小功率高频(FM)发射机的设计
课程设计报告--小功率调幅发射机的设计
课程设计报告--小功率调幅发射机的设计高频电子线路课程设计报告设计题目:小功率调幅发射机设计一、设计题目小功率调幅发射机的设计。
二、设计目的、内容及要求设计目的:《高频电子线路》是一门理论与实践密切结合的课程,课程设计是其实践性教学环节之一,同时也是对课堂所学理论知识的巩固和补充。
其主要目的是加深对理论知识的理解,掌握查阅有关资料的技能,提高实践技能,培养独立分析问题、解决问题及实际应用的能力。
(1)加深对高频电子线路理论知识的掌握,使所学的知识系统、深入地贯穿到实践中。
(2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。
任务及要求:小功率调幅发射机的设计(1)掌握小功率调幅发射机原理;(2)设计出实现调幅功能的电路图;(3)应用multisim软件对所设计电路进行仿真验证。
技术指标:载波频率f0=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制系数Ma=50%±5%;负载电阻R A=50Ω。
三、工作原理3.1 小功率调幅发射机的认识目前,虽然调频技术以及数字化技术突飞猛进,其应用范围覆盖了无线通信技术的80%以上,但是由于小功率调幅发射机具有调制解调电路简单、调试容易、信号带宽窄和技术成熟等优点,因此仍然使其能够在中短波通信中广泛得以应用。
课题以电子线路课程设计实践教学为应用背景,在仿真软件与实验室中完成一个完整的调幅发射机,并实现无线电报功能。
发射机的主要任务是利用低频音频信号对高频载波进行调制,将其变为在适合频率上具有一定的带宽,有利于天线发射的电磁波。
一般来说,简易发射机主要分为低频部分、高频部分、以及电源部分。
高频部分主要包括:主振荡器、缓冲放大级、中间放大级、功放推动级以及末级功放级。
低频部分主要包括:话筒、低频电压放大级、低频功率放大级以及末级低频功率放大级等。
3.2 小功率调幅发射机的工作原理一条调幅发射机的组成框图如下图图1所示,其工作原理是:第一本机振荡产生一个固定频率的中频信号,它的输出送至调制器;话音放大电路放大来自话筒的信号,其输出也送至调制器;调制器输出是已调幅了的中频信号,该信号经中频放大后与第二本振信号混频;第二本振是一频率可变的信号源,一般选第二本振频率fo2是第一本振f1与发射载频foc之和,混频器输出经带通或低通滤波器滤波,是输出载频fc=fo2-fo1;功放级将载频信号的功率放大到所需发射功率。
(课程设计)小功率调幅发射机设计
毕业设计说明书系:电子信息工程系专业:电子信息工程题目:小功率调幅发射机设计小功率调幅发射机设计摘要:调幅发射机目前正广泛应用于无线电广播系统中,课题以电子线路课程设计实践教学为应用背景,通过查阅大量教学文献,并结合专业基础课程教学需要,以原教学内容为基础,完成了小功率调幅发射机从设计、仿真到安装、调试等一系列完整设计工作。
文中系统的设计了振荡器、音频放大器、振幅调制器和谐振功率放大器等系统单元电路,并通过具有射频仿真模块的软件Multisim,试验和仿真优化了系统电路。
文中还简明介绍了调幅技术与调频技术各自的特点,认识了两者在原理与应用上的不同。
关键词:调幅发射机功率放大器 MultisimTitle Design Of Low Power AM TransmitterAbstractAM transmitters are now widely used in radio broadcasting systems, this thesis as the background of electronic circuit,Through access to a large number of teaching literature, combined with teaching needs, based on the original teaching, completed the low-power AM transmitters from the design, simulation to the installation and commissioning of a full range of design work.Oscillator, audio amplifier, power amplifier and resonant amplitude modulator is designed by the system,using software Multisim circuit simulation and optimization of the system.The thesis also briefly describes each characteristics of AM and FM , know the different both in applications and principle.Keywords:Low-power AM transmitters Power Amplifier Crystal oscillator目次1 绪论 (1)1.1 小功率调幅发射机初步认识 (1)1.2 小功率调幅发射机国内外研究现状 (2)1.3 小功率相关技术及热点问题分析 (2)1.4 课题的研究任务和内容 (5)2 方案设计与单元电路形式选择 (6)2.1发射机的总体认识 (6)2.2单元电路的认识 (6)3 单元电路的设计与仿真 (8)3.1主振级与小信号放大级的设计 (8)3.2 缓冲隔离级的设计 (11)3.3 语音放大级的设计 (12)3.4 幅度调制电路的设计 (13)3.5 高频谐振功率放大器的设计 (16)3,6 谐振功率放大器的调整 (26)3.7天线的相关知识及设计 (27)4 单元电路调试与整机统调 (29)4.1 主振级调试 (29)4.2信号调制级调试 (29)4.3 功率放大级调试 (29)4.4整机统调 (30)4.5主要技术指标测试方法 (31)5 硬件电路调试过程及示波器影像图 (33)5.1 主振级硬件电路以及示波器图像 (33)5.2 音频信号输入级硬件电路以及示波器图像 (33)5.3 振幅调制级硬件电路以及示波器图像 (34)5.4 功率放大级硬件电路以及示波器图像 (35)6 另外一种调幅发射机设计方案 (38)6.1 主振级的选择与仿真波形 (38)6.2 语音放大级选择与仿真波形 (39)6.3 AM调至电路与仿真波形 (39)6.4 整机电路的连接与仿真 (40)河北工业大学城市学院2011届本科毕业设计说明书结论 (42)参考文献 (43)致谢 (45)附录 A 调幅技术与调频技术主要特点及区别 (46)附录 B 集成调幅与调频发射机设计 (47)附图 C 高频电路设计基本步骤 (54)附图 D 选择高频元器件的基本设想 (55)附图 1 整机所用元件列表 (56)附图 2 整机电路图 (57)附图3 整机电路PCB图 (58)附图 4 整机电路实体图 (59)1 绪论当今时代,信息技术发展十分迅猛,产品更新换代步幅更是明显加快,尤其是无线技术创新非常活跃,各类技术加快发展和融合,新技术新应用层出不穷,向社会各部门各领域的渗透日益广泛深入。
