器内竖直地浮着一块立方体木块,木块的边长为h ,其密度为水的密度ρ的一半,横截面积也为容器截面积的一半,水面高为2h ,现用力缓慢地把木块压到容器底上,设水不会溢出,求压力所做的功。

解析:木块下降同时水面上升,因缓慢地把木块压到容器底上,所以压力总等于增加的浮力,压力是変力,当木块完全浸没在水中的下降过程压力是恒力。

本题的解法很多,功能关系、F-S 图像法、平均值法等均可求変力做功,现用平均值法求。

木块从开始到完全浸没在水中,设木块下降1x ,水块上升2x (同体积的水块随木块的下降而上升)根据水的体积不变,则:2212x h x h = 得21x x = 所以当木块下降4h 时,木块恰好完全浸没在水中,1122122)(x x gh x x gh F F ∝=+=∆=ρρ浮所以42211814220424gh h hgh h F F h F W ρρ=+=+==木块恰好完全浸没在水中经h h h h 45432=-=∆到容器底部,压力为恒力22h gh F ρ=所以42285452gh h h gh h F W ρρ=⋅=∆= 故压力所做的功为: 第二. 图象法1.原理:在F-l 图象中,图线与坐标轴所围成的“面积”表示功,作出变力变化的F -l 图象,图象与位移轴所围的“面积”即为变力做的功。

力学中叫作示功图。

2、方法:对于方向在一条直线上,大小随位移变化的力,作出F-l 图象,求出图线与坐标轴所围成的“面积”,就求出了变力所做的功。

【例1】静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图所示,图线为半圆.则小物块运动到x 0处时的动能为 ( ) 答案(C )A.0B. 1/2F m x 0C.4πF m x 0D.4πx 02 【例2】用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比,已知铁锤第一次将钉子钉进d ,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次进入木板的深度是多少?42143gh W W W ρ=+=分析与解:因为阻力,以F 为纵坐标,F 方向上的位移x 为横坐标,作出图象,如图所示,函数线与x 轴所夹阴影部分面积的值等于F 对铁钉做的功。

由于两次做功相等,故有:(面积)即【例3】如图所示,轻弹簧一端与竖直墙壁相连,另一端与一质量为m 的木块连接,放在光滑的水平面上。

弹簧劲度系数为k ,开始时处于自然长度。

现用水平力缓慢拉木块,使木块前进x ,求拉力对木块做了多少功。

此题也可用图像法:F 缓慢拉木块,可以认为木块处于平衡状态,故拉力等于弹力,即F=kx ,作出F-x图,求出图线与坐标轴所围成的“面积”,结果也是221kx x F W =⋅=。

练习:放在地面上的木块与一劲度系数k N m=200/的轻弹簧相连。

现用手水平拉弹簧,拉力的作用点移动x m 102=.时,木块开始运动,继续拉弹簧,木块缓慢移动了x m 204=.的位移,求上述过程中拉力所做的功。

分析:由题意作出F x -图象如图所示,在木块运动之前,弹簧弹力随弹簧伸长量的变化是线性关系,木块缓慢移动时弹簧弹力不变,图线与横轴所围梯形面积即为拉力所做的功。

即第三.用公式求解1.基本原理:在机车的功率不变时,根据P F v =知,随着速度v 的增大,牵引力将变小,不能用W F l =求功,但已知功率恒定,所以牵引力在这段时间内所做的功可以根据求出来。

2.基本方法:因为功率恒定,所以设法求出做功的时间,然后即可按求出这段时间牵引力的功。

(在已知平均功率一定时,也可采用这种方法)【例1】质量为m 的机车,以恒定功率从静止开始起动,所受阻力是车重的k 倍,机车经过时间t 速度达到最大值v ,求机车的功率和机车所受阻力在这段时间内所做的功。

解析:机车的功率恒定,从静止开始达到最大速度的过程中,牵引力不断减小,当速度达到最大值时,机车所受牵引力达到最小值,与阻力相等。

在这段时间内机车所受阻力可认为是恒力,牵引力是变力,因此,机车做功不能直接用来求解,但可用公式来计算。

根据题意,机车所受阻力,当机车速度达到最大值时,机车功率为: 根据,该时间内机车牵引力做功为:根据动能定理, 得牵引力克服阻力做功为:故阻力做功为:练习1:质量为5t 的汽车以恒定的输出功率75kW 在一条平直的公路上由静止开始行驶,在10s 内速度达到10m/s ,求摩擦阻力在这段时间内所做的功。

