《反比例函数》中考总复习_课件
合集下载
第12课时 反比例函数 课件 2025年中考数学一轮总复习

C
(3)(2024·济宁)已知点A(-2,y1),B(-1,y2),C(3,y3)在反比例函数y= (k<0)的图象上,则y1,y2,y3的大小关系是( C )
A. y1<y2<y3
B. y2<y1<y3
C. y3<y1<y2
D. y3<y2<y1
C
(4)已知点A(a,y1),B(a+1,y2)在反比例函数y= (m是常数)的图象上,且y1>y2,则a的取值范围是 .
(4-2)=6.
而
在每个象限内,
y随x的增大
而
双曲线的两支关于直线
成轴对称;双曲线的两支关于 成中心对称
k>0
k<0
双曲线
所
在象
限
第 象
限(x,y同号)
第 象
限(x,y异号)
一、三
二、四
性
质
在每个象限内,
y随x的增大
2. 利用函数图象确定不等式的解集的
方法
图示
作图方法
过两函数图象的交点A,B分别
作x轴的垂线,连同y轴把平面分
成①②③④四部分
不等
式
ax+b>
ax+b<
结论
由图可知,在
②④部分,直
线位于双曲线
的上方,故不
等式ax+b>
的解集为xB<
x<0或x>xA
由图可知,在①
③部分,直线位
于双曲线的下
方,故不等式ax
y轴的负半轴上,tan∠ABO=3,以AB
为边向上作正方形ABCD. 若图象经过点
C的反比例函数的解析式是y= ,则图
象经过点D的反比例函数的解析式
是 ;
y=-
(4)(2024·牡丹江)矩形OBAC在平
(3)(2024·济宁)已知点A(-2,y1),B(-1,y2),C(3,y3)在反比例函数y= (k<0)的图象上,则y1,y2,y3的大小关系是( C )
A. y1<y2<y3
B. y2<y1<y3
C. y3<y1<y2
D. y3<y2<y1
C
(4)已知点A(a,y1),B(a+1,y2)在反比例函数y= (m是常数)的图象上,且y1>y2,则a的取值范围是 .
(4-2)=6.
而
在每个象限内,
y随x的增大
而
双曲线的两支关于直线
成轴对称;双曲线的两支关于 成中心对称
k>0
k<0
双曲线
所
在象
限
第 象
限(x,y同号)
第 象
限(x,y异号)
一、三
二、四
性
质
在每个象限内,
y随x的增大
2. 利用函数图象确定不等式的解集的
方法
图示
作图方法
过两函数图象的交点A,B分别
作x轴的垂线,连同y轴把平面分
成①②③④四部分
不等
式
ax+b>
ax+b<
结论
由图可知,在
②④部分,直
线位于双曲线
的上方,故不
等式ax+b>
的解集为xB<
x<0或x>xA
由图可知,在①
③部分,直线位
于双曲线的下
方,故不等式ax
y轴的负半轴上,tan∠ABO=3,以AB
为边向上作正方形ABCD. 若图象经过点
C的反比例函数的解析式是y= ,则图
象经过点D的反比例函数的解析式
是 ;
y=-
(4)(2024·牡丹江)矩形OBAC在平
北师大中考数学总复习《反比例函数》课件

归 类 探 究
探究一 与反比例函数的概念 命题角度: 1. 反比例函数的概念; 2. 求反比例函数的解析式.
例 1 [2013·温州] 已知点 P(1,-3)在反比例函
k 数 y= (k≠0)的图象上,则 k 的值是( B ) x
A.3 1 C. 3
考点聚焦 归类探究
B.-3 1 D.- 3
回归教材 中考预测
归类探究 回归教材 中考预测
考点聚焦
此类一次函数,反比例函数,二元一次方 程组,三角形面积等知识的综合运用,其关 键是理清解题思路,在直角坐标系中,求三 角形或四边形面积时,常常采用分割法,把 所求的图形分成几个三角形或四边形,分别 求出面积后再相加.
考点聚焦
归类探究
回归教材
中考预测
回 归 教 材
图13-2
考点聚焦 要注 意点的坐标与线段长之间的转化,并且利用 解析式和横坐标,求各点的纵坐标是求面积 的关键.
考点聚焦
归类探究
回归教材
中考预测
探究四
反比例函数的应用
命题角度: 1. 反比例函数在实际生活中的应用; 2. 反比例函数与一次函数的综合运用. 例 4 [2013·成都] 如图 13-3,一次函数 y1=x+1 的
k 图象与反比例函数 y2= (k 为常数,且 k≠0)的图象都经过点 x A(m,2).
(1)求点 A 的坐标及反比例函数 的解析式; (2)结合图象直接比较:当 x>0 时, y1 与 y2 的大小.
图13-3
考点聚焦 归类探究 回归教材 中考预测
解
(1)将点 A(m,2)的坐标代入一次函数 y1=x+1 得 2=m+1,解得 m=1. 即点 A 的坐标为(1,2). k 将点 A(1,2)的坐标代入反比例函数 y2= 得 2= x k ,即 k=2. 1 2 ∴反比例函数的解析式为 y2= . x (2)当 0<x<1 时,y1<y2;当 x=1 时,y1=y2; 当 x>1 时,y1>y2.
中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.
人教版九年级中考数学总复习课件第19课时 反比例函数(共21张PPT)

9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/142021/9/14Tuesday, September 14, 2021 10、阅读一切好书如同和过去最杰出的人谈话。2021/9/142021/9/142021/9/149/14/2021 4:28:50 AM 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/142021/9/142021/9/14Sep-2114-Sep-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/142021/9/142021/9/14Tuesday, September 14, 2021
坐标与线段长之间的关系.
