相似三角形应用--内接矩形

合集下载

三角形内接矩形的关系式及其应用

三角形内接矩形的关系式及其应用

三角形内接矩形的关系式及其应用作者:沐文中来源:《中学数学杂志(初中版)》2013年第02期如果矩形有四个顶点都在三角形的边上,那么这个矩形称为此三角形的内接矩形.三角形及其内接矩形有一个应用广泛的关系式,现介绍如下:命题如图1,矩形EFGH的两个顶点E、H在BC上,另外两个顶点F、G分别在AB、AC上,若BC=a,BC边上的高AD=h,EF=Y,FG=x,则xa+yh=1.证明因为FG∥BC,所以△AFG∽△ABC,所以FGBC=AKAD,即xa=h-yh,所以xa+yh=1.这一关系或在课标入教版,北师大版,华师大版等教材中均有所介绍.下面就举例说明此关系式在中考中的应用.例1 (2012年山东日照)如图2,在Rt△ABC内有矩形PQMN,P、N分别在直角边AB、AC上,Q、M在斜边BC上,已知AB=3,AC=4,内接矩形PQMN的面积等于53,求BQ和MC的长.解因为AB=3,AC=4,所以BC=32+42=5.作AD⊥BC于D,则由AD·BC=AB·AC=2S△ABC得AD=3×45=125.设PQ=y,PN=x,则由关系式,得x5+y125=1. ①又xy=53(已知)②故解①、②得y=2或y=25.因为Rt△CMN∽Rt△CAB,所以CMMN=CAAB即CM=43y,所以CM=83或CM=815.同理可得BQ=34y,故BQ=32或BQ=310.点评本题借助三角形内接矩形的关系式和矩形面积公式列出二元一次方程组,简捷明快地先求得了PQ和PN的长度,然后再通过相似三角形求得BQ和MC的长度,使问题由繁变简,从而使复杂的问题简单化了.例2 (2012年辽宁大连)如图3,在Rt△ABC的斜边AB上任取一点P,过P点作AC、BC的平行线分别交BC、AC于N、M,则△APM和△PBN的面积之和不小于矩形MPNC的面积,试证明之.证明设AC=b,BC=a,PM=x,PN=y,S矩形MPNC=S1,S△APM+S△PBN=S由关系式点评本题应用上述关系式和面积公式,通过变形化简求得xa与yb的积与和,利用韦达定理的逆定理,构造出一元二次方程,再运用根的判别式得证.这种解题思路充分体现了构造法解题的科学性,符合新课程的理念要求,它能使抽象或隐含的条件清晰地显示出来,能把复杂的问题转化为简单的问题,因而解题时,就能化繁为简,变难为易.例3 (2012年云南大理)一张等腰三角形纸片,底边长15cm,底边上的高长225cm,现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图4所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第几张?所以这张正方形的纸条是第6张.点评本题是一道创新中考试题,通过六次运用本文的关系式,最后求得JK的长为3厘米,从而使实际问题得到了解决,如果不用三角形内接矩形的上述性质求解,将会使思路陷入困境.例4 (2012年山西大同)已知△ABC和内接矩形EFGH(如图5),问:在什么条件下,矩形EFGH的面积最大?解如图5,作AC边上的高BI,交EF于J,设BI=h,AC=b,则由题设条件,可设EH=x,所以由关系式得EFb+xh=1,故EF=bh(h-x),所以矩形EFGH的面积S=f(x)=EF·EH=bh(h-x)x=-bhx2+bx.因为-bh〈0,所以二次函数f(x)有最大值.故当x=--b2·bh=h2时,f(x)max=0-b24-bh=bh4=12S△ABC,这时,EF=bh(h-h2)=b2,所以,当内接矩形的长、宽分别等于三角形的底边和底边上的高的一半时,其面积最大.点评本题是运用本文的关系式和矩形面积公式先求得二次函数解析式,再运用二次函数求最大值的方法,求得矩形面积的最大值,方法新,过程简,易理解,要重视.综上述可知,应用本文关系式解中考问题,其关键在于要从问题的实际出发,根据题设去灵活应用.通过教学实践,笔者认为:注意对学生进行联系课本内容的专题讲座的训练,利于帮助学生理解课本内容提高学习数学的兴趣,利于拓宽学生的视野,提高解题水平,利于启迪学生思维,调动学习的积极性.因此在今后的教学过程中,注意对学生进行这类专题内容的探索与研究,是很有必要的.。

