第十章 质心运动定理 动量定理 习题解
第十章-质心运动定理-动量定理
m1下降h时,假设m4向左水平移动S:
xC1
m1 x1
S
m2 x2
h m1
S m3 x3 hcos
m2 m3 m4
S
m4 x4
S
由
xC1
xC0
得
S
m2h m3hcos
m1 m2 m3 m4
例2:电动机重W1,外壳用螺栓固定在基础上,如图所示。另 有一均质杆,长l,重W2,一端固连在电动机轴上,并与机轴
(二)质心运动定理
对每个质点
mi
d 2ri dt 2
Fi
1
求和
左边
mi
d2 dt 2
d 2ri dt 2
mi ri
Fi
d2 dt 2
2
mrC
m
d 2rC dt 2
maC
右边
FiE FiI FiE FiI
系统外部对i质 点的合力
系统内部其它所有质 点对i质点的合力
vCx 0
又
dxC dt
vCx
0
xC const
例1:图示机构,地面光滑,初始时刻系统静止。问
m1下降h时,m4水平移动多少?
y
记四个物块的质心初始时刻坐标
分别为x1、 x2、 x3、 x4。
m3
m2
m4
m1
初x1 m2 x2 m1 m2
m3 x3 m4 x4 m3 m4
动,求螺栓和基础作用于电动机的最大总水平力及铅直力。
解:
maCx miaCix
aC3
W2 g
aC 2
s in t
W3 g
aC 3
s in t
aC2
W2 2W3 l2 sin t
第10章动量定理习题
第10章 动量定理习题1.是非题(对画√,错画×)10-1.质点的动量与冲量是等价的物理量。
( ) 10-2.质点系的动量等于外力的主矢量。
( )10-3.质点系动量守恒是指质点系各质点的动量不变。
( ) 10-4.质心运动守恒是指质心位置不变。
( )10-5.质点系动量的变化只与外力有关,与内力无关。
( ) 2.填空题(把正确的答案写在横线上)10-6.各均质物体,其质量均为m ,其几何尺寸及运动速度和角速度,如图所示。
则各物体的动量为(a ) ;(b) ;(c ) ;(d) 。
题10-6图(a)(b)(C)(d)10-7.一质量为m 的质点作圆周运动,如图所示。
当点位于点A 点时,其速度大小为1v ,方向为铅垂向上,当运动到点B 时,其速度大小为2v ,方向为铅垂向下,则质点从点A 点运动到点B 时,作用在该质点上力的冲量大小为 ;冲量的方向为 。
AB2题10-7图题10-9图3.简答题10-8.质点作匀速圆周运动,则质点的动量守恒吗?10-9.两物块A 、B ,质量分别为A m 、B m ,初始静止。
如A 沿斜面下滑的相对速度为r v ,如图所示。
若物块B 的速度为v ,则根据动量守恒,有v m cos v m B r A =θ对吗?10-10.小球沿水平面运动,碰到铅直墙壁后返回,设碰撞前和后小球的速度大小相等,则作用在小球上力的冲量等于零。
此说法对吗?为什么?10-11.刚体受有一群力的作用,无论各力的作用点如何,刚体质心的加速度都不变吗? 4.计算题10-12.有一木块质量为2.3kg ,放在光滑的水平面上。
一质量为0.014kg 的子弹沿水平方向射入后,木块以速度3m/s 前进,试求子弹射入前的速度。
10-13.跳伞者质量为60kg ,从停留在高空中的直升飞机中跳出,落下100m 后,将伞打开。
设开伞前的空气阻力忽略不计,伞重不计,开伞后所受的阻力不变,经5s 后跳伞者的速度减为4.3m/s ,试求阻力的大小。
《理论力学》第十章--动量矩定理试题及答案
理论力学11章作业题解11-3 已知均质圆盘的质量为m ,半径为R ,在图示位置时对O 1点的动量矩分别为多大?图中O 1C=l 。
解 (a) 21l m l mv L c O w == ,逆时针转动。
(b) w w 2210||1mR J L v m r L c c c O =+=+´=rr ,逆时针转动。
(c ) )2(2221222121l R m ml mR ml J J c O +=+=+=w w )2(222111l R m J L O O +==,逆时针转动。
(d)ww mR R l mv R l R v mR l mv J l mv L v m r L c c c c c c c O )5.0()5.0(/||2211-=-=-=-=+´= r r,顺时针转动解毕。
v cv cv c11-5 均质杆AB 长l 、重为G 1,B 端刚连一重G 2的小球,弹簧系数为k ,使杆在水平位置保持平衡。
设给小球B 一微小初位移0d 后无初速度释放,试求AB 杆的运动规律。
