《中心对称图形的概念和性质》教案
中心对称图形教案+教案说明
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能够识别和绘制各种中心对称图形。
通过一系列的教学活动和实例,学生将能够掌握中心对称图形的性质和特点,并能够运用这些知识解决实际问题。
教学目标:1. 了解中心对称图形的定义和性质。
2. 能够识别和绘制中心对称图形。
3. 能够运用中心对称图形的性质解决实际问题。
教学内容:第一章:中心对称图形的定义1.1 引入中心对称图形的概念。
1.2 解释中心对称图形的定义。
1.3 举例说明中心对称图形的特征。
第二章:中心对称图形的性质2.1 介绍中心对称图形的基本性质。
2.2 通过实例演示中心对称图形的性质。
第三章:识别中心对称图形3.1 教授如何识别中心对称图形。
3.2 提供练习题,让学生练习识别中心对称图形。
3.3 给予反馈和指导。
第四章:绘制中心对称图形4.1 教授如何绘制中心对称图形。
4.2 提供练习题,让学生练习绘制中心对称图形。
4.3 给予反馈和指导。
第五章:中心对称图形在实际问题中的应用5.1 介绍中心对称图形在实际问题中的应用。
5.2 提供实际问题,让学生运用中心对称图形的知识解决。
5.3 给予反馈和指导。
教学方法:1. 采用直观演示法,通过实物和图形进行展示和讲解。
2. 采用问题解决法,提供实际问题,让学生运用中心对称图形的知识解决。
3. 采用分组讨论法,让学生分组讨论和交流,促进学生的思维和合作能力。
评价方法:1. 课堂练习题,评估学生对中心对称图形的理解和掌握程度。
2. 实际问题解决,评估学生运用中心对称图形知识解决实际问题的能力。
3. 学生分组讨论和交流,评估学生的合作和思维能力。
教学资源:1. 中心对称图形的实物和图形展示。
2. 练习题和实际问题。
3. 分组讨论和交流的指导。
教学时间:1. 第一章:2课时2. 第二章:2课时3. 第三章:1课时4. 第四章:1课时5. 第五章:1课时通过本教案的学习和实践,学生将能够理解中心对称图形的概念,并能够识别和绘制各种中心对称图形。
北师大版数学八年级下册3.3《中心对称》教案
北师大版数学八年级下册3.3《中心对称》教案一. 教材分析《中心对称》是北师大版数学八年级下册第3.3节的内容,本节主要让学生了解中心对称的概念,理解中心对称图形的性质,并学会运用中心对称解决一些实际问题。
教材通过实例引入中心对称的概念,然后引导学生探究中心对称图形的性质,最后通过一些练习题巩固所学知识。
二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,如点、线、角等,并掌握了一些基本的几何性质。
同时,学生也学习了图形的轴对称,对对称概念有一定的理解。
但是,中心对称与轴对称有所不同,学生可能需要一定的时间来理解和掌握。
三. 教学目标1.让学生了解中心对称的概念,理解中心对称图形的性质。
2.培养学生运用中心对称解决实际问题的能力。
3.培养学生合作探究的学习精神,提高学生的几何思维能力。
四. 教学重难点1.中心对称的概念和性质。
2.运用中心对称解决实际问题。
五. 教学方法采用问题驱动法、合作探究法、案例教学法等,引导学生通过实例认识中心对称,探究中心对称图形的性质,并运用中心对称解决实际问题。
六. 教学准备1.准备一些中心对称的实例,如圆、平行四边形等。
2.准备一些中心对称图形的性质的练习题。
3.准备一些实际问题,如在实际图形中寻找中心对称等。
七. 教学过程1.导入(5分钟)通过展示一些实例,如圆、平行四边形等,引导学生观察这些图形的特征,让学生初步认识中心对称。
2.呈现(10分钟)呈现中心对称的定义和性质,引导学生理解和记忆。
3.操练(10分钟)让学生通过练习题,运用中心对称的性质解决问题,巩固所学知识。
4.巩固(5分钟)通过一些实际问题,让学生运用中心对称解决实际问题,加深对中心对称的理解。
5.拓展(5分钟)引导学生思考中心对称在实际生活中的应用,让学生学会学以致用。
6.小结(5分钟)让学生总结本节课所学的内容,加深对中心对称的理解。
7.家庭作业(5分钟)布置一些有关中心对称的练习题,让学生课后巩固所学知识。
3.3中心对称教案
(2)中心对称作图方法的掌握:在实际操作中,学会使用尺规工具进行中心对称作图。
举例:教师示范作图过程,学生跟随操作,针对作图过程中遇到的问题,教师进行针对性指导。
(3)将中心对称应用于实际问题:培养学生将中心对称知识应用于解决实际问题的能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“中心对称在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了中心对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对中心对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.中心对称的性质:列举中心对称的基本性质,如对角线互相平分、对应点距离相等等;
3.中心对称图形的识别:让学生学会观察和识别中心对称图形,提高空间想象能力;
4.中心对称的作图方法:教授学生如何使用尺规作图工具完成中心对称图形的作图;
5.中心对称的应用:利用中心对称进行简单图案设计,培养学生的创新意识和审美能力。
二、核心素养目标
本节课的核心素养目标如下:
1.培养学生的空间观念和几何直观,使其能够理解和识别中心对称图形,提高对几何图形的观察和分析能力;
中心对称图形教案+教案说明
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。
通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。
教学目标:1. 了解中心对称图形的定义和性质。
2. 学会如何判断一个图形是否为中心对称图形。
3. 能够运用中心对称图形的性质解决实际问题。
教学重点:1. 中心对称图形的定义和性质。
2. 判断一个图形是否为中心对称图形的方法。