FM无线发射与接收电路的设计,无线音箱设计
FM无线发射与接收电路的设计,无线音箱设计毕业设计题目:…FM无线发射与接收电路的设计…学院:信息与电子工程学院专业:应用电子技术填写日期:二零一二年十二月二十五日摘要摘要在现代通信中,简易无线设备是一种近距离的、简单的无线传输通信工具,目前广泛应用于生产、广播电视、野外工程领域的小范围移动通信工程中。
本次毕业设计以BH1417F集成发射芯片、SP7021F 收音机集成芯片、TDA2822M功放芯片为基础,构造了一款立体声FM 无线发射与接收电路的设计的传输系统。
BH1417F是ROHM公司推出的新型FM无线发射芯片,是锁相环调频立体声发射专用集成电路,电路主要分为前级放大电路,高频振荡,高频功率放大三个部分,仅仅需要很少的外围元器件就能够扶僻优异的体声调频信号。
SP7021F内包含有高放、混频、本振、二级有源中频滤波器、中频限幅放大器、鉴频器、低频器、低频放大器、静噪电路以及相关静噪系统等。
低频功放部分用TDA2822M功放芯片。
该无线传输系统,相距可达到5米,通过扬声器播放的声音清晰,厚重,无明显失真。
关键词:无线传输BH1417F SP7021F TDA2822IAbstractAbstractIn modern communications , simple wireless device is one kind of short distance wireless transmission communication tools , simple , widely used in production , radio and television , field engineering in small scope mobile communication project . The graduation design with BH1417F integrated chip launch , SP7021F radio chip , TDA2822M power amplifier chip as the foundation , constructs a stereo radio sound transmission system .BH1417F is ROHM launched the new FM wireless emitting chip , is phase-locked loop FM stereo transmitter integrated circuit , main circuit is divided into a front stage amplifier circuit , high frequency oscillation , frequency power amplifier three parts , only needs few peripheral components can help out-of-the-way excellent sound FM signal .SP7021F contains high discharge , mixing , lo , two stage active filter , if limiter amplifier , discriminator , low frequency , low frequency amplifier , a squelch circuit and associated squelch system . Low frequency power amplifier with TDA2822M power amplifier chip .The wireless transmission system , distance can reach 5 meters , played through a loudspeaker voice clear , thick , no obvious distortion .Keywords: Wireless transmission BH1417F SP7021F TDA2822 II目录目录第1章引言............................................................................................................... (1)第2章设计要求与任务 (2)第3章FM无线发射与接收电路的设计的工作原理 (3)3.1 FM无线发射与接收电路的设计系统方案 (3)3.2 无线调频发射机的设计 (4)3.2.1 无线调频发射机组成框图 (4)3.2.2 BH1417F工作原理 (4)3.3 无线调频收音机的设计 (7)3.3.1 无线调频收音机组成框图 (8)3.3.2 SP7021F工作原理 (8)3.3.3 低频功放电路 (10)第4章硬件的制作和调试及心得体会 (12)4.1 硬件的制作............................................................................................................... .. 124.2 电路的调试............................................................................................................... .. 154.3 心得体会............................................................................................................... (16)结论............................................................................................................... .. (18)参考文献............................................................................................................... (19)附录............................................................................................................... ................................ 20 III引言第1章引言无线通信(Wireless communication)是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式。
小功率调频发射机的设计与制作.