考点 3:反比例函数的实际应用
①设反比例函数解析式为
y
k x
步骤 ②求出函数解析式(转化为函数问题)
③运用函数知识解决问题
7.[教材原题]密闭容器内有一定质量的二氧化碳,当
容 器 的 体 积 V ( 单 位 : m3 ) 变 化 时 , 气 体 的 密 度
(单位: kg / m3 )随之变化.已知密度 与体积 V
1.[教材原题]点(1,3)在反比例函数
y
k x
的图象上,
则 k 3 ,在图象的每一支上, y 随 x 的增大
而 减小 .
2.[2017 天津中考]若点 A(1,y1),B(1,y2),
C(3,y3)在反比例函数
y
3 x
的图象上,
则 y1,y2,y3 的大小关系是( B )
A. y1 y2 y3
药后,血液中的药物浓度 y(g/ml)随用药后的时间 x(h)
中考数学考点总复习课件第13节反比例函数(共48张PPT(完整版)9

1.(2017·郴州)已知反比例函数y=
k x
的图象过点A(1,-2),则k的值为
(C )
A.1 B.2 C.-2 D.-1 2.(2017·广东)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线
y=
k2 x
(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为
(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的 函数解析式; (2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请 说明理由; (3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围 . 【思路引导】由表中的信息可知,v与t的乘积为定值300,所以,此函数为 反比例函数.
(2)(2017·眉山)已知反比例函数y=
2 x
,当x<-1时,y的取值范围为
__-__2_<__y_<__0____.
6.(2017·枣庄)如图,反比例函数y= 2x 的图象经过矩形OABC的边AB的中 点D,则矩形OABC的面积为___4__.
7.(2017·连云港)设函数y=
3 x
与y=-2x-6的图象的交点坐标为(a,b),
a-b =ax+b和y= x 分布的象限作出选择.(2)点A(-1,y1),B(1,y2),C(3,y3)
不在同一象限.(3)因为直线y=kx(k>0)和双曲线y=
6 x
都是关于原点对称的图
形,所以它们的交点关于原点对称,所以x1=-x2,y1=-y2,再由x1y1=x2y2
=6可求.
方法归纳 解决这类题,要运用数形结合的思想,紧紧抓住比例系数k的正负 以及相应的函数图象,而且反比例函数增减性要分象限讨论.
专题 反比例函数-2023年中考数学第一轮总复习课件(全国通用)全

解,然后在作答中说明.
典例精讲
反比例函数与几何图形的综合
知识点四
【例4】(2020·T18)如图,Rt△ABC中,∠ACB=90º,顶点A,B都在反比例函
k
数 y = ( x > 0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB
x
OA = 2 2.
于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45º,
(0,1),顶点C在第一象限,若函数y=k/x(x>0)的图象经过点C,则k=___.
6
13.如图,已知矩形OABC的面积为100/3,它的对角线OB与双曲线y=k/x相交
12
于点D,且OB∶OD=5∶3,则k=____.
14.如图,已知A,B两点分别在反比例函数y=9/x和y=k/x第一象限的图象上.
O
心:__)
典例精讲
反比例函数的图象与性质
知识点一
2
【例1-1】已知点P(a,m),Q(b,n)都在反比例函数 y 的图象上,且a<0<
x
b,则下列结论一定正确的是( D )
A.m+n<0
B.m+n>0
C.m<n
D.m>n
【变式】若点A(a,m)和B(b,n)在反比例函数y=7/x的图象上,且a<b,则( D )
-3
查漏补缺
当堂训练
反比例函数
查漏补缺
7.如图,点M为x轴上一点,过点M的直线l∥y轴分别与双曲
-20
线y=8/x和y=k/x的图象交于P,Q两点,若S△POQ=14,则k=____.
8.在平面直角坐标系中,若一条平行于x轴的直线l分别交
双曲线y=-8/x和y=2/x于A,B两点,P是x轴上的任意一点,则
典例精讲
反比例函数与几何图形的综合
知识点四
【例4】(2020·T18)如图,Rt△ABC中,∠ACB=90º,顶点A,B都在反比例函
k
数 y = ( x > 0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB
x
OA = 2 2.
于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45º,
(0,1),顶点C在第一象限,若函数y=k/x(x>0)的图象经过点C,则k=___.
6
13.如图,已知矩形OABC的面积为100/3,它的对角线OB与双曲线y=k/x相交
12
于点D,且OB∶OD=5∶3,则k=____.
14.如图,已知A,B两点分别在反比例函数y=9/x和y=k/x第一象限的图象上.
O
心:__)
典例精讲
反比例函数的图象与性质
知识点一
2
【例1-1】已知点P(a,m),Q(b,n)都在反比例函数 y 的图象上,且a<0<
x
b,则下列结论一定正确的是( D )
A.m+n<0
B.m+n>0
C.m<n
D.m>n
【变式】若点A(a,m)和B(b,n)在反比例函数y=7/x的图象上,且a<b,则( D )
-3
查漏补缺
当堂训练
反比例函数
查漏补缺
7.如图,点M为x轴上一点,过点M的直线l∥y轴分别与双曲
-20
线y=8/x和y=k/x的图象交于P,Q两点,若S△POQ=14,则k=____.
8.在平面直角坐标系中,若一条平行于x轴的直线l分别交
双曲线y=-8/x和y=2/x于A,B两点,P是x轴上的任意一点,则
最新浙教版初中数学中考复习反比例函数 (共38张PPT)教育课件

30
解析:
31
考点三:一次函数与反比例函数的综合应用
32
解析:
• 【解析】(1)如图,过点A作AD⊥OC于点D.
•
∵AC=AO,
•
∴CD=DO.
•
∴S△ADO=S△ACO=6,
•
∴k=-12.•源自(2)x<-2或0<x<2.