解 以平衡位置(水平)为0=j ,顺时针转为正。
平衡时弹簧受力为:)5.0(312G G F s +=弹簧初始变形量:k G G k F s st /)5.0(3/12+==d在j 角时弹簧的拉力为(小位移):3/)5.0(3)3/(12l k G G l k F st s j j d ++=+=¢系统对A 点的动量矩:j j j&&&221233l gG G l l g G J L A A +=×+= 对点的动量矩定理)(/å=Ei A A F M dt dL r :j j 93/5.033221221kl l F lG lG l g G G s -=¢-+=+&& 0)3(321=++j jG G gk &&,令)3(3212G G gkp +=则有02=+j jp &&,其解为: )cos()sin(pt B pt A +=j由初始条件0| ,/|000====t t l jd j &得l B A / ,00d ==。
刚体的动量和质心运动定理
O x
3 2 R 1 2 xc R R 4 2 4 0 R2
R xc 6
[例题]
半圆形均匀薄板(半径为R),试求其质心所在。 y [解] 建立如图所示的坐标系,由对称 性可知 xc=0, yc=? 将半圆划分为许多平行 于 x 轴的窄条,每一窄条中各点具有相 y R 同的 y ,阴影部分面积 2 R 2 y 2 dy O
线元
dl Rd
(3) 如果刚体有几部分组成,可先求出不同部分的 质心坐标,然后再按照刚性质点系处理:
rc
xc
mi ric
m
mi ric m
, zc
i
i icy
m x
m
i icx
, yc
m x
m
m x
m
i icz
例:P219 例2.
[例题] 在半径为R的均质等厚度的大圆板的一侧挖掉半径为 R/2 的小圆板,大小圆板相切,求余下部分的质心。 y [解] 建立如图所示的坐标系,考虑对 称性,余下部分质心一定在 x 轴上, 即 yc 0 . 考虑:整体=阴影+小圆,得
质量元表达式:
dm dV, ds, dl.
例:
① P218例1:求匀质实心半球的质心(体分布) . 2 体积元
dV r dz
2
② 求匀质半球壳的质心(面分布). 面积元 求得质心坐标为
ds 2 ( R - z ) Rd
2 12
R zc 2
③ 求匀质半圆线的质心(线分布).
直角坐标系中的分量式:
m
i 1
mi ri
i 1
N
动量定理习题参考答案及解答
动量定理习题参考答案及解答1.题图1所示系统中各杆都为均质杆。
已知:杆OA 、CD 的质量各为m ,杆AB 质量为2m ,且OA =AC =CB =CD =l ,杆OA 以角速度ω 转动,求图示瞬时各杆动量的大小并在图中标明其动量的方向。
答案:ωωωml p ml p ml p CD AB OA 22 ,22 ,2===,方向如图。
注意:图中所示仅是动量的方向,并不表示合动量的作用线。
2.一颗质量为m =30g 的子弹,以v 0=500m/s 的速度射入质量m A =4.5kg 的物块A 中。
物块A 与小车BC 之间的动摩擦系数f D =0.5。
已知小车的质量m BC =3.5kg ,可以在光滑的水平地面上自由运动。
试求:(1)车与物块的末速度v ;(2)物块A 在车上距离B 端的最终位置。
提示:整体而言,根据水平方向动量守恒可先求得车与物块的末速度v ;子弹射入物块瞬时物块与子弹的速度v 1;然后计算物块与小车之间的动滑动摩擦力F D ;进而求得小车和物块的加速度,再分别求得小车和物块的位移;最后求得相对位移和物块A 在车上距离B 端的最终位置。
答案:)(113)2(),/(868.1)1(mm s m v =3.如题图3所示,均质杆AB ,长l ,直立在光滑水平面上。
求它从铅直位置无初速地倒下时,端点A 相对图示坐标系的轨迹。
提示:水平方向质心守恒。
答案: 2224l y x =+4.质量为m 1的棱柱体A ,其顶部铰接一质量为m 2、边长为a 和b 的棱柱体B ,初始静止,如图所示。
忽略棱柱A 与水平面的摩擦,若作用在B 上的力偶使其绕O 轴转动90o (由图示的实线位置转至虚线位置),试求棱柱体A 移动的距离。
设A 与B 的各边平行。
提示:水平方向质心守恒。
答案:棱柱体A 移动的距离 )(2)(212m m b a m x ++= (向左) 5.如图所示水平面上放一均质三棱柱A ,在其斜面上又放一均质三棱柱B 。
第10章 动量定理