相似三角形题型归纳总结非常全面

相似三角形题型归纳总结非常全面

相似三角形题型归纳一、比例的性质:二、成比例线段的概念: 1.比例的项:在比例式::a b c d =(即a cb d =)中,a ,d 称为比例外项,b ,c 称为比例内项.特别地,在比例式::a b b c =(即a bb c=)中,b 称为a ,c 的比例中项,满足b ac 2=.2.成比例线段:四条线段a ,b ,c ,d 中,如果a 和b 的比等于c 和d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.3.黄金分割:如图,若线段AB 上一点C ,把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即AC AB BC 2=⋅),则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中.AC AB AB ≈0618,BC AB =.AB ≈0382,AC 与AB 的比叫做黄金比.(注意:对于线段AB 而言,黄金分割点有两个.)三、平行线分线段成比例定理 1.平行线分线段成比例定理A两条直线被三条平行线所截,所得的对应线段成比例,简称为平行线分线段成比例定理.如图:如果123////l l l ,则AB DE BC EF =,AB DE AC DF =,BC EFAC DF=.AD BE CF1l 2l 3lA D BE CF 1l 2l 3l【小结】若将所截出的小线段位置靠上的(如AB )称为上,位置靠下的称为下,两条线段合成的线段称为全,则可以形象的表示为=上上下下,=上上全全,=下下全全.2.平行线分线段成比例定理的推论平行于三角形一边的直线,截其它两边(或两边的延长线),所得的对应线段成比例.如图:如果EF//BC ,则AE AF EB FC =,AE AF AB AC =,BE CFAB AC=. ABC E FFEC BA平行线分线段成比例定理的推论的逆定理 若AE AF EB FC =或AE AF AB AC =或BE CF AB AC=,则有EF//BC . 【注意】对于一般形式的平行线分线段成比例的逆定理不成立,反例:任意四边形中一对对边的中点的连线与剩下两条边,这三条直线满足分线段成比例,但是它们并不平行.【小结】推论也简称“A ”和“8”,逆定理的证明可以通过同一法,做'//EF BC 交AC 于'F 点,再证明'F 与F 重合即可.四、相似三角形的定义、性质和判定 1.相似图形①定义:对应角相等,对应边成比例的图形叫做相似图形.对应边的比例叫做相似比.相似图形是形状相同,大小不一定相同.相似图形间的互相变换称为相似变换.②性质:两个相似图形的对应角相等,对应边成比例.2.相似三角形的定义3.相似三角形的性质 ①相似三角形的对应角相等. 如图,∽△△ABC A B C ''',则有 A A '∠=∠,B B C C ''∠=∠∠=∠,.②相似三角形的对应边成比例. 如图,∽△△ABC A B C ''',则有AB BC ACk A B B C A C ===''''''(k 为相似比). ③相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图,△ABC ∽△A B C ''',AM AH 、和AD 是△ABC 中BC 边上的中线、高线和角平分线,A M ''、A H ''和A D ''是△ABC '''中B C ''边上的中线、高线和角平分线,则有AB BC AC AM AH ADk A B B C A C A M A H A D ======''''''''''''④相似三角形周长的比等于相似比. 如图,△ABC ∽△A B C ''',则有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. ⑤相似三角形面积的比等于相似比的平方. 如图,△ABC ∽△A B C ''',则有 △△ABC A B C BC AHS BC AH k S B C A H B C A H 2'''1⋅⋅2==⋅=1''''''''⋅⋅24.相似三角形的判定判定定理判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 简称为两角对应相等,两个三角形相似. 如图,如果'A A ∠=∠,'B B ∠=∠,则△∽△ABC A B C '''.判定定理2:如果两个三角形的三组对应边成比例,那么这两个三角形相似.简称为三边对应成比例,两个三角形相似.如图,如果AB BC ACA B B C A C =='''''',则 △∽△ABC A B C '''.判定定理3:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似. 简称为两边对应成比例且夹角相等,两个三角形相似.如图,如果AB ACA B A C ='''','A A ∠=∠,则△∽△ABC A B C '''.五、“A ”字和“8”字模型六、与内接矩形的有关的相似问题如图,已知四边形DEFG 是△ABC 的内接矩形,E 、F 在BC 边上,D 、G 分别在AB 、AC 边上,则有:△∽△ADG ABC ,DG ANBC AM=. 特别地,当BAC ∠=90︒时,有△∽△∽△∽△ADG EBD FGC ABC .NM GFE DCB AGFEDCBA七、“A ”字和“8”字模型的构造“A ”字和“8”字模型的构造常常作平行线,常见的作平行线的方法:G EDCAGFEDCBA G FE DC B ADEFCBAGA HDFBECAGDF BEC八、斜“8”模型九、斜“A”模型十、射影定理十一、三平行模型十一二、三垂直模型十三、角平分线定理十四、线束模型题型一 比例的性质和成比例线段的概念例题1 (1)已知::::x y z =135,则x y zx y z+3--3+的值是_______.(2)若x y z 234==.则x y z x y-+3=3-_______. (3)若a b c 2=3=4,且abc ≠0,则a bc b+-2的值是_______. 解析(1)设x k =,y k =3,z k =5.∴x y z k k k x y z k k k +3-+9-55==--3+-9-53;(2)113;(3)-2 巩固1: (1)如果:2:3x y =,则下列各式不成立的是( ) A .53x y y += B .13y x y -= C .123x y = D .1314x y +=+ (2)已知:23a c e b d f ===,求值:①a cb d++;②2323a c e b d f -+-+. (3)已知b c a c a b a b c a b c +-+-+-==,求()()()a b b c a c abc+++的值. 解析:(1)A 为合比性质,B 为分比性质,C 显然正确,D 错误,由于11x y ≠,不能用等比定理.故答案为D .(2)由等比性质直接可以得到23a c b d +=+;232233a c eb d f -+=-+. (3)当0a bc ++≠时,()()()b c a c a b a b c b c a c a b a b c a b c a b c+-+-+-+-++-++-====1++ 于是:2,2,2b c a a c b a b c +=+=+=,()()()a b b c a c abc+++=8.当0a b c ++=时,()()()()()()a b b c a c c a b abc abc+++-⋅-⋅-==-1.本题答案为1-或8.题型二 平行线分线段成比例定理 例题2(1)如图2-1,已知∥∥l l l 123,用面积法证明:AB DEBC EF=. (2)如图2-2,∥∥AD BE CF ,若AB =4,AC =10,DE =5,则DF =______. (3)如图2-3,∥∥l l l 123,AB =3,BC =5,DF =12,则_______DE =,______EF =.A D BECF l 12l 3lAD B ECFA DBECF l 12l l 3图2-1 图2-2 图2-3(1)如图所示,连接AE ,BD ,BF ,CE .△△ABECBES AB BC S =∴. ∥AD BE ∵,∥BE CF ,△△ABE DEB S S =∴,△△CBE FEB S S =.△△△△ABE EDB CBE EFB S S AB DEBC S S EF===∴. (2)252; (3)92,152. 巩固2: (1)如图2-1,直线∥∥l l l 123,已知.cm AG =06,.cm BG =12,.cm CD =15,CH =_____.(2)如图2-2,在△ABC 中,D 、E 分别为AB 、AC 边上的点,若AD BD 2=3,AE =3,则AC =______(3)如图2-3,AB ∥DE ,AE 与DB 交于C ,AC =3,BD =3,CD =2,则CE =______A CH GDBl 1l 2l 3B ADEABC图2-1 图2-2 图2-3解析:(1)0.5cm ;(2)152;(3)6 题型三 相似三角形的定义、性质和判定 例题3如图,直角梯形ABCD 中,∠ADC =90︒,∥AD BC ,点E 在BC 上,点F 在AC上,∠∠DFC AEB =.(1)求证:△∽△ADF CAE .(2)当AD =8,DC =6,点E 、F 分别是BC 、AC 的中点时,求直角梯形ABCD 的面积.解析:(1)∵∥AD BC ,∴∠∠DAF ACE =,∵∠∠DFC AEB =,∴DFA AEC ∠=∠,∴△∽△ADF CAE(2)∵AD =8,DC =6,∴AC =10,又∵F 是AC 的中点,∴AF =5 ∵△∽△ADF CAE ,∴AD AF CA CE =,∴CE 85=10,∴CE 25=4,∵E 是BC 的中点, ∴BC 25=2,∴直角梯形ABCD 的面积125123⎛⎫=⨯+8⨯6= ⎪222⎝⎭A D BECF l 12l 3l F EDCBA巩固3: (1)下列所给条件中,可以判断△ABC 与△DEF 相似的是( ) A .90A ∠=︒,90F ∠=︒,5AC =,13BC =,10DF =,26EF = B .85C ∠=︒,85E ∠=︒,AC DEBC DF=C .1AB =, 1.5AC =,2BC =,8EF =,10DE =,16FD = D .46A ∠=︒,80B ∠=︒,45E ∠=︒,80F ∠=︒(2)如图1,在△ABC 中,点D 是BC 边上的中点,且AD AC =,DE BC ⊥,交BA 于点E ,EC 与AD 相交于点F .求证:△∽△ABC FCD .(3)如图2,△ABC 为等腰直角三角形,BD CE BC 21⋅=2,求证:△∽△ACE DBA .AEF DADB CE图1 图2解析:(1)D ; (2)AD AC =∵,FDC ACB ∠=∠∴;DE ∵垂直平分BC ,EB EC =∴, ∴ABC FCD ∠=∠,△∽△ABC FCD ∴.(3)由等腰直角三角形得到BC =条件变为BD CE AB AB AC 2221⋅=⋅2==2,条件变为比例形式:BD BAAC CE=,由于DBA ACE ∠=180︒-45︒=∠,∴△∽△ACE DBA .题型四 “A ”字和“8”字模型例题4 (1)如图4-1,已知□ABCD 中,过点B 的直线顺次与AC 、AD 及CD 的延长线相交于点E 、F 、G ,若BE =5,EF =2,则FG 的长为____________.(2)如图4-2,已知在□ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP:PQ:QC =____________.G BAF DC EC AD M N PQ图4-1 图4-2解析:(1)∵四边形ABCD 为平行四边形,∴//AD BC ∴△∽△AEF CEB ,△∽△GFD GBC ,∴AF EF CB EB 2==5,∴DF AD AF CB CB -3==5∴FG DF BG CB 3==5,即FG FG 3=+75.得.FG =105. (2)由DC ∥AB ,得AP AM PC AB 1==3,AP AC 1=4,同理AQ AC 2=5,PQ AC 2=51-4AC =AC 320,QC =AC 35,故1::::::4AP PQ QC 33==5312205.巩固4: (1)如图4-1,在ABC △中,M 、E 把AC 边三等分,MN//EF//BC ,MN 、EF 把ABC △分成三部分,则自上而下部分的面积比为 .(2)如图4-2,AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且1AB =,3CD =,则:EF CD 的值为__________.(3)如图4-3,已知在平行四边形ABCD 中,M 为AB 的中点,DM ,DB 分别交AC 于P ,Q 两点,则::AP PQ QC =___________.NM FE C BAAB CEF DA CBQPD图4-1 图4-2 图4-3解析:(1)1:3:5;(2)14;(3)AQ CQ AC 1==2∵,又AP AM PC CD 1==2,AP AC 1=3∴ PQ AC AC 111⎛⎫=1--= ⎪236⎝⎭∴,::::AP PQ QC =213∴.题型五 与内接矩形有关的相似问题 例题5(1)如图5-1,△ABC 中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在AC 、AB 上,BC =15,BC 边上的高AD =10,求正方形EFGH S .(2)如图5-2,已知△ABC 中,四边形DEGF 为正方形,D ,E 在线段AC ,BC 上,F ,G 在AB 上,如果ADF CDE S S ∆∆==1,BEG S ∆=3,求△ABC 的面积.HAB C D E FGACDEGB图5-1 图5-2解析:(1)设正方形EFGH 的边长为x ,AD 、HG 的交点为M , 则有AM HG AD BC =,即x x10-=1015,解得,x =6,故EFGH S 2=6=36正方形(2)设正方形边长为x ,则AF x 2=,CI x 2=,BG x6=. 由△∽△CDE CAB ,得CI DE CH AB =,∴xxx x x x2=28++,解得x =2, ∴AB =6,CH =3,∴ABC S AB CH ∆1=⋅=92巩固5: 如图,已知ABC △中,AC =3,BC =4,C ∠=90︒,四边形DEGF 为正方形,其中D 、E 在边AC 、BC 上,F 、G 在AB 上,求正方形的边长.GF EDC B A H IDC EGF ABGFED CBA H MACDEG BIHHPED CB A解析:法一:由勾股定理可求得AB =5,由AB CH AC BC ⋅=⋅可得.CH =24. 由CDE CAB △∽△可得DE CI AB CH =,设正方形的边长为x ,则..x x 24-=524,解得x 60=37. 法二:设CE k =4,则DE k =5,∴GE k =5,BE k 25=3. ∴CE BE +=4,即k k 254+=43,解得k 12=37,∴DE k 60=5=37.题型六 “A 字和“8”字模型的构造 例题6如图,ABC △中,D 为BC 边的中点,延长AD 至E ,延长AB 交CE 的延长线于P .若AD DE =2,求证:3AP AB =.解析:如图,过点D 作PC 的平行线,交AB 于点H . ∵HD PC ∥,AH ADAD DE AH PH PH DE=2⇒==2⇒=2, HD PC ∥,BH BDBD CD BH PH PH CD=⇒==1⇒=, ∴AP AH PH PH =+=3,AH BH AB PH BH =+=2=2, ∴AB BH PH ==,∴AP PH AB =3=3. 还可用如下辅助线来证此题:A BCD EKPABCDEK P PKED CBA巩固6: 如图,已知线段AB ∥CD ,AD 与BC 相交于点K ,E 是线段AD 上一动点. (1)若BK KC 5=2,求CDAB的值; (2)连接BE ,若BE 平分∠ABC ,则当AE AD 1=2时,猜想线段AB 、BC 、CD 三者之间有怎样等量关系?请写出你的结论并予以证明.再探究:当AE AD n1=()n >2,而其余条件不变时,线段AB 、BC 、CD 三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.解析:(1)∵BK KC 5=2,∴CK BK 2=5,又∵CD ∥AB ,∴KCD KBA △∽△,∴CD CK AB BK 2==5(2)当BE 平分ABC ∠,AE AD 1=2时,AB BC CD =+;证明:取BD 的中点为F ,连接EF 交BC 于G 点,由中位线定理,得EF//AB//CD ,∴G 为BC 的中点,GEB EBA ∠=∠,又∵EBA GBE ∠=∠,∴GEB GBE ∠=∠,∴EG BG BC 1==2,ABDECC DEKBA而GF CD 1=2,EF AB 1=2,EF EG GF =+,即:AB BC CD 111=+222;AB BC CD ∴=+;当AE AD n1=(n >2)时,(1)BC CD n AB +=-. 题型七 斜“A ”和斜“8”模型 例题7如图,在ABC △中,AD BC ⊥于D ,CE AB ⊥于E ,ABC △的面积是BDE △面积的4倍,6AC =,求DE 的长.解析:∵AD BC ⊥,CE AB ⊥,ABD CBE ∠=∠, ∴ABD CBE △∽△, ∴BE BCBD AB =,∵EBD CBA ∠=∠,∴BED BCA △∽△,∴11322DEDE AC AC===⇒==.巩固7: (1)如图,ABC △是等边三角形,点D ,E 分别在BC ,AC 上,且BD CE =,AD 与BE 相交于点F .求证:①BD AD DF 2=⋅;②AF AD AE AC ⋅=⋅;③BF BE BD BC ⋅=⋅. (2)如图,四边形ABCD 是菱形,AF AD ⊥交BD 于E ,交BC 于F .求证:AD DE DB 21=⋅2.FECDBAA DEF C解析:(1)∵等边ABC △,∴AB BC =,ABC ACB BAC ∠=∠=∠=60︒ ∵BD CE = ∴ABD BCE △≌△.∴BAD CBE ∠=∠,∴BFD BAD ABE CBE ABE ABC ∠=∠+∠=∠+∠=∠ ∴ABD BFD △∽△ ∴BD DFAD BD=,∴BD AD DF 2=⋅. ②证明AFE ACD △∽△即可. ③证明BFD BCE △∽△即可.(2)方法一:取DE 中点M ,连接AM , ∵AF AD ⊥,M 为DE 中点∴MA MD DE 1==2,∴∠1=∠2,又∵AB AC =,∴∠2=∠3,∴∠1=∠3,∴DAM DBA △∽△,∴DA DM DB 2=⋅,∴AD DE DB 21=⋅2. 方法二:取BD 中点N ,连接AN .由等腰三角形的性质可知:AN BD ⊥, 又∵EAD ∠=90︒,∴AND EAD △∽△,∴AD DN DE 2=⋅, 又∵DN BD 1=2,∴AD DE BD 21=⋅2. 总结:考查斜“A ”和斜“8”常见结论,看到比例乘积想到斜“A ”和斜“8”,也要会找ADEF CM123ED CAB巩固8: 在等边ABC △中,点D 为AC 上一点,连结BD ,直线l 与AB ,BD ,BC 分别相交于点E 、P 、F ,且BPF ∠=60︒.(1)如图8-1,写出图中所有与BPF △相似的三角形,并选择其中一对给予证明. (2)若直线l 向右平移到图8-2、图8-3的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由.(3)探究:如图8-1,当BD 满足什么条件时(其它条件不变),PF PE 1=2?请写出探究结果,并说明理由.(说明:结论中不得含有未标识的字母)图3图2图1lP FEDCB AFP EDC BAlFPEDCBA 图3图2l P F E D CB A l FPEDC BA图3lPFED CB A 图8-1 图8-2 图8-3 解析:(1)BPF EBF △∽△与BPF BCD △∽△,以BPF EBF △∽△为例,证明如下: ∵BPF EBF ∠=∠=60,BFP BFE ∠=∠,∴BPF EBF △∽△. (2)均成立,均为BPF EBF △∽△,BPF BCD △∽△.(3)BD 平分ABC ∠时,PF PE 1=2.证明:∵BD 平分ABC ∠,∴ABP PBF ∠=∠=30∵BPF ∠=60,∴BFP ∠=90,∴PF PB 1=2,又BEF ABP ∠=60-30=30=∠,∴BP EP =,∴PF PE 1=2.题型八 射影定理 例题8如图,已知AD 、CF 是ABC △的两条高,EF AC ⊥与E ,交CB 延长线于G ,交AD 于H ,求证:EF EH EG 2=⋅.解析:∵CF AB ⊥,EF AC ⊥,∴EF AE CE 2=⋅, 又由AD BC ⊥可知,AEH CEG ∠=∠=90︒,EAH EGC ∠=∠,∴AEH GEC △∽△,∴EH EAEC EG=, ∴EH EG EA EC ⋅=⋅,∴EF EH EG 2=⋅.巩固9: (1)如图9-1,在ABC △中,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:CEF CBA △∽△.(2)如图9-2,在Rt ABC △中,AD 是斜边BC 上的高,DE AC ⊥于E ,DF AB ⊥于F ,求证:AB FB FD AC EC ED44⋅=⋅. GHFED CB ACAEFDBBAEDC F图9-1 图9-2解析:(1)分别在ADC △与CDB △中由射影定理得到:2CD CE CA =⋅,2CD CF CB =⋅, CE CA CF CB ⋅=⋅∴,即CE CFCB CA=,ECF BCA ∠=∠∵,ECF BCA ∴△∽△. (2)由射影定理可以依次得到422422AB BD BC BF ABAC DC BC EC AC⋅⋅==⋅⋅, 于是仅需证明AB FDAC ED=, 由于BDA ADC △∽△,DF DE 、分别是AB 与AC 上的高,所以有AB DFAC DE=,得证. 题型九 三垂直模型 例题9如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=,且DM交AC 于F ,ME 交BC 于G . (1)求证:AMF BGM △∽△.(2)连接FG ,如果45α=︒,42AB =,3AF =,求FG 的长.解析:(1)由题意得,DME A B α∠=∠=∠=, ∴180AMF BMG α∠+∠=︒-,180AMF AFM α∠+∠=︒-,∴BMG AFM ∠=∠, 又E A B α∠=∠=∠=,∴△AMF ∽△BGM .(2)∵AMF BGM △∽△,∴AM AF BG BM =∴,∵M 为AB 的中点,∴12AM BM AB ==∴, ∵42AB =,3AF =,∴83BG =∴, ∵45α=︒∵,∴90ACB ∠=︒∴,4AC BC ==,∴1CF AC AF =-=∴,43CG BC BG =-=, ∴2253FG CF CG =+=.巩固10: (1)如图10-1,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为____________.(2)如图10-2,在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,使得B 点落在D 点的位置,且AD 交y 轴于点E ,则D 点坐标为___________.GFE DCB AByD E OAxC图10-1 图10-2EDCG FBM A解析:(1)ABE ECF FDG △∽△∽△,2AB AEFD FG==, ∴2AB DF =,∴2AB CF =,1AB AE BEEC EF CF===, ∴AB CE =,BE CF =,∴2CE CF =, 又∵4EF =,∴CE =,CF =BC,AB , ∴矩形ABCD的周长为(2)过D 点做DF x ⊥轴于F 点,BC 与FD 的延长线交于G 点 则CGD DFA △∽△,∴13CG GD CD DF AF AD ===, 设CG x =,则3DF x =,1AF x =+,33GD x =-, 由于3AF GD =,列得方程:()1333x x +=-, 解得45x =,故45CG =,125DF =,求得D 点坐标为41255⎛⎫- ⎪⎝⎭,.巩固11: 如图11-1,ABC △和DEF △是两个全等的等腰直角三角形,90BAC EDF ∠=∠=︒,DEF △的顶点E 与ABC △的斜边BC 的中点重合.将DEF △绕点E 旋转到如图11-2,线段DE 与线段AB 相交于点P ,线段EF 与线段CA 的延长线相交于点Q . (1)求证:BPE CEQ △∽△.(2)已知BP a =,92CQ a =,求P 、Q 两点间的距离(用含a 的代数式表示).B DFA PQECBDFAP Q图11-1 图11-2解析:(1)∵ABC △和DEF △是两个全等的等腰直角三角形,∴45B C DEF ∠=∠=∠=︒, ∴135BEP CEQ ∠+∠=︒,135CQE CEQ ∠+∠=︒,∴BEP CQE ∠=∠, 又∵45B C ∠=∠=︒,∴BPE CEQ △∽△. (2)连接PQ ,∵BPE CEQ △∽△,∴BP BECE CQ=, ∵BP a =,92CQ a =,BE CE =,∴BE CE ==,∴BC =,∴3AB AC a ==,∴32AQ a =,2PAa =,在Rt APQ △中,52PQ a =.题型十 三平行模型例题10 已知:如图,在梯形ABCD 中,AB//CD ,M 是AB 的中点,分别连接AC 、BD 、MD 、MC ,且AC 与MD 交于点E ,DB 与MC 交于F . (1)求证:EF//CD ;(2)若AB a =,CD b =,求EF 的长.DFAPQFEMDCBA解析:(1)∵AB CD ∥,∴ME AM ED CD =,MF BMFC CD=, ∵AM BM =,∴AM BM CD CD =(中间过渡量),∴ME MF EF CD ED FC=⇒∥. (2)∵AM EF CD ∥∥,∴111EF AM CD =+,∴2abEF a b=+. 巩固12: 如图所示,在ABC △中,120BAC ∠=︒,AD 平分BAC ∠交BC 于点D .求证:111AD AB AC=+.ABDABCEF解析:分别过B 、C 两点做AD 的平行线,分别交CA 、BA 的延长线于E 、F 两点. 由于EB//AD//FC ,有111AD BE FC=+;由于60EBA BAD ∠=∠=︒,18060EAB BAC ∠=︒-∠=︒所以EAB △为正三角形,同理FAC △亦为正三角形.BE AB =∴,FC AC =.故111AD AB AC=+. 题型十一角平分线定理例题11 在ABC △中,B ∠的平分线交AC 于D ,C ∠的平分线交AB 于E ,且BE CD =.求证:AB AC =.解析:由角平分线定理得到AB AD BC DC =,AC AEBC BE=, ∵BE CD =∵,∴AD DC BE AE AB BC BC AC===∴ 即AD AEAB AC=,∴AD AC CD =-∴,AE AB BE =- ∴()()AC AC CD AB AB CD -=-,整理得到()()0AC AB AC AB CD -+-= 明显0AC AB CD +-≠,故AC AB =.巩固13: (1)如图13-1,在ABC △中,C ∠=90︒,CA =3,CB =4,且CD 是C ∠的平分线.则AD 的长为__________.(2)如图13-2,I 是ABC △内角平分线的交点,AI 交对应边于D 点,求证:AI AB ACID BC+=.CADBIAD B C图13-1 图13-2解析:(1)由角平分线定理34AD ACDB BC ==,由于5AB ==,31577AD AB ==∴ B AED(2)由角平分线定理得到AI AB AC ID BD CD ==,由等比性质得到:AI AB AC AB AC ID BD CD BC++==+. 巩固14: 若AP PB =,2APB ACB ∠=∠,AC 与PB 相交于点D ,且4PB =,3PD =.求AD DC ⋅的值.P DCBAEA BCDP解析:过P 点做APB ∠的角平分线PE ,交AD 于E 点.∵EPD APE C ∠=∠=∠∵,且PDE CDB ∠=∠,∴PDE CDB ∴△∽△,∴3ED DC PD DB ⋅=⋅=∴, 又由于PE 是角平分线,∴PA AE PD ED =∴,∵4PA PB ==∵,∴43AE ED =∴,∴73AD ED =∴, 773AD DC ED DC ⋅=⋅=∴. 题型十二 线束模型例题12 如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:3EF DE =. 法一:如下左图,过D 作DG BC ∥交AC 于G ,交AM 、AN 于P 、Q , 由线束定理可知DP PQ QG ==,∵DF AC ∥,∴DE DP AG PG 1==2,DF DQ AG QG ==2, ∴DE DF 1=4,∴EF DE =3.过E 点或F 点作BC 的平行线也可得到类似的证法. 法二:如下右图,过M 作PQ DF ∥,交AB 于P , 交AF 延长线于Q ,则有AC DF PQ ∥∥, ∴PM BM AC BC 1==3,QM MNAC NC==1, ∴PM QM 1=3,由线束定理可知DE PM EF QM 1==3, 即EF DE =3.过B 点或N 点作DF 的平行线也可得到类似的证法.QPABCMN DEFQP GABCMNDEF巩固15: (1)如图15-1,AB ∥CD ,AD 与BC 交于点P ,过P 点的直线与AB 、CD 分别交于E ,F .求证:AE DFBE CF=. FED NMCBA(2)如图15-2,AB ∥CD ,AD 与BC 交于点P ,连接CA 、DB 并延长相交于O ,连接OP 并延长交CD 于M ,求证:点M 为CD 的中点.(3)如图15-3,在图15-2中,若点G 从D 点向左移动(不与C 点重合),AG 与BC 交于点P ,连OP 并延长交CD 于M ,直接写出MC 、MG 、MD 之间的关系式.AC FDE B POABCM D POAB CM D P G图15-1 图15-2 图15-3解析:(1)证明:如图1,∵AB //CD ,AD 与BC 交于点P , ∴AEP DFP △∽△,BFP CFP △∽△, ∴AE EP DF FP =,BE EP CF FP =,∴AE BE DF CF =,∴AE DFBE CF=; (2)证明:如图2,设OM 交AB 于点N .∵AB //CD ,∴AON COM △∽△,BON DOM △∽△,AOB COD △∽△, ∴OA AN OC CM =,OB BN OD DM =,OA OB OC OD =,∴AN BNCM DM=①, ∵ANP DMP △∽△,BNP CMP △∽△,APB DPC △∽△, ∴AN AP DM DP =,DN BP CM CP =,AP BP DP CP =,∴AN BNDM CM=②, ①÷②,DM CMCM DM=,∴CM =DM ,即点M 为CD 的中点; (3)解:MC 2=MG •MD ,理由如下:如图3,设OM 交AB 于点N . ∵AB //CD ,∴MCP NBP △∽△,NAP MGP △∽△,∴MC MP NB NP =①,NA NPMG MP=②, ①×②,得MC NA MP NP NB MG NP MP ⨯=⨯=1,∴MC NB MG NA=. ∵AON COM △∽△,BON DOM △∽△,∴NA ON MC OM =,NB ONMD OM=, ∴NA NB MC MD =,∴MD NB MC NA =,∴MC MDMG MC=,∴MC MG MD 2=⋅. 题型十三相似综合例题13 如图,点A 的坐标为(2,2),点C 是线段OA 上的一个动点(不与O 、A 两点重合),过点C 作CDx 轴,垂足为D ,以CD 为边在右侧作正方形CDEF .连接AF 并延长交x轴的正半轴于点B ,连接OF .若以B 、E 、F 为顶点的三角形与OFE △相似,则点B 的坐标是 .解析:要使BEF △与OFE △相似, ∵FEO FEB ∠=∠=90︒ ∴只要OE EF EB EF =或OE EF EF EB =,即BE t =2或EB t 1=2. ② 当BE t =2时,BO t =4, ∴t t t 2=42-,∴t =0(舍去)或t 3=2,∴(,)B 60. ②当EB t 1=2时,(i )当B 在E 的左侧时,OB OE EB t 3=-=2,∴tt t23=2-2,∴t=0(舍去)或t2=3,∴(,)B10.(ii)当B在E的右侧时,OB OE EB t5=+=2,∴ttt25=2-2,∴t=0(舍去)或t6=5,∴(,)B30.巩固16:如图,Rt ABC△中,ACB∠=90︒,CD AB⊥于D,过点D作DE BC⊥,BDE△边DE上的中线BF延长线交AC于点G.(1)求证:AD BD CE CB⋅=⋅;(2)若AG FG=,求:BF GF;(3)在(2)的条件下,若BC=62BD的长度.AFECDGAFECDG P解析:(1)证明:∵CD AB⊥,∴BCD△是直角三角形.∵DE BC⊥,∴CD CE CB2=⋅.∵ABC△是直角三角形,CD AB⊥,∴CD AD BD2=⋅,∴AD BD CE CB⋅=⋅;(2)解:过G作GP DF⊥交DF于P,连结DG,∵AC BC⊥,DE BC⊥,GF DE⊥,∴四边形CEPG是矩形,∴CG EP=在Rt ADC△中,∵G是边AC中点,∴AG DG CG==.又∵AG FG=,∴DG FG=,∴GFD△是等腰三角形.∴GP是FD的中线,DP FP=,即FP DF EF1=1=22.∵CG EP=,FP EF=12,∴::PF CG=13,∴::PF FG=13.∵PFG EFB CGB△△△∽∽,∴::::CG BG EF BF PF GF===13,∴::FG BG=13,::BF GF=21;(3)解:∵BC=62:::CE BE GF BF==12,∴CE=22,BE=42∵::EF BF=13,设EF x=,则BF x=3,∴()x x222+2=9,解得x=2,∴BF=6,GF=3,AC=6,∴()AB AC BC2222+6+6263BD=43。

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)相似模型相似模型一:A字型特征:DE∥BC模型结论:根据A字型相似模型,可以得出以下结论:C∠B=∠XXXAC²=AD×AB相似模型二:X型特征:AC∥BD模型结论:根据X型相似模型,可以得出以下结论:AO×OB=OC×ODBOC∽△DOACAOC∽△DOB相似模型三:旋转相似特征:成比例线,段共端点模型结论:根据旋转相似模型,可以得出以下结论:BEF∽△BCDDEF∽△DABAEB∽△DEC相似模型四:三平行模型特征:AB∥EF∥CD模型结论:根据三平行模型,可以得出以下结论:ABE∽△CDF相似模型五:半角模型特征:90度,45度;120度,60度模型结论:根据半角模型,可以得出以下结论:ABN∽△MAN∽△MCAABD∽△CAE∽△CBA相似模型六:三角形内接矩形模型特征:矩形EFGH或正方形EFGH内接与三角形模型结论:根据三角形内接矩形模型,可以得出以下结论:ABC∽△EFH相似模型七:十字模型特征:正方形HDGB模型结论:根据十字模型,可以得出以下结论:若AF=BE,则AF⊥BE,且为长方形若AF⊥BE,则AF=BEBDBC平行四边形,且△GME∽△HNF,△MED≌△BFA。

下面给出几个几何问题。

1.在△ABC中,AB=AC,且有以下七个结论:①D为AC中点;②AE⊥BD;③BE:EC=2:1;④∠ADB=∠CDE;⑤∠AEB=∠CED;⑥∠BMC=135°;⑦BM:MC=2:1.求AC和CD的比值。