33
考点三:一次函数与反比例函数的综合应用
34
解析:
35
方法归纳: • 1.求两个函数图象的交点坐标的方法是把两个函数图象的表达
2
考点一:反比例函数的图象与性质
3
考点一:反比例函数的图象与性质
原点
双曲线 y=±x
4
考点一:反比例函数的图象与性质
函数
图象
k>0
k<0
所在象限
性质
第 一、三 象限(x, 在每个象限内,y随x
y同号)
的增大而 减小
第 二、四 象限(x,y 在每个象限内,y随x
异号)
的增大而 增大
5
考点一:反比例函数的图象与性质
•
•
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。
解析:
31
考点三:一次函数与反比例函数的综合应用
32
解析:
• 【解析】(1)如图,过点A作AD⊥OC于点D.
•
∵AC=AO,
•
∴CD=DO.
•
∴S△ADO=S△ACO=6,
•
∴k=-12.•源自(2)x<-2或0<x<2.
33
考点三:一次函数与反比例函数的综合应用
34
解析:
35
方法归纳: • 1.求两个函数图象的交点坐标的方法是把两个函数图象的表达
2
考点一:反比例函数的图象与性质
3
考点一:反比例函数的图象与性质
原点
双曲线 y=±x
4
考点一:反比例函数的图象与性质
函数
图象
k>0
k<0
所在象限
性质
第 一、三 象限(x, 在每个象限内,y随x
y同号)
的增大而 减小
第 二、四 象限(x,y 在每个象限内,y随x
异号)
的增大而 增大
5
考点一:反比例函数的图象与性质
•
•
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。
中考复习:反比例函数 复习课件(共33张PPT)

都在反比例函数
4 y x
则y1与y2的大小关系为
y1 > y2
的图象上, .
变式1.已知点A(-2,y1),B(-1,y 2) 4
x
y k 都在反比例函数 y x(k<0) 的图象上,
则y1与y2的大小关系为
y2 > y1 .
A(x1,y1),B(x2,y )且x <0<x 2 1 变式2.已知点A(-2,y ),B(-1,y 1 2) 2 4
k y (x>0) 经 2.如图,已知双曲线 x 过矩形OABC边AB的中点F,交BC于点E, 且四边形OEBF的面积为2,则k的值是 ____。 y
C E B F O A
x
变式
x
例4.有一个Rt△ABC,∠A=900,∠B=600,AB=1,
将它放在直角坐标系中,使斜边BC在x轴上,直 角顶点A在反比例函数 y 3的图象上,且点A x 在第一象限.求:点C的坐标.
k y y (k<0) 的图象上, 都在反比例函数 x x
则y1与y2的大小关系为
y
A
y1 >0>y .2
o x2
y1 y2 B
x
1
x
A(-2,y1),B(-1,y ),C(4,y ) 2 3 变式3.已知点A(-2,y ),B(-1,y 1 2) 4
k y y (k>0) 的图象上, 都在反比例函数 x x
为 1 .
y P (m,n) o D x
y
P2(1,6)
k 6 yy x x
y
P(m,n)
y
A P(m,n)
o
P1(3,2) P(m,n)
x
o
A
x
o
x
4 y x
则y1与y2的大小关系为
y1 > y2
的图象上, .
变式1.已知点A(-2,y1),B(-1,y 2) 4
x
y k 都在反比例函数 y x(k<0) 的图象上,
则y1与y2的大小关系为
y2 > y1 .
A(x1,y1),B(x2,y )且x <0<x 2 1 变式2.已知点A(-2,y ),B(-1,y 1 2) 2 4
k y (x>0) 经 2.如图,已知双曲线 x 过矩形OABC边AB的中点F,交BC于点E, 且四边形OEBF的面积为2,则k的值是 ____。 y
C E B F O A
x
变式
x
例4.有一个Rt△ABC,∠A=900,∠B=600,AB=1,
将它放在直角坐标系中,使斜边BC在x轴上,直 角顶点A在反比例函数 y 3的图象上,且点A x 在第一象限.求:点C的坐标.
k y y (k<0) 的图象上, 都在反比例函数 x x
则y1与y2的大小关系为
y
A
y1 >0>y .2
o x2
y1 y2 B
x
1
x
A(-2,y1),B(-1,y ),C(4,y ) 2 3 变式3.已知点A(-2,y ),B(-1,y 1 2) 4
k y y (k>0) 的图象上, 都在反比例函数 x x
为 1 .