第10章 动量定理物理中已讲述质点及质点系的动量定理,本章重点在质心运动定理。
同动能定理,先介绍动量与冲量的概念及求法。
10.1 动量提问下述问题。
一、 质点的动量v m,矢量。
二、 质点系的动量C v M v m K=∑= 表征质系随质心平动强度的量。
问题:某瞬时圆轮轮心速度为O v,圆轮沿直线平动、纯滚动和又滚又滑时的动量是否相等?若沿曲线运动呢?10.2 力和力系的冲量提问下述问题。
一、 力的冲量力在时间上的累积效应。
1. 常力t F S =问题:图中G 和T有冲量吗?2. 任意力元冲量:t F S=d冲量:⎰=21d t t t F S二、 力系的冲量⎰=∑=21d t t i tR S S故力系的冲量等于主矢的冲量三、 内力的冲量 恒为零。
10.3 动量定理一、 质点的动量定理牛顿第二定律:F a m=→ F tv m=d )(d 或S v m d )(d = 微分形式→ S v m v m=-12 积分形式 二、 质点系的动量定理任一质点:)()(d )(d i i e i i i F F tv m+= 求和,内力之和为零(或内力冲量和为零):)(d d e F tK∑= 微分形式 )(12e S K K∑=- 积分形式例1(自编)图示系统。
均质滚子A 、滑轮B 重量和半径均为Q 和r ,滚子纯滚动,三角块固定不动,倾角为α,重量为G ,重物重量P 。
求地面给三角块的反力。
分析:欲求反力,需用动量定理:上式左端实际包含各物体质心加速度,而用动能定理可求。
解:I. 求加速度。
(前面已求)II. 求反力。
研究整体,画受力图如图。
系统动量:αcos ΣC x x v gQmv K -== αsin ΣC y y v gQv g P mv K -== 由动量定理:)(Σd d e xX tK = X a g Q C =-αcosαcos C a gQX -= )(Σd d e F tK=有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺))(Σd d e y Y tK =G Q P Y a gQa g P C ---=-2sin α αsin 2C a gQa g P G Q P Y -+++= 将g QP PQ a a C 2sin +-==α代入上面式,得:可见,动量定理只建立了系统一部分动力学关系,只能求反力;而反力偶需要由动量矩定理来求。
ch10-质心运动定理与动量定理
第十章 质心运动定理与动量定理思 考 题10-1 分析下列陈述是否正确:(1) 动量是一个瞬时的量,相应地,冲量也是一个瞬时的量。
(2) 将质量为m 的小球以速度向上抛,小球回落到地面时的速度为。
因与的大小相等,所以动量也相等。
1v 2v 1v 2v (3) 力F 在直角坐标轴上的投影为、、,作用时间从t =0到t =t x F y F z F 1,其冲量的投影应是111,,t F I t F I t F I z z y y x x ===。
(4) 一物体受到大小为10 N 的常力F 作用,在t =3 s 的瞬时,该力的冲量的大小I = Ft = 30 N ·s。
10-2 当质点系中每一质点都作高速运动时,该系统的动量是否一定很大?为什么? 10-3 炮弹在空中飞行时,若不计空气阻力,则质心的轨迹为一抛物线。
炮弹在空中爆炸后,其质心轨迹是否改变?又当部分弹片落地后,其质心轨迹是否改变?为什么?10-4 质量为的楔块A 放在光滑水平面上。
质量为的杆BC 可沿铅直槽运动,其一端放在楔块A 上。
在思考题10-4附图所示瞬时,楔块的速度为,加速度为,求此时系统质心的速度及加速度。
1m 2m A v Aa思考题10-4附图 思考题10-5附图 10-5 质点系由三个质量均为m 的质点组成。
在初瞬时,这三个质点位于思考题10-5 附 0t 图所示位置,并分别具有初速度。
已知CO BO AO v v v ,,,235.1,200k j i v k v ++==B A i v 30=C 。
试 求此时质点系质心的位置及速度。
长度单位为m ,时间单位为s 。
6-6 试求思考题10-6附图所示各均质物体的动量,设各物体质量均为m 。
思考题10-6附图10-7 两个半径和质量相同的均质圆盘A,B ,放在光滑的水平面上,分别受到力 的作用,如思考题10-7附图所示,且B A F F ,B A F F =。
设两圆盘受力后自静止开始运动,在某一瞬时两圆盘的动量分别为。
质心运动定理