小功率调频发射机的设计和制作小功率调频发射机的设计与制作一、设计任务与要求1、主要技术指标:1、中心频率:2、频率稳定度3、最大频偏4、输出功率5、电源电压二、原理及图1、小功率调频发射机原理:拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。
单元电路级数尽可能少,以减小级间的相互感应、干扰和自激。
在实际应用中,很多都是采用调频方式,与调幅相比较,调频系统有很多的优点,调频比调幅抗干扰能力强,频带宽,功率利用率大等。
调频可以有两种实现方法,一是直接调频,就是用调制信号直接控制振荡器的频率,使其按调制信号的规律线性变化。
另一种就是间接调频,先对调制信号进行积分,再对载波进行相位调制。
两种调频电路性能上的一个重大差别是受到调频特性非线性限制的参数不同,间接调频电路提供的最大频偏较小,而直接调频可以得到比较大的频偏。
所以,通常小功率发射机采用直接调频方式,它的组成框图如图1所示。
小功率调频发射机的设计和制作图1 调频发射机组成其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免末级功放的工作状态变化而直接影响振荡级的频率稳定度;功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。
(1)振荡级振荡电路主要是产生频率稳定且中心频率符合指标要求的正弦波信号,目前应用较为广泛的是三点式振荡电路和差分对管振荡电路。
三点式振荡电路又可分为电感和电容三点式振荡电路,由于是固定的中心频率,因而采用频率稳定度较高的克拉拨振荡电路来作振荡级。
(2)缓冲级因为本次实验对该级有一定的增益要求,而中心频率是固定的,因此用LC并联回路作负载的小信号谐振放大器电路。
缓冲放大级采用谐振放大,L2和C10谐振在振荡载波频率上。
若通频带太窄或出现自激则可在L2两端并联上适当电阻以降低回路Q值。
小功率调频发射机的设计 亮
东北石油大学课程设计课程高频电子线路题目小功率调频发射机的设计院系电子科学学院专业班级电信07-7班学生姓名陈厚亮学生学号070901140736指导教师2011年3月4日东北石油大学课程设计任务书课程高频电子线路题目小功率调频发射机的设计专业电子信息工程姓名陈厚亮学号070901140736主要内容、基本要求、主要参考资料等1、主要内容利用所学的高频电路知识,设计一个小功率调频发射机。
通过在电路设计、安装和调试中发现问题、解决问题,加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。
2、基本要求设计一个小功率调频发射机,主要技术指标为:(1) 载波中心频率06.5M Hzf=;(2) 发射功率100m WAP>;(3) 负载电阻75LR=Ω;(4) 调制灵敏度25kH z/VfS≥;3、主要参考资料[1] 阳昌汉. 高频电子线路. 哈尔滨:高等教育出版社,2006.[2] 张肃文,陆兆雄. 高频电子线路(第三版). 北京:高等教育出版社,1993.[3] 谢自美. 电子线路设计·实验·测试. 武汉:华中科技大学出版社,2000.[4] 高吉祥. 电子技术基础实验与课程设计. 北京:电子工业出版社,2002.完成期限2月28日-3月4日指导教师专业负责人2011 年 2 月25 日一、电路原理1.电路原理及用途小功率调频发射机在日常生活中是不可缺少的。
小功率发射机采用直接调频方式,其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。
小功率发射机采用直接调频方式其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。
电子线路课程设计报告
电子线路课程设计报告小功率调幅AM发射机设计(理论设计仿真报告)班级:姓名:学号:指导教师:日期:小功率调幅发射机的设计与仿真1.设计内容及要求1.1设计内容1.经过方案比较,确定小功率调幅发射机的设计方案,根据设计指标对既定方案进行理论设计及分析,并给出各单元电路的理论设计方法2.利用multisim仿真软件,对设计电路进行仿真和分析,依据设计指标对电路参数进行调整直至满足设计要求1.2设计要求载波频率MHz 10=cf输出功率mW 2000 ≥P负载电阻Ω =50AR输出信号带宽kHz 9=BW残波辐射dB 40≤单音调幅系数8 .0=am ;平均调幅系数 3 .0≥am发射效率% 50≥η2.设计方案及论证2.设计方案及论证2.1系统框图说明:调幅发射机主要包括四个组成部分:载波振荡器、音频放大器、振幅调制器和功率放大器四部分。
总体思路为:10MHz的载波信号与1KHz的音频信号经过缓冲器以及电压放大后输入到振幅调制器进行调幅得到调幅波,然后经过高频功率放大后输出。
2.2各单元电路设计方案论证2.2.1 主振器电路载波振荡电路是调幅发射机的核心部分,作用是产生高频载波信号用以调制信号。
载波的频率稳定度和波形的稳定度直接影响到已调信号的质量。
因此,载波振荡电路产生的载波信号必须有较高的频率稳定度和较小的波形失真度。