y P (m,n) o D x
y
P2(1,6)
k 6 yy x x
y
P(m,n)
y
A P(m,n)
o
P1(3,2) P(m,n)
x
o
A
x
o
x
中考数学总复习第一部分基础知识复习函数及其图象反比例函数PPT

★考点2 ★考点2 ★知识点2 ★考点2 ★考点2 ★知识点2 ★考点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★考点2 ★考点2 ★考点2 ★考点2
★考点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★考点3
★知识点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3
★知识点4 ★知识点4 ★知识点4 ★知识点4
★知识点4 ★知识点4
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
初三反比例函数ppt课件

揭示本质
从函数形式上,我们可以将反比例函 数表示为y=k/x,其中k为常数,且 k≠0。这表明函数的输出y与输入x成 反比关系。
反比例函数的表达形式基本源自式y=k/x,其中k为常数,且k≠0。
变形形式
当k>0时,函数图像位于第一、三象限,y随x的增大而减小;当k<0时,函数图 像位于第二、四象限,y随x的增大而增大。
交点与函数图像的关系
01
当两个函数有交点时,交点的横 纵坐标分别对应两个函数在某一 点处的函数值。
02
通过交点,可以观察两个函数在 某一点处的相互关系及其变化趋 势。
利用交点解决实际问题
路程问题
01
在两个物体以不同速度相对运动的问题中,交点的横坐标表示
相遇的时间,纵坐标表示相遇的地点。
工程问题
02
满足奇偶性定义
由于反比例函数满足奇函数的定义 ,即$f( - x) = - f(x)$,因此它是奇 函数。
反比例函数的凹凸性
二阶导数判定
通过求二阶导数判断函数的凹凸 性。如果二阶导数大于0,则函 数是凹函数;如果二阶导数小于 0,则函数是凸函数。对于反比 例函数,可以通过求导再求二阶
导数来判断凹凸性。
在工程进度问题中,交点的横坐标表示完成工程所需的总时间
,纵坐标表示完成工程量。
经济问题
03
在投入产出问题中,交点的横坐标表示投资额,纵坐标表示产
值。
06
CATALOGUE
复习与巩固
反比例函数的概念与性质复习
总结词:掌握基础
详细描述:通过图表和实例,复习反 比例函数的概念和性质,包括定义、 表达式、图像等。
凹函数
通过计算二阶导数发现,反比例 函数是凹函数。这意味着函数图
从函数形式上,我们可以将反比例函 数表示为y=k/x,其中k为常数,且 k≠0。这表明函数的输出y与输入x成 反比关系。
反比例函数的表达形式基本源自式y=k/x,其中k为常数,且k≠0。
变形形式
当k>0时,函数图像位于第一、三象限,y随x的增大而减小;当k<0时,函数图 像位于第二、四象限,y随x的增大而增大。
交点与函数图像的关系
01
当两个函数有交点时,交点的横 纵坐标分别对应两个函数在某一 点处的函数值。
02
通过交点,可以观察两个函数在 某一点处的相互关系及其变化趋 势。
利用交点解决实际问题
路程问题
01
在两个物体以不同速度相对运动的问题中,交点的横坐标表示
相遇的时间,纵坐标表示相遇的地点。
工程问题
02
满足奇偶性定义
由于反比例函数满足奇函数的定义 ,即$f( - x) = - f(x)$,因此它是奇 函数。
反比例函数的凹凸性
二阶导数判定
通过求二阶导数判断函数的凹凸 性。如果二阶导数大于0,则函 数是凹函数;如果二阶导数小于 0,则函数是凸函数。对于反比 例函数,可以通过求导再求二阶
导数来判断凹凸性。
在工程进度问题中,交点的横坐标表示完成工程所需的总时间
,纵坐标表示完成工程量。
经济问题
03
在投入产出问题中,交点的横坐标表示投资额,纵坐标表示产
值。
06
CATALOGUE
复习与巩固
反比例函数的概念与性质复习
总结词:掌握基础
详细描述:通过图表和实例,复习反 比例函数的概念和性质,包括定义、 表达式、图像等。
凹函数
通过计算二阶导数发现,反比例 函数是凹函数。这意味着函数图
中考数学专题《反比例函数》复习课件(共15张PPT)优选全文

谢谢观赏
You made my day!
我们,还在路ห้องสมุดไป่ตู้……
图象大致是( C )
A.
B.
C
D.
知识回顾:
3.如图,在平面直角坐标系中,菱形OABC的面积为12,点
B在y轴上,点C在反比例函数y= k 的图象上,则k的值 -6
为.
x
3题图
4题图
4.如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比
例函数 y
2 x
的图象有一个交点A(m,2).
(1)求m的值;
垂线PM,PN,则所得的矩形PMON的面积S=PM×PN=
y • x xy
yk,xyk,Sk x
完善整合:
完善整合:
谢谢!!
•1、书籍是朋友,虽然没有热情,但是非常忠实。2024年11月20日星期三2024/11/202024/11/202024/11/20 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2024年11月2024/11/202024/11/202024/11/2011/20/2024 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2024/11/202024/11/20November 20, 2024 •4、享受阅读快乐,提高生活质量。2024/11/202024/11/202024/11/202024/11/20
例函数的解析式也可以写成或xy=k的形式。自变量x的取值范
围是x≠0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分
You made my day!
我们,还在路ห้องสมุดไป่ตู้……
图象大致是( C )
A.
B.
C
D.
知识回顾:
3.如图,在平面直角坐标系中,菱形OABC的面积为12,点
B在y轴上,点C在反比例函数y= k 的图象上,则k的值 -6
为.
x
3题图
4题图
4.如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比
例函数 y
2 x
的图象有一个交点A(m,2).
(1)求m的值;
垂线PM,PN,则所得的矩形PMON的面积S=PM×PN=
y • x xy
yk,xyk,Sk x
完善整合:
完善整合:
谢谢!!
•1、书籍是朋友,虽然没有热情,但是非常忠实。2024年11月20日星期三2024/11/202024/11/202024/11/20 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2024年11月2024/11/202024/11/202024/11/2011/20/2024 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2024/11/202024/11/20November 20, 2024 •4、享受阅读快乐,提高生活质量。2024/11/202024/11/202024/11/202024/11/20
例函数的解析式也可以写成或xy=k的形式。自变量x的取值范
围是x≠0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分
九年级数学中考专题复习:反比例函数课件 (共63张PPT)

k 方法一:分别把各点的横坐标代入反比例函数 y=x(k>0) 中,求出 y1,y2,y3 的值,再比较出其大小即可.
k 方法二:反比例函数 y=x(k>0)的图象在第一、三象限,
在每一个象限内,y 随 x 的增大而减小.A(-2,y1),B(- C(2,y3)在第一象限,所以 y3>0,所以 y3>y1>y2.