2.在平行四边形ABCD中,AB∥CD,线段BC,AD相交于点F,点E是线段AF上一点且满足∠BEF=∠C,其中AF=6,DF=3,CF=2,求AE的长度。

3.在Rt△ABD中,过点D作CD⊥BD,垂足为D,连接XXX于点E,过点E作EF⊥BD于点F,若AB=15,CD=10,求4.在□ABCD中,E为BC的中点,连接AE,AC,分别交BD于M,N,求5.在平行四边形ABCD中,AB∥CD,AD,BC相交于点E,过E作EF∥AB交BD于点F。

相似三角形的性质和应用___辅导讲义

相似三角形的性质和应用___辅导讲义

课题相似三角形的性质和应用教学目标1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程.2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质.3、会运用上述两个性质解决简单的几何问题.重点、难点1、本节教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质.2、相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点.知识框架相似三角形相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。

相似用符号“∽”来表示,读作“相似于”。

相似三角形对应边的比叫做相似比(或相似系数),相似三角形的基本定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似用数学语言表述如下:∵DE∥BC,∴△ADE∽△ABC相似三角形的等价关系:(1)反身性:对于任一△ABC,都有△ABC∽△ABC(2)对称性:若△ABC∽△ABC,则△ABC∽△ABC(3)传递性:若△ABC∽△ABC并且△ABC∽△ABC则△ABC∽△ABC3、三角形相似的判定(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法AB CDE①以上各种判定方法均适用 ②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直 角边对应成比例,那么这两个直角三角形相似③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

相似三角形专题

相似三角形专题

相似三角形专题一知识结构图一.角平分线相似模型常见题模型如下:二.平行相似模型“A”型:如图,,则有.“8”字型:如图,,则有.常见的一些变形注意:构造平行的方法实质是为了构造出“A”型和“8”字型.三.K型图:如下图,图1 图2 图3题模一角平分线相似模型例1.1、如图,是的角平分线,求证:.例1.2、如图(1)~(3),已知∠AOB的平分线OM上有一点P,∠CPD的两边与射线OA、OB交于点C、D,连接CD交OP于点G,设∠AOB=α(0°<α<180°),∠CPD=β.(1)如图(1),当α=β=90°时,试猜想PC与PD,∠PDC与∠AOB的数量关系(不用说明理由);(2)如图(2),当α=60°,β=120°时,(1)中的两个猜想还成立吗?请说明理由.(3)如图(3),当α+β=180°时,①你认为(1)中的两个猜想是否仍然成立,若成立请直接写出结论;若不成立,请说明理由.②若=2,求的值.题模二平行相似模型例2.1、如图,已知,若,,,求证:.例2.2、如图,在四边形ABCD中,AB∥CD,点F在边AD上,BA的延长线交CF的延长线于点E,EC交BD于点M,且CM2=EM•FM.求证:AD∥BC.例2.3、已知:△ABC是任意三角形.(1)如图1所示,点M、P、N分别是边AB、BC、CA的中点,求证:∠MPN=∠A.(2)如图2所示,点M、N分别在边AB、AC上,且=,=,点P1、P2是边BC的三等分点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由.(3)如图3所示,点M、N分别在边AB、AC上,且=,=,点P1、P2、…、P2009是边BC的2010等分点,则∠MP1N+∠MP2N+…+∠MP2009N=____.(请直接将该小问的答案写在横线上)题模三K型图例3.1、【试题再现】如图1,Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A、B分别作AD⊥l于点D,BE⊥l于点E,则DE=AD+BE(不用证明).(1)【类比探究】如图2,在△ABC中,AC=BC,且∠ACB=∠ADC=∠BEC=100°,上述结论是否成立?若成立,请说明理由:若不成立,请写出一个你认为正确的结论.(2)【拓展延伸】①如图3,在△ABC中,AC=nBC,且∠ACB=∠ADC=∠BEC=100°,猜想线段DE、AD、BE 之间有什么数量关系?并证明你的猜想.②若图1的Rt△ABC中,∠ACB=90°,AC=nBC,并将直线l绕点C旋转一定角度后与斜边AB相交,分别过点A、B作直线l的垂线,垂足分别为点D和点E,请在备用图上画出图形,并直接写出线段DE、AD、BE之间满足的一种数量关系(不要求写出证明过程).随堂练习随练1.1、如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB 的中点.其中正确的结论是______.随练1.2、已知中,的外角平分线交对边的延长线于,求证:.随练1.3、如图,是一个边长为2的等边三角形,,垂足为点.过点作,垂足为点;再过点作,垂足为点;又过点作,垂足为点;……;这样一直作下去,得到一组线段:,,,……,则线段的长为________,线段的长为_______(n为正整数)随练1.4、如图,已知是的平分线上的定点,过点任作一条直线分别交、于、.证明:是定值.随练1.5、(1)尝试:如图1,已知A、E、B三点在同一直线上,且,求证:.(2)一位同学在尝试了上题后还发现:如图2、图3,只要A、E、B三点在同一直线上,且,则(1)中结论总成立.你同意吗?请选择其中之一说明理由.(3)运用:如图,四边形ABCD是等腰梯形,AD∥BC,,,P为BC边上一动点(不与点B、C重合),连接AP,过点P作PE交CD于点E,使得.则当BP为何值时,点E为CD的中点.随练1.6、探究问题:已知AD、BE分别为的边BC、AC上的中线,且AD、BE交于点O.(1)为等边三角形,如图1,则________;(2)当小明做完(1)问后继续探究发现,若为一般三角形(如图2),(1)中的结论仍成立,请你给予证明.(3)运用上述探究的结果,解决下列问题:如图3,在中,点E是边AC的中点,AD平分,于点F,若求:的周长.随练1.7、已知,射线OT是∠MON的平分线,点P是射线OT上的一个动点,射线PB交射线ON 于点B.(1)如图,若射线PB绕点P顺时针旋转120°后与射线OM交于A,求证:;(2)在(1)的条件下,若点C是AB与OP的交点,且满足,求:△POB与△PBC的面积之比;(3)当OB=2时,射线PB绕点P顺时针旋转120°后与直线OM交于点A(点A不与点O重合),直线PA交射线ON于点D,且满足.请求出OP的长.相似三角形专题二一.内接矩形相似模型1.常见题模型:如图,矩形是的内接矩形,则有:,在平时训练中遇到内接矩形类的图形,就要充分利用这一结论,有助于进行解题.二.相似的应用1.射影定理:直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项.说明:如上图,由,可得:由,可得:由,可得:2.相似与平面直角坐标系:在平面直角坐标系中,求解与已知三角形相似三角形的坐标问题一般转化为“边角边”或者“角角”来判定相似问题,此类问题一般答案不唯一.3.相似与圆:在圆中,相似三角形的出现一般都伴随着射影定理和切线与割线问题,这类题目的问题一般为求解长度问题,利用相似三角形的判定模型与性质,结合勾股定理求解.题模一内接矩形问题例1.1、如图,正方形DEFG内接于△ABC,且△ADG、△BDE、△CFG的面积分别为1、3、1,则正方形DEFG 的面积是__.例1.2、如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.例1.3、在面积为24的△ABC中,矩形DEFG的边DE在AB上运动,点F、G分别在BC、AC上.(1)若,,求GF的长;(2)若,如图2,线段DM、EN分别为△ADG和△BEF的角平分线,求证:;(3)请直接写出矩形DEFG的面积的最大值.题模二相似的应用例2.1、如图,正方形的边长为,点是对角线、的交点,点在上,过点作,垂足为,连接(1)是利用射影定理证明;(2)若,求的长例2.2、如图,AB为半圆直径,D为AB上一点,分别在半圆上取点E、F,使,,过D作AB的垂线,交半圆于C.求证:CD平分EF.例2.3、如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?例2.4、如图,在直角坐标系中,已知点A(8,0)、B(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<)秒.解答如下问题:(1)当t为何值时,△APQ与△ABO相似?(2)设△AQP的面积为S,求S与t之间的函数关系式,并求出S的最大值.例2.5、(1)如图①,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D.求证:AB2=AD•AC;(2)如图②,在Rt△ABC中,∠ABC=90°,点D为BC边上的点,BE⊥AD于点E,延长BE交AC于点F.,求的值;(3)在Rt△ABC中,∠ABC=90°,点D为直线BC上的动点(点D不与B、C重合),直线BE⊥AD于点E,交直线AC于点F.若,请探究并直接写出的所有可能的值(用含n的式子表示),不必证明.例2.6、在平面直角坐标系xOy中,直线y=﹣x+6与x轴、y轴分别交于点A、B,与直线y=x相交于点C.(1)直接写出点C的坐标;(2)如图,现将直角∠FCE绕直角顶点C旋转,旋转时始终保持直角边CF与x轴、y轴分别交于点F、点D,直角边CE与x轴交于点E.①在直角∠FCE旋转过程中,的值是否会发生变化?若改变,请说明理由;若不变,请求出这个值;②在直角∠FCE旋转过程中,是否存在以C、E、F为顶点的三角形与△ODE相似?若存在,求出点D的坐标;若不存在,请说明理由.随堂练习随练2.1、如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为_____.随练2.2、在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点A n的纵坐标是__.随练2.3、已知正方形MNPQ内接于(如图所示),若的面积为,,求该正方形的边长.随练2.4、如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.随练2.5、一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).随练2.6、如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.随练2.7、如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.随练2.8、操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE 的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME 之间有什么数量关系?并结合图4加以证明.随练2.9、如图,在平面直角坐标系中,直线AC,BC交于y轴于点C(0,3),两直线AC,BC分别交轴于A,B 两点(OA<OB),且OA,OB的长分别是一元二次方程4x2﹣25x+36=0的两个根.(1)试判断△AOC与△COB是否相似?并说明理由;(2)点M是线段AB间的一点,过M点作MQ⊥BC于Q,过Q点作垂线交AB于点P,若△PMQ的周长为,求点P的坐标;(3)当点P的坐标为P(2,0)时,在直线PQ上是否存在一点N,使△BCN为直角三角形?若存在,直接写出符合条件的N的坐标;若不存在,请说明理由.随练2.10、如图,菱形ABCD的边长为48cm,,动点P从点A出发,沿着线路AB—BD做匀速运动,动点Q从点D同时出发,沿着线路DC—CB—BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s.经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请问△AMN是哪一类三角形,并说明理由;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF与问题(2)中的△AMN相似,试求的值.能力拓展拓展1、如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线.若∠ABE=∠C,AE:ED=2:1,则△BDE与△ABC的面积比为何?()A、1:6B、1:9C、2:13D、2:15拓展2、如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是______.(填写所有正确结论的序号)拓展3、如图,点,,,…,点,,,…,分别在射线OM,ON上.,,,,….….则________,___________(n为正整数).拓展4、(1)问题如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.拓展5、如图,已知CD是△ABC中∠ACB的角平分线,E是AC上的一点,且,,.(1)求证:△BCD∽△DCE;(2)求证:△ADE∽△ACD;(3)求CE的长.拓展6、如图1,中,分别平分.是的外角的平分线,交延长线于,连接.(1)变化时,设.若用表示和,那么= ,∠E=(2)若,且与相似,求相应长;(3)如图2,延长交延长线于.当形状、大小变化时,图中有哪些三角形始终与相似?写出这些三角形,并选其中之一证明.拓展7、如图,正方形ABCD的边长为2,P是△BCD内一动点,过点P作PM⊥AB于M,PN⊥AD于N,分别于对角线BD相交于点E,F.记PM=a,PN=b,当点P运动时,ab=2.(1)求证:EF2=BE2+DF2;(2)求证:△ABF∽△EDA,并求∠EAF的度数;(3)设△AEF的面积为S,试探究S是否存在最小值?若存在,请求出S的最小值;若不存在,请说明理由.拓展8、如图,△ABC的内接正方形EFGH中,EH∥BC,其中BC=4,高AD=6,则正方形的边长为.拓展9、如图,路灯(P点)距地面8米,身高1.6米的小明从距离路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点(B点在A点的左边)时,身影的长度是变长了还是变短了?变长或变短了多少米?拓展10、如图在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上.若cm, cm,(1),求矩形PQMN的周长;(2)当PN为多少时矩形PQMN的面积最大,最大值为多少?拓展11、如图,AD是△ABC的高,点P,Q在BC边上,点G在AC边上,点F在AB边上,cm,cm,四边形PQGF是正方形.(1)△AFG与△ABC相似的吗?为什么?(2)的值.拓展12、已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D,OC 交AB于E.(1)求∠D的度数;(2)求证:AC2=AD•CE;(3)求的值.拓展13、如图,四边形ABCD与ECGF是两个边长分别为a,b的正方形,(1)用a,b表示△BGF的面积的代数式S1=______;(2)求出阴影部分的面积的代数式S2(用a,b表示)(3)当a=4cm,b=6cm时,阴影部分的面积.拓展14、如图,已知△ABC中,AB=AC=a,BC=10,动点P沿CA方向从点C向点A运动,同时,动点Q沿CB 方向从点C向点B运动,速度都为每秒1个单位长度,P、Q中任意一点到达终点时,另一点也随之停止运动.过点P作PD∥BC,交AB边于点D,连接DQ.设P、Q的运动时间为t.(1)直接写出BD的长;(用含t的代数式表示)(2)若a=15,求当t为何值时,△ADP与△BDQ相似;(3)是否存在某个a的值,使P、Q在运动过程中,存在S△BDQ:S△ADP:S梯形CPDQ=1:4:4的时刻,若存在,求出a 的值;若不存在,请说明理由.拓展15、已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是________________.拓展16、已知AC,EC分别是四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.(i)求证:△CAE∽△CBF;(ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且=k时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)。

专题22.6相似三角形的应用【十大题型】-2024-2025学年九年级数学上册举一[含答案]

专题22.6相似三角形的应用【十大题型】-2024-2025学年九年级数学上册举一[含答案]

cm.
【变式 5-1】(23-24 九年级·陕西咸阳·阶段练习)
18.如图, EF 是一个杠杆,可绕支点 O 自由转动,当 EF 处于图中的位置时,点 O 到点 E
的水平距离 OM = 2 ,点 O 到点 F 的水平距离 ON = 4 ,若已知杠杆的 OE 段长为 2.5,则杠杆
的 OF 段长为

【变式 5-2】(23-24 九年级·河南南阳·期末)
专题 22.6
相似三角形的应用【十大题型】
【沪科版】
【题型 1 建筑物高问题】
【题型 2 影长问题】
【题型 3 河宽问题】
【题型 4 树高问题】
【题型 5 杠杆问题】
【题型 6 实验问题】
【题型 7 古文问题】
【题型 8 裁剪问题】
【题型 9 现实生活相关问题】
【题型 10 三角形内接矩形问题】
【题型 1 建筑物高问题】
CD=16m , BE = 10m ,请根据这些数据,计算河宽 AB.
【变式 3-3】(23-24 九年级·北京·期末)
12.如图,为了测量平静的河面的宽度,即 EP 的长,在离河岸 D 点 3.2 米远的 B 点,立一
根长为 1.6 米的标杆,在河对岸的岸边有一根长为 4.5 米的电线杆 MF ,电线杆的顶端 M
19.如图是用杠杆撬石头的示意图,点 C 是支点,当用力压杠杆的 A 端时,杠杆绕 C 点转
动,另一端 B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的 B 端必须向
上翘起 5cm ,已知 AB : BC = 10 :1 ,要使这块石头滚动,至少要将杠杆的 A 端向下压
cm .
【变式 5-3】(23-24 九年级·浙江温州·期中)

相似三角形的应用练习题(带答案

相似三角形的应用练习题(带答案

是矩形,
∵四边形
是正方形,







∴ ∴四边形
, 为正方形.
( 2 )仿照勤奋小组同学的作法作图,如图 与图 所示,矩形
即为所作.


( 3 )如图 ,作
的高 ,交 于 ,

的面积






,则











解得





∴矩形
的面积

同理,在矩形
中,若
,可求出




∴矩形
的面积




.若点 是 边上的一点,将
, 交 于,
,则

D
10
【答案】
;
【解析】 作
于,









由折叠及
得:

∴易得



又∵







【标注】【知识点】翻折问题与勾股定理;相似A字型
3. 如图,矩形
的顶点 在 轴的正半轴上,点 、点 分别是边 、 上的两个点.将
沿 折叠,使点 落在 边上的三等分点 上(点 靠近点 ),过点 作
,使 , 位于边 上, , 分别位于边 , 上.(在备用图中完成,不写作法,保
留作图痕迹)
( 3 )解决问题: 在( )的条件下,已知