质心运动定理3、质心运动定理质心运动定理问题:内力是否影响质心的运动?(e)1d ()d n C ii mv F t==∑由(e)1d d n C ii v m F t ==∑得(e)1nC ii ma F ==∑或质点系的质量与质心加速度的乘积等于作用于质点系外力的矢量和.--质心运动定理质心运动定理与动力学基本方程有何相似与不同之处?质心运动定理常量质心运动定理质心运动定理内力不能改变质心的运动汽车发动机的气体压力是原动力通过传动机构使主动轮转动地面摩擦力(e)1nC ii ma F ==∑ma F=质点系质心的运动可看成质点的运动,此质点集中了质点系的质量及其所受的力爆破山石通过质心运动轨迹, 确定石块堆落地点 ma F=是公理,描述质点运动状态变化规律(e)1nC ii ma F ==∑是导出定理,描述质心运动状态变化规律质心运动守恒定律(e)Cx xma F=∑(e)Cy yma F=∑(e)Cz zma F=∑2(e)Cnv m F ρ=∑(e)C t v m F t =∑d d (e)0bF=∑在直角坐标轴上的投影式为:在自然轴上的投影式为:(e)F ∑≡若 则 常矢量 C v =(e)0xF∑≡若 则 常量 =Cxv若初始静止,质心位置不变 若初始速度投影等于0, 质心在该轴坐标不变质心运动定理均质曲柄AB长为r,质量为m1,假设受力偶作用以不变的角速度ω转动,并带动滑槽连杆以及与它固连的活塞D ,如图所示.滑槽、连杆、活塞总质量为m2,质心在点C .在活塞上作用一恒力F .不计摩擦及滑块B的质量,求:作用在曲柄轴A处的最大水平约束力Fx .例1t m m m m r t x a C Cxωωcos 2d d 2121222⎪⎭⎫⎝⎛++-==tm m r F F x ωωcos 2212⎪⎭⎫⎝⎛+-=⎪⎭⎫⎝⎛++=212m ax2m m r F F ω最大水平约束力为应用质心运动定理()FF a m m x Cx -=+21()21211cos cos 2m m b r m r m x C +⋅⎥⎦⎤⎢⎣⎡++=ϕϕ分析整体,受力如图所示。
动量定理 质心运动定理
动量定理质心运动定理动量定理质心运动定理质点的动量定理可以表述为:质点动量的微分,等于作用于质点上力的元冲量。
用公式d(mv),Fdt表达为 (17-7)d(mv),Fdt (17-8)tptp2211设时刻质点系的动量为,时刻质点系的动量为,将(17-8)式积分,积分区tt21间为从到,得t2p,p,Fdt21,t 1 (17-9)t2Fdt,I,tttF211记,称为力在到时间间隔内的冲量。
式(17-9)为质点系动量定理的积分形式,它表明质点系在某时间间隔内的冲量的改变量,等于作用在质点系上的外力主矢在该时间间隔内的冲量。
(e)(i)MFFiii对于质点系而言,设为质点所受到的外力,为该质点所受到的质点系内力,根据牛顿第二定律得dv(e)(i)im,F,F(e)(i)iiima,F,Fdtiiii 即mi除了火箭运动等一些特殊情况,一般机械在运动中可以认为质量不变。
如果质点的质量不dmv()(e)(i)ii,F,Fiidt变,则有上式对质点系中任一点都成立,n个质点有n个这样的方程,把这n个方程两端相加,得ndm(v),iinn()()ei,1i,,FF,,iidt,1,1iinn(e)(i)FF,,iii,1i,1 质点系的内力总是成对地出现,内力的矢量和等于零。
上式中是质点dp(e),F(e)RFdtR系上外力的矢量和,即外力系的主矢,记作,则上式可写为(17-10)1这就是质点系动量定理的微分形式,它表明:质点系的动量对时间的导数等于作用在质点系上外力的矢量和。
(e)dp,Fdt 将式(17-10)写成微分形式 Rtptptt222111 设时刻质点系的动量为,时刻质点系的动量为,上式从到积分,得t2(e)p,p,Fdt21R,t,I1 (17-11)p,p0 当外力主矢为零时,由上式可推出质点系的动量是一常矢量,即这表明当作用在质点系上的外力的矢量和为零时,质点系的动量保持不变,这就是质点系的动量守恒定理。
质点系动量定理和质心运动定理.pptx
由上式所确定的空间点称质点系的质量中心(质心).
在直角坐标系质心坐标为
xc
mi xi m
yc
mi yi m
zc
mi zi m
对由两个质点组成的质点系,有
xc
m1x1m2x2 m1m2
yc
m1y1m2y2 m1m2
第10页/共19页
x2 xc m1 xc x1 m2
y2 yc m1 yc y1 m2
质心必位于m1与m2的连线上,且质心与各质点距离与质点质量 成反比.