1,y2)在第三象限,因为-2<-1,所以 y2<y1<0,因为点
[2014· 湘潭] 如图,A,B 两点在双曲线 y 4 = x上,分别经过 A,B 两点向 x 轴、y 轴 作垂线段,已知 S 阴 影 = 1 ,则 S1 + S2 = ( D ) A .3 B . 4 C.5 D.6
欲求 S1+S2,只要求出过 A,B 两点向 x 轴、y 轴作的垂 线段与坐标轴所形成的矩形的面积即可,而矩形面积为 4 双曲线 y=x的系数 k,由此即可求出 S1+S2. 4 ∵A,B 是双曲线 y=x上的点,分别经过 A,B 两点向 x 轴、y 轴作垂线段, 则根据反比例函数的图象的性质得两个矩形的面积都 等于|k|=4, ∴S1+S2=4+4-1×2=6. 故选 D.
1 [2014· 广东] 如图,已知 A(-4,2),B(-1,2) m 是一次函数 y=kx+B 与反比例函数 y= x (m≠0, m<0)图象的两个交点,AC⊥x 轴于点 C,BD⊥ y 轴于点 D. (1)根据图象直接回答:在第二象限内,当 x 取 何值时,一次函数的值大于反比例函数的值?
中考预测 我市某蔬菜生产基地在气温较低时,用装有恒温 系统的大棚栽培一种在自然光照且温度为18 ℃的 条件下生长最快的新品种.如图是某天恒温系统 从开启到关闭及关闭后,大棚内温度y(℃)随时间 x(时)变化的函数图象,其中BC段是双曲线y= ������ (k≠0)的一部分.请根据图中信息解答下列问题
九年级下数学中考复习第13讲反比例函数课件

x
的值是 ( )
A.-1
B.1
C. 1
D. 3
2
4
【解析】选D.∵直线y=-x+2分别与x轴,y轴交于A,B两点,
则点A(2,0),点B(0,2),
∴△AOB是等腰直角三角形,AB=2 2 . 又∵AB=2EF,∴EF= 2 .设点E的横坐标为x1,点F的横坐标为 x2,则x1-x2=1.
y -x 2,
【真题专练】 1.(2013·凉山州中考)如图,正比例函数 y1与反比例函数y2相交于点E(-1,2),若 y1>y2>0,则x的取值范围在数轴上表示正 确的是 ( )
【解析】选A.∵正比例函数y1与反比例函数y2相交于点E(-1,
2),∴根据图象可知当y1>y2>0时x的取值范围是x<-1,∴在数
合适.
2.(2013·宁夏中考)函数 y=a(a≠0)与y=a(x-1)(a≠0)在同
x
一坐标系中的大致图象是 ( )
【解析】选A.当a<0时,一次函数的图象经过第一、二、四象 限,而双曲线散布在第二、四象限,没有符合要求的;当a>0 时,一次函数的图象经过第一、三、四象限,而双曲线散布在 第一、三象限,A选项符合题意,故应选A.
(2) A(-1,2) C(1,0)
待定系数法确定解析式
【自主解答】(1)∵直线y=mx与双曲线y n相交于A(-1,a),
x
B两点,
∴A,B两点关于原点O对称.
∵A(-1,a),
∴B点横坐标为1,而BC⊥x轴,
∴C(1,0).
∵△AOC的面积为1,∴A(-1,2). 将A(-1,2)代入y=mx,y n ,
【真题专练】 1.(2014·白银中考)如图,边长为1的正方形ABCD中,点E在CB 延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则 在下面函数图象中,大致能反应y与x之间函数关系的是
的值是 ( )
A.-1
B.1
C. 1
D. 3
2
4
【解析】选D.∵直线y=-x+2分别与x轴,y轴交于A,B两点,
则点A(2,0),点B(0,2),
∴△AOB是等腰直角三角形,AB=2 2 . 又∵AB=2EF,∴EF= 2 .设点E的横坐标为x1,点F的横坐标为 x2,则x1-x2=1.
y -x 2,
【真题专练】 1.(2013·凉山州中考)如图,正比例函数 y1与反比例函数y2相交于点E(-1,2),若 y1>y2>0,则x的取值范围在数轴上表示正 确的是 ( )
【解析】选A.∵正比例函数y1与反比例函数y2相交于点E(-1,
2),∴根据图象可知当y1>y2>0时x的取值范围是x<-1,∴在数
合适.
2.(2013·宁夏中考)函数 y=a(a≠0)与y=a(x-1)(a≠0)在同
x
一坐标系中的大致图象是 ( )
【解析】选A.当a<0时,一次函数的图象经过第一、二、四象 限,而双曲线散布在第二、四象限,没有符合要求的;当a>0 时,一次函数的图象经过第一、三、四象限,而双曲线散布在 第一、三象限,A选项符合题意,故应选A.
(2) A(-1,2) C(1,0)
待定系数法确定解析式
【自主解答】(1)∵直线y=mx与双曲线y n相交于A(-1,a),
x
B两点,
∴A,B两点关于原点O对称.
∵A(-1,a),
∴B点横坐标为1,而BC⊥x轴,
∴C(1,0).
∵△AOC的面积为1,∴A(-1,2). 将A(-1,2)代入y=mx,y n ,
【真题专练】 1.(2014·白银中考)如图,边长为1的正方形ABCD中,点E在CB 延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则 在下面函数图象中,大致能反应y与x之间函数关系的是
反比例函数中考总复习原创课件

解:(1) (2)图略,x≥2或x<0
【考点2】一次函数与反比例函数
【例2】已知一次函数与反比例函数的图象交于点P(-3,m),Q(2,-3).(1)求这两个函数的函数关系式;(2)在给定的平面直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?