载波振荡电路可以有多种设计方案,方案一:LC三点式正弦波振荡电路方案二:克拉泼振荡器电路方案三:石英晶体振荡器克拉泼振荡器(Clapp oscillator)又称为电容反馈改进型振荡器,它是一种电容三点式振荡器的改进型线路。
电容三点式振荡器,当需要改变频率而调节振荡回路的电容参数时,也会影响电路的起振,为此,把一个电容C3串入振荡回路的电感支路中,这样改变电容C就可以调节振荡频率,而不影响电路的起振。
这种振荡器频率相比LC振荡器来说更加稳定2.2.2 音频放大器音频放大器是在产生声音的输出元件上重建输入的音频信号的设备,其重建的信号音量和功率级都要理想——如实、有效且失真低。
远距离FM调频发射电路
远距离FM调频发射电路本文介绍的小功率调频发射电路,由于使用了专用的发射管,调制度深,不产生幅度调制,失真小,发送距离远,工作稳定。
电路简单易制,只要焊接无误即可工作,电路原理见图1所示。
图1电路中,由专用发射管T2和其外围件组成一频率在88~108MHz范围内的高频振荡器,驻极体话筒拾取的音频信号先经T1进行放大,放大后的低频信号再对高频载波进行调制。
如断开驻极话筒M,在输入端接放音机输出就能很好地传送音乐信号。
需要说明的是射频发射专用管T2,其型号是FF501,采用标准的T0-92封装(像9000系列三极管一样),外形及引脚排列如图2所示,其ICM为45mA,fT大于1.3GHz,VCEO为13V。
专用管的优点就是一致性好,射频输出功率较大,电路容易调整,FF501完全可工作在更高的频段,读者可尝试将发射管用于其它电路的高频发射实验。
电路中的L2用∮1.0mm的漆包线在∮5.1mm的钻头上绕5匝脱胎拉长至0.8cm,C3~C8可用高频瓷介电容,天线最好用1.2米的拉杆,并垂直放立。
天线一定要架好后再上电。
电路的工作电流约25±5mA。
如发射频率不在88~108MHz范围内,可适当调整谐振线圈L2的长度。
电路装调好后,用FM段调频收音机作接收,有效传送半径可达500m。
新颖的调频接收机本文介绍的调频接收机利用超再生调频接收原理,因采用了高增益微型集成电路,故电路简单新颖。
接收效果达到一般调频接收机的水平,同时克服了超再生接收机选择性差、噪声大等缺点,又保持了灵敏度高、耗电少、线路简单和成本低(元件费用不足5元)等优点。
适合电子爱好者制作。
该机的电路原理图如图所示。
由超再生调频接收、FM-AM变换部分、调幅检波及低放电路组成。
调频波的超再生接收,实际上就是将调频波转换成调幅波,同时对调幅波进行包络检波以得到低频信号。
图中的三极管VTl及外围元件组成典型的超再生调频接收电路,并将调频波信号转换成调幅信号以及进行包络检波输出音频信号。
电子线路课程设计-实验指导书
高频课程设计实验指导书实验题目:小功率调幅发射机的安装与调试一、实验目的和意义1)熟悉实验调幅电路原理,掌握常用仪器使用;2)熟悉并测试电路元件参数,掌握测试方法;3)熟悉印刷版与电路、元件的对应关系;4)掌握电路焊接、调试技术;5)掌握电路测试方法、并记录参数。
6)与理论设计相结合,验证设计结果。
7)培养学生综合运用所学理论的能力和解决较复杂的实际问题的能力。
8)通过一套完整的调幅发射系统设计、安装和调试,提高学生的综合素质和科学试验能力。
二、实验仪器设备1)双踪示波器,数字频率计,数字信号源,数字万用表,双路稳压电源等仪器各一台。
2)电烙铁,镊子,钳子,螺丝刀等工具一套。
3)调幅发射机实验板,套件,天线,焊锡,漆包线等。
三、实验原理及实验步骤3.1 实验电路框图图 1 调幅发射机组成框图3.2 实验步骤1.焊接调试振荡电路(图2),使输出电压幅度和频率连续可调,尽量减小波形失真。
说明:载波振荡器采用并联型晶体振荡器,产生频率为6MHz的正弦信号作为载波。
本电路中,三极管的型号为9018,电阻R1和电位器RP0为三极管T1提供基极偏置,调整RP0可以改变三极管T1的基极电压,从而可以调整三极管的静态工作点,改变载波信号的振幅。
振荡电路的负载为射极跟随器的输入电阻,射极跟随器作为振荡器与下一级的隔离级,用于减少两级振荡产生的影响,具有输入电阻大、输出电阻小的特点,带负载能力很强。
RP2作为分压电阻将电压输出到调制端,通过改变RP2可以调节载波信号的幅度。
载波信号容易受到电源中杂波信号的影响,在电源和载波回路之间必须接入高频滤波电容滤除杂波。
测量时可以在B点接入示波器通过观察示波器的波形来检查是否起振。
调试步骤:测量前要先连接电路,检查无误后接通直流电源。
用万用表测量三极管电压,调节RP0,使基极电压为6V。
测量载波信号时将测试B点接入示波器,若没有出现波形可调节滑动变阻器RP0,直至出现频率为6MHz的正弦波信号,若仍没有波形,要再仔细检查每一个焊点。
小功率调幅发射机的设计、安装和调测
小功率调幅发射机的设计、安装和调测一.设计目的训练学生对高频电子元器件及电路的应用能力、高频电路的设计与调测能力,高频电子小系统的设计与调测能力,提高综合应用高频知识的能力、分析解决问题的能力。
二.设计任务设计一个小功率调幅发射机,指标为:中心频率6MHz;频率稳定度≤10-4;输出AM波峰包功率≥200mW;调制系数ma≥50%;包络基本不失真,用短波调幅收音机收听到的声音清晰且不失真。
限定条件:天线阻抗50Ω,话筒为驻极体话筒XD-18。