第11页/共19页
[例题3] 一质点系包括三质点,质量为
m2 2单和位
m3
3,单 位置位坐标各为
求质心坐标.
m 1 ( 1 , 2 )m ,2 ( 1 ,1 ) 和 m 3 ( 1 ,2 )
m1 1单位
[解] 质心坐标
xc
m1x1m2x2m3x3 m1m2m3
d p vd tS v
由动量定理
dp vS vF
dt
F表示留在燃烧室内的燃烧物质对排出物质的作用力
Fx Sv2
向下
火箭所受推力,也等于
Sv 2
向上
第5页/共19页
[内例有题质2]量如为图表m0示的传煤送卸带出以,水传平送速带度顶部与将车煤厢卸底入板静v0高止度车差厢为内h。,每开单始位时时车间
第8页/共19页
§3.7.2 质心运动定理
1.质心
质点系动量定理
而
vi
dri dt
i F i d dt(
mivi)
有
i i
F i ddt22(
miri)
F i md dt22(
m iri) m
理论力学 第六版部分习题答案 第十章
上式代入式(4)得
FN = 4mB g − mB
10-6 如图 11-10a 所示,质量为 m 的滑块 A,可以在水平光滑槽中运动,具有刚性系 数为 k 的弹簧 1 端与滑块相连接,另 1 端固定。杆 AB 长度为 l,质量忽略不计,A 端与滑 块 A 铰接,B 端装有质量 m1,在铅直平面内可绕点 A 旋转。设在力偶 M 作用下转动角速度 ω 为常数。求滑块 A 的运动微分方程。
F = 1 068 N = 1.068 kN 10-3* 如图 11-3a 所示浮动起重机举起质量 m1=2 000 kg 的重物。设起重机质量 m2=20 000 kg,杆长 OA=8 m;开始时杆与铅直位置成 60°角,水的阻力和杆重均略去不计。当起 重杆 OA 转到与铅直位置成 30°角时,求起重机的位移。
vC = 2vC1 = lω
代入式(1),得
149
p=
lω (5m1 + 4m2 ) (方向如图 11-7b 所示) 2
A
p
vC
C
vC1
ω
O
ωt
C1
B
(a) 图 11-7
(b)
10-5
质量为 m1 的平台 AB,放于水平面上,平台与水平面间的动滑动摩擦因数为 f。
质量为 m2 的小车 D,由绞车拖动,相对于平台的运动规律为 s = 不计绞车的质量,求平台的加速度。
棱柱 B 接触水平面时系统质心坐标
a b ⎤ ⎡ m A (l − ) + m B ⎢l − (a − )⎥ 3 3 ⎦ 3(m A + m B )l − a(m A + 3m B ) + m B b ⎣ ′ = = xC m A + mB 3(m A + m B )
10第十章动量定理
C
A
vC
mg
dp x dt FOx dp y F mg Oy dt
FOx ml ( sin 2 cos ) 2 FOy mg ml ( cos sin )
第十章 动量定理
第十章 动量定理
第四节 动量定理的应用
例10-1 求质点系的动量。
【解】 vA v,
p A mv A
vB 0
M R
C
v
M
R
B
pB 0 pC Mv
A
θ
vA
m
p
px Mv cos p y mv Mv sin
2 x 2 y
p p
t2点的动量在某一时间间隔内的改变等于
作用于该质点的力在同一时间内的冲量。
第十章 动量定理
第二节 动量定理
二、质点系的动量定理
e ( i ) d mi vi Fi Fi dt
n n d mi vi F (e) i Fi (i ) dt i 1 i 1 i 1 n
对于质量不变的质点系,上式可写为:
n dvC m Fi ( e ) dt i 1
这就是质心运动定理:
质点系的质量与质心加速度的乘积等于质点系所受 外力的矢量和。
第十章 动量定理
n maC Fi ( e ) i 1
第三节 质心运动定理
在直角坐标轴上的投影式为:
ma Cx X , maCy Yi , maCz Z
第十章 动量定理
第二节 动量定理
(e) dp Fi dt
动量定理 质心运动定理
动量定理 质心运动定理质点的动量定理可以表述为:质点动量的微分,等于作用于质点上力的元冲量。
用公式表达为 Fv =)(m dt d(17-7)dt m d F v =)( (17-8)设1t 时刻质点系的动量为1p ,2t 时刻质点系的动量为2p ,将(17-8)式积分,积分区间为从1t 到2t ,得⎰=-2112t t dtF p p (17-9)记IF =⎰21t t dt ,称为力F 在1t 到2t 时间间隔内的冲量。
式(17-9)为质点系动量定理的积分形式,它表明质点系在某时间间隔内的冲量的改变量,等于作用在质点系上的外力主矢在该时间间隔内的冲量。