教学难点:1. 理解中心对称图形的性质并运用解决实际问题。
教学准备:1. 教学PPT或黑板。
2. 中心对称图形的示例图形。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍中心对称图形的概念。
2. 向学生展示一些中心对称图形的示例。
二、新课(15分钟)1. 向学生讲解中心对称图形的定义和性质。
2. 通过示例图形,让学生观察和操作,引导学生发现中心对称图形的性质。
3. 引导学生通过推理和交流,总结中心对称图形的性质。
三、练习(10分钟)1. 让学生独立完成一些判断中心对称图形是否为中心对称图形的练习题。
2. 让学生运用中心对称图形的性质解决实际问题。
四、总结(5分钟)1. 让学生回顾本节课所学的中心对称图形的定义和性质。
2. 让学生谈谈自己在练习中遇到的问题和解决方法。
五、作业(5分钟)1. 让学生完成一些关于中心对称图形的练习题。
2. 让学生运用中心对称图形的性质解决实际问题。
教学反思:通过本节课的教学,学生应该能够理解中心对称图形的定义和性质,并能运用其性质解决实际问题。
在教学过程中,要注意引导学生通过观察、操作、推理和交流等活动,加深对中心对称图形性质的理解。
要关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。
通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。
最新版初中数学教案《中心对称概念及性质》精品教案(2022年创作)
2.3 中心对称和中心对称图形第1课时中心对称概念及性质【知识与技能】1.了解中心对称、对称中心和对称点的概念.2.理解中心对称的性质.3.掌握运用中心对称的性质作图的方法.【过程与方法】通过对中心对称的性质的探究及运用,初步学会从正反两方面去思考问题的数学思考方法,以及类比思想的应用.【情感态度】通过一系列探索活动,培养学生严谨的科学态度和探索的精神;经历数学知识融于生活实际的实习过程,体验数学学习的快乐.【教学重点】中心对称的概念;中心对称的性质;利用中心对称的性质进行作图.【教学难点】中心对称与轴对称的区别与联系,利用中心对称的性质准确作图.一、创设情境,导入新课提问〔1〕把图〔1〕中的一个图案绕点O旋转180°,你有什么发现?〔2〕如图〔2〕,线段AC、BD相交于点O,OA=OC,OB=OD,把△OCD 绕点O旋转180°,你有什么发现?【教学说明】通过显示图形变化,导入课题可以吸引学生的注意力.同时让学生通过有声有色的图形变换,引出概念,学生接收快.教师讲课前,先让学生完成预习.二、思考探究,获取新知问题1 中心对称、对称中心和对称点的概念做一做教材第51页图2-31【教学说明】通过实际操作,感受图形变化,直观的得出有关概念,易于学生理解.问题2 中心对称的性质阅读教材第51页第四段及方框内容并作图【教学说明】让学生自己动手画图,进一步加深对中心对称的理解,通过观察得出中心对称的性质,为下一步的学习打好根底.例:教材第51页“例题〞【教学说明】运用性质,寻找对应点,让学生学会作一个关于某点成中心对称的图形,并得以运用.三、运用新知,深化理解1.如下列图的4组图形中,右边的图形与左边的图形成中心对称的是〔〕2.如图,△ABC与△A′B′C′关于点O成中心对称,那么以下结论不成立的是〔〕A.点A与点A′是对称点B.BO=B′O∥A′B′D.∠ACB=∠C′A′B′3.A、B、O三点不在同一条直线上,A、A′关于点O对称,B、B′关于点O 对称,那么线段AB与A′B′的关系是,假设连接AB′、BA′,那么四边形ABA′B′是形.4.∠ABC内有一点P,作出∠ABC关于点P的对称图形.【教学说明】由学生自主完成,加深了对所学知识的理解与运用,便于教师掌握情况,做到及时辅导,并有针对性地加强训练.在完成上述题目后,让学生完成练习册中本课时的对应训练局部.答案:1.A 2.DA′B′,平行四边4.〔1〕如下列图,连接BP并延长到B′,使BP=B′P,那么B′为B的对称点;〔2〕在AB、BC上取M、N点,同理画出M、N的对称点M′、N′;〔3〕连结B′M′、B′N′,得到∠M′B′N′,即为∠ABC关于点P的对称图形.四、师生互动,课堂小结经过这节课的学习,你能作出一个关于某点的中心对称图形吗?有哪些收获?还存在哪些困难?请与同学们探讨.【教学说明】回忆所学知识,做到整体认识,突出方法总结,让学生掌握规律,同学之间相互学习,共同进步.1.布置作业:习题中的第1、4题.2.完成练习册中本课时练习的作业局部.通过练习的情况来看,学生对于中心对称的作图掌握较好,解题也相当熟练,而对于中心对称、对称中心等概念的理解上还不透彻,有些模棱两可,在以后的教学中要通过实例或图形不断加以强化.【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又效劳于生活,表达事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.〔1〕你能从图案中找出多边形吗?〔2〕你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题〔2〕的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出和求证.:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE 3BCE CDA AB是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带着学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了稳固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°〔n-2〕n例1〔课本106页例题〕有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积〔结果保存小数点后一位〕.