2.如图,A,C是函数 的图象上的任意两点,过点A作x轴的垂线,垂足为点B,过点C作y轴的垂线,垂足为点D,连接OA,OC,设Rt△AOB的面积为S1,Rt△COD的面积为S2,则( ) A.S1>S2 B.S1<S2 C.S1=S2 D.S1和S2的大小关系不能确定
③④
C
3.函数 的图象与直线y=x没有交点,那么k的取值范围是( ) A.k>1 B.k<1 C.k>-1 D.k<-1
A
4.已知一次函数y=kx+b的图象经过点A(0,1)和点B (a,-3a), a<0,且点B在反比例函数 的图象上. (1)求a的值和一次函数的解析式. (2)如果P(m, y1),Q(m+1, y2)是这个一次函数图象上的两点, 试比较y1与y2的大小.
解:(1) (2)x<-4
6.如图,四边形OABC是面积为4的正方形,函数 (x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB,BC翻折,得到正方形MABC′,NA′BC.设线段MC′,NA′分别与函数 (x>0)的图象交于点E,F,求线段EF所在直线的解析式.
解:(1)如图,作CE⊥AB,垂足为E. ∵AC=BC,AB=4,∴AE=BE=2. 在Rt△BCE中,BC= ,BE=2, ∴CE= .∵OA=4, ∴点C的坐标为 . ∵点C在 的图象上, ∴k=5.
解:(1)a=-1, y=-2x+1 (2)y1>y2
【考点2】一次函数与反比例函数
【例2】已知一次函数与反比例函数的图象交于点P(-3,m),Q(2,-3).(1)求这两个函数的函数关系式;(2)在给定的平面直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?
2.如图,A,C是函数 的图象上的任意两点,过点A作x轴的垂线,垂足为点B,过点C作y轴的垂线,垂足为点D,连接OA,OC,设Rt△AOB的面积为S1,Rt△COD的面积为S2,则( ) A.S1>S2 B.S1<S2 C.S1=S2 D.S1和S2的大小关系不能确定
③④
C
3.函数 的图象与直线y=x没有交点,那么k的取值范围是( ) A.k>1 B.k<1 C.k>-1 D.k<-1
A
4.已知一次函数y=kx+b的图象经过点A(0,1)和点B (a,-3a), a<0,且点B在反比例函数 的图象上. (1)求a的值和一次函数的解析式. (2)如果P(m, y1),Q(m+1, y2)是这个一次函数图象上的两点, 试比较y1与y2的大小.
解:(1) (2)x<-4
6.如图,四边形OABC是面积为4的正方形,函数 (x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB,BC翻折,得到正方形MABC′,NA′BC.设线段MC′,NA′分别与函数 (x>0)的图象交于点E,F,求线段EF所在直线的解析式.
解:(1)如图,作CE⊥AB,垂足为E. ∵AC=BC,AB=4,∴AE=BE=2. 在Rt△BCE中,BC= ,BE=2, ∴CE= .∵OA=4, ∴点C的坐标为 . ∵点C在 的图象上, ∴k=5.
解:(1)a=-1, y=-2x+1 (2)y1>y2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数 解析式 图象形状
位置
反比例函数
y k 或y kx 1或xy k (k 0) x
双曲线 双曲线两分支分别在 第一、第三象限
k>0
增减性 在每一个象限内y随x的增大而减小; 位置
k<0
增减性
双曲线两分支分别在 第二、第四象限 在每一个象限内y随x的增大而增大
比一比
函数 表达式 正比例函数 反比例函数
另外:在正比例函数中k的绝对值越大,直线越靠近y轴,远离x轴。在反
比例函数中k的绝对值越大,双曲线越远离两坐标轴。
练习2:
1 1.函数 y 的图象位于第二、四 象限, 2x
在每一象限内,y的值随x的增大而 增大 , 当x>0时,y ﹤ 0,这部分图象位于第 四 象限.
k 2.若点(-m,n)在反比例函数 y x
B
P(m,n) A
o
x
2 1.如图,点P是反比例函数 y 图象上 x 的一点,PD⊥x轴于D.则△POD的面积为
.
练习4:
1
1 1 |k| 2 1 2 2
yHale Waihona Puke k 2 S ΔPODo
P
D x
1 2、如图:A、C是函数 y 的图象上任意两点, x
过A作x轴的垂线, 垂足为B.过C作y轴的垂线, 垂足为D.记RtAOB的面积为S1 , RtOCD的面积为S 2 , 则 ___ C.
A.S = 1 C.S = 2
B.1<S<2 D.S>2
y
解:设P(m,n),则P(-m,-n). AP | 2m|,AP | 2n|; 1 S | AP AP| ΔPAP 2 1 | 2m|| 2n| 2 2|k|
P(m,n)
o x
P/ A
5、如图,一次函数y=kx+b的图象与反比例函数
D
y
C
A o
B x
综合应用:
k y 已知点A(3,4),B(-2,m)在反比例函数 x 的图象上,经过点A、B的一次函数的图象分别与x轴、y 轴交于点C、D。 ⑴ 求反比例函数的解析式; ⑵ 求经过点A、B的一次函数的解析式; ⑹ 在y轴上找一点H,使△AHO为等腰三角形,求点H 的坐标;
3 y =|xy|=x|k|
则 k=s或-s
M
x
(1)若点P是反比例函数图象上的一点,过点P分别向x
轴、y轴作垂线,垂足分别为点M、N,若四边形PMON面
积为3,则这个反比例函数的关系式是
-3 3 y 或 y x x ________________________.
1 4.如图,P,P是函数y 的图像上关于原点O对称 x 的任意两点,PA平行于y轴 ,PA平行于x轴 , Δ PAP的 C 面积 S,则___.
m y 的图象交于 A(-2,1),B(1,n)两点. x
(1)试确定上述反比例函数和一次函数的表达式; (2)求⊿AOB的面积.
y
A
O
C
D
B
x
4 6、如图所示.如果函数y=-kx(k≠0)与 y x图像
交于A、B两点,过点A作AC垂直于y轴,垂足 为点C,则△BOC的面积为 . 2 S⊿AOC =∣-4 ∣= 2 S ⊿BOC =S ⊿AOC
x 1 2 3 4 C: y 8 5 4 3
x
D:
1
1
2
1 2
3
1 3
4
1 4
y
4、已知y-1与x+2成反比例,当x=2时,y=9。
请写出y的x函数关系。
5、已知y=y1-y2,y1与x成反比例,y2与x2成正比例,且当x = 1时,y=-1;x=3时, y=5.求y与x的函数关系式.