相似三角形题型归纳总结非常全面

相似三角形题型归纳总结非常全面

相似三角形题型归纳一、比例的性质:二、成比例线段的概念: 1.比例的项:在比例式::a b c d =(即a cb d =)中,a ,d 称为比例外项,b ,c 称为比例内项.特别地,在比例式::a b b c =(即a bb c=)中,b 称为a ,c 的比例中项,满足b ac 2=.2.成比例线段:四条线段a ,b ,c ,d 中,如果a 和b 的比等于c 和d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.3.黄金分割:如图,若线段AB 上一点C ,把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即AC AB BC 2=⋅),则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中.AC AB AB ≈0618,BC AB =.AB ≈0382,AC 与AB 的比叫做黄金比.(注意:对于线段AB 而言,黄金分割点有两个.)三、平行线分线段成比例定理 1.平行线分线段成比例定理A两条直线被三条平行线所截,所得的对应线段成比例,简称为平行线分线段成比例定理.如图:如果123////l l l ,则AB DE BC EF =,AB DE AC DF =,BC EFAC DF=.AD BE CF1l 2l 3lA D BE CF 1l 2l 3l【小结】若将所截出的小线段位置靠上的(如AB )称为上,位置靠下的称为下,两条线段合成的线段称为全,则可以形象的表示为=上上下下,=上上全全,=下下全全.2.平行线分线段成比例定理的推论平行于三角形一边的直线,截其它两边(或两边的延长线),所得的对应线段成比例.如图:如果EF//BC ,则AE AF EB FC =,AE AF AB AC =,BE CFAB AC=. ABC E FFEC BA平行线分线段成比例定理的推论的逆定理 若AE AF EB FC =或AE AF AB AC =或BE CF AB AC=,则有EF//BC . 【注意】对于一般形式的平行线分线段成比例的逆定理不成立,反例:任意四边形中一对对边的中点的连线与剩下两条边,这三条直线满足分线段成比例,但是它们并不平行.【小结】推论也简称“A ”和“8”,逆定理的证明可以通过同一法,做'//EF BC 交AC 于'F 点,再证明'F 与F 重合即可.四、相似三角形的定义、性质和判定 1.相似图形①定义:对应角相等,对应边成比例的图形叫做相似图形.对应边的比例叫做相似比.相似图形是形状相同,大小不一定相同.相似图形间的互相变换称为相似变换.②性质:两个相似图形的对应角相等,对应边成比例.2.相似三角形的定义3.相似三角形的性质 ①相似三角形的对应角相等. 如图,∽△△ABC A B C ''',则有 A A '∠=∠,B B C C ''∠=∠∠=∠,.②相似三角形的对应边成比例. 如图,∽△△ABC A B C ''',则有AB BC ACk A B B C A C ===''''''(k 为相似比). ③相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图,△ABC ∽△A B C ''',AM AH 、和AD 是△ABC 中BC 边上的中线、高线和角平分线,A M ''、A H ''和A D ''是△ABC '''中B C ''边上的中线、高线和角平分线,则有AB BC AC AM AH ADk A B B C A C A M A H A D ======''''''''''''④相似三角形周长的比等于相似比. 如图,△ABC ∽△A B C ''',则有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. ⑤相似三角形面积的比等于相似比的平方. 如图,△ABC ∽△A B C ''',则有 △△ABC A B C BC AHS BC AH k S B C A H B C A H 2'''1⋅⋅2==⋅=1''''''''⋅⋅24.相似三角形的判定判定定理判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 简称为两角对应相等,两个三角形相似. 如图,如果'A A ∠=∠,'B B ∠=∠,则△∽△ABC A B C '''.判定定理2:如果两个三角形的三组对应边成比例,那么这两个三角形相似.简称为三边对应成比例,两个三角形相似.如图,如果AB BC ACA B B C A C =='''''',则 △∽△ABC A B C '''.判定定理3:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似. 简称为两边对应成比例且夹角相等,两个三角形相似.如图,如果AB ACA B A C ='''','A A ∠=∠,则△∽△ABC A B C '''.五、“A ”字和“8”字模型六、与内接矩形的有关的相似问题如图,已知四边形DEFG 是△ABC 的内接矩形,E 、F 在BC 边上,D 、G 分别在AB 、AC 边上,则有:△∽△ADG ABC ,DG ANBC AM=. 特别地,当BAC ∠=90︒时,有△∽△∽△∽△ADG EBD FGC ABC .NM GFE DCB AGFEDCBA七、“A ”字和“8”字模型的构造“A ”字和“8”字模型的构造常常作平行线,常见的作平行线的方法:G EDCAGFEDCBA G FE DC B ADEFCBAGA HDFBECAGDF BEC八、斜“8”模型九、斜“A”模型十、射影定理十一、三平行模型十一二、三垂直模型十三、角平分线定理十四、线束模型题型一 比例的性质和成比例线段的概念例题1 (1)已知::::x y z =135,则x y zx y z+3--3+的值是_______.(2)若x y z 234==.则x y z x y-+3=3-_______. (3)若a b c 2=3=4,且abc ≠0,则a bc b+-2的值是_______. 解析(1)设x k =,y k =3,z k =5.∴x y z k k k x y z k k k +3-+9-55==--3+-9-53;(2)113;(3)-2 巩固1: (1)如果:2:3x y =,则下列各式不成立的是( ) A .53x y y += B .13y x y -= C .123x y = D .1314x y +=+ (2)已知:23a c e b d f ===,求值:①a cb d++;②2323a c e b d f -+-+. (3)已知b c a c a b a b c a b c +-+-+-==,求()()()a b b c a c abc+++的值. 解析:(1)A 为合比性质,B 为分比性质,C 显然正确,D 错误,由于11x y ≠,不能用等比定理.故答案为D .(2)由等比性质直接可以得到23a c b d +=+;232233a c eb d f -+=-+. (3)当0a bc ++≠时,()()()b c a c a b a b c b c a c a b a b c a b c a b c+-+-+-+-++-++-====1++ 于是:2,2,2b c a a c b a b c +=+=+=,()()()a b b c a c abc+++=8.当0a b c ++=时,()()()()()()a b b c a c c a b abc abc+++-⋅-⋅-==-1.本题答案为1-或8.题型二 平行线分线段成比例定理 例题2(1)如图2-1,已知∥∥l l l 123,用面积法证明:AB DEBC EF=. (2)如图2-2,∥∥AD BE CF ,若AB =4,AC =10,DE =5,则DF =______. (3)如图2-3,∥∥l l l 123,AB =3,BC =5,DF =12,则_______DE =,______EF =.A D BECF l 12l 3lAD B ECFA DBECF l 12l l 3图2-1 图2-2 图2-3(1)如图所示,连接AE ,BD ,BF ,CE .△△ABECBES AB BC S =∴. ∥AD BE ∵,∥BE CF ,△△ABE DEB S S =∴,△△CBE FEB S S =.△△△△ABE EDB CBE EFB S S AB DEBC S S EF===∴. (2)252; (3)92,152. 巩固2: (1)如图2-1,直线∥∥l l l 123,已知.cm AG =06,.cm BG =12,.cm CD =15,CH =_____.(2)如图2-2,在△ABC 中,D 、E 分别为AB 、AC 边上的点,若AD BD 2=3,AE =3,则AC =______(3)如图2-3,AB ∥DE ,AE 与DB 交于C ,AC =3,BD =3,CD =2,则CE =______A CH GDBl 1l 2l 3B ADEABC图2-1 图2-2 图2-3解析:(1)0.5cm ;(2)152;(3)6 题型三 相似三角形的定义、性质和判定 例题3如图,直角梯形ABCD 中,∠ADC =90︒,∥AD BC ,点E 在BC 上,点F 在AC上,∠∠DFC AEB =.(1)求证:△∽△ADF CAE .(2)当AD =8,DC =6,点E 、F 分别是BC 、AC 的中点时,求直角梯形ABCD 的面积.解析:(1)∵∥AD BC ,∴∠∠DAF ACE =,∵∠∠DFC AEB =,∴DFA AEC ∠=∠,∴△∽△ADF CAE(2)∵AD =8,DC =6,∴AC =10,又∵F 是AC 的中点,∴AF =5 ∵△∽△ADF CAE ,∴AD AF CA CE =,∴CE 85=10,∴CE 25=4,∵E 是BC 的中点, ∴BC 25=2,∴直角梯形ABCD 的面积125123⎛⎫=⨯+8⨯6= ⎪222⎝⎭A D BECF l 12l 3l F EDCBA巩固3: (1)下列所给条件中,可以判断△ABC 与△DEF 相似的是( ) A .90A ∠=︒,90F ∠=︒,5AC =,13BC =,10DF =,26EF = B .85C ∠=︒,85E ∠=︒,AC DEBC DF=C .1AB =, 1.5AC =,2BC =,8EF =,10DE =,16FD = D .46A ∠=︒,80B ∠=︒,45E ∠=︒,80F ∠=︒(2)如图1,在△ABC 中,点D 是BC 边上的中点,且AD AC =,DE BC ⊥,交BA 于点E ,EC 与AD 相交于点F .求证:△∽△ABC FCD .(3)如图2,△ABC 为等腰直角三角形,BD CE BC 21⋅=2,求证:△∽△ACE DBA .AEF DADB CE图1 图2解析:(1)D ; (2)AD AC =∵,FDC ACB ∠=∠∴;DE ∵垂直平分BC ,EB EC =∴, ∴ABC FCD ∠=∠,△∽△ABC FCD ∴.(3)由等腰直角三角形得到BC =条件变为BD CE AB AB AC 2221⋅=⋅2==2,条件变为比例形式:BD BAAC CE=,由于DBA ACE ∠=180︒-45︒=∠,∴△∽△ACE DBA .题型四 “A ”字和“8”字模型例题4 (1)如图4-1,已知□ABCD 中,过点B 的直线顺次与AC 、AD 及CD 的延长线相交于点E 、F 、G ,若BE =5,EF =2,则FG 的长为____________.(2)如图4-2,已知在□ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP:PQ:QC =____________.G BAF DC EC AD M N PQ图4-1 图4-2解析:(1)∵四边形ABCD 为平行四边形,∴//AD BC ∴△∽△AEF CEB ,△∽△GFD GBC ,∴AF EF CB EB 2==5,∴DF AD AF CB CB -3==5∴FG DF BG CB 3==5,即FG FG 3=+75.得.FG =105. (2)由DC ∥AB ,得AP AM PC AB 1==3,AP AC 1=4,同理AQ AC 2=5,PQ AC 2=51-4AC =AC 320,QC =AC 35,故1::::::4AP PQ QC 33==5312205.巩固4: (1)如图4-1,在ABC △中,M 、E 把AC 边三等分,MN//EF//BC ,MN 、EF 把ABC △分成三部分,则自上而下部分的面积比为 .(2)如图4-2,AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且1AB =,3CD =,则:EF CD 的值为__________.(3)如图4-3,已知在平行四边形ABCD 中,M 为AB 的中点,DM ,DB 分别交AC 于P ,Q 两点,则::AP PQ QC =___________.NM FE C BAAB CEF DA CBQPD图4-1 图4-2 图4-3解析:(1)1:3:5;(2)14;(3)AQ CQ AC 1==2∵,又AP AM PC CD 1==2,AP AC 1=3∴ PQ AC AC 111⎛⎫=1--= ⎪236⎝⎭∴,::::AP PQ QC =213∴.题型五 与内接矩形有关的相似问题 例题5(1)如图5-1,△ABC 中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在AC 、AB 上,BC =15,BC 边上的高AD =10,求正方形EFGH S .(2)如图5-2,已知△ABC 中,四边形DEGF 为正方形,D ,E 在线段AC ,BC 上,F ,G 在AB 上,如果ADF CDE S S ∆∆==1,BEG S ∆=3,求△ABC 的面积.HAB C D E FGACDEGB图5-1 图5-2解析:(1)设正方形EFGH 的边长为x ,AD 、HG 的交点为M , 则有AM HG AD BC =,即x x10-=1015,解得,x =6,故EFGH S 2=6=36正方形(2)设正方形边长为x ,则AF x 2=,CI x 2=,BG x6=. 由△∽△CDE CAB ,得CI DE CH AB =,∴xxx x x x2=28++,解得x =2, ∴AB =6,CH =3,∴ABC S AB CH ∆1=⋅=92巩固5: 如图,已知ABC △中,AC =3,BC =4,C ∠=90︒,四边形DEGF 为正方形,其中D 、E 在边AC 、BC 上,F 、G 在AB 上,求正方形的边长.GF EDC B A H IDC EGF ABGFED CBA H MACDEG BIHHPED CB A解析:法一:由勾股定理可求得AB =5,由AB CH AC BC ⋅=⋅可得.CH =24. 由CDE CAB △∽△可得DE CI AB CH =,设正方形的边长为x ,则..x x 24-=524,解得x 60=37. 法二:设CE k =4,则DE k =5,∴GE k =5,BE k 25=3. ∴CE BE +=4,即k k 254+=43,解得k 12=37,∴DE k 60=5=37.题型六 “A 字和“8”字模型的构造 例题6如图,ABC △中,D 为BC 边的中点,延长AD 至E ,延长AB 交CE 的延长线于P .若AD DE =2,求证:3AP AB =.解析:如图,过点D 作PC 的平行线,交AB 于点H . ∵HD PC ∥,AH ADAD DE AH PH PH DE=2⇒==2⇒=2, HD PC ∥,BH BDBD CD BH PH PH CD=⇒==1⇒=, ∴AP AH PH PH =+=3,AH BH AB PH BH =+=2=2, ∴AB BH PH ==,∴AP PH AB =3=3. 还可用如下辅助线来证此题:A BCD EKPABCDEK P PKED CBA巩固6: 如图,已知线段AB ∥CD ,AD 与BC 相交于点K ,E 是线段AD 上一动点. (1)若BK KC 5=2,求CDAB的值; (2)连接BE ,若BE 平分∠ABC ,则当AE AD 1=2时,猜想线段AB 、BC 、CD 三者之间有怎样等量关系?请写出你的结论并予以证明.再探究:当AE AD n1=()n >2,而其余条件不变时,线段AB 、BC 、CD 三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.解析:(1)∵BK KC 5=2,∴CK BK 2=5,又∵CD ∥AB ,∴KCD KBA △∽△,∴CD CK AB BK 2==5(2)当BE 平分ABC ∠,AE AD 1=2时,AB BC CD =+;证明:取BD 的中点为F ,连接EF 交BC 于G 点,由中位线定理,得EF//AB//CD ,∴G 为BC 的中点,GEB EBA ∠=∠,又∵EBA GBE ∠=∠,∴GEB GBE ∠=∠,∴EG BG BC 1==2,ABDECC DEKBA而GF CD 1=2,EF AB 1=2,EF EG GF =+,即:AB BC CD 111=+222;AB BC CD ∴=+;当AE AD n1=(n >2)时,(1)BC CD n AB +=-. 题型七 斜“A ”和斜“8”模型 例题7如图,在ABC △中,AD BC ⊥于D ,CE AB ⊥于E ,ABC △的面积是BDE △面积的4倍,6AC =,求DE 的长.解析:∵AD BC ⊥,CE AB ⊥,ABD CBE ∠=∠, ∴ABD CBE △∽△, ∴BE BCBD AB =,∵EBD CBA ∠=∠,∴BED BCA △∽△,∴11322DEDE AC AC===⇒==.巩固7: (1)如图,ABC △是等边三角形,点D ,E 分别在BC ,AC 上,且BD CE =,AD 与BE 相交于点F .求证:①BD AD DF 2=⋅;②AF AD AE AC ⋅=⋅;③BF BE BD BC ⋅=⋅. (2)如图,四边形ABCD 是菱形,AF AD ⊥交BD 于E ,交BC 于F .求证:AD DE DB 21=⋅2.FECDBAA DEF C解析:(1)∵等边ABC △,∴AB BC =,ABC ACB BAC ∠=∠=∠=60︒ ∵BD CE = ∴ABD BCE △≌△.∴BAD CBE ∠=∠,∴BFD BAD ABE CBE ABE ABC ∠=∠+∠=∠+∠=∠ ∴ABD BFD △∽△ ∴BD DFAD BD=,∴BD AD DF 2=⋅. ②证明AFE ACD △∽△即可. ③证明BFD BCE △∽△即可.(2)方法一:取DE 中点M ,连接AM , ∵AF AD ⊥,M 为DE 中点∴MA MD DE 1==2,∴∠1=∠2,又∵AB AC =,∴∠2=∠3,∴∠1=∠3,∴DAM DBA △∽△,∴DA DM DB 2=⋅,∴AD DE DB 21=⋅2. 方法二:取BD 中点N ,连接AN .由等腰三角形的性质可知:AN BD ⊥, 又∵EAD ∠=90︒,∴AND EAD △∽△,∴AD DN DE 2=⋅, 又∵DN BD 1=2,∴AD DE BD 21=⋅2. 总结:考查斜“A ”和斜“8”常见结论,看到比例乘积想到斜“A ”和斜“8”,也要会找ADEF CM123ED CAB巩固8: 在等边ABC △中,点D 为AC 上一点,连结BD ,直线l 与AB ,BD ,BC 分别相交于点E 、P 、F ,且BPF ∠=60︒.(1)如图8-1,写出图中所有与BPF △相似的三角形,并选择其中一对给予证明. (2)若直线l 向右平移到图8-2、图8-3的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由.(3)探究:如图8-1,当BD 满足什么条件时(其它条件不变),PF PE 1=2?请写出探究结果,并说明理由.(说明:结论中不得含有未标识的字母)图3图2图1lP FEDCB AFP EDC BAlFPEDCBA 图3图2l P F E D CB A l FPEDC BA图3lPFED CB A 图8-1 图8-2 图8-3 解析:(1)BPF EBF △∽△与BPF BCD △∽△,以BPF EBF △∽△为例,证明如下: ∵BPF EBF ∠=∠=60,BFP BFE ∠=∠,∴BPF EBF △∽△. (2)均成立,均为BPF EBF △∽△,BPF BCD △∽△.(3)BD 平分ABC ∠时,PF PE 1=2.证明:∵BD 平分ABC ∠,∴ABP PBF ∠=∠=30∵BPF ∠=60,∴BFP ∠=90,∴PF PB 1=2,又BEF ABP ∠=60-30=30=∠,∴BP EP =,∴PF PE 1=2.题型八 射影定理 例题8如图,已知AD 、CF 是ABC △的两条高,EF AC ⊥与E ,交CB 延长线于G ,交AD 于H ,求证:EF EH EG 2=⋅.解析:∵CF AB ⊥,EF AC ⊥,∴EF AE CE 2=⋅, 又由AD BC ⊥可知,AEH CEG ∠=∠=90︒,EAH EGC ∠=∠,∴AEH GEC △∽△,∴EH EAEC EG=, ∴EH EG EA EC ⋅=⋅,∴EF EH EG 2=⋅.巩固9: (1)如图9-1,在ABC △中,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:CEF CBA △∽△.(2)如图9-2,在Rt ABC △中,AD 是斜边BC 上的高,DE AC ⊥于E ,DF AB ⊥于F ,求证:AB FB FD AC EC ED44⋅=⋅. GHFED CB ACAEFDBBAEDC F图9-1 图9-2解析:(1)分别在ADC △与CDB △中由射影定理得到:2CD CE CA =⋅,2CD CF CB =⋅, CE CA CF CB ⋅=⋅∴,即CE CFCB CA=,ECF BCA ∠=∠∵,ECF BCA ∴△∽△. (2)由射影定理可以依次得到422422AB BD BC BF ABAC DC BC EC AC⋅⋅==⋅⋅, 于是仅需证明AB FDAC ED=, 由于BDA ADC △∽△,DF DE 、分别是AB 与AC 上的高,所以有AB DFAC DE=,得证. 题型九 三垂直模型 例题9如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=,且DM交AC 于F ,ME 交BC 于G . (1)求证:AMF BGM △∽△.(2)连接FG ,如果45α=︒,42AB =,3AF =,求FG 的长.解析:(1)由题意得,DME A B α∠=∠=∠=, ∴180AMF BMG α∠+∠=︒-,180AMF AFM α∠+∠=︒-,∴BMG AFM ∠=∠, 又E A B α∠=∠=∠=,∴△AMF ∽△BGM .(2)∵AMF BGM △∽△,∴AM AF BG BM =∴,∵M 为AB 的中点,∴12AM BM AB ==∴, ∵42AB =,3AF =,∴83BG =∴, ∵45α=︒∵,∴90ACB ∠=︒∴,4AC BC ==,∴1CF AC AF =-=∴,43CG BC BG =-=, ∴2253FG CF CG =+=.巩固10: (1)如图10-1,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为____________.(2)如图10-2,在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,使得B 点落在D 点的位置,且AD 交y 轴于点E ,则D 点坐标为___________.GFE DCB AByD E OAxC图10-1 图10-2EDCG FBM A解析:(1)ABE ECF FDG △∽△∽△,2AB AEFD FG==, ∴2AB DF =,∴2AB CF =,1AB AE BEEC EF CF===, ∴AB CE =,BE CF =,∴2CE CF =, 又∵4EF =,∴CE =,CF =BC,AB , ∴矩形ABCD的周长为(2)过D 点做DF x ⊥轴于F 点,BC 与FD 的延长线交于G 点 则CGD DFA △∽△,∴13CG GD CD DF AF AD ===, 设CG x =,则3DF x =,1AF x =+,33GD x =-, 由于3AF GD =,列得方程:()1333x x +=-, 解得45x =,故45CG =,125DF =,求得D 点坐标为41255⎛⎫- ⎪⎝⎭,.巩固11: 如图11-1,ABC △和DEF △是两个全等的等腰直角三角形,90BAC EDF ∠=∠=︒,DEF △的顶点E 与ABC △的斜边BC 的中点重合.将DEF △绕点E 旋转到如图11-2,线段DE 与线段AB 相交于点P ,线段EF 与线段CA 的延长线相交于点Q . (1)求证:BPE CEQ △∽△.(2)已知BP a =,92CQ a =,求P 、Q 两点间的距离(用含a 的代数式表示).B DFA PQECBDFAP Q图11-1 图11-2解析:(1)∵ABC △和DEF △是两个全等的等腰直角三角形,∴45B C DEF ∠=∠=∠=︒, ∴135BEP CEQ ∠+∠=︒,135CQE CEQ ∠+∠=︒,∴BEP CQE ∠=∠, 又∵45B C ∠=∠=︒,∴BPE CEQ △∽△. (2)连接PQ ,∵BPE CEQ △∽△,∴BP BECE CQ=, ∵BP a =,92CQ a =,BE CE =,∴BE CE ==,∴BC =,∴3AB AC a ==,∴32AQ a =,2PAa =,在Rt APQ △中,52PQ a =.题型十 三平行模型例题10 已知:如图,在梯形ABCD 中,AB//CD ,M 是AB 的中点,分别连接AC 、BD 、MD 、MC ,且AC 与MD 交于点E ,DB 与MC 交于F . (1)求证:EF//CD ;(2)若AB a =,CD b =,求EF 的长.DFAPQFEMDCBA解析:(1)∵AB CD ∥,∴ME AM ED CD =,MF BMFC CD=, ∵AM BM =,∴AM BM CD CD =(中间过渡量),∴ME MF EF CD ED FC=⇒∥. (2)∵AM EF CD ∥∥,∴111EF AM CD =+,∴2abEF a b=+. 巩固12: 如图所示,在ABC △中,120BAC ∠=︒,AD 平分BAC ∠交BC 于点D .求证:111AD AB AC=+.ABDABCEF解析:分别过B 、C 两点做AD 的平行线,分别交CA 、BA 的延长线于E 、F 两点. 由于EB//AD//FC ,有111AD BE FC=+;由于60EBA BAD ∠=∠=︒,18060EAB BAC ∠=︒-∠=︒所以EAB △为正三角形,同理FAC △亦为正三角形.BE AB =∴,FC AC =.故111AD AB AC=+. 题型十一角平分线定理例题11 在ABC △中,B ∠的平分线交AC 于D ,C ∠的平分线交AB 于E ,且BE CD =.求证:AB AC =.解析:由角平分线定理得到AB AD BC DC =,AC AEBC BE=, ∵BE CD =∵,∴AD DC BE AE AB BC BC AC===∴ 即AD AEAB AC=,∴AD AC CD =-∴,AE AB BE =- ∴()()AC AC CD AB AB CD -=-,整理得到()()0AC AB AC AB CD -+-= 明显0AC AB CD +-≠,故AC AB =.巩固13: (1)如图13-1,在ABC △中,C ∠=90︒,CA =3,CB =4,且CD 是C ∠的平分线.则AD 的长为__________.(2)如图13-2,I 是ABC △内角平分线的交点,AI 交对应边于D 点,求证:AI AB ACID BC+=.CADBIAD B C图13-1 图13-2解析:(1)由角平分线定理34AD ACDB BC ==,由于5AB ==,31577AD AB ==∴ B AED(2)由角平分线定理得到AI AB AC ID BD CD ==,由等比性质得到:AI AB AC AB AC ID BD CD BC++==+. 巩固14: 若AP PB =,2APB ACB ∠=∠,AC 与PB 相交于点D ,且4PB =,3PD =.求AD DC ⋅的值.P DCBAEA BCDP解析:过P 点做APB ∠的角平分线PE ,交AD 于E 点.∵EPD APE C ∠=∠=∠∵,且PDE CDB ∠=∠,∴PDE CDB ∴△∽△,∴3ED DC PD DB ⋅=⋅=∴, 又由于PE 是角平分线,∴PA AE PD ED =∴,∵4PA PB ==∵,∴43AE ED =∴,∴73AD ED =∴, 773AD DC ED DC ⋅=⋅=∴. 题型十二 线束模型例题12 如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:3EF DE =. 法一:如下左图,过D 作DG BC ∥交AC 于G ,交AM 、AN 于P 、Q , 由线束定理可知DP PQ QG ==,∵DF AC ∥,∴DE DP AG PG 1==2,DF DQ AG QG ==2, ∴DE DF 1=4,∴EF DE =3.过E 点或F 点作BC 的平行线也可得到类似的证法. 法二:如下右图,过M 作PQ DF ∥,交AB 于P , 交AF 延长线于Q ,则有AC DF PQ ∥∥, ∴PM BM AC BC 1==3,QM MNAC NC==1, ∴PM QM 1=3,由线束定理可知DE PM EF QM 1==3, 即EF DE =3.过B 点或N 点作DF 的平行线也可得到类似的证法.QPABCMN DEFQP GABCMNDEF巩固15: (1)如图15-1,AB ∥CD ,AD 与BC 交于点P ,过P 点的直线与AB 、CD 分别交于E ,F .求证:AE DFBE CF=. FED NMCBA(2)如图15-2,AB ∥CD ,AD 与BC 交于点P ,连接CA 、DB 并延长相交于O ,连接OP 并延长交CD 于M ,求证:点M 为CD 的中点.(3)如图15-3,在图15-2中,若点G 从D 点向左移动(不与C 点重合),AG 与BC 交于点P ,连OP 并延长交CD 于M ,直接写出MC 、MG 、MD 之间的关系式.AC FDE B POABCM D POAB CM D P G图15-1 图15-2 图15-3解析:(1)证明:如图1,∵AB //CD ,AD 与BC 交于点P , ∴AEP DFP △∽△,BFP CFP △∽△, ∴AE EP DF FP =,BE EP CF FP =,∴AE BE DF CF =,∴AE DFBE CF=; (2)证明:如图2,设OM 交AB 于点N .∵AB //CD ,∴AON COM △∽△,BON DOM △∽△,AOB COD △∽△, ∴OA AN OC CM =,OB BN OD DM =,OA OB OC OD =,∴AN BNCM DM=①, ∵ANP DMP △∽△,BNP CMP △∽△,APB DPC △∽△, ∴AN AP DM DP =,DN BP CM CP =,AP BP DP CP =,∴AN BNDM CM=②, ①÷②,DM CMCM DM=,∴CM =DM ,即点M 为CD 的中点; (3)解:MC 2=MG •MD ,理由如下:如图3,设OM 交AB 于点N . ∵AB //CD ,∴MCP NBP △∽△,NAP MGP △∽△,∴MC MP NB NP =①,NA NPMG MP=②, ①×②,得MC NA MP NP NB MG NP MP ⨯=⨯=1,∴MC NB MG NA=. ∵AON COM △∽△,BON DOM △∽△,∴NA ON MC OM =,NB ONMD OM=, ∴NA NB MC MD =,∴MD NB MC NA =,∴MC MDMG MC=,∴MC MG MD 2=⋅. 题型十三相似综合例题13 如图,点A 的坐标为(2,2),点C 是线段OA 上的一个动点(不与O 、A 两点重合),过点C 作CDx 轴,垂足为D ,以CD 为边在右侧作正方形CDEF .连接AF 并延长交x轴的正半轴于点B ,连接OF .若以B 、E 、F 为顶点的三角形与OFE △相似,则点B 的坐标是 .解析:要使BEF △与OFE △相似, ∵FEO FEB ∠=∠=90︒ ∴只要OE EF EB EF =或OE EF EF EB =,即BE t =2或EB t 1=2. ② 当BE t =2时,BO t =4, ∴t t t 2=42-,∴t =0(舍去)或t 3=2,∴(,)B 60. ②当EB t 1=2时,(i )当B 在E 的左侧时,OB OE EB t 3=-=2,∴tt t23=2-2,∴t=0(舍去)或t2=3,∴(,)B10.(ii)当B在E的右侧时,OB OE EB t5=+=2,∴ttt25=2-2,∴t=0(舍去)或t6=5,∴(,)B30.巩固16:如图,Rt ABC△中,ACB∠=90︒,CD AB⊥于D,过点D作DE BC⊥,BDE△边DE上的中线BF延长线交AC于点G.(1)求证:AD BD CE CB⋅=⋅;(2)若AG FG=,求:BF GF;(3)在(2)的条件下,若BC=62BD的长度.AFECDGAFECDG P解析:(1)证明:∵CD AB⊥,∴BCD△是直角三角形.∵DE BC⊥,∴CD CE CB2=⋅.∵ABC△是直角三角形,CD AB⊥,∴CD AD BD2=⋅,∴AD BD CE CB⋅=⋅;(2)解:过G作GP DF⊥交DF于P,连结DG,∵AC BC⊥,DE BC⊥,GF DE⊥,∴四边形CEPG是矩形,∴CG EP=在Rt ADC△中,∵G是边AC中点,∴AG DG CG==.又∵AG FG=,∴DG FG=,∴GFD△是等腰三角形.∴GP是FD的中线,DP FP=,即FP DF EF1=1=22.∵CG EP=,FP EF=12,∴::PF CG=13,∴::PF FG=13.∵PFG EFB CGB△△△∽∽,∴::::CG BG EF BF PF GF===13,∴::FG BG=13,::BF GF=21;(3)解:∵BC=62:::CE BE GF BF==12,∴CE=22,BE=42∵::EF BF=13,设EF x=,则BF x=3,∴()x x222+2=9,解得x=2,∴BF=6,GF=3,AC=6,∴()AB AC BC2222+6+6263BD=43。