分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24〔m〕.过O点作OP⊥△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:〔1〕用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可防止地存在误差.〔2〕用尺规等分圆正方形的作法:如图〔1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,那么可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图〔2〕任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,那么A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图〔3〕由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,那么∠APB的度数为_______./π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;〔3〕试探索∠MON的度数与正n边形边数n之间的关系.〔直接写出答案〕【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.°4.解:〔1〕连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与〔1〕相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回忆,教师再予以补充和点评.1.布置作业:从教材“〞中选取.练习册中本课时练习的“课后作业〞局部.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些根本概念,引导学生将实际问题转化为数学问题,表达了化归的思想.其次,在这一根底上,又教给学生用等分圆周的方法作正多边形,这可以开展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最根本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。
中心对称图形导教学教案
中心对称图形导教学教案第一章:中心对称图形的概念引入1.1 教学目标:让学生了解中心对称图形的定义。
培养学生识别中心对称图形的能力。
引导学生通过实际操作探索中心对称图形的性质。
1.2 教学重点:中心对称图形的定义。
中心对称图形的性质。
1.3 教学难点:理解并应用中心对称图形的性质。
1.4 教学准备:准备一些中心对称图形的实物或图片,如矩形、正方形、圆等。
准备一张大白纸和一些彩色笔,用于学生实际操作。
1.5 教学过程:1.5.1 导入:向学生介绍中心对称图形的概念,引导学生思考他们是否曾经见过类似的图形。
展示一些中心对称图形的实物或图片,让学生尝试识别它们。
1.5.2 新课导入:向学生解释中心对称图形的定义,即存在一个点作为中心,将图形上的任意一点关于这个中心进行对称,得到的图形与原图形完全重合。
举例说明一些常见的中心对称图形,如矩形、正方形、圆等。
1.5.3 实践操作:让学生分组,每组领取一张大白纸和一些彩色笔。
要求学生各自在白纸上画出一个自己设计的中心对称图形。
学生完成绘制后,让他们互相交换图形,并尝试找出中心对称点,将图形折叠或旋转,验证是否完全重合。
1.5.4 性质探索:引导学生小组合作,探索中心对称图形的性质。
学生可以通过实际操作,观察中心对称图形的特点,如对称轴的数量、对称点到图形的距离等。
教师进行点评和补充。
1.6 作业布置:让学生回家后,找一些生活中的中心对称图形,拍照或画出来,并在下一堂课上进行分享。
第二章:中心对称图形的基本性质2.1 教学目标:让学生掌握中心对称图形的基本性质。
培养学生通过实际操作验证中心对称图形性质的能力。
2.2 教学重点:中心对称图形的基本性质。
2.3 教学难点:理解和应用中心对称图形的基本性质。
2.4 教学准备:准备一些中心对称图形的实物或图片。
准备一张大白纸和一些彩色笔。
2.5 教学过程:2.5.1 复习导入:复习上节课学习的中心对称图形的定义。
让学生展示他们回家找到的中心对称图形,并进行分享。
人教版数学九年级上册《中心对称图形》教案
《23.2.2 中心对称图形》教案教学目标1.理解中心对称图形的定义及特征,体会中心对称及中心对称图形之间的区别与联系2.经历观察思考探索发现的过程,感受中心对称的特征,培养学生的观察能力与思考能力3.通过对中心对称图形的探究和认识,体验图形的变化规律,感受图形变换的美感。
享受学习数学的乐趣和积累一定的审美经验4.通过师生的共同活动,积累一定的审美体验,经历数学知识融于生活实际的学习过程,体验抽象的数学来源于生活,同时又服务于生活。
教学重点中心对称图形概念及其基本性质。
教学难点中心对称的性质、成中心对称的图形的画法。
课时安排1课时教学方法讲解、任务驱动课前准备课件、课本等教学过程一、导入新知展示生活中存在的美丽图片,提出问题:所给图形那些是轴对称图形?是轴对称图形的指出其对称轴,为什么是轴对称图形?这节课,我们就一起来学习《23.2.2 中心对称图形》。
(板书课题)二、探究新知(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.(2)作出三角形AOB关于O点的对称图形,如图所示.延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1 从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答的特点.(学生活动)例2 请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳的特点.例3 求证:如图,任何具有对称中心的四边形是平行四边形.分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形.三、归纳新知本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.四、教后反思1、最困难的事就是认识自己。