三.方案的确定与电路图(—)系统方案的确定根据设计任务要求,可选用图k1.1所示的典型小功率调幅发射机的方案。
图中,晶体振荡器的作用是产生频率稳定度≤10-5的基本不失真的6MHz的正弦波。
由于晶体振荡器频率稳定度通常可达10-6以上,因此一般满足频率稳定度≤10-5的要求。
缓冲放大器用于减小高电平调幅电路对振荡器工作的影响,并对振荡器输出信号进行放大,其增益应该合适而且可调,以便满足高电平调幅电路,不难达到发射机的功率和失真要求。
调制系数可以通过u B(t)和uΩ(t)的大小来满足,u B(t)的大小通过缓冲放大器的增益来调节,uΩ(t)的大小通过音频放大器的增益来调节。
音频放大器的作用是不失真地放大音频信号,其增益应该合适而且可调。
综上可见,高电平调幅电路是满足系统要求的关键,应首先设计该电路,然后根据该电路对信号u B(t)和uΩ(t)的要求确定其它电路。
图 k1.1 小功率调幅发射机系统框图(二)单元电路的设计1.高电平调幅电路的设计(1)电路及工作状态的选择。
高电平调幅电路主要有基极调幅、集电极调幅和集电极-基极双重调幅电路。
由于输出功率较小,故可选用效率虽较低但调制线性好、电路较简单的基极调幅电路。
导通角通常选择70o左右,采用自给偏置,电路如图k1.2所示。
为了提高调制线性度,应使电路工作在欠压区。
u BU(2)基本原件的选择。
图中,C B1、C B2、C C为隔直耦合电容,C1、C2为高频滤波电容。
小功率调频发射机的设计与制作
毕业论文学生姓名许跃进学号********* 院(系) 电子与电气工程系专业电子信息科学与技术题目小功率调频发射机的设计与制作指导教师孙红兵副教授2009 年 5 月摘要:作为通信系统的核心,射频技术越来越重要。
本文研制一套射频发射系统,包括收发信机、天线设备(含馈线)、输入输出设备(如话筒、耳机等)、供电设备(如直流稳压电源)等。
介绍了调频发射机的制作方法及其工作原理,给出了系统组成框图及系统电路组成,设计了应刷电路板,并对设计的电路进行了安装与调试。
该发射机能实现音频信号在80MHz —103MHz频段内的频率调制,并可以利用调频收音机接收到清楚的话音。
关键词:微型调频发射机音频信号载波调频波Abstract: As the core of the communicatione system .RF technolgy is more and more important. The system generally includes transceiver equipments,antenna equipments(ineluding feeder),input and output equipmenis(such as speakers,headPhones,ete.),and Power equipment(such as DC Power).This paper introduces a method of making microfrequency modulation emitting machineas well As work principle of the machine.it gives the graphics of the circuit of the system and design the PCB,which is installmented and debugged .The frequency modulation of audio signal in 80MHz一130MHz is realized by adjusting cut off frequency of the loop filter.which ensures the realization of the system.Keywords:microfrequency modulationemitting machine,sound wave,carry wave,frequency modulation wave.目录1 引言 (5)2 发射机原理 (6)2.1调频发射机的一般架构 (6)2.2基于三极管的发射机结构及原理 (7)2.3发射机的主要性能指标 (10)3发射机电路设计与仿真 (11)3.1 发射机硬件电路设计 (10)3.2电路仿真及参数确定 (13)4系统安装与调试 (14)4.1 PCB板的设计及系统安装 (16)4.3前置放大器的测试 (14)4.2发射机的总体测试 (14)结论 (18)参考文献 (19)致谢 (20)1.引言小功率发射机采用直接调频方式,其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。
FM调频发射器制作资料
调频无线话筒电路图-调频无线话筒制作-自制无线话筒本文介绍一种简单的无线话筒。
可在调频广播波段实行无线发射。
本机可用于监听、信号转发和电化教学。
由于结构简单、装调容易,所以很适合初学者装置。
一、无线话筒的电路图和工作原理图1是调频无线话筒的电路图。
图1无线话筒的电路图驻极体话筒将声音转变为音频电流,加在由晶体管V、线圈L和电容器C1组成的高频振荡器上,形成调频信号由天线发射到空间。