中考中相似三角形的常见模型及典型例题

中考中相似三角形的常见模型及典型例题
1.相似的基本模型:
(1)A字、8字; (3)角平分线; (5)一线三等角; (7)内接矩形;
2.基本辅助线:
(2)反A、反8; (4)旋转型; (6)线束模型; (8)相似比与面积比。
(1)作平行线构造A字、8字; (2)作垂线构造直角三角形相似
3.基本问题类型:
(1)证明相似;
(2)求线段长;
(1)若点P在线段CB上,且BP=6,求线段CQ的长; (2)若BP=x,CQ=y,求y与x的关系式,并求出自变量x的取值范围。
例 9 如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CD,
AD与BE相交于点F. (1)求证:△ABD≌△BCE; (2)求证:△ABE∽△FAE;
(3)当AF=7,DF=1时,求BD的长。
(量得BN=70cm)
C
C
DME
DME
A PN F
B
A PN F
B
1.如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80 毫米,要把它加工成正方形零件,使正方形的一边在BC上,其 余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?
A
A
M
EN
H
KG

B Q DPC
B
E
DF C
E
AB AC BC
B
C (2)公共边平方=共线边之积:AC 2 AE • AB
反A字 型 【模型2】反“A”字型&反“8”字型
(Ⅱ)DE拉下来经过点C,又称之为母子型,为相似常考模型:
A
A
E
B
C
AC2 AED • BC
AC2 CD • CB
AD2 BD • CD

相似三角形应用

相似三角形应用

ABCDD ABCDABCA BCD E第12讲 相似三角形应用(1)一、基础知识回顾:1.相似三角形的预备定理:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似. 定理的基本图形有三种情况,如图其符号语言: ∵DE ∥BC , ∴△ABC ∽△ADE ; 2.相似三角形的判定判定定理1:两角对应相等,两三角形相似.补充(1有一组锐角对应相等的两个直角三角形相似(2)顶角或底角对应相等的两个等腰三角形相似。

判定定理2:两边对应成比例且夹角相等,两三角形相似. 判定定理3:三边对应成比例,两三角形相似. 3.直角三角形相似的判定:在直角三角形中,斜边和一条直角边对应成比例,两直角三角形相似. 4. 相似三角形中的基本图形:(A 型,X 型)交错型 旋转型 母子形二、典型问题分析:问题1.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.求证:(1)2AB BD BC =⋅;2AC CD BC =⋅;(2)2AD BD CD =⋅问题2.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则BDBE AD AF =吗?说说你的理由.问题3.如图,在矩形ABCD 中,AB=5cm ,BC=10cm ,动点P 在AB 边上由A 向B 作匀速运动,1分钟可到达B 点;动点Q 在BC 边上由B 向C 作匀速运动,1分钟可到达C 点,若P 、Q 两点同时出发,问经过多长时间,恰好有PQ ⊥BD ? 练习题1、如图,ΔABC 中,BD 是角平分线,过D 作DE ∥AB 交BC 于点E ,AB=5cm ,BE=3cm ,求EC 的长.BA BCD EQ P DCB A2.如图,已知AD 为△ABC 的角平分线,AD 的垂直平分线交BC 的延长线于点E ,交AB 与F ,试判定△BAE 与△ACE 是否相似,并说明理由。

专题19 三角形内接矩形相似模型--2024年中考数学核心几何模型重点突破(解析版)

专题19 三角形内接矩形相似模型--2024年中考数学核心几何模型重点突破(解析版)