中心对称图形复习课教案
中心对称图形复习课教案一、教学目标1. 知识与技能:(1)能够识别和理解中心对称图形的概念。
(2)能够运用中心对称图形的性质解决一些简单的问题。
(3)能够画出给定中心对称图形的一种或多种对称图形。
2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力和抽象思维能力。
(2)培养学生运用中心对称图形的性质解决实际问题的能力。
3. 情感态度与价值观:(1)激发学生对中心对称图形的兴趣,培养学生的审美情趣。
(2)培养学生独立思考、合作交流的学习习惯,提高学生的团队协作能力。
二、教学内容1. 中心对称图形的概念及其性质。
2. 中心对称图形与轴对称图形的区别与联系。
3. 运用中心对称图形的性质解决实际问题。
三、教学重点与难点1. 教学重点:(1)中心对称图形的概念及其性质。
(2)运用中心对称图形的性质解决实际问题。
2. 教学难点:(1)中心对称图形与轴对称图形的区别与联系。
(2)如何运用中心对称图形的性质解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究中心对称图形的性质。
2. 利用多媒体辅助教学,直观展示中心对称图形的特点。
3. 组织学生进行小组讨论,培养学生的团队协作能力。
4. 创设实践环节,让学生动手操作,提高学生的实践能力。
五、教学过程1. 导入新课:(1)复习轴对称图形的概念及其性质。
(2)提问:轴对称图形与中心对称图形有什么区别与联系?2. 探究中心对称图形的概念及其性质:(1)引导学生观察和操作,让学生体会中心对称图形的定义。
(2)引导学生发现中心对称图形的性质,如:对称中心、对称轴等。
3. 运用中心对称图形的性质解决实际问题:(1)出示例题,让学生独立解决。
(2)组织学生进行小组讨论,分享解题思路和解题方法。
4. 巩固练习:(1)出示一些有关中心对称图形的练习题,让学生独立完成。
(2)教师对学生的练习情况进行讲解和指导。
5. 课堂小结:(1)总结本节课的中心对称图形的概念及其性质。
数学教案-中心对称和中心对称图形
数学教案-中心对称和中心对称图形学问归纳1.中心对称把一个图形围着某一点旋转,假如它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.中心对称的两个图形具有如下性质:〔1〕关于中心对称的两个图形全等;〔2〕关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.推断两个图形成中心对称的方法是:假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.2.中心对称图形把一个图形绕某一点旋转,假如旋转后的图形能够和原来的图形相互重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.矩形、菱形、正方形、平行四边形都是中心对称图形,对角钱的交点就是它们的对称中心;圆是中心对称图形,圆心是对称中心;线段也是中心对称图形,线段中点就是它的对称中心.学问结构重点、难点分析:本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点.由于概念是推导三独特质的主要根据、性质是今后解决有关问题的理论根据;而作已知点关于某个点的对称点又是作中心对称图形的关键.本节课的难点是中心对称与中心对称图形之间的联系和区分.从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念.从同学角度来讲,在学习轴对称时,有相当一部分同学对轴对称和轴对称图形的概念理解上消失误点.因此本节课的难点是中心对称与中心对称图形之间的联系和区分.教法建议本节内容和生活结合较多,新课导入可考虑以下方法:〔1〕从相像概念引入:中心对称概念与轴对称概念比较相像,中心对称图形与轴对称图形比较相像,可从轴对称类比引入,〔2〕从汉字引入:有很多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,〔3〕从生活实例引入:生活中有很多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,〔4〕从商标引入:各公司、企业的商标中有很多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,〔5〕从车标引入:各品牌汽车的车标中有很多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,〔6〕从几何图形引入:学习过的很多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,〔7〕从艺术品引入:艺术品中有很多都是呈中心对称或是中心对称图形,如下列图,可从艺术品引入。
中心对称图形导教学教案
中心对称图形导教学教案一、教学目标1. 让学生理解中心对称图形的概念。
2. 培养学生识别和绘制中心对称图形的能力。
3. 引导学生发现中心对称图形在实际生活中的应用。
二、教学重点与难点1. 教学重点:中心对称图形的概念及性质。
2. 教学难点:中心对称图形的绘制和应用。
三、教学准备1. 课件或黑板。
2. 练习纸。
3. 剪刀、胶水等手工工具。
四、教学过程1. 导入:通过展示一些生活中的对称图形,如剪纸、建筑等,引导学生关注对称美。
2. 讲解:介绍中心对称图形的概念,解释中心对称图形的性质。
3. 示范:在黑板上画出一个中心对称图形,并解释其对称性。
4. 练习:让学生分组合作,绘制一些中心对称图形,并互相评价。
5. 拓展:引导学生思考中心对称图形在实际生活中的应用,如设计、建筑等。
五、课后作业1. 绘制一个中心对称图形,并写一篇短文介绍其对称性和应用。