在10米范围内,由具有调频广播波段(FM波段)的收音机接收,经扬声器还原成的声音,实现声音的无线传播。
二、元件的规格和检测方法本机结构简单,包括电池在内,一共才有8只元件。
C1为10PF瓷片电容器C2为10uF电解电容器R为lk 1/8W碳膜电阻k为拨动开关V为高频三极管9018日BM为小型驻极体话筒L为空心线圈。
驻极体话筒灵敏度越高,无线话筒的效果越好。
它的外形和测试方法见图2,对话筒吹气时,万用表指针摆动越大,驻极体话筒越灵敏。
图2 驻极体话筒检测L是空心电感线圈。
用?0.5毫米的漆包线在元珠笔芯上密绕10圈。
用小刀将线圈两端刮去漆皮后镀锡,可点上一些石蜡油固定线圈然后抽出元珠笔芯,形成空心线圈(如图3)。
三、焊接电路图4是调频无线话筒的印刷电路图。
图3 线圈L的绕法图4 印刷电路板1.将各元件引脚镀锡后插入印刷电路板对应位置。
各元件引脚应尽量留短一些。
2.逐个焊接各元件引脚。
焊点应小而圆滑不应有虚焊和假焊。
焊接线圈时,注意不能使线圈变形。
3.用一根长40-60厘米的多股塑皮软线做天线。
一端焊在印刷电路板上,另一端自然伸开。
四、电路的调试1.先检查印刷电路板和焊接情况,应元短路和虚、假焊现象。
然后可接通电源。
2.用万用表直流电压档测量晶体管V基极发射极问电压,应为0·7伏左右。
若将线圈L两端短路,电压应有一定变化,说明电路已经振荡。
3.打开收音机,拉出收音机天线,波段开关置于FM波段,(频率范围为88兆赫至108兆赫)将无线话筒天线搭在收音机上。
小功率调频发射机课程设计
小功率调频发射器课程设计报告目录摘要 (2)一、课题 (3)二、设计原理 (3)三、主要设计指标 (4)四、电路设计 (4)五、制作调试 (8)六、故障及分析 (8)七、测试结果 (9)八、制作小结 (9)九、元器件 (10)十、参考文献 (11)摘要随着科技的发展和人民生活水平的提高,无线电发射机在生活中得到广泛应用,最普遍的有电台、对讲机等。
人们通过无线电发射机可以把需要传播出的信息发射出去,接收者可以通过特制的接收机接受信息,最普通的模式是:广播电台通过无线电发射机发射出广播,收听者通过收音机即可接收到电台广播。
本设计为一简单功能的无线电调频发射器,相当于一个迷你型的电台,通过该发射器可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要在频率适合时即可收到发射器发送出的无线电信号,并通过扬声器转换出声音。
本设计为本校院级电子设计大赛作品。
在此写成课程设计的模式,算是总结经验,再次学习。
由于时间仓促,不尽完美之处,请谅解。
小功率调频发射机课程设计一、 课题小功率调频发射机的设计和制作二、设计原理通常小功率发射机采用直接调频方式,它的组成框图如图3.1所示。
其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。
图3.1 系统框图上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。
1、 频振荡级由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。
关于该电路的设计参阅《高频电子线路实验讲义》中实验六内容。
2、缓冲级由于对该级有一定增益要求,考虑到中心频率固定,因此可采用以LC 并联回路作负载的小信号谐振放大器电路。
小功率调频发射机
方案二:通过音频信号改变载波的频率已实现调频发射,调频发射机发射的频率带宽较宽,但其在高频段因而所占的相对频带较调幅波发射更窄,发射距离远,信号失真小。并且在要求传输距离不是很远的情况下,我们用直接载波调频很容易实现载波调频发射机的设计,在能满足我的课程设计的技术指标要求的情况下,我门选择直接载波调频的方案来设接调频发射机。
3:掌握常用仪表的正确使用方法,学会简单电路的实验调试和整机指标测试方法,提高动手能力。
4:了解与课程有关的电子电路以及元器件工程技术规范,能按课程设计任务书的技术要求,编写设计说明,能正确反映设计和实验成果,能正确绘制电路图。
5:学会在电路板上焊接电子元件,掌握一些焊接电子元件的基本方法,了解和掌握一些调试电路板的基本方法。
1.变频电路 是以VT l为中心,它的作用是把通过输入调谐电路收到的不同频率电台信号(高频信号)变换成固定的465KHz的中频信号。VT l、T2、CB等元件组成本机振荡电路,它的任务是产生一个比输入信号频率高465 KHz的等幅高频振荡信号。由于C l对高频信号相当短路,T l的次级Lcd的电感量又很小,对高频信号提供了通路,所以本机振荡电路是共基极电路,振荡频率由T2、cB控制,CB是双连电容器的另一连,调节它以改变本机振荡频率。