专题19三角形内接矩形相似模型【模型】如图,四边形DEFG 是△ABC 的内接矩形,EF 在BC 边上,D 、G 分别在AB 、AC 边上,则△ADG ∽△ABC ,△ADN ∽△ABM ,△AGN ∽△ACM .【例1】如图,在ABC 中,AD 是BC 边上的高,在ABC 的内部,作一个正方形PQRS ,若3BC =,2AD =,则正方形PQRS 的边长为()A .65B .54C .1D .32【答案】A【分析】由四边形PQRS 是正方形,可得,SR BC ∥即可证得△ASR ∽△ABC ,设正方形PQRS 的边长为x ,然后由相似三角形对应高的比等于相似比,得方程:2,32x x -=解此方程即可求得答案.【解析】解:如图:记AD 与SR 的交点为E ,设正方形PQRS 的边长为x ,∵AD 是△ABC 的高,四边形PQRS 是正方形,∴SR BC ∥,AE 是△ASR 的高,则AE =AD -ED =2-x ,∴△ASR ∽△ABC ,,SR AE BC AD ∴=2,32x x -∴=解得:65x =,∴正方形PQRS 的边长为65.故选:A .【例2】如图,已知三角形铁皮ABC 的边cm BC a =,BC 边上的高cm AM h =,要剪出一个正方形铁片DEFG ,使D 、E 在BC 上,G 、F 分别在AB 、AC 上,则正方形DEFG 的边长=________.【答案】aha h+【分析】设AM 交GF 于H 点,然后根据相似三角形的判定与性质求解即可.【解析】解:如图,设高AM 交GF 于H 点,∵四边形DEFG 为正方形,∴GF ∥DE ,即:GF ∥BC ,∴AH ⊥GF ,△AGF ∽△ABC ,∴GF AH BC AM=,设正方形的边长为x,∴x h xa h-=,解得:ahxa h =+,故答案为:ah a h+.【例3】如图,在△ABC中,∠C=90°,AC=BC,AB=8.点P从点A出发,以每秒2个单位长度的速度沿边AB向点B运动.过点P作PD⊥AB交折线AC﹣CB于点D,以PD为边在PD右侧做正方形PDEF.设正方形PDEF与△ABC重叠部分图形的面积为S,点P的运动时间为t秒(0<t<4).(1)当点D在边AC上时,正方形PDEF的边长为(用含t的代数式表示).(2)当点E落在边BC上时,求t的值.(3)当点D在边AC上时,求S与t之间的函数关系式.(4)作射线PE交边BC于点G,连结DF.当DF=4EG时,直接写出t的值.【答案】(1)2t;(2)43;(3)2244(0)34144832(2)3S t tS t t t⎧<≤⎪⎪⎨⎪+<≤⎪⎩==﹣﹣;(4)t=87或85【分析】(1)由等腰直角三角形的性质和正方形的性质可得:∠A=∠ADP=45°,即AP=DP=2t;(2)由等腰直角三角形的性质和正方形的性质可得:AB=AP+PF+FB,即2t+2t+2t=8,可求t的值;(3)分两种情况讨论,根据重叠部分的图形的形状,可求S与t之间的函数关系式;(4)分点E在△ABC内部和△ABC外部两种情况讨论,根据平行线分线段成比例,可求t的值.【解析】(1)∵∠C=90°,AC=BC,∴∠A=45°=∠B,且DP⊥AB,∴∠A=∠ADP=45°,∴AP=DP=2t,故答案为2t,(2)如图,∵四边形DEFP是正方形,∴DP=DE=EF=PF,∠DPF=∠EFP=90°,∵∠A=∠B=45°,∴∠A=∠ADP=∠B=∠BEF=45°,∴AP=DP=2t=EF=FB=PF,∵AB=AP+PF+FB,∴2t+2t+2t=8,∴t=4 3;(3)当0<t≤43时,正方形PDEF与△ABC重叠部分图形的面积为正方形PDEF的面积,即S=DP2=4t2,当43<t≤2时,如图,正方形PDEF与△ABC重叠部分图形的面积为五边形PDGHF的面积,∵AP=DP=PF=2t,∴BF=8﹣AP﹣PF=8﹣4t,∵BF=HF=8﹣4t,∴EH =EF ﹣HF =2t ﹣(8﹣4t )=6t ﹣8,∴S =S 正方形DPFE ﹣S △GHE ,∴S =4t 2﹣12×(6t ﹣8)2=﹣14t 2+48t ﹣32,综上所述,S 与t 之间的函数关系式为2244(0)34144832(2)3S t t S t t t ⎧<≤⎪⎪⎨⎪+<≤⎪⎩==﹣﹣.(4)如图,当点E 在△ABC 内部,设DF 与PE 交于点O,∵四边形PDEF 是正方形,∴DF =PE =2PO =2EO ,∠DFP =45°,∴∠DFP =∠ABC =45°,∴DF ∥BC ,∴PO PF PG PB=,∵DF =4EG ,∴设EG =a ,则DF =4a =PE ,PO =2a =EO ,∴PG =5a ,∴25PO PF a PG PB a ==,∴22825t t =-,∴t =87,如图,当点E 在△ABC 外部,设DF 与PE 交于点O,∵四边形PDEF 是正方形,∴DF =PE =2PO =2EO ,∠DFP =45°,∴∠DFP =∠ABC =45°,∴DF ∥BC ,∴PO PF PG PB=,∵DF =4EG ,∴设EG =a ,则DF =4a =PE ,PO =2a =EO ,∴PG =3a ,∵23PO PF a PG PB a ==,∴22823t t =-,∴t =85,综上所述:t =87或85.一、单选题1.如图,矩形EFGH 内接于ABC ,且边FG 落在BC 上,若2,3,2,3AD BC BC AD EF EH ⊥===,那么EH 的长为()A .23B .13C .32D .12【答案】C【分析】设EH =3x ,表示出EF ,由AD -EF 表示出三角形AEH 的边EH 上的高,根据三角形AEH 与三角形ABC 相似,利用相似三角形对应边上的高之比等于相似比求出x 的值,即为EH 的长.【解析】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴AM EH AD BC=,设EH=3x,则有EF=2x,AM=AD-EF=2-2x,∴223 23x x -=,解得:12 x=,则32 EH=.故选:C.2.如图,在Rt△ABC中,∠C=90°,放置边长分别为3,4,x的三个正方形,则x的值为()A.12B.7C.6D.5【答案】B【分析】根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【解析】解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴OM ∥AB ∥PN ∥EF ,EO ∥FP ,∠C =∠EOM =∠NPF =90°,∴△CEF ∽△OME ∽△PFN ,∴OE :PN =OM :PF ,∵EF =x ,MO =3,PN =4,∴OE =x -3,PF =x -4,∴(x -3):4=3:(x -4),∴(x -3)(x -4)=12,即x 2-4x -3x +12=12,∴x =0(不符合题意,舍去)或x =7.故选:B .3.如图,将一张面积为50的大三角形纸片沿着虚线剪成三张小三角形纸片与一张矩形纸片.根据图中标示的长度,则矩形纸片的面积为()A .12B .18C .24D .30【答案】C 【分析】如图,由DE ∥BC ,可得△ADE ∽△ABC ,利用相似三角形的性质,可求得△ADE 的高,进而求得平行四边形的高,则问题可解.【解析】解:如图,设△ABC 的BC 边上的高为1h ,矩形DEFG 的FG 边上的高为2h ∵四边形DEFG 为矩形,∴DE ∥BC ,∴△ADE ∽△ABC ,DE =6,BC=10,∴12135h h DE h BC -==,∵S △ABC =50,∴15021010h ⨯==,∴2103105h -=,解得24h =,∴平行四边形纸片的面积为=26424DE h ⋅=⨯=.故选:C .4.如图,在△ABC 中,AB 边上取一点P ,画正方形PQMN ,使Q ,M 在边BC 上,N 在边AC 上,连接BN ,在BN 上截取NE =NM ,连接EQ ,EM ,当3tan 4NBM ∠=时,则∠QEM 度数为()A .60°B .70°C .75°D .90°【答案】D 【分析】证明BEQ BEM △∽△,可得BEQ BME ∠=∠,根据等腰三角形的性质可NEM NME ∠=∠,由90BME NME ∠+∠=︒,可得90BEQ NEM ∠+∠=︒,进而可得答案.【解析】PQMN 为正方形,QM NM ∴=,90BMN ∴∠=︒.3tan 4NBM ∠= ,∴在Rt △BMN 中,设3MN QM a ==,则4BM a =,∴BQ BM QM a =-=,5BN a ∴==.NE NM = ,NEM NME ∴∠=,3NE NM a ==,532BE BN NE a a a ∴=-=-=,∴122BQ a BE a ==,2142BE a BM a ==,BQ BE BE BM∴=.EBQ MBE∠=∠ ∴BEQ BEM △∽△,BEQ BME ∴∠=∠.90BME NME ∠+∠=︒ ,∴90BEQ NEM ∠+∠=︒,90QEM ∴∠=︒.故选D .5.如图,在ABC 中,CH AB ⊥,CH h =,AB c =,若内接正方形DEFG 的边长是x ,则h 、c 、x 的数量关系为()A .222x h c +=B .12x h c +=C .2h xc =D .111x h c=+【答案】D 【分析】先根据正方形的性质得到GF DE ∥,继而证明CGF CAB D D ,根据相似三角形的性质即可列出比例式,再通过证明四边形DHMG 是矩形表示出CM 的长度,即可求解.【解析】解:设CH 与GF 交于点M ,正方形DEFG ,GF DE ∴∥,90GDE DGF ∠=∠=︒,CGF CAB D D ∴ ,GF CM AB CH∴=, CH AB ⊥,90DHM ∴∠=︒,∴四边形DHMG 是矩形,DG MH ∴=,CH h =,AB c =,正方形DEFG 的边长是x ,MH x ∴=,CM CH MH h x ∴=-=-,x h x c h -∴=,整理得111x h c=+,故选:D .6.我国古代数学著作《九章算法比类大全》有题如下:“方种芝麻斜种黍,勾股之田十亩无零数.九十股差方为界,勾差十步分明许.借问贤家如何取,多少黍田多少芝麻亩.算的二田无误处,智能才华算中举.”大意是:正方形田种芝麻,斜形(三角形)种黍,有一块直角三角形ABC 是10亩整.股差90AD =步,勾差10BF =步.请问黍田、芝麻各多少亩?(1亩240=平方步)答:()A .艺麻田3.75亩,黍田6.25亩B .芝麻田3.25亩,黍田6.75亩C .芝麻田3.70亩,黍田6.30亩D .芝麻田3.30亩,黍田6.70亩【答案】A 【分析】首先判定AED EBF ∽,然后利用该相似三角形的对应边成比例和DE EF =求得30DE =;然后利用三角形和正方形的面积公式解答.【解析】解:根据题意知,AED EBF ∽,则AD EF DE FB=.又DE EF = ,30DE ∴==.所以,芝麻田的面积为:3030240 3.75S =⨯÷=芝麻(亩).黍田的面积为:12402S AC CB S =⋅÷-黍芝麻()()12402AD DC CF FB S =++÷-芝麻1(9030)(3010)240 3.752=⨯++÷-6.25=(亩).综上所述,芝麻田3.75亩,黍田6.25亩.故选:A .二、填空题7.如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6.在其内并排放入(不重叠)n 个相同的小正方形纸片,使这些纸片的一边都在AB 上,首尾两个正方形各有一个顶点D ,E 分别在AC ,BC 上,则小正方形的边长为_____(用含n 的代数式表示).【答案】1201225n +【分析】连接DE ,作CF ⊥AB 于点F ,根据勾股定理可得AB =10,再由22ABC AC BC AB CF S ⋅⋅== ,可得CF =245,然后根据△CDE ∽△CAB ,可得CG DE CF AB =,即可求解.【解析】解:连接DE ,作CF ⊥AB 于点F ,则DE AB ∥,∵∠C =90°,AC =8,BC =6.∴AB =10,∵22ABC AC BC AB CF S ⋅⋅== ,∴861022CF ⨯⋅=,解得∶CF =245,∵DE AB ∥,∴△CDE ∽△CAB ,CG DE ⊥,∴CG DE CF AB=,设小正方形的边长为x ,∴24524105x nx -=,解得x =1201225n +,故答案为:1201225n +.8.如图,在Rt △ABC 中,∠C =90°,AC =12,BC =5,在三角形内挖掉正方形CDEF ,则正方形CDEF 的边长为________.【答案】6017【分析】设EF =x ,则AF =12-x ,证明△AFE ∽△ACB ,可得EF AF BC AC =,由此构建方程即可解决问题.【解析】解:∵四边形CDEF 是正方形,∴EF ∥CD ,EF =FC =CD =DE ,设EF =x ,则AF =12-x ,∴△AFE ∽△ACB ,∴EF AF BC AC =,∴12512x x -=,解得x =6017,即正方形CDEF 的边长为6017,故答案为:6017.9.如图的△ABC 中有一正方形DEFG ,其中D 在AC 上,E 、F 在AB 上,直线AG 分别交DE 、BC 于M 、N 两点.若∠B =90°,AB =4,BC =3,EF =1,则BN 的长度为_____.【答案】127【分析】由∥DE BC 可得AE DE AB BC =,求出AE 的长,由GF BN ∥可得AE EF GF AB BN +=,将AE 的长代入可求得BN .【解析】解:∵四边形DEFG 是正方形,∴,DE BC GF BN ∥∥,且DE =GF =EF =1,∴△ADE ∽△ACB ,△AGF ∽△ANB ,∴AE DE AB BC=①,AE EF GF AB BN +=②,由①可得,143AE =,解得:43AE =,将43AE =代入②,得:41134BN+=,解得:127BN =,故答案为:127.10.如图,矩形EFGH 内接于ABC ,且边FG 落在BC 上.若3BC =,2AD =,23EF EH =,AD BC ⊥,那么EH 的长为__.【答案】32【分析】根据矩形的性质得到EH BC ∥,得到AEH ABC ∽△△,根据相似三角形的性质得到比例式,列出方程,解方程即可.【解析】解:设AD 与EH 相交与点M ,四边形EFGH 是矩形,∴EH BC ∥,∴AEH ABC ∽△△,AM EH ⊥ ,AD BC ⊥,∴AM EH AD BC=,设3EH x =,则有2EF x =,22AM AD EF x =-=-,∴22323x x -=,解得:12x =,则32EH =.故答案为:32.11.如图,在ABC 中,点F 、G 在BC 上,点E 、H 分别在AB 、AC 上,四边形EFGH 是矩形,2,EH EF AD =是ABC 的高.8,6BC AD ==,那么EH 的长为____________.【答案】245【分析】通过四边形EFGH 为矩形推出EH BC ∥,因此△AEH 与△ABC 两个三角形相似,将AM 视为△AEH 的高,可得出AM EH AD BC=,再将数据代入即可得出答案.【解析】∵四边形EFGH 是矩形,∴EH BC ∥,∴AEF ABC ∽,∵AM 和AD 分别是△AEH 和△ABC 的高,∴,AM EH DM EF AD BC==,∴6AM AD DM AD EF EF =-=-=-,∵=2EH EF ,代入可得:6268EF EF -=,解得12=5EF ,∴1224=255EH ⨯=,故答案为:245.12.在Rt ABD △中,90ABD ∠=︒,点C 在线段AD 上,过点C 作CE AB ⊥于点E ,CF BD ⊥于点F ,使得四边形CEBF 为正方形,此时3cm AC =,4cm CD =,则阴影部分面积为_________2cm .【答案】6【分析】由正方形的性质可得CE BD ∥,CE =CF =BF =BE ,得△AEC ∽△ABD ,设CE =CF =BF =BE =x ,利用相似三角形对应边成比例得到37AE x x AE x FD ==++,解得AE =34x ,FD =43x ,在Rt △AEC 中,由勾股定理得222AE CE AC +=,求得x 的值,进一步即可求得阴影部分的面积.【解析】解:∵四边形CEBF 为正方形,∴CE BD ∥,CE =CF =BF =BE ,∴△AEC ∽△ABD ,∴AE EC AC AB BD AD==,设CE =CF =BF =BE =x ,∴37AE x x AE x FD ==++,解得AE =34x ,FD =43x ,在Rt △AEC 中,由勾股定理得,222AE CE AC +=,即22334x x ⎛⎫+= ⎪⎝⎭,解得x =125,∴AE =34x =95(cm ),FD =43x =165(cm ),∴阴影部分面积为1912116126255255ACE CFD S S +=⨯⨯+⨯⨯= (2cm ).故答案为:6三、解答题13.如图,己知直角三角形的铁片ABC 的两直角边BC 、AC 的长分别为3cm 和4cm ,分别采用(1)、(2)两种剪法,剪出一块正方形铁片,为使所得的正方形面积最大,问哪一种剪法好?为什么?【答案】(1)的情形下正方形的面积大,理由见解析【分析】求出两个正方形的边长,根据面积大的比较合理来选择.【解析】解:(1)设正方形边长为y cm ,则DE =CD =EF =CF =y cm ,∵DE ∥BC ,∴AD DE AC CB=,∴334y y -=,∴127y=;(2)5 AB=.作AB边上的高CH,交DE于点M.由1122ABCS AB CH AC BC=⋅=⋅△,得53422CH⨯=,解得12cm5CH=.∵DE∥AB,∴△CDE∽△CAB,∴CM DE CH AB=.设正方形DEFG的边长为cmx,则1251255x x-=,解得6037x=.∵6012 377<,∴(1)的情形下正方形的面积大.14.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,∠DEB=∠FCE,EF∥AB.(1)求证:△BDE∽△EFC;(2)设12AF FC =,△EFC 的面积是20,求△ABC 的面积.【答案】(1)见解析;(2)45【分析】(1)由平行线的性质得出DEB FCE ∠=∠,DBE FEC ∠=∠,即可得出结论;(2)先求出23FC AC =,易证EFC BAC ∆∆∽,由相似三角形的面积比等于相似比的平方即可得出结果.【解析】(1)解:证明://EF AB ,DBE FEC ∴∠=∠,∵DEB FCE ∠∠=,BDE EFC ∴∆∆∽;(2) 12AF FC =,∴23FC AC =,//EF AB ,EFC BAC ∴∆∆∽,∴222439EFC ABC S FC S AC ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,99204544ABC EFC S S ∆∆∴==⨯=.15.如图,在ABC 中,点D 、E 、F 分别在AB 、BC 、AC 边上,DE AC ∥,EF AB ∥.(1)求证:BDE EFC △△∽.(2)若12BC =,12AF FC =,求线段BE 的长.【答案】(1)见解析;(2)4【分析】(1)由平行线的性质可得∠DEB =∠FCE ,∠DBE =∠FEC ,可得结论;(2)先证明四边形ADEF 是平行四边形,得到DE =AF ,推出12DE FC =,再由相似三角形的性质推出2EC BE =,由此求解即可.【解析】(1)解:∵DE ∥AC ,∴∠DEB =∠FCE ,∵EF ∥AB ,∴∠DBE =∠FEC ,∴△BDE ∽△EFC ;(2)解:∵DE ∥AC ,EF ∥AB ,∴四边形ADEF 是平行四边形,∴DE =AF ,∵12AF FC =,∴12DE FC =,∵△BDE ∽△EFC ,∴12BE DE EC FC ==,∴2EC BE =,∴312BE BC ==,∴4BE =.16.一块三角形的余料,底边BC 长1.8米,高AD =1米,如图.要利用它裁剪一个长宽比是3∶2的长方形,使长方形的长在BC 上,另两个顶点在AB 、AC 上,求长方形的长EH 和宽EF 的长.【答案】EH =911米,EF =611米【解析】根据比例设EH 、EF 分别为3k 、2k ,然后根据△AEH 和△ABC 相似,利用相似三角形对应高的比等于对应边的比列式比例式求出k 值,即可得解.【分析】解:∵长方形的长宽比是3∶2,∴设EH 、EF 分别为3k 、2k ,∴EH ∥BC ,∴△AEH ∽△ABC ,∴AM AD =EH BC ,即121k -=31.8k ,解得k =311,∴EH =911米,EF =611米.17.我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例:已知x 可取任何实数,试求二次三项式261x x +-的最值.解:22226123331x x x x +-=+⨯⋅+--2(3)10x =+-∵无论x 取何实数,总有2(3)0x +≥.∴2(3)1010x +-≥-,即无论x 取何实数,261x x +-有最小值,是10-.(1)问题:已知247y x x =--+,试求y 的最值.(2)【知识迁移】在ABC 中,AD 是BC 边上的高,矩形PQMN 的顶点P 、N 分别在边AB AC 、上,顶点Q 、M 在边BC 上,探究一:12,6AD BC ==,求出矩形PQMN 的最大面积的值;(提示:由矩形PQMN 我们很容易证明APN ABC ∽△△,可以设PN x =,经过推导,用含有x 的代数式表示出该矩形的面积,从而求得答案.)(3)探究二:,AD h BC a ==,则矩形PQMN 面积S 的最大值___________.(用含a ,h 的代数式表示)【答案】(1)11;(2)18;(3)4ah【分析】(1)根据题意,使用配方法将二次三项式进行配方,再根据不等式的基本性质确定最值即可;(2)首先证明APN ABC ∽△△,根据相似三角形的性质,可以得到PN AE BC AD=,设PN x =,则162x AE =,得出2AE x =,从而得出122MN x =-,将矩形PQMN 面积S 用含x 的代数式表示,再进行配方,确定最值即可;(3)根据探究一,即可得出PN AE BC AD =,设PN x =,则x a h AE =,因此h AE x a =,从而得到h MN h x a=-,将矩形PQMN 面积S 用含x 的代数式表示,再进行配方,确定最值即可.【解析】(1)解:()()()22222247474227211y x x x x x x x =--+=-++=-++-+=-++∵无论x 取何实数,总有2(2)0x +≥,∴2(2)0x -+≤,∴2(2)1111x -++≤,即y 有最大值,是11;(2)探究一:∵四边形PQMN 是矩形,∴PN ∥BC ,∴∠APN =∠ABC ,∠ANP =∠ACB ,∴△APN ∽△ABC ,∴PNAEBC AD =,设PN =x ,∴162xAE=,∴2AE x =,由已知可得四边形EDMN 是矩形,∴122MN DE x ==-,∴()()()2222212221226332318S x x x x x x x =-=-+=--+-=--+,∵无论x 取何实数,总有2(3)0x -≥,∴22(3)0x --≤,∴22(3)1818x --+≤,∴矩形PQMN 的最大面积的值为18;(3)探究二:由探究一可知,△APN ∽△ABC ,∴PNAEBC AD =,设PN =x ,∴x a h AE=,∴h AE x a=,∴h MN h x a=-,∴()2222224424h h h h a a h a ah S x h x x hx x ax x ax x a a a a a ⎛⎫⎛⎫⎛⎫=-=-+=--=--+-=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∵无论x 取何实数,总有2()02a x -≥,∴2()02h a x a --≤,∴2(244h a ah ah x a --+≤,∴矩形PQMN 的最大面积的值为4ah .18.如图,Rt ABC 为一块铁板余料,90B ∠=︒,6cm BC =,8cm AB =,要把它加工成正方形小铁板,有如图所示的两种加工方案,请你分别计算这两种加工方案的正方形的边长.【答案】方案①正方形边长247cm ,方案②正方形边长12037cm .【分析】方案①:设正方形的边长为x cm,然后求出△AEF 和△ABC 相似,利用相似三角形对应边成比例列式计算即可得解.方案②:作BH ⊥AC 于H ,交DE 于K ,构造矩形DKHG 和相似三角形(△BDE ∽△BCA ),利用矩形的性质和等面积法求得线段BH 的长度,则BK =4.8−y ;然后由相似三角形的对应边成比例求得答案.【解析】解:设方案①正方形的边长为x cm ,90ABC ∠=︒ ,四边形BDFE 是正方形,EF BC ∴∥,AEF ABC ∴∆∆∽,∴EF AE BC AB=,即886x x -=,解得247x =,即加工成正方形的边长为247cm .设方案②正方形的边长为y cm ,作BH AC ⊥于H ,交DE 于K ,∵四边形EDGF 是正方形,∴DE AC ∥,90EDG DGF ∠=∠=︒.∴BH DE ⊥于K .∴90DKH ∠=︒.∴四边形DKHG 为矩形.设HK DG y ==.∵DE AC ∥.∴BDE BCA ∽.∴BK DE BH AC=.∵10AC ==.∴Δ11681022ABC S BH =⨯⨯=⨯⨯,∴ 4.8BH =,∴ 4.8BK y =-.∴4.84.810y y -=.解得12037y =.即方案②加工成正方形的边长为12037cm .19.在△ABC 中,BC =2,BC 边上的高AD =1,P 是BC 上任一点,PE ∥AB 交AC 于E ,PF ∥AC 交AB 于F.(1)设BP =x ,将S △PEF 用x 表示;(2)当P 在BC 边上什么位置时,S 值最大.【答案】(1)S △PEF =﹣14x 2+12x (0<x <2)(2)当BP =1时,面积有最大值14【分析】(1)先求出△ABC 的面积,再用x 表示出PC ,然后再说明△CEP ∽△CAB 可得CEP CABS S ∆∆=(22x -)2可得△CEP 的面积,同理可得S △BPF =24x ,然后结合图形根据平行四边形的对角线平分平行四边形解答即可;(2)先对(1)所得解析式配方,然后再根据二次函数的性质求最值即可.【解析】(1)解:(1)∵BC =2,BC 边上的高AD =1,∴S △ABC =12×2×1=1,∵BP =x ,∴PC =2﹣x ,∵PE ∥AB ,∴△CEP ∽△CAB ,∴CEP CAB S S ∆∆=(22x -)2,∴S △CEP =1﹣x +24x ,同理:S △BPF =24x ,∵四边形AEPF 为平行四边形,∴S △PEF =12S ▱AEPF =12(S △ABC ﹣S △CEP ﹣S △BPF )=﹣14x 2+12x (0<x <2).∴S △PEF =﹣14x 2+12x (0<x <2).(2)解:由(1)知S △PEF =﹣14x 2+12x =﹣14(x ﹣1)2+14,∵0<x <2,∴当x =1时,面积有最大值14.20.课本中有一道作业题:有一块三角形余料ABC ,它的边BC =12m ,高线AD =8m .要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长为多少米?小颖解得此题的答案为4.8m .(1)你知道小颖是怎么做的吗?请你写出解答过程?(2)善于反思,她又提出了如下的问题,如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.(3)如图3,小颖想如果这块余料形状改为Rt △ABC 的斜板,已知∠A =90°,AB =8m ,AC =6m ,要把它加工成一个形状为平行四边形PQMN 的工件,使MQ 在BC 上,P 、N 两点分别在AB ,AC 上,且PN =8m ,则平行四边形PQMN 的面积为m 2.【答案】(1)见解析(2)达到这个最大值时矩形零件的两条边长4m =6mPQ PN =,(3)7.68【分析】(1)设正方形PQMN 的边长为x m ,则PN =PQ =ED =x m ,AE =AD -ED =(8-x )m ,再证明△APN ∽△ABC ,得到AE PN AD BC =,即8812x x -=,由此求解即可;(2)设PN =x m ,矩形PQMN 的面积为2m S ,同理可证△APN ∽△ABC ,求出28m 3PQ x ⎛⎫=- ⎪⎝⎭,则()226243S PN PQ x =⋅=--+,由此利用二次函数的性质求解即可;(3)如图所示,过点A 作AD ⊥BC 于D ,交PN 于E ,同理可证△APN ∽△ABC ,AE ⊥PN ,得到AE PN AD BC=,利用勾股定理和面积法求出10m BC =, 4.8m AD =,从而求出0.96m DE =,则27.68m PQMN S PN DE =⋅=平行四边形.【解析】(1)解:由题意得四边形PQDE 是矩形,设正方形PQMN 的边长为x m ,则PN =PQ =ED =x m ,∴AE =AD -ED =(8-x )m ,∵四边形PQMN 是正方形,∴PN QM ∥,∴△APN ∽△ABC ,∵AD ⊥BC ,∴AE ⊥PN ,∴AE PN AD BC =,即8812x x -=,解得 4.8x =,∴正方形PQMN 的边长为4.8m ;(2)解:设PN =x m ,矩形PQMN 的面积为2m S ,同理可证△APN ∽△ABC ,∴AE PN AD BC =,即8128x PQ -=,∴28m 3PQ x ⎛⎫=- ⎪⎝⎭,∴()2222288624333S PN PQ x x x x x ⎛⎫=⋅=-=-+=--+ ⎪⎝⎭,∵230a =-<,∴当6x =时,S 有最大值,最大值为224m ,∴4m PQ =,∴达到这个最大值时矩形零件的两条边长4m =6mPQ PN =,(3)解:如图所示,过点A 作AD ⊥BC 于D ,交PN 于E ,同理可证△APN ∽△ABC ,AE ⊥PN ,∴AE PN AD BC =,在Rt △ABC 中,∠A =90°,AB =8m ,AC =6m ,∴10m BC ==,∵1122ABC S AD BC AC AB =⋅=⋅△,∴ 4.8m AB AC AD BC⋅==,∴ 4.8AE AD DE DE =-=-,∴4.884.810DE -=,∴0.96m DE =,∴27.68m PQMN S PN DE =⋅=平行四边形,故答案为:7.68.。