2. 收集生活中的中心对称图形,拍照或画图,下一堂课分享。
1. 采用问题驱动的教学方法,引导学生主动探究中心对称图形的性质。
2. 利用多媒体课件,展示中心对称图形的动态变化,增强直观感受。
3. 设计具有层次性的练习题,逐步提高学生的绘制和应用能力。
七、评价方法1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习作品:评价学生绘制的中心对称图形的准确性、创意性以及对称性。
3. 课后作业:通过学生的课后作业,检查学生对中心对称图形概念的理解和应用能力。
八、教学进度安排1. 第一课时:介绍中心对称图形的概念及性质。
2. 第二课时:练习绘制中心对称图形,发现生活中的中心对称图形。
3. 第三课时:拓展中心对称图形在实际生活中的应用。
九、教学反思1. 总结本节课学生的学习情况,分析教学过程中的优点和不足。
2. 根据学生的反馈,调整教学策略,提高教学效果。
3. 关注学生在课后作业中的表现,针对性地进行辅导。
十、教学延伸1. 调查中心对称图形在艺术、设计等领域的应用,举办一次主题展览。
人教版九年级数学上册23.2.2.1《中心对称》教案
人教版九年级数学上册23.2.2.1《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何相关知识的基础上,进一步引导学生探索中心对称的性质和运用。
本节内容通过具体的实例,让学生了解中心对称的定义,掌握中心对称图形的性质,并能够运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生动手操作和观察分析的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习和操作来巩固。
此外,学生对实际问题的解决能力有待提高,需要通过具体的例子来引导和培养。
三. 教学目标1.了解中心对称的定义,掌握中心对称图形的性质。
2.能够运用中心对称解决实际问题,提高学生的应用能力。
3.培养学生的动手操作和观察分析能力,激发学生学习几何的兴趣。
四. 教学重难点1.中心对称的定义和性质。
2.中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体的实例和问题,引导学生探索中心对称的性质,培养学生的动手操作和观察分析能力。
同时,学生进行小组合作学习,鼓励学生发表自己的观点和思考,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于引导学生探索中心对称的性质。
2.准备一些实际问题,用于巩固学生对中心对称的应用。
3.准备黑板和粉笔,用于板书重要的概念和性质。
七. 教学过程1.导入(5分钟)通过展示一些图片,如天安门、蝴蝶等,引导学生观察这些图片的共同特点,引发学生对中心对称的思考。
让学生发表自己的观点,教师总结并引入中心对称的概念。
2.呈现(10分钟)教师通过展示一些实例,如将一张纸折叠后,对折线两侧的图形完全重合,引导学生探索中心对称的性质。
教师引导学生动手操作,观察分析中心对称图形的性质,如对称轴的性质、对称点的性质等。
中心对称及中心对称图形教案
中心对称第一课时主备课:陈平一、三维目标1.了解中心对称、中心对称图形的概念,了解中心对称的性质.能找出线段、平行四边形的对称中心.会画出与已知图形成中心对称的图形.2.通过本节的学习,进一步培养学生的尺规作图能力.3.通过本节的学习,引导学生体验几何美,提高学习兴趣.二、教学设计观察、感受、讲解、类比三、重点、难点解决办法1.教学重点:中心对称的概念和性质及中心对称图形的概念.2.教学难点:中心对称与中心对称图形的区别与联系.四、课时安排2课时五、教具学具准备投影仪、胶片、多媒体、常用画图工具六、师生互动活动设计教师复习引入,学生类比轴对称看书;教师讲解性质,示范画图,学生练习巩固七、教学过程:【复习提问】l .什么叫轴对称轴对称有什么性质2.关于某点旋转的两个图形的性质3.作出四边形ABCD 关于点O 的旋转180度的图形.【新课讲解】1、定义:把一个图形绕着某一点旋转1800,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.2、利用三角板画一个三角形ABC ∆绕点O 旋转1800后,得到另一个三角形111C B A ∆。
探究:(1)ABC ∆与111C B A ∆的关系(2)AA 1、BB 1、CC 1的连线是否过某点,这点与旋转中心有何关系(3)OA 与OA 1、OB 与OB 1、OC 与OC 1分别有怎样的关系归纳:关于中心对称的两个图形,对称点所连线段都经过对称中心,且被对称中心平分。
关于中心对称的两个图形是全等图形。
例1:课本70页巩固练习:课本70页练习。
总结:(1)、中心对称和旋转对称图形的关系:中心对称是特殊的旋转对称图形,因此中心对称都属于旋转对称图形,但旋转对称图形不一定是中心对称.(2)、识别中心对称的方法:如果两个图形的对应点连成的线段都经过某一点,并且被这一点平分,那么这两个图形一定关于这一点成中心对称.3、中心对称图形如果一个图形绕着它的中心点旋转180°后能与原来的图形重合,那么这个图形叫做中心对称图形,这个中心点叫做对称中心.4、识别一个图形是中心对称图形的方法要识别一个中心对称图形,只要看是否存在一点,把图形绕着它旋转180°后能与原图形重合.例2、判断下列图形是否为中心对称图形,如果是,请指出它们的对称中心.(1)线段;(2)等腰三角形;(3)平行四边形;(4)长方形;(5)圆;(6)角分析:判断一个图形是否是中心对称图形,关键是找到一个点,看绕着该点旋转180°后能否与自身重合.解:(1)结段是中心对称图形,它的对称中心是该线段的中点.(2)等腰三角形不是中心对称图形.(3)平行四边形是中心对称图形,它的对称中心是两条对角线的交点.(4)长方形是中心对称图形,它的对称中心是两对角线的交点.(5)圆是中心对称图形,它的对称中心是圆心.(6)角不是中心对称图形.巩固练习:课本74页练习。
《23.2.1 中心对称》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册