二、反比例函数的图象和性质:
2 8.考察函数 y x 的图象,
(1)当x=-2时,y= -1
, ;
(2)当x<-2时,y的取值范围是-1<y<0
(3)当y≥-1时,x的取值范围是 x>0或x≤-2 .
k1 9、如下图是三个反比例函数 y x
k2 y x
k3 y x
在x轴上方的图象,由此观察得到的k1,k2,k3大小 关系为(
A.S1>S2 B.S1<S2 C.S1 = S2 D.S1和S2的大小关系不能确定. y
o
S2
S1
A
B D
x
C
k 3、 如图 , P是反比例函数 y 图像上的一点,由P分别 x 向x轴, y轴引垂线,阴影部分面积为3, 则这个反比例
3 函数的解析式是 ____ y . x
解:由性质(2)可得
D
2 7、四边形ADBC的面积=_____
y
A D
o
y
D A
o
C
x
B
x
B
C
8、 如图,D是反比例函数 y k ( k 0)
x 的图像上一点, 过D作DE⊥x轴于E,DC⊥y轴 于C,一次函数y=-x+2与x轴交 于A点,四边形DEAC的面积 为4,求k的值.
F
D E y C O A B x
B
x
A(2,4), B(4,2).
(2)解法一 : y x 2,当y 0时, x 2, M (2,0).
OM 2.
作AC x轴于C, BD x轴于D.
AC 4, BD 2,
A N MD C O B y
x
1 1 S OMB OM BD 2 2 2, 2 2 1 1 S OMA OM AC 2 4 4. 2 2
O
-2
5
x
-5
O
-2
x
-4
-4
C
D
7:增减性 (x1,y1)、(x2,y2),若x1>x2 >0,则y1与y2 的 大小关系是 。
k 1 y 1、在反比例函数 x 的图象上有两点
2
变:1)将x1>x2 >0变为x1 >0 >x2,则y1与y2 的 大小关系是 。 2)将x1>x2 >0变为x1>x2,则y1与y2 的大小关 系是 。 3)若图象上有三点(x1,y1)、(x2,y2)、 (x3,y3),且y1>0>y2 > y3,则x1、x2 、 x3的大 小关系是 。
①
y = 3x-1
②
y=
2x2 1 x
2x 1 y= 3 y= x ③ ④
⑦ y = 1 ⑧ xy=-2
⑤ y = 3x
⑥ y=
3x
2. 若
y (m 2) x
3m2
是反比例函数,
则m=______. -2
m-2≠0,3-m2=-1
3.下列的数表中分别给出了变量y与x之间的对应关 系,其中是反比例函数关系的是( D ). x 1 2 3 4 A: y 5 8 7 6 x 1 B: y 6 2 8 3 9 4 7
y
P C
S矩形A P C O |k|, |k| 3.
又图像在二 ,四象限,
k 3 3 解析式为y . x
A
o x
提高篇:(1)如图,点P是反比例函数
图象上的一点,过点P分别向x轴、y
轴作垂线,若阴影部分面积为3,则 这个反比例函数的关系式 是 .
N
y
p
o
提示:S矩形
由1-3m<0 得-3m<- 1
1 ∴ m> 3
6、如图,函数 和y=-kx+1(k≠0)在同一坐 标系内的图象大致是 ( D )
6
y
6
y
4
4
以前做过这 样的题目吗?
x
2
2
-5
O
-2
5
x
-5
O
-2
5
-4
-4
A
6
B
y
6
y
4
4
方法:先假设某个 函数图象已经画好, 再确定另外的是否 符合条件.
5
2
2
-5
8 例:已知如图反比例函 数y 与一次函数y x 2的图 x 交于A, B两点.求(1) A, B两点的坐标 ; (2)AOB的面积.
8 y , 解 : (1) x y x 2.
y A
N M O
x 4, x 2, 解得 或 y 2; y 4.
解:当X=0时, y=2. 即 C (0 ,2) 当y=0时, x=2. 即 A (2 ,0) ∴S⊿AOC =2 ∴S四边形DCOE =4-2=2 ∴K=-2
k 例: (2007武汉市)如图,已知双曲线 y (x>0) x
思索归纳
经过矩形OABC边AB的中点F,交BC于点E, 且四边形OEBF的面积为2,则k2 =____。
k y=kx(k≠0)( 特殊的一次函数 y 或y kx 1或xy k(k 0) x )
y
图象 及象限
y
y x 0 x k>0 0
y x
o x
o k<0
k>0
k<0
当k>0时,y随x的增大而增大;
性质 当k<0时,y随x的增大而减小.
在每一个象限内: 当k>0时,y随x的增大而减小; 当k<0时,y随x的增大而增大.
SAOB SOMB SOAM 2 4 6.
(2)解法二: y x 2,当x 0时, y 2, N (0,2).
ON 2.
作AC y轴于C, BD y轴于D.