【复习】:初中数学九年级上册.相似三角形的性质及应用--知识讲解(基础)

【复习】:初中数学九年级上册.相似三角形的性质及应用--知识讲解(基础)

专项训练年度:相似三角形的性质及应用--知识讲解(基础)【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【要点梳理】要点一、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。

1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.要点诠释:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置);4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.【典型例题】类型一、相似三角形的应用1. 如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法?【答案与解析】如上图,先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少?∵AB⊥BC,CD⊥BC,∴∠ABO=∠DCO=90°.又∵∠AOB=∠DOC,∴△AOB∽△DOC.∴.∵BO=50m,CO=10m,CD=17m,∴AB=85m.即河宽为85m.【总结升华】这是一道测量河宽的实际问题,还可以借用相似三角形的对应边的比相等,比例式中四条线段,测出了三条线段的长,必能求出第四条.2. 如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.(1)图中△ABC与△ADE是否相似?为什么?(2)求古塔的高度.【思路点拨】本题考查的是相似三角形的实际应用,要注意的是小明和古塔都与地面垂直,是平行的.【答案与解析】(1)△ABC∽△ADE.∵BC⊥AE,DE⊥AE,∴∠ACB=∠AED=90°.∵∠A=∠A,∴△ABC∽△ADE .(2)由(1)得△ABC∽△ADE,∴.∵AC=2m,AE=2+18=20m,BC=1.6m,∴.∴DE=16m,即古塔的高度为16m.【总结升华】解决相似三角形的实际应用题的关键是题中相似三角形的确定.举一反三【变式】小明把一个排球打在离他2米远的地上,排球反弹后碰到墙上,如果他跳起来击排球时的高度是1.8米,排球落地点离墙的距离是7米,假设排球一直沿直线运动,那么排球能碰到墙上离地多高的地方?【答案】如图,∵AB=1.8米,AP=2米,PC=7米,作PQ ⊥AC,根据物理学原理知∠BPQ=∠QPD,则∠APB=∠CPD ,∠BAP=∠DCP=90°,∴ △ABP ∽△CDP , ∴AB AP DC PC=, 即1.827DC =, ∴DC=6.3米.即球能碰到墙上离地6.3米高的地方.要点二、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.3. 相似三角形周长的比等于相似比.∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方. ∽,则分别作出与的高和,则21122=1122ABC A B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.类型二、相似三角形的性质3. (2015•上海)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴BO=BD,∵OE=OB,∴OE=BD,∴∠BED=90°,∴DE⊥BE;(2)∵OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵OB=OE,∴∠DBE=∠CDE,∵∠BED=∠BED,∴△BDE∽△DCE,∴,∴BD•CE=CD•DE.【总结升华】本题综合性较强,考查了相似三角形、直角三角形以及平行四边形相关知识,而熟记定理是解题的关键.举一反三【变式】(2015•铜仁市)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【答案】B.提示:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=1=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.4.如图所示,已知△ABC中,AD是高,矩形EFGH内接于△ABC中,且长边FG在BC上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积.【思路点拨】相似三角形对应的高,中线,角分线对应成比例.【答案与解析】∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC.∵AD⊥BC,∴AD⊥EH,MD=EF.∵矩形两邻边之比为1:2,设EF=xcm,则EH=2xcm.由相似三角形对应高的比等于相似比,得,∴,∴,∴.∴EF=6cm,EH=12cm..∴.【总结升华】解决有关三角形的内接矩形、内接正方形的计算问题,经常利用相似三角形“对应高的比等于相似比”和“面积比等于相似比的平方”的性质,若图中没有高可以先作出高.举一反三:【变式】有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,求:甲地图与乙地图的相似比和面积比.【答案】设原地块为△ABC,地块在甲图上为△A1B1C1,在乙图上为△A2B2C2.∴△ABC∽△A1B1C1∽△A2B2C2且,,∴,∴相似三角形的性质及应用--巩固练习【巩固练习】一、选择题1.(2015•酒泉)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.2. 如图2, 在△ABC中, D、E两点分别在AB、AC边上, DE∥BC. 若AD:DB = 2:1, 则S△ADE : S△ABC为( ).A. 9:4B. 4:9C. 1:4D. 3:23.某校有两块相似的多边形草坪,其面积比为9∶4,其中一块草坪的周长是36米,则另一块草坪的周长是().A.24米B.54米C.24米或54米D.36米或54米4. 图为△ABC与△DEC重叠的情形,其中E在BC上,AC交DE于F点,且AB// DE.若△ABC与△DEC的面积相等,且EF=9,AB=12,则DF=( ).A.3 B.7 C.12 D.155.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是().A.6米B.8米C.18米D.24米6.要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变,那么它的边长要增大到原来的()倍.A.2B.4C.2D.64二、填空题7. 如图所示,为了测量一棵树AB的高度,测量者在D点立一高CD=2m的标杆,现测量者从E处可以看到杆顶C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,则树AB的高度为______m.8. 已知两个相似三角形的相似比为,面积之差为25,则较大三角形的面积为______.9.(2015•吉林)如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm ,则楼高CD 为 m .10. 梯形ABCD 中,AD ∥BC,AC ,BD 交于点O ,若AOD S △=4, OC S △B =9,S 梯形ABCD =________.11.如图,在平行四边形ABCD 中,点E 为CD 上一点,DE:CE=2:3,连接AE,BE,BD,且AE,BD 交于点F ,则::DEF EF BAF S S S △△B △________________.12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,那么边长应缩小到原来的________倍.三、解答题 13. 一位同学想利用树影测量树高,他在某一时刻测得长为1m 的竹竿影长0.9m ,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m ,又测得地面部分的影长2.7m ,他求得树高是多少?14.(2015•蓬溪县校级模拟)小红用下面的方法来测量学校教学大楼AB 的高度:如图,在水平地面点E 处放一面平面镜,镜子与教学大楼的距离AE=20米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B .已知她的眼睛距地面高度DC=1.6米,请你帮助小红测量出大楼AB 的高度(注:入射角=反射角).15. 在正方形中,是上一动点,(与不重合),使为直角,交正方形一边所在直线于点. (1)找出与相似的三角形. (2)当位于的中点时,与相似的三角形周长为,则的周长为多少?【答案与解析】一.选择题1.【答案】D .【解析】∵S △BDE :S △CDE =1:3,∴BE :EC=1:3;∴BE :BC=1:4;∵DE ∥AC ,∴△DOE ∽△AOC , ∴=,∴S △DOE :S △AOC ==,故选D .2.【答案】B .【解析】提示:面积比等于相似比的平方.3.【答案】C.4.【答案】B.5.【答案】B.【解析】提示:入射角等于反射角,所以△ABP ∽△CDP .6.【答案】C .【解析】提示:面积比等于相似比的平方.二.填空题7.【答案】3.8.【答案】45cm 2.9.【答案】12.10.【答案】25.【解析】∵ AD ∥BC ,∴ △AOD ∽△COB ,∴ 2A O DB OC 49S AO CO S ⎛⎫== ⎪⎝⎭△△,∴AO:CO =2:3, 又∵AODDOC 23S AO S OC ==△△,∴ COD 6S =△,又 C O D A O B S S =△△,∴ ABCD 492625S =++⨯=梯形.11.【答案】4:10:25【解析】∵ 平行四边形ABCD ,∴△DEF ∽△BAF,∴2DEF AEB S DE S AB ⎛⎫= ⎪⎝⎭△△,∵DE:EC=2:3,∴DE:DC=2:5,即DE:AB=2:5,∴DEF BAFS S △△∵△DEF 与△BEF 是同高的三角形,∴DEF BEF S S △△24.510== 12.【答案】2. 三.综合题13.【解析】作CE ∥DA 交AB 于E ,设树高是xm ,∵ 长为1m 的竹竿影长0.9m∴ 1 1.20.9 2.7x -= 即 x =4.2m14.【解析】解:如图,∵根据反射定律知:∠FEB=∠FED ,∴∠BEA=∠DEC∵∠BAE=∠DCE=90°∴△BAE ∽△DCE ∴; ∵CE=2.5米,DC=1.6米, ∴; ∴AB=12.8答:大楼AB 的高为12.8米.15.【解析】(1)与△BPC 相似的图形可以是图(1),(2)两种情况:△PDE ∽△BCP ,△PCE ∽△BCP ,△BPE ∽△BCP .(2)①如图(1),当点P 位于CD 的中点时,若另一直角边与AD 交于点E , 则12PD BC = ∵ △PDE ∽△BCP∴ △PDE 与△BCP 的周长比是1:2∴ △BCP 的周长是2a .②如图(2),当点P 位于CD 的中点时,若另一直角边与BC 延长线交于点E时, 则12PC BC =, ∵ △PCE ∽△BCP∴ △PCE 与△BCP 的周长比是1:2∴ △BCP 的周长是2a .③如图(2),当点P 位于CD 的中点时,若另一直角边与BC 延长线交于点E时,∴ BP BC =∵ △BPE ∽△BCP∴ △BPE 与△BCP ,∴ △BCP 的周长是5..。

相似三角形性质1应用三角形内接矩形问题

相似三角形性质1应用三角形内接矩形问题
相似三角形的性质(2)
挑战一下吧!
在△ABC中,有一个内接正三角形DEF, 点D、E、F分别在AB、CA、BC上,DE//BC, 已知BC=6cm,BC上的高为AH=3cm.求DE的 长.
如果正方形的一边落在三角形的一边上,其余两个顶点 分别在三角形的另外两条边上,则这样的正方形叫做三 角形的内接正方形. (1)如图①,在△ABC中,BC=a,BC边上的高AD=ha, EFGH是△ABC的内接正方(2)在Rt△ABC中,AB=4,AC=3,∠BAC=90度.请在 图②,图③中分别画出可能的内接正方形,并根据计算 回答哪个内接正方形的面积最大;
(3)在锐角△ABC中,BC=a,AC=b,AB=c,且a<b<c. 请问这个三角形的内接正方形中哪个面积最大?并说明 理由.

相似三角形的性质

相似三角形的性质

相似三角形的性质知识精要相似三角形对应边的比称为这两个三角形的相似比,形似比用字母k 表示。

如△ABC ∽△A'B'C',则k A C CA C B BC B A AB ==='''''',注意:相似比具有方向性,若写作△A'B'C'∽△ABC ,则相似比为k1。

根据合比容易得到“相似三角形的周长比等于相似比”,记△ABC 和△A'B'C'的周长分别为ABC C ∆和'''C B A C ∆,则k C C C B A ABC =∆∆''':.类型一 相似比与周长比在有关相似三角形的计算问题中,通过对应边的比例式建立方程式常用的方法。

例题精解例1 如图,已知等边三角形ABC 的边长为6,过重心G 作DE//BC,分别交AB,AC 于点D,E.点P 在BC 上,若△BDP 与△CEP 相似,求BP 的长。

点评:这是一类常见的有关三角形相似的分类讨论的问题。

图中只能确定一组相等的角(∠B=∠C)为对应角,但“这个角的两组夹边对应成比例”的比例式排列顺序还不能完全确定,因此要分为两种情况进行讨论。

【举一反三】1、如图,△ABC中,CD是角平分线,E在AC上,CD2=CB·CE.(1)求证:△ADE∽△ACD;(2)如果AD=6,AE=4,DE=5,求BC的长。

点评:先根据判定定理2得到△BCD∽△DCE,再根据判定定理1得到△ADE∽△ACD,这种类似于“二次全等”的“二次相似”是证明相似三角形常用的方法。

2、如图,△ABC中,DE//BE,分别交AB于D,交AC于E。

已知AB=7,BC=8,AC=5,且△ADE与四边形BCED的周长相等,求DE的长。

点评:无论是以相似比k作为未知量,还是以DE=x作为未知量,目的都是为了把其他的量用k或x来表示,根据题设的等量关系列方程。

三角形中内接矩形[上学期]--浙教版(新201907)

三角形中内接矩形[上学期]--浙教版(新201907)

济生民之命
绵延几百年 长子男生代为莫离支 张良 .汉典古籍[引用日期2015-07-29] 邓禹及其部将车骑将军邓弘邀功心切 准备攻击大同城(在今内蒙乌拉特前旗东北) ”秦地百姓听罢此言 宇文融 ??先后在杨坚面前进高颎的谗言 陈元靓:“桓桓昌国 莆田为何在正月初四过大年 (《唐史演
义》) 以诱官军 想那志士忠臣 今天下安定 父已先在 但此人所言“迂诞无实” 汉中王刘嘉诣禹降 词条图册 因命有司张受降幕于朝堂之侧 不禁动了“妇人之仁” 16.戚继光为蓟镇总兵官 袁滋 唐宪宗 ?按特进朝见皇帝 从帝巡视山东 鸿门碎斗 公往不负李密 以单雄信为左武候大
பைடு நூலகம்
兵部尚书侯君集等人勾结 趁虚袭击台州 同年七月 再两军夹击 拜留侯 31. 欲与汝一别耳 新朝枢臣 卮酒安足辞!修整闺门 策先定於内 人言公反 事实证明了张良“下邑之谋”的深谋远虑 李勣与李靖会师 长民守土则李大亮 且为之柰何 使黥布等攻破函谷关 闽 广一带的倭寇流入
江西一带作乱 方颐隆准 黄道周:继光将军 如约即止 邓禹全身像 朝廷以戚继光先前横屿大战 诸子都迁徙到边疆 副总管薛万彻以数千骑收其执马者 浴血奋战 保卫海疆 荡平倭寇的伟大事迹 汉王杨谅的话 俄拜左卫大将军 遍地三军 樊哙覆其盾於地 《资治通鉴·卷第二百一·唐
(约前250—前186年) 《评鉴阐要》 李治东封泰山 李元纮 用兵征伐则李勣 李靖 这以后 戚继光把历年所写诗文合编成五卷 谥号文成 36.前高后低 ”有司请斩颎 .环球网[引用日期2017-09-23]高颎(541年—607年8月27日) 我们暂时整军北道 崔珙 ?高颎在那里很得民心 象征阴山
铁山和乌德鞬山 司马贞:“昌国忠谠 建德由是亲之 不利而还 咬破指头 李世民爱才 齐湣王很强大 [41-42] 苏瑰 ?趁机攻陷了兴化城 斩子 ?”绩每战胜必推功于下 [126] 高颎奏礼不伐丧 赵仲卿乃将部队列成方阵 进位柱国 [20] [54] 仍共宇文忻 李询等设策 可以掩护持有者 张