T2是振荡线圈,其初次绕在同一磁芯上,它们把VT 1的等电极输出的放大了的振荡信号以正反馈的形式耦合到振荡回路,本机振荡的电压由T2的初级的抽头引出,通过C2耦合到VT 1的发射极上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:小功率高频(FM)发射机的设计系别:专业:班级:姓名:学号:指导老师:目录1、引言 (3)2、摘要 (4)3、设计课题 (4)4、设计报告正文 (5)4.1 方案比较与选择 (5)4.1.1直接调频 (5)4.1.2间接接调频 (6)4.2 总体方案设计 (7)4.2.1系统框图 (7)4.2.2方案原理分析 (7)5、各单元模块说明 (8)5.1 获取音频信号电路 (8)5.2 前级音频放大电路 (8)5.3 高频振荡电路 (9)5.4 末级功率放大电路 (10)6、系统安装于调试 (11)6.1 原理设计图纸 (11)6.2 PCB设计图纸 (12)6.3 系统调试 (12)7、设计总结 (13)8、参考文献 (14)9、附录 (14)1、引言无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。
发射机就是可以将信号按一定频率发射出去的装置。
广泛应用与电视,广播,雷达等各种民用,军用设备。
主要可分为调频发射机、调幅发射机、光发射机、哈里斯发射机等多种类型。
调频发射机,首先将音频信号和高频载波调制为调频波,使高频载波的频率随音频信号发生变化,再对所产生的高频信号进行放大、激励、功放和一系列的阻抗匹配,使信号输出到天线,并将信号发送出去的装置.高频信号的产生现在有频率合成、PLL等方式.现在我国商业调频广播的频率范围为88-108MHZ,校园为76-87MHZ,西方国家为70-90MHZ。
2、摘要本次课程设计围绕人们熟悉的调频发射机进行展开,随着经济的飞速发展,调频发射机也进行着高速的更新与换代,性能明显提升,性价比也有所下降,同时在人们的生活中扮演着越来越重要的角色。
这次我们主要来设计一个小功率调频发射机,它主要是由前级音频放大、西勒振荡器和一级功率放大器组成,各单元电路共同作用,最终将音频信号通过天线辐射到空间。
在电路设计时首先根据设计的要求构建设计的总框图,充分考虑各个单元电路之间的信号传输和阻抗匹配。
理解各个要求的参数的意义,针对各参数再分别在各具体电路中加以实现,并且保证电路的正常运行。
关键词:音频放大振荡器调制波功率放大器3、设计课题小功率高频(FM)发射机的设计4、设计报告正文4.1 方案比较与选择实现调频的方法很多,大致可分为两类,一类是直接调频,另一类是间接调频。
直接调频是用调制信号电压直接去控制自激振荡器的振荡频率(实质上是改变振荡器的定频元件),变容二极管调频便属于此类。
间接调频则是利用频率和相位之间的关系,将调制信号进行适当处理(如积分)后,再对高频振荡进行调相,以达到调频的目的。
两种调频法各有优缺点。
直接调频的稳定性较差,但得到的频偏大,线路简单,故应用较广;间接调频稳定性较高,但不易获得较大的频偏。
考虑到电路的复杂度故采用直接调频的方案。
直接调频最常见有变容二极管调频,使用VCO实现变容二极管直接调频。
许多中小功率的调频发射机都采用变容二极管直接调频技术,即在工作于发射载频的LC振荡回路上直接调频,采用晶体振荡器和锁相环路来稳定中心频率。
较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。
另外一种更为简单的直接调频方法是用三极管直接调频。
原理是三极管组成共基极超高频振荡器,基极与集电极的电压随基极输入的音频信号变化而变化,从而改变高频振荡的频率,最终实现频率的调制。
由于采用变容二级管调频,对高频轭流圈的参数要求比较苛刻。
这样会使设计电路变得困难。
因此采用三极管直接调制的方法,这样不仅能够实现FM调频,而且使电路变得非常简洁。
4.1.1 直接调频直接调频的基本原理是利用调制信号直接控制振荡器的振荡频率,使其反映调制信号变化规律。
要用调制信号去控制载波振荡器的振荡频率,就是用调制信号去控制决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信号变化规律线性地改变,就能够实现直接调频。
直接调频可用如下方法实现:在LC振荡器中,决定振荡频率的主要元件是LC振荡回路的电感L和电容C。
在RC振荡器中,决定振荡频率的主要元件是电阻和电容。
因而,根据调频的特点,用调制信号去控制电感、电容或电阻的数值就能实现调频。
调频电路中常用的可控电容元件有变容二极管和电抗管电路。
常用的可控电感元件是具有铁氧体磁芯的电感线圈或电抗管电路,而可控电阻元件有二极管和场效应管。
在微波发射机中,常用速调管振荡器作为载波振荡器,其振荡频率受控于加在管子反射极上的反射极电压。
因此,只需将调制信号加至反射极即可实现调频。
若载波是由多谐振荡器产生的方波,则可用调制信号控制积分电容的充放电电流,从而控制其振荡频率。
4.1.2间接调频如图4.2.2(a)所示,不直接针对载波,而是通过后一级的可控的移相网络。
将Ωu 先进行积分()⎪⎭⎫ ⎝⎛⎰Ωt dt t u k 01,而后以此积分值进行调相,即得间接调频。
()()⎪⎭⎫ ⎝⎛''+=⎰Ωtf c cm FM t d t u k t w V t u 0cos图4.2.2(a) 间接调频实现可控移相网络的实现方法如图4.2.2(b)所示。
将变容二极管接在高频放大器的谐振回路里,就可构成变容二极管调相电路。
电路中,由于调制信号的作用使回路谐振频率改变,当载波通过这个回路时由于失谐而产生相移,从而获得调相。