《中心对称》教学设计方案(第一课时)一、教学目标1. 理解中心对称的概念,掌握其定义和性质。
2. 能够识别中心对称图形,并确定其对称中心。
3. 通过观察、分析和讨论,培养学生的观察能力和抽象思维能力。
二、教学重难点1. 教学重点:理解中心对称的概念,掌握其定义和性质。
2. 教学难点:能够识别中心对称图形,并确定其对称中心。
三、教学准备1. 准备教学PPT,包含图片、动画和相关概念的解释。
2. 准备中心对称的实例,如钟表、风扇、旋转门等。
3. 准备小组讨论的材料,以便学生交流和讨论。
4. 准备练习题,用于学生巩固所学知识。
四、教学过程:(一)课前准备1. 学生复习相关知识,为新课学习做好准备。
2. 教师准备教学用具,如黑板、白板、中心对称图形等。
(二)导入新课1. 提问学生:大家还记得我们之前学过的图形对称吗?你能举出一些例子吗?2. 引导学生回顾轴对称图形,并让学生讨论和总结轴对称和中心对称的区别。
3. 教师解释中心对称的概念,并引导学生了解中心对称在实际生活中的应用。
(三)探究学习1. 教师出示一些中心对称图形,如正方形、矩形、平行四边形等,让学生观察它们的特征,并讨论它们如何通过旋转和反射实现中心对称。
2. 教师引导学生探究中心对称图形的性质,如对应点连线交于对称中心,图形沿对称中心翻折180度后能够完全重合等。
3. 学生分组讨论和总结中心对称的性质,教师给予指导和帮助。
(四)课堂活动1. 完成课后习题和相关练习题,巩固学生对中心对称知识的掌握。
2. 进行小组讨论和展示,让学生分享自己的学习成果和经验,教师给予评价和反馈。
3. 引导学生运用中心对称知识解决实际问题,如设计图案、测量实物等。
(五)小结作业1. 教师总结本节课的重点和难点,强调中心对称的性质和应用。
2. 布置与中心对称相关的作业,让学生回家后继续思考和实践。
希望中心对称的性质:1. 中心对称的两个图形,交换对称点,可以重合。
2. 中心对称不改变图形的形状和大小。
2024北师大版数学八年级下册3.3《中心对称》教案
2024北师大版数学八年级下册3.3《中心对称》教案一. 教材分析《中心对称》是北师大版数学八年级下册第3章第3节的内容。
本节主要介绍中心对称的概念,性质以及中心对称图形的判定。
通过学习,学生能够理解中心对称的定义,掌握中心对称的性质,并能运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,对图形的变换有一定的了解。
但中心对称的概念和性质较为抽象,学生可能难以理解。
因此,在教学过程中,教师需要借助实物和图形,引导学生从直观的角度去理解和掌握中心对称的概念和性质。
三. 教学目标1.理解中心对称的概念,掌握中心对称的性质。
2.能够运用中心对称解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.中心对称的概念和性质。
2.中心对称图形的判定。
五. 教学方法1.情境教学法:通过实物和图形,引导学生从直观的角度去理解和掌握中心对称的概念和性质。
2.问题驱动法:教师提出问题,引导学生思考和探讨,激发学生的学习兴趣。
3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队协作能力。
六. 教学准备1.准备相关实物的图片和图形,如圆、矩形等。
2.准备中心对称的判定题目。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)利用实物和图形,如圆、矩形等,引导学生观察和思考:这些图形有什么共同的特点?它们是如何通过某种变换得到的?2.呈现(10分钟)介绍中心对称的定义和性质,引导学生从直观的角度去理解和掌握中心对称的概念和性质。
3.操练(10分钟)学生分组讨论,共同完成中心对称图形的判定题目。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师提出问题,引导学生思考和探讨:中心对称的概念和性质在日常生活中有哪些应用?学生分享自己的观点和实例。
5.拓展(10分钟)教师引导学生运用中心对称解决实际问题,如设计图案、解决几何题目等。
23.2.2中心对称图形教案
23.2.2中心对称图形教案篇一:23.2.2中心对称图形教案九年级数学23.2.2中心对称图形教案设计篇二:23.2.2中心对称图形教案23.2.2中心对称图形篇三:23.2中心对称图形公开课教案23.2中心对称图形教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段ao关于o点的对称图形,如图所示.o(2)作出三角形aoB关于o点的对称图形,如图所示.aoB(2)延长ao使oc=ao,延长Bo使od=Bo,连结cd则△cod为所求的,如图所示.adc.cn二、探索新知从另一个角度看,上面的(1)题就是将线段aB绕它的中点旋转180°,因为oa=?oB,所以,就是线段aB绕它的中点旋转180°后与它重合.上面的(2)题,连结ad、Bc,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵ao=oc,Bo=od,∠aoB=∠cod∴△aoB≌△cod∴aB=cdadoB也就是,aBcd绕它的两条对角线交点o旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.aodB分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,o是四边形aBcd的对称中心,根据中心对称性质,线段ac、?Bd必过点o,且ao=co,Bo=do,即四边形aBcd的对角线互相平分,因此,?四边形aBcd是平行四边形.三、巩固练习教材P72练习.四、应用拓展例4.如图,矩形aBcd中,aB=3,Bc=4,若将矩形折叠,使c点和a点重合,?求折痕EF的长.分析:将矩形折叠,使c点和a点重合,折痕为EF,就是a、c两点关于o点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.