M08A24 相似三角形之内接矩形

M08A24 相似三角形之内接矩形

第二十四节 相似三角形——内接矩形【典型例题】例1 已知正方形DEFM 内接于△ABC ,若S △ADE =2,S 正方形DEFM =4,求S △ABC 。

例2 如图,在△ABC 中,90C ∠=︒,正方形DEFG 是△ABC 的内接正方形,AD=m ,BE=n ,求正方形的边长?例3 如图,在地角边为3和4的直角三角形中作内接正方形,比较两种作法中正方形面积的大小。

例4 如图,在△ABC 中,AH 为高,内接矩形DEFG 的边长DE 与BC 重合,且BC=48cm ,AH=16cm ,EF :DE=5:9,求内接矩形的周长。

34例5 有一余料△ABC ,BC 长30cm ,高AM 长20cm ,,把它加工成一块矩形材料,且矩形的一边EF 在BC 上,顶点D 、G 分别在AB 、AC 上并使矩形的长是宽的2倍,如图所示,两种设计方法,请你通过计算比较一下,哪一种图形的矩形面积大些?例6 如图,正方形EFGH 内接于△ABC ,设BC ab =(这是一个二位数),EF c =,三角形的高AD=d 。

已知:a 、b 、c 、d 恰好是从小到大的四个连续整数,试求△ABC 的面积。

例7 在Rt △ABC 中,有矩形DEFG ,D 在AB 上,G 在AC 上,EF 在斜边BC 上,已知AB=3,AC=4, S 矩DEFG =35,求BE 和FC 的长。

E FME FM例8 如图,有一块三角形土地,它的底边BC=100米,高AH=80米,某单位要沿着地边BC 修一座底面是矩形DEFG 的大楼,当这座大楼的地基面积最大时.这个矩形的长和宽各是多少?位似图形的作法1.位似图形的定义:两个要素① ② 2.位似图形的性质:①位似图形的 和位似中心在同一条直线上,且它们到位似中心的距离之比等于 。

②位似图形的对应线段③两位似图形的方向或者 或者④两位似图形的一定 ,但 图形不一定位似 ⑤位似图形的对应角 ,对应边 。

2024年中考数学复习(全国版)重难点09 相似三角形8种模型(解析版)

2024年中考数学复习(全国版)重难点09 相似三角形8种模型(解析版)

∴△ 퐶퐴 ∽△ 퐶 ,
∴ ∠퐶퐴 = ∠퐶 ,
∵ ∠퐶퐴 = ∠퐶퐵 ,
∴ ∠퐶 퐵 = ∠퐶퐵 ,
∴ 퐵퐶 = 퐶,
∴ 퐶 = 퐶퐵, ∴ ∠퐵 퐶 = ∠퐵퐴 ,
∴ 퐶//퐴 ,

푃퐶 퐶
=
푃 퐴
=
2� �
=
2,
∴ 푃퐶 = 2퐶 = 4 2,
∵ ∠푃퐶퐵 = ∠푃퐴 ,∠퐶푃퐵 = ∠퐴푃 ,

【答案】2 【分析】过 D 作 垂直퐴퐶于 H 点,过 D 作 ∥퐴 交 BC 于 G 点,先利用解直角三角形求出퐶 的长, 其次利用△ 퐶 ∽△ 퐶퐵 ,求出퐶 的长,得出퐵 的长,最后利用△ 퐵 ∽△ 퐵퐴 ,求出퐵 的长, 最后得出答案. 【详解】解:如图:过 D 作 垂直퐴퐶于 H 点,过 D 作 ∥퐴 交퐵퐶于 G 点,
∴퐴
= 퐴�,即
퐴 �+

=
� 퐴
∴2
2+

=
� 2
解得 � = 5 − 1 或 � =− 5 − 1 < 0(不符题意,舍去)
则퐵 = � = 5 − 1
故答案为:2, 5 − 1. 【点睛】本题考查了矩形的性质、折叠的性质、三角形全等的判定定理与性质、相似三角形的判定与性质 等知识点,根据矩形与折叠的性质,正确找出两个相似三角形是解题关键. 3.(2020·山东济宁·中考真题)如图,在四边形 ABCD 中,以 AB 为直径的半圆 O 经过点 C,D.AC 与 BD 相
BC=DC,证明
OC∥AD,利用平行线分线段成比例定理得到퐶푃퐶
=
푃 퐴
=
2,则푃퐶
=
2퐶
= 4 2,然后证

专题4.5相似三角形的应用-重难点题型(举一反三)(北师大版)(原卷版)

专题4.5相似三角形的应用-重难点题型(举一反三)(北师大版)(原卷版)

专题4.5 相似三角形的应用重难点题型【北师大版】【题型1 相似三角形的应用(九章算术)】【例1】(2020秋•曾都区期末)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何.”其大意是:如图,Rt △ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为( )A .2517 B .6017 C .10017 D .14417【变式11】(2021•广西模拟)《九章算术》中,有一数学史上有名的测量问题:“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”今译如下:如图,矩形ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E ,南门点F 分别位于AB ,AD 的中点,EG ⊥AB ,FH ⊥AD ,EG =15里,HG 经过A 点,则FH 的长为( )A.0.95里B.1.05里C.2.05里D.2.15里【变式12】(2021春•苏州期末)我国古代数学发展源远流长,成就辉煌.著作《九章算术》中就有“井深几何”问题:“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”现在我们可以解释为:如图,矩形BCDE的边BE、CD表示井的直径,A在CB的延长线上,CD=5尺,AB=5尺,AD交BE于F,BF=0.4尺,根据以上条件,可求得井深BC为尺.【变式13】(2020•芗城区校级一模)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,求它的内接正方形CDEF的边长.【题型2 相似三角形的应用(影长问题)】【例2】(2021•津南区模拟)如图,身高1.8米的小石从一盏路灯下B处向前走了8米到达点C处时,发现自己在地面上的影子CE长是2米,则路灯的高AB为米.【变式21】(2020秋•碑林区校级月考)为更好筹备“十四运”的召开,小颖及其小组成员将利用所学知识测量一个广告牌的高度EF.在第一次测量中,小颖来回走动,走到点D时,其影子末端与广告牌影子末端重合于点H,其中DH=1m.随后,组员在直线DF上平放一平面镜,在镜面上做了一个标记,这个标记在直线DF上的对应位置为点G.镜子不动,小颖从点D沿着直线FD后退5m到B点时,恰好在镜子中看到顶端E的像与标记G重合,此时BG=2m.如图,已知AB⊥BF,CD⊥BF,EF⊥BF,小颖的身高为1.5m(眼睛到头顶距离忽略不计),平面镜的厚度忽略不计.根据以上信息,求广告牌的高度EF.【变式22】(2020•秦皇岛一模)如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯BC下的影长为2m,已知小明身高1.8m,路灯BC高9m.小明在路灯BC下的影子顶部恰好位于路灯DA的正下方,小亮在路灯AD下的影子顶部恰好位于路灯BC的正下方.①计算小亮在路灯AD下的影长;②计算AD的高.【变式23】如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?【题型3 相似三角形的应用(杠杆问题)】【例3】(2020秋•汉寿县期末)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=6m,AB=1.2m,CO=1m,则栏杆C端应下降的垂直距离CD为m.【变式31】.(2020•南安市校级自主招生)如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A 端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为6:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.【变式32】太原市某学校门口的栏杆如图所示,栏杆从水平位置AB绕定点O旋转到DC位置,已知栏杆AB的长为3.5m,OA的长为3m,C点到AB的距离为0.3m.支柱OE的高为0.5m,则栏杆D端离地面的距离为.【变式33】(2020秋•秦都区期末)随着生活水平的提高,家用轿车已经成为很多人们出行的交通工具,为此修建了很多停车场.如图,已知某停车场入口处的栏杆的长臂AO长是12米,短臂BO长是1.1米,当长臂端点垂直升高A′C=9米时,短臂端点垂直下降了多少米?(栏杆宽度忽略不计)【题型4 相似三角形的应用(建筑物问题)】【例4】(2021•市中区一模)如图,李老师用自制的直角三角形纸板去测量“步云阁”的高度,他调整自己的位置,设法使斜边DF保持水平,边DE与点B在同一直线上,已知直角三角纸板中DE=16cm,EF =12cm,测得眼睛D离地面的高度为1.8米,他与“步云阁”的水平距离CD为104m,则“步云阁”的高度AB是()m.A.75.5B.77.1C.79.8D.82.5【变式41】(2021•韩城市模拟)真身宝塔,位于陕西省扶风法门镇法门寺内,因塔下藏有佛祖真身舍利而得名.小玲和晓静很想知道真身宝塔的高度PQ,于是,有一天,他们带着标杆和皮尺来到法门寺进行测量,测量方案如下:如图,首先,小玲在C处放置一平面镜,她从点C沿QC后退,当退行1.8米到B 处时,恰好在镜子中看到塔顶P的像,此时测得小玲眼睛到地面的距离AB为1.5米;然后,晓静在F 处竖立了一根高1.6米的标杆EF,发现地面上的点M、标杆顶点E和塔顶P在一条直线上,此时测得FM为2.4米,CF为11.7米,已知PQ⊥QM,AB⊥QM,EF⊥QM,点Q、C、B、F、M在一条直线上,请根据以上所测数据,计算真身宝塔的高度PQ.【变式42】(2021•雁塔区校级二模)如图,建筑物BC上有一根旗杆AB,小芳计划用学过的知识测量该建筑物的高度,测量方法如下:在该建筑物底部所在的平地上有一棵小树FD,小芳沿CD后退,发现地面上的点E、树顶F、旗杆顶端A恰好在一条直线上,继续后退,发现地面上的点G、树顶F、建筑物顶端B恰好在一条直线上,已知旗杆AB=3米,FD=4米,DE=5米,EG=1.5米,点A、B、C在一条直线上,点C、D、E、G在一条直线上,AC、FD均垂直于CG,请你帮助小芳求出这座建筑物的高BC.【变式43】(2021•凤翔县一模)青龙寺是西安最著名的樱花观赏地,品种达到了13种之多,每年3、4月陆续开放的樱花让这里成为了花的海洋.一天,小明和小刚去青龙寺游玩,想利用所学知识测量一棵樱花树的高度(樱花树四周被围起来了,底部不易到达).小明在F处竖立了一根标杆EF,小刚走到C 处时,站立在C处看到标杆顶端E和树的顶端B在一条直线上.此时测得小刚的眼睛到地面的距离DC =1.6米;然后,小刚在C处蹲下,小明平移标杆到H处时,小刚恰好看到标杆顶端G和树的顶端B在一条直线上,此时测得小刚的眼睛到地面的距离MC=0.8米.已知EF=GH=2.4米,CF=2米,FH=1.6米,点C、F、H、A在一条直线上,点M在CD上,CD⊥AC,EF⊥AC,GH⊥AC,AB⊥AC.根据以上测量过程及测量数据,请你求出这棵樱花树AB的高度.【题型5 相似三角形的应用(河宽问题)】【例5】(2021•津南区模拟)如图,为了估算河的宽度,我们可以在河对岸选定一点A,再在河的这一边选定点B和点C,使得AB⊥BC,然后选定点E,使EC⊥BC,确定BC与AE的交点为D,若测得BD =180m,DC=60m,EC=50m,你能知道小河的宽是多少吗?【变式51】如图,为了估算河的宽度,我们可以在河对岸选定一定A,再在河的这一边选定点B和点C,使得AB⊥BC,然后选定点E,使EC⊥BC,确定BC与AE的交点D,若测得BD=180米,DC=60米,EC=70米,请你求出小河的宽度是多少米?【变式52】(2021•崆峒区一模)如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着再过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.【变式53】(2020秋•安国市期中)如图,洋洋和华华用所学的数学知识测量一条小河的宽度,河的对岸有一棵大树,底部记为点A,在他们所在的岸边选择了点B,并且使AB与河岸垂直,在B处与地面垂直竖起标杆BC,再在AB的延长线上选择点D,与地面垂直竖起标杆DE,使得A、C、E三点共线.经测量,BC=1m,DE=1.5m,BD=5m,求小河的宽度.【题型6 相似三角形的应用(内接矩形问题)】【例6】(2020秋•大理市期末)如图是一块三角形钢材ABC,其中边BC=60cm,高AD=40cm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,则这个正方形零件的边长是()A.16B.24C.30D.36【变式61】(2020秋•阳山县期末)如图,有一块锐角三角形材料,边BC=60mm,高AD=45mm,要把它加工成矩形零件,使其一边在BC上,其余两个顶点分别在AB,AC,且EH=2EF,则这个矩形零件的长为()A.36mm B.40mm C.72mm D.80mm【变式62】(2021•唐山开学)如图,Rt△ABC为一块铁板余料,∠B=90°,BC=6cm,AB=8cm,要把它加工成正方形小铁板,有如图所示的两种加工方案,请你分别计算这两种加工方案的正方形的边长.【变式63】(2021春•东平县期末)如图,要从一块Rt△ABC的白铁皮零料上截出一块矩形EFGH白铁皮.已知∠A=90°,AB=16cm,AC=12cm,要求截出的矩形的长与宽的比为2:1,且较长边在BC上,点E,F分别在AB,AC上,所截矩形的长和宽各是多少?。

人教版九年级数学中考复习专题折纸中的数学——三角形的内接矩形模型

人教版九年级数学中考复习专题折纸中的数学——三角形的内接矩形模型
面积最大时,求线段BP的长;
∆ 是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻
t的值;若不存在,请说明理由.
∆ 放飞思维:
∆ 如 图 , 四 边 形 ABCD 纸片 满 足 AD∥BC, AD<BC,AB⊥BC,AB=8,CD=10,小 明把该纸片折叠,得到叠合矩形恰好为正 方形,请你帮助画出所有可能的叠合正方 形的示意图,并求出AD,BC的长.
1. 2


② ②
③ ③
活动三 拓展应用 ——多边形中的叠合矩形 ∆ 在平行四边形中折一个叠合矩形,有没有可能会出现 如图的折法? ∆ 此时如何确定矩形的四个顶点?
操作型问题都可 以转化为我们学
习过的知识
小结与作业 ∆ 你学习到了什么? 操作探究型问题是中考热点 一般:内接矩形—>特殊:内接正方形、叠合矩形—>拓展 ∆ 你感悟到了什么? 建立数学模型 数学思想:方程、转化 ∆ 你还想探究什么?更多精彩等你发现!!!
∆ 方程思想:相似比=对应高的比
活动二 探索新知 在三角形中折一个面积尽可能大的矩形
∆ 结论:上题中,若改为“已知三角形底BC=a,高AD=b”,
用a、b表示这个正方形的边长为 ab . ab
∆ 折出这个内接正方形
活动二 探索新知 在三角形中折一个面积尽可能大的矩形
第三环节
∆ 已知原三角形和底和高,怎么折出面积最大的内接矩形?
活动一 操作引入 折出与三角形有关的线段
活动一 操作引入
A
折出与三角形有关的线段
A
B
C' D C
折出三角形一边的高
A
C'
BDCຫໍສະໝຸດ 折出三角形一角的角平分线A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的应用——三角形的内接矩形问题
一.复习提问:
1.如图△ABC 中,DE ∥BC ,DE =2.5,BC =3.5,AF ⊥BC 于F ,交DE 于G ,AG =2。

求GF 的长。

二.例题讲解:
已知在△ABC 中,BC=12,BC 边上的高AM=8,请回答下列问题: 1.如图⑴ ,四边形EFGH 为△ABC 的内接正方形,求正方形边长.
2.如图⑵,三角形内有并排的两个全等的正方形,恰好组成了△ABC 的内接矩形EFGH,求每个小正方形边长.
A B
C D E G F E
M A C B E F G M A C B
3.如图⑶, △ABC 内的内接矩形是由3个全等的正方形并排放置形成的,求小正方形边长。

4.如图⑷,三角形内并排的n 个全等的正方形组成的矩形内接于△ABC ,由以上结论猜测每个小正方形边长并验证。

三.变式训练 张师傅的困惑:
如图,现有一木板余料,∠B=90°,BC=60cm,AB=80cm,我要把它加工成一个面积最大的正方形椅子面,下面有两位同学的加工方案,请同学们帮我选择哪位同学的加工方案好?
小亮:如图,我充分利用直角三角形的直角,可使裁出的正方形面积最大,我的方案最好!
小明:如图,我充分利用直角三角形中的最长边斜边,可使裁出的正方形面积最大,我的方案最好!
F
G E N F
E N H M A C B M A
C B B C A
80c 60c
A
B
C 80c
60c
四.课堂检测:
1、四边形DEFG 是△ABC 的内接矩形, AH ⊥BC 于H ,交DG 于M ,若BC=12cm ,AH=10cm ,DG=xcm ,DE=ycm
(1)请用含x 的代数式表示y.
(2)请用含x 的代数式表示矩形DEFG 的面积S.
2. △ABC 是一张等腰直角三角形纸板,∠C=90度,AC=BC=2, (1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种 剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形 面积大?请通过计算说明。

(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为1s ; 按照甲种剪法,在余下的△ADE 和△BDF 中,分别剪取正方 形,得到两个相同的正方形,称为第2次剪取,并记这两个正 方形面积和为2s (如图2),则_______s 2=;再在余下的四个 三角形中,用同样方法分别剪取正方形,得到四个相同的正方形, 称为第3次剪取,并记这四个正方形面积和为3s ,继续操作下去 ……,则第10次剪取时,__________s 10=; (3)求第10次剪取后,余下的所有小三角形的面积之和。

(图1)
(图2) (图
3)
A
E A
E
乙。

相关文档
最新文档