图4.2.2(b) 单级回路变容管调相电路4.2 总体方案设计 4.2.1 系统框图采用FM 调制的调频发射机其原理框图如下图所示,它由调制器、前置功放、末级功放和直流稳压电源等部分组成。
4.2.2方案原理分析载波()t w U t u c cm c cos )(=,调制信号()t u Ω;通过FM 调制,使得)(t u c 频率变化量与调制信号()t u Ω的大小成正比。
即已调信号的瞬时角频率()()t u k w t w f c Ω⋅+=已调信号的瞬时相位为()()t d t uk t w t d t w t tfc t''+=''=⎰⎰Ω)(0ϕ实现调频的方法分为直接调频和间接调频两大类。
本调频发射机的总体电路如下:声--电转换、音频放大、高频振荡调制和高频功率放大等。
声--电转换由驻极体话筒担任,它拾取周围环境声波信号后即输出相就应电信号,经电容C5、可调电阻R10 、C11输入到晶体管Q1,Q1担任音频放大功能,对音频信号进行放大,经C4送至晶体管Q2进行频率调制;Q2组成共基极高频振荡器,基极与集电极的电压随基极输入的音频信号变化而变化,从而改变高频振荡的频率,最终实现频率调制。
系统总体电路图如图4.3所示:发射天图4.2.3 FM 发射机原理MK1Mic22.2KR1C510433R4213200KR10C11104Q190141MR92.2KR5100R11C4104C3B2E1Q2901822KR2C12681pF2.2KR12C230pFL24.5TC1010pFC1330pFC1104C610pF22KR6Q39018100R13C14100uFC330pFL35T C730pFL15TE1AntennaC9104+C8220uF330R812D2led12P1Header 2 A1B2C3J133R3123P2CON3+5V图4.2.2 系统总体电路图5、电路各单元模块5.1 获取音频信号电路由于要接入麦克风,亦可从J1接音频插座输入,所以要给麦克风提供驱动电压但又不能太大,通过22k的电阻R1实现,C5,C11为耦合电容防止过大的电流将晶体三极管烧坏。
图4.4.1 麦克风模块电路5.2 前级音频放大电路电阻R5,R9,R11,三极管Q1组成基本放大电路。
信号经过耦合电容C11传到三极管Q1的基极,实现音频信号的放大,从而获得所需要的功率,以便对高频载波进行调制。
而要使共射放大电路工作在放大区,必须有合适的静态工作点。
首先在输入信号Ui=0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流Ic 以及各电极对地的电位UB、Uc、UE。
一般实验中,为了避免断开集电极,所以采用测量电压UE或Uc,然后算出Ic的方法,例如,只要测出UE,即可用:EECE RUII=≈算出Ic(也可根据CCCCC RUUI-==,由Uc确定Ic)同时也能算出UBE= UB-UE,UcE= Uc-UE。
如图4.4.2所示4.4.2音频放大电路5.3高频振荡电路高频时,三极管的结电容Cbe 的作用不可忽略。
三极管Q2、电感L2、结电容C12电容C2,C10 ,C13组成了改进型电容三点式高频振荡电路, 产生高频振荡信号, 即载波。
Q2(9018)这是个超高频管,主要用作载频,调频发射电路是将待传送的音频信号通过一定的方式调制到载波信号上, 并放大为额定的功率, 然后利用天线以电磁波的方式发射出去。
信号波和高频载波的数学表达式如下:tf V t V V c cm c cm c πω2cos cos ==t f V t V V c sm s sm πω2cos cos s== 其中Vcm 为信号波的最大振幅和Vsm 为载波信号的最大振幅。
载波频率fc 称之为中心频率,随着频率的变化,角频率ω也会发生变化, 因此st c ωωωωcos m∆+=这时的频率变化△f 称之为最大频率偏移。
经过调频后的信号称之为被调频波Vm ,可表示为:m cm V V θsin m =被调频波vm 会随信号波vs 而变化,其瞬间相位为时间积分。
因此,相位角θm 可由下式计算:t t dt s s c tm ωωωωωθsin 0m∆+==⎰则被调频波可表示为:)sin sin(sin cm t m t V V V s c m cm m ωωθ+==其中m=△ω/ωs 。
高频振荡电路由振荡线圈L 和电容C 与振荡级晶体管组成, 调频波段的振荡频率一般为87.5~108MHz 。
振荡级晶体管会在L 和C 的控制下高速导通和截止。
基极输入放大的音频信号, 经过振荡级晶体管的放大作用, 使音频信号与高频振荡信号完成调制。
特定频率的载波信号通过天线发射出去, 可以将信号覆盖一定的范围。
范围的大小取决于发射的功率。
发射的频率取决于振荡电路的振荡频率。
来自前级的音频信号经耦合电容注入振荡级晶体管的基极、改变振荡频率,产生所需的调频信号。
其电路图如4.4.3所示图4.4.3高频振荡电路5.4 末级功率放大电路Q3是调谐功率管。
调谐回路通过调整回路的LC参数,使LC谐振频率与需要接收的电台频率相同,对该频率呈高阻抗,使它能够进入高放级,对其它频率呈低阻抗近似短路,不能进入高放级,从而达到选择电台的目的。