对于质点系而言,设)(e i F 为质点i M 所受到的外力,)(i i F 为该质点所受到的质点系内力,根据牛顿第二定律得)(i i (e)ii i m F F a += 即)()(i i e i iidt d m F F v +=除了火箭运动等一些特殊情况,一般机械在运动中可以认为质量不变。
如果质点的质量i m 不变,则有 )()()(i i e i i i dt m d F F v +=上式对质点系中任一点都成立,n 个质点有n 个这样的方程,把这n 个方程两端相加,得∑∑∑===+=ni i i ni e ini i i dtm d 1)(1)(1)(F F v质点系的内力总是成对地出现,内力的矢量和∑=ni i iF1)(等于零。
上式中∑=ni e iF1)(是质点系上外力的矢量和,即外力系的主矢,记作)(e RF ,则上式可写为)(e R dt d F p= (17-10)这就是质点系动量定理的微分形式,它表明:质点系的动量对时间的导数等于作用在质点系上外力的矢量和。
将式(17-10)写成微分形式dt d e R )(F p =设1t 时刻质点系的动量为1p ,2t 时刻质点系的动量为2p ,上式从1t 到2t 积分,得⎰=-21)(12t t e R dtF p p I =(17-11)当外力主矢为零时,由上式可推出质点系的动量是一常矢量,即0p p =这表明当作用在质点系上的外力的矢量和为零时,质点系的动量保持不变,这就是质点系的动量守恒定理。
第十章 质心运动定理 动量定理 习题解
解:设机座的重量为G,则当偏心轮转动时,
质点系的受力如图所示。当停偏心轮静止时,
水平约束力不存在,此时的反力为静反力。
解:以船A、B及人组成的物体系统为质点系。因为质点系在水平方向不受力。即:
,
设B船向左移动了S米,
则A船向右移动了6-S米。
由质点系的动量定理得:
[习题10-2]电动机重 ,放置在光滑的水平面上,另有一匀质杆,长 ,重 ,一端与电动机机轴固结,并与机轴的轴线垂直,另一端则刚连一重 的物体,设机轴的角速度为 ( 为常量),开始时杆处于铅垂位置并且系统静止。试求电动机的水平运动。
习题103浮动起重机起吊重kn的重物起重机重kn60角忽略水的阻力杆重不计当起重杆oa转到与铅垂位置成30角时求起重机的位移
第十章质心运动定理动量定理习题解
[习题10-1]船A、B的重量分别为 及 ,两船原处于静止间距 。设船B上有一人,重 ,用力拉动船A,使两船靠拢。若不计水的阻力,求当两船靠拢在一起时,船B移动的距离。
解:以电动机、匀质杆和球构成的质点系为研究对象。其受力与运动分析如图所示。匀质杆作平面运动。
因为质点系在水平方向上不受力,所以
由动量定理得:
这就是电动机的水平运动方程。
[习题10-3]浮动起重机起吊重 的重物,起重机重 ,杆长 ,开始时杆与铅垂位置成 角,忽略水的阻力,杆重不计,当起重杆OA转到与铅垂位置成 角时,求起重机的位移。
解:以重物和起重机构成的物体系统为质系。
因为质点系在水平方向不受力,所以
。即OA运动前后,质点系的质心保持不变。也就是质心守恒。
当OA杆转到与铅垂位置成 角时,质点系质心的横坐标为:
3-2 质点系动量定理和质心运动定理
解:
dm = 2xσdx
a/ 2
y a
三角形质心坐标x 三角形质心坐标 c是
xc
∫ xdm = ∫ = ∫ dm ∫
0
a/
0
2 a = 2 3 2σxdx
2σx dx
2
O x dx
x
这个结果和熟知的三角形重心位置一致。 这个结果和熟知的三角形重心位置一致。
11
三、质心运动定理 右边: 右边:
r d 据质点系动量定理: 据质点系动量定理 ∑ F = (∑m v ).
质点系动量定理:在一段时间内, 质点系动量定理:在一段时间内,作用于质点系的 外力矢量和的冲量等于质点系动量的增量. 外力矢量和的冲量等于质点系动量的增量
1
v d n v 微分形式) Fi = (∑mivi ) (微分形式) ∑ dt i=1 i=1
n
其分量式
Fixdt = ∑mi vix − ∑mi vi 0x ∫t0 ∑ t ∫t0 ∑Fiydt = ∑miviy − ∑mivi0 y t Fizdt = ∑mi viz − ∑mi vi 0z ∫t0 ∑
z
dm ( x , y , z )
体分布 面分布 线分布
dm = ρdV
r r
x o
M
dm = σdS dm = λdl
y
dm ρ= dτ dm σ= ds dm λ= dl
dm:宏观小,微观大 宏观小,
xc =
r rc =
∫ ∫
xdm M ydm M
注意: 注意:
1.质心的坐标值与坐标系的选取有关; 2.质量分布均匀、形状对称的实物,质 心位于其几何中心处; 3.不太大的实物,质心与重心相重合。