解:连接aF,∵点c与点a重合,折痕为EF,即EF垂直平分ac.∴aF=cF,ao=co,∠Foc=90°,又四边形aBcd为矩形,∠B=90°,aB=cd=3,ad=?Bc=4设cF=x,则aF=x,BF=4-x,由勾股定理,得ac=Bc+aB=5222215∴ac=5,oc=ac=22∵aB+BF=aF∴3+(4-x)=2=x∴x=22222aoBFEd258222∵∠Foc=90°∴oF=Fc-oc=(.cn2525215215)-()=()oF=28881515同理oE=,即EF=oE+oF=84五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.六、布置作业1.教材P74综合运用5P75拓广探索8、9篇四:23.2.2中心对称图形教案23.2.2中心对称图形一、教学内容中心对称图形二、教材分析“中心对称图形”是初中数学教学中的重要内容之一,它既与“轴对称图形”有紧密的联系和区别,同时又是图形的三种基本运动方式(平移,翻折,旋转)中的“旋转”的特殊情况﹒通过对这一节课的学习, 丰富学生对“对称图形”的认识,同时又向学生渗透了“旋转变换”的思想,使学生学会用运动的观点研究问题,发展学生的空间智能﹒本节课在生活中有丰富的实际素材,学习本节课后学生能进一步感受到数学的应用价值,能用数学的观点观察生活,解决生活中的实际问题,为续内容的学习奠定良好的基础,学习中涉及的归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义﹒三、学情分析学生已学过《生活中的轴对称》和《图形的平移和旋转》,初步积累了一定的图形变换的数学活动经验,在此基础上,组织学生观察、分析、识图、简单图案欣赏和设计等实践操作活动,丰富学生对图形变换的认识﹒由于学生的操作能力相对比较差,呈现内容时,力图为学生提供生动有趣的现实情境,安排观察、实践、交流等活动,进一步深化学生对中心对称图形定义和性质的理解,以及对识图、画图等操作技能的掌握,丰富学生数学活动体验,有意识培养学生积极的情感、态度,促进良好的数学观的养成﹒(一)知识与技能1.了解中心对称图形及其基本性质.2.掌握平行四边形是中心对称图形.(二)过程与方法1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.了解中心对称图形及其基本性质,掌握平行四边形是中心对称图形.(三)情感态度价值观通过观察发现、动手操作、大胆猜想、自主探索、合作交流体验到成功的喜悦,学习的乐趣并积累一定的审美体验。
浙教版数学八年级下册4.3《中心对称》教案
浙教版数学八年级下册4.3《中心对称》教案一. 教材分析《中心对称》是浙教版数学八年级下册第4章第3节的内容,本节主要让学生掌握中心对称图形的概念,了解中心对称图形与轴对称图形的区别,学会用中心对称的性质解决一些简单的问题。
教材通过实例引入中心对称的概念,然后引导学生探究中心对称图形的性质,最后通过一些练习题让学生巩固所学知识。
二. 学情分析学生在学习本节内容前,已经学习了轴对称图形和一些基本的几何变换,他们对这些知识有一定的了解。
但中心对称图形是一个比较抽象的概念,学生可能难以理解。
因此,在教学过程中,教师需要通过生动的实例和直观的图形,帮助学生理解和掌握中心对称图形的概念和性质。
三. 教学目标1.理解中心对称图形的概念,能识别生活中的中心对称图形。
2.掌握中心对称图形的性质,能运用性质解决一些简单问题。
3.培养学生的观察能力、动手操作能力和解决问题的能力。
四. 教学重难点1.中心对称图形的概念。
2.中心对称图形的性质。
五. 教学方法1.采用实例引入法,通过生动的实例让学生理解中心对称图形的概念。
2.采用探究学习法,让学生通过观察、操作、交流等活动,发现中心对称图形的性质。
3.采用练习法,让学生通过解决一些实际问题,巩固所学知识。
六. 教学准备1.准备一些中心对称图形的实例,如平行四边形、圆等。
2.准备一些练习题,包括基础题和拓展题。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)利用生活中的实例,如太阳、地球等,引导学生观察这些实例的对称性。
然后提出问题:“这些实例的对称性与我们之前学习的轴对称图形有什么不同?”让学生思考,引出中心对称图形的概念。
2.呈现(10分钟)呈现一些中心对称图形的实例,如平行四边形、圆等,让学生观察并说出它们的对称中心。
教师总结中心对称图形的概念,并强调中心对称图形与轴对称图形的区别。
3.操练(10分钟)让学生分组讨论,每组找出一些中心对称图形,并用彩笔在纸上画出来。
中心对称图形教案+教案说明
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用到实际问题中。
通过一系列的讲解、示例和练习,学生将能够掌握中心对称图形的性质和判定方法。
教学目标:1. 了解中心对称图形的定义和性质。
2. 学会判定一个图形是否为中心对称图形。
3. 能够运用中心对称图形解决实际问题。
教学内容:一、中心对称图形的定义1. 引入中心对称图形的概念。
2. 通过示例解释中心对称图形的定义。
二、中心对称图形的性质1. 介绍中心对称图形的基本性质。
2. 通过示例展示中心对称图形的性质。
三、中心对称图形的判定1. 引导学生思考如何判定一个图形是否为中心对称图形。
2. 给出判定方法并示例讲解。
四、中心对称图形在实际问题中的应用1. 提供一些实际问题,让学生运用中心对称图形解决。
2. 引导学生思考中心对称图形在实际生活中的应用。
五、巩固练习1. 提供一些练习题,让学生巩固中心对称图形的知识和判定方法。
2. 解答学生的问题,给予指导和帮助。
教学资源:1. 中心对称图形的示例图形。
2. 判定中心对称图形的练习题。
教学步骤:1. 引入中心对称图形的概念,让学生初步了解。
2. 通过示例解释中心对称图形的定义,让学生直观感受。
3. 介绍中心对称图形的基本性质,让学生理解并记住。
4. 给出判定中心对称图形的方法,让学生学会判断。