分析:汽车的功率不变,根据P F v =知,随着速度v 的增大,牵引力将变小,不能用W F l =求功,但已知汽车的功率恒定,所以牵引力在这段时间内所做的功,再由动能定理得: 所以练习2:质量为5000Kg 的汽车,在平直公路上以60kW 的恒定功率从静止开始启动,速度达到24m/s 的最大速度后,立即关闭发动机,汽车从启动到最后停下通过的总位移为1200m.运动过程中汽车所受的阻力不变.求汽车运动的时间。

解析:牵引力是変力,该过程中保持功率P 恒定,牵引力的功可以通过Pt W =来求。

汽车加速运动的时间为1t ,由动能定理得:0F -Pt f 1=⋅s汽车达到最大速度时,牵引力和阻力大小相等,则m f m v F Fv P ⋅== 即mf v P F =可求得汽车加速运动的时间为s s v s P sF t m f 502412001===⋅=关闭油门后,汽车在阻力作用下做匀减速直线运动至停止,由动量定理得:m mv t -=⋅0F -2f 可求得汽车匀减速运动的时间为s s P mv F mv t m f m 48100060245000222=⨯⨯===则汽车运动的时间为:t =t 1+t 2=50s +48s =98s小结:对于交通工具以恒定功率运动时,都可以根据来求牵引力这个变力所做的功。

第四.等效变换法:1.基本思路:在某些情况下,通过等效变换可以将变力做功转换成恒力做功,然后用WF l =c o s α求解。

2.基本方法:找出不变的因素,将变力做功转换成恒力做功及与之对应的位移,然后用求功公式求解。

【例1】 如图所示,某人用大小不变的力F 拉着放在光滑水平面上的物体。

开始时与物体相连的轻绳和水平面间的夹角为α,当拉力F 作用一段时间后,绳与水平面间的夹角为β。

已知图中的高度是h ,绳与滑轮间的摩擦不计,求绳的拉力F T 对物体所做的功。

分析:拉力F T 在对物体做功的过程中大小不变,但方向时刻改变,所以这是个变力做功问题。

由题意可知,人对绳做的功等于拉力F T 对物体做的功,且人对绳的拉力F 是恒力,于是问题转化为求恒力做功。

由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F 的作用点的位移为:⎪⎪⎭⎫ ⎝⎛-=-=∆βαsin 1sin 121h s s s 所以绳对物体做功:⎪⎪⎭⎫ ⎝⎛-=∆==βαsin 1sin 1Fh s F W W F T · 变式:如图所示,质量为m 的滑块可以在光滑水平面上滑动,滑块与一不可伸长的轻绳相连,绳跨过一光滑的定滑轮(滑轮大小不计),另一端被人拉着,人的拉力大小、方向均不变,大小为,已知滑轮到水平面的高度为,AB 的长度,求滑块从A 被拉到B 的过程中,外力对它所做的功。

解析:同上,由几何关系可求得s ,根据,。

【例2】以一定的速度竖直向上抛出一小球,小球上升的最大速度为h ,空气的阻力大小恒为F ,则从抛出至落回出发点的过程中,空气阻力对小球做的功为( )答案:CA .0B .-FhC .-2FhD .-4Fh解析:从全过程看,空气的阻力为变力,但将整个过程分为两个阶段:上升阶段和下落阶段,小球在每个阶段上受到的阻力都是恒力,且总是跟小球运动的方向相反,空气阻力对小球总是做负功,全过程空气阻力对小球做的功等于两个阶段所做功的代数和,即()()Fh Fh Fh W W W 2-=-+-=+=下上点拨:空气阻力、摩擦阻力是一种特殊的力,在计算这种力做功时,不可简单地套用功的计算公式αcos Fl W =得出W =0的错误结论.从上面的正确结果可以看出:空气阻力做的功在数值上等于阻力与全过程小球路程的乘积。

相关文档
最新文档