第十章动量定理
Part B 动量定理 例题 4 矩形块的质量: 矩形块的质量 m1 虫的质量和相对于矩形块的速度: 虫的质量和相对于矩形块的速度 m2 vr (相对速度大小为常量 相对速度大小为常量) 相对速度大小为常量 初始状态: 初始状态 矩形块: 矩形块 静止 虫:位于矩形块圆形槽中的最右侧 位于矩形块圆形槽中的最右侧 求: 某瞬时角度为 θ ,矩形块的速度和 矩形块的速度和 加速度 vBox, aBox 以及地面对矩形 块的反力的大小
2
Part B 动量定理 [解 ]
m2
计算反力 FN
Py = m2 vr cos θ
dPy dt
m1
= FN − m1 g − m2 g
ɺ m2 vr (− sin θ )θ = FN − (m1 + m2 ) g
θ=
vr t R
ɺ θ=
vr R
m2 vr2 sin θ FN = (m1 + m2 ) g − R
若力 F 随时间变化, 则在微小时间段内:
dI = Fdt
I x = ∫ Fx dt
Unit: N·s 牛顿 秒 牛顿·秒
t1 t2 t2 t1
I = ∫ Fdt
t1
t2
I y = ∫ Fy dt
I z = ∫ Fz dt
t1
t2
Part A 冲量和动量 2. 动量
质点的动量. 质点的动量 质点的质量与其速度的乘积称为 质点的动量 质点的动量. 某瞬时质量为m 的质点的动量P : Unit: kg·m/s
表明质心的x坐标不变 (初始状态为 静止). 设质心的x坐标为坐标轴的原点
B
PxB + Qx A xC = P+Q
Part C 质心运动定理 [解 ]
《理论力学》第十章 质心运动定理 动量定理 习题共7页
第十章 质心运动定理 动量定理 习题解[习题10-1] 船A 、B 的重量分别为kN 4.2及kN 3.1,两船原处于静止间距m 6。
设船B 上有一人,重N 500,用力拉动船A ,使两船靠拢。
若不计水的阻力,求当两船靠拢在一起时,船B 移动的距离。
解:以船A 、B 及人组成的物体系统为质点 系。
因为质点系在水平方向不受力。
即:设B 船向左移动了S 米, 则A 船向右移动了6-S 米。
由质点系的动量定理得:[习题10-2] 电动机重1P ,放置在光滑的水平面上,另有一匀质杆,长L 2,重2P ,一端与电动机机轴固结,并与机轴的轴线垂直,另一端则刚连一重3P 的物体,设机轴的角速度为ω(ω为常量),开始时杆处于铅垂位置并且系统静止。
试求电动机的水平运动。
解:以电动机、匀质杆和球构成的质点系为研究对象。
其受力与运动分析如图所示。
匀质杆作平面运动。
因为质点系在水平方向上不受力,所以 由动量定理得:这就是电动机的水平运动方程。
[习题10-3] 浮动起重机起吊重kN P 201=的重物,起重机重kN P 2002=,杆长m OA 8=,开始时杆与铅垂位置成060角,忽略水的阻力,杆重不计,当起重杆OA 转到与铅垂位置成030角时,求起重机的位移。
解:以重物和起重机构成的物体系统为质系。
因为质点系在水平方向不受力,所以0=x Fconst x C =。
即OA 运动前后,质点系的质心保持不变。
也就是质心守恒。
当OA 杆转到与铅垂位置成030角时,质点系质心的横坐标为: 当OA 杆转到与铅垂位置成030角时, 质点系质心的横坐标为: 因为质心守恒,所以21C C x x =,即:故,当起重杆OA 转到与铅垂位置成030角时,起重机向左移动了0.2662米。
[习题10-4] 匀质圆盘绕偏心轴O 以匀角速度ω转动。
重P 的夹板借右端弹簧推压面顶在圆盘上,当圆盘转动时,夹板作住复运动。
设圆盘重W ,半径为r ,偏心距为e ,求任一瞬时作用于基础和别螺栓的动反力。
理论力学(机械工业出版社)第十章动量定理习题解答
习 题10-1 计算图10-7所示各种情况下系统的动量。
(1) 如图10-7a 所示,质量为m 的匀质圆盘沿水平面滚动,圆心O 的速度为0v ;(2) 如图10-7b 所示,非匀质圆盘以角速度ω绕O 轴转动,圆盘质量为m ,质心为C ,偏心距OC=a ;(3) 如图10-7c 所示,胶带轮传动,大轮以角速度ω转动。
设胶带及两胶带轮为匀质的;(4) 如图10-7d 所示,质量为m 的匀质杆,长度为l ,绕铰O 以角速度ω转动。
图10-7(a) 0v p m =; (b) ωma p =(方向与C 点速度方向相同);(c) 0=p ;(d) 2ωml p = (方向与C点速度方向相同)。
10-2 如图10-8所示,椭圆规尺AB 的质量为2m 1,曲柄OC 的质量为m 1,而滑块A 和B 的质量均为m 2。