5. 提供实际问题,让学生运用中心对称图形解决,加深理解。
6. 通过巩固练习,让学生巩固中心对称图形的知识和判定方法。
教学评价:通过课堂讲解、示例和练习,观察学生对中心对称图形的理解和掌握程度。
在练习题的解答过程中,观察学生是否能正确运用中心对称图形的性质和判定方法。
在实际问题中,观察学生是否能运用中心对称图形解决问题。
根据学生的表现,给予相应的评价和指导。
本教案可根据学生的实际情况进行调整和修改,以满足具体教学需求。
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用到实际问题中。
教学案例《中心对称图形》
《中心对称图形》教学案例一、教学目标:1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。
2.了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。
二、教学重、难点:理解中心对称图形的概念及其基本性质。
三、教学过程:(一)创设问题情境1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。
【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O 后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。
课堂反应:学生非常安静,目不转睛地盯着老师做动作。
每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。
师重复以上活动2次后提问:(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?(2)你能说明为什么老师要把抽出的这张牌旋转180O 吗?(小组讨论)反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。
(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。
(3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。
在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。
这也是对他们从事科学研究的情感态度的培养。
学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。
2.教师揭示谜底。
利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转180O 后和原来牌面一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(九年级数学)圆16——圆的复习1
第 周星期 班别: 姓名: 学号:
一、知识点
1、圆的对称性:圆既是轴对称图形又是 图形; 是它的对称轴, 是它的对称中心。
2、圆周角、弧和弦之间的关系:在一个圆中,如果圆心角相等,
那么它所对的弧________,所对的弦_________.
3、垂径定理:
∵AB 为⊙O 的直径,(或者:弦AB 过圆心)
AB ⊥CD ∴DP= , =⋂ DB ,=⋂ DA (垂径定理)
5、同弧所对圆周角和圆心角的关系:
弧的度数=所对 的度数=所对 的度数2倍
二、做一做
(一)填空题
1、如图(1),若∠AOB=60°,则︵AB 的度数为 ,∠ACB= 。
2、100 的弧所对的圆周角为 ,圆心角为 。
3.如图2,在同心圆O 中,⋂AB 的度数是60°,则⋂
CD 的度数
是 .
4、如图,在⊙O 中,AB ∥CD ,⋂AC 的度数为45°,则∠BOD 的
度数为 .
5、一条弦把圆分成1:3两部分,则该弦所对的圆心角为________。
6、如图(3)
如果∠ACB=140°,则∠AOB=
如果∠AOB=110°,则∠ACB=
7、如图(4),在⊙O中,半径OC⊥AB于D,若AB=16cm,OD=6cm,则⊙O的半径为。
8、如图(4),在半径为5cm的圆中,线段OD=3cm,则这条弦的
长是 cm.
9、如图(4),弦长AB=43,CD =2,则它的弧所在圆的半
径为cm。
10、图(5):若AB为⊙O的直径,弦CD⊥AB于E,AE=16,
BE=4,则直径AB= ;OE= ;CD=________。
11、P为⊙O内一点,PO=4cm,过P最长的弦为10cm,则过P
点最短的弦长为_____cm。
12、如图(6):半径为8的⊙O中,O点到弦AB的距离为4,,
是∠AOB=。
13、在⊙O中,3cm的一条弦所对的圆心角是60°,则圆的直径是 cm.
14、如图3,⊙O的直径AB与弦CD交于点M,添加条件(写
出一个即可)就可得到M是AB的中点;
(二)、选择题
15.AB是⊙O的弦,∠AOB = 80︒,则AB所对的圆周角是
A.40︒B.40︒或140︒C.20︒D.80︒或100︒
16.如图,△ABC是⊙O的内接三角形,AB = AC且∠CAB = 60︒,D是上一点,AC与BD交于E,连接DC、AD,则图中60︒角共有
()个。
A.3 B.4
C.5 D.6
17.圆内两条弦AB、CD的延长线交于P,BC与AD交于E,连接BD,则圆中相似三角形的对数是
A.5对B.4对
C.3对D.2对
18.图中AC是⊙O的直径,B、D在⊙O上,∠COB = 70︒ ,
则图中等于35︒的角有
A.1个B.2个
C.3个D.4个
19、下列命题中错误的是()
A、直径是圆中最长的弦.
B、长度相等的两条弧叫做等弧.
C、任意一个三角形有且只有一个外接圆.
D、同弧或等弧所对的圆周角相等.
四、解答题
20、如图,在⊙O中,△ABC是它的内接三角形,AD是⊙O的直径,∠ABC=40°
求∠CAD的度数.
21、已知:如图,在同心圆O中,大圆的弦AB交小圆于C、D.
求证:AC=BD
22、如图2,AB为△ABC外接圆的直径,D为⊙O上一点,且DE⊥CD交BC 于E,求证BE·CD=AC·DE.。