已知:OC =AC =CB = l ;曲柄和尺的质心分别在其中点上;曲柄绕O 轴转动的角速度ω为常量。
当开始时,曲柄水平向右,试求此时质点系的动量。
图10-8方法一CAB COC B B A A m m m m v v v v p +++=2CC B A m m m m v v v v 112222+++=C B A m m v v v 1225)(++=因)c o s s i n (j i v ϕϕω+-=l Cj v ϕωcos 2l A = i v ϕωs i n 2l B -=故)cos sin (25)sin 2cos 2(12j i i j p ϕϕωϕωϕω+-+-=l m l l m)cos sin (24521j i ϕϕω+-+=l m m (与v C 方向相同)方法二规尺AB 、滑块A 和B 质心C 处,质量为2(m 1+m 2) 因此系统质心在OC 上,离O 轴距离mlm m ml m m l m 245)(2221211+=++⨯=ξ质心速度ωξωξl m m m m 24521+===v p (方向垂直于OC )10-3 跳伞者质量为60kg ,自停留在高空中的直升飞机中跳出,落下100m 后,将降落伞打开。
第10章动量定理
冲量的单位: Ns kgm/s 2 s kgm/s
3
§10-2 动量定理
1.质点的动量定理
由
d
(mv)
F
dd(tmv)
Fdt
动量定理的微分形式
即:质点动量的增量等于作用在质点上的元冲量。
对m上v 式积m分v0,时间0t由Fd0t到t,速I 度由动v量0变定为理v,的得积分形式
即:在某一时间间隔内,质点动量的变化等于作用于
dri dt
d dt
mi ri
令 m mi
rC
mi ri m
为质心
则
p
d
dt
mi ri
d dt (mrC )
mvC
结论:质点系的动量等于质心速度与其全部质量的乘积
二.冲量
力与其作用时间的乘积称为力的冲量,冲量表示力 在其作用时间内对物体作用的累积效应的度量。
I
t2
Fdt
t1
质点系动量守恒定律
§10-2 质心运动定理
1.质心
rC
m i m
ri
mmi
xC
m ix m
i
,
yC
mi m
y
i
,
zC
m iz m
i
2.质心运动定理
由
d dt
(mvC
)
n
i 1
F (e) i
得
m dvC dt
n
F (e) i
i 1
n
或
maC
F (e) i
i 1
称为质心运动定理,即:质点系的质量与质心加速度的乘
则
vC
常矢量
若
F (e) x
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[习题10-1]船A、B的重量分别为 及 ,两船原处于静止间距 。设船B上有一人,重 ,用力拉动船A,使两船靠拢。若不计水的阻力,求当两船靠拢在一起时,船B移动的距离。
解:以船A、B及人组成的物体系统为质点系。因为质点系在水平方向不受力。即:
,
设B船向左移动了S米,
则A船向右移动了6-S米。
解:设机座的重量为G,则当偏心轮转动时,
质点系的受力如图所示。当停偏心轮静止时,
水平约束力不存在,此时的反力为静反力。
当偏心轮转动时,偏心轮的动量为:
当偏心轮转动时,夹板的动量为:
因为夹板作平动,所以其质心的速度
等于夹板与偏心轮的切点的速度。
由质点系的动量定理得:
[习题10-2]电动机重 ,放置在光滑的水平面上,另有一匀质杆,长 ,重 ,一端与电动机机轴固结,并与机轴的轴线垂直,另一端则刚连一重 的物体,设机轴的角速度为 ( 为常量),开始时杆处于铅垂位置并且系统静止。试求电动机的水平运动。
解:以电动机、匀质杆和球构成的质点系为研究对象。其受力与运动分析如图所示。匀质杆作平面运动。
因为质点系在水平方向上不受力,所以
由动量定理得:
这就是电动机的水平运动方程。
[习题10-3]浮动起重机起吊重 的重物,起重机重 ,杆长 ,开始时杆与铅垂位置成 角,忽略水的阻力,杆重不计,当起重杆OA转到与铅垂位置成 角时,求起重机的位移。
解:以重物和起重机构成的物体系统为质系。
因为质点系在水平方向不受力,所以
。即OA运动前后,质点系的质心保持不变。也就是质心守恒。
当OA杆转到与铅垂位置成 角时,质点系质心的 Nhomakorabea坐标为:
当OA杆转到与铅垂位置成 角时,
质点系质心的横坐标为:
因为质心守恒,所以
,即:
故,当起重杆OA转到与铅垂位置成 角时,起重机向左移动了0.2662米。
[习题10-4]匀质圆盘绕偏心轴O以匀角速度 转动。重P的夹板借右端弹簧推压面顶在圆盘上,当圆盘转动时,夹板作住复运动。设圆盘重W,半径为 ,偏心距为 ,求任一瞬时作用于基础和别螺栓的动反力。