AC 2, BD 4,
位置
反比例函数
y k 或y kx 1或xy k (k 0) x
双曲线 双曲线两分支分别在 第一、第三象限
k>0
增减性 在每一个象限内y随x的增大而减小; 位置
k<0
增减性
双曲线两分支分别在 第二、第四象限 在每一个象限内y随x的增大而增大
比一比
函数 表达式 正比例函数 反比例函数
另外:在正比例函数中k的绝对值越大,直线越靠近y轴,远离x轴。在反
比例函数中k的绝对值越大,双曲线越远离两坐标轴。
练习2:
1 1.函数 y 的图象位于第二、四 象限, 2x
在每一象限内,y的值随x的增大而 增大 , 当x>0时,y ﹤ 0,这部分图象位于第 四 象限.
k 2.若点(-m,n)在反比例函数 y x
B
P(m,n) A
o
x
2 1.如图,点P是反比例函数 y 图象上 x 的一点,PD⊥x轴于D.则△POD的面积为
.
练习4:
1
1 1 |k| 2 1 2 2
yHale Waihona Puke k 2 S ΔPODo
P
D x
1 2、如图:A、C是函数 y 的图象上任意两点, x
过A作x轴的垂线, 垂足为B.过C作y轴的垂线, 垂足为D.记RtAOB的面积为S1 , RtOCD的面积为S 2 , 则 ___ C.
A.S = 1 C.S = 2
B.1<S<2 D.S>2
y
解:设P(m,n),则P(-m,-n). AP | 2m|,AP | 2n|; 1 S | AP AP| ΔPAP 2 1 | 2m|| 2n| 2 2|k|
P(m,n)
o x
P/ A
5、如图,一次函数y=kx+b的图象与反比例函数
D
y
C
A o
B x
综合应用:
k y 已知点A(3,4),B(-2,m)在反比例函数 x 的图象上,经过点A、B的一次函数的图象分别与x轴、y 轴交于点C、D。 ⑴ 求反比例函数的解析式; ⑵ 求经过点A、B的一次函数的解析式; ⑹ 在y轴上找一点H,使△AHO为等腰三角形,求点H 的坐标;
3 y =|xy|=x|k|
则 k=s或-s
M
x
(1)若点P是反比例函数图象上的一点,过点P分别向x
轴、y轴作垂线,垂足分别为点M、N,若四边形PMON面
积为3,则这个反比例函数的关系式是
-3 3 y 或 y x x ________________________.
1 4.如图,P,P是函数y 的图像上关于原点O对称 x 的任意两点,PA平行于y轴 ,PA平行于x轴 , Δ PAP的 C 面积 S,则___.
m y 的图象交于 A(-2,1),B(1,n)两点. x
(1)试确定上述反比例函数和一次函数的表达式; (2)求⊿AOB的面积.
y
A
O
C
D
B
x
4 6、如图所示.如果函数y=-kx(k≠0)与 y x图像
交于A、B两点,过点A作AC垂直于y轴,垂足 为点C,则△BOC的面积为 . 2 S⊿AOC =∣-4 ∣= 2 S ⊿BOC =S ⊿AOC
x 1 2 3 4 C: y 8 5 4 3
x
D:
1
1
2
1 2
3
1 3
4
1 4
y
4、已知y-1与x+2成反比例,当x=2时,y=9。
请写出y的x函数关系。
5、已知y=y1-y2,y1与x成反比例,y2与x2成正比例,且当x = 1时,y=-1;x=3时, y=5.求y与x的函数关系式.
二、反比例函数的图象和性质:
2 8.考察函数 y x 的图象,
(1)当x=-2时,y= -1
, ;
(2)当x<-2时,y的取值范围是-1<y<0
(3)当y≥-1时,x的取值范围是 x>0或x≤-2 .
k1 9、如下图是三个反比例函数 y x
k2 y x
k3 y x
在x轴上方的图象,由此观察得到的k1,k2,k3大小 关系为(
A.S1>S2 B.S1<S2 C.S1 = S2 D.S1和S2的大小关系不能确定. y
o
S2
S1
A
B D
x
C
k 3、 如图 , P是反比例函数 y 图像上的一点,由P分别 x 向x轴, y轴引垂线,阴影部分面积为3, 则这个反比例
3 函数的解析式是 ____ y . x
解:由性质(2)可得
D
2 7、四边形ADBC的面积=_____
y
A D
o
y
D A
o
C
x
B
x
B
C
8、 如图,D是反比例函数 y k ( k 0)
x 的图像上一点, 过D作DE⊥x轴于E,DC⊥y轴 于C,一次函数y=-x+2与x轴交 于A点,四边形DEAC的面积 为4,求k的值.
F
D E y C O A B x
B
x
A(2,4), B(4,2).
(2)解法一 : y x 2,当y 0时, x 2, M (2,0).
OM 2.
作AC x轴于C, BD x轴于D.
AC 4, BD 2,
A N MD C O B y
x
1 1 S OMB OM BD 2 2 2, 2 2 1 1 S OMA OM AC 2 4 4. 2 2
O
-2
5
x
-5
O
-2
x
-4
-4
C
D
7:增减性 (x1,y1)、(x2,y2),若x1>x2 >0,则y1与y2 的 大小关系是 。
k 1 y 1、在反比例函数 x 的图象上有两点
2
变:1)将x1>x2 >0变为x1 >0 >x2,则y1与y2 的 大小关系是 。 2)将x1>x2 >0变为x1>x2,则y1与y2 的大小关 系是 。 3)若图象上有三点(x1,y1)、(x2,y2)、 (x3,y3),且y1>0>y2 > y3,则x1、x2 、 x3的大 小关系是 。
①
y = 3x-1
②
y=
2x2 1 x
2x 1 y= 3 y= x ③ ④
⑦ y = 1 ⑧ xy=-2
⑤ y = 3x
⑥ y=
3x
2. 若
y (m 2) x
3m2
是反比例函数,
则m=______. -2
m-2≠0,3-m2=-1
3.下列的数表中分别给出了变量y与x之间的对应关 系,其中是反比例函数关系的是( D ). x 1 2 3 4 A: y 5 8 7 6 x 1 B: y 6 2 8 3 9 4 7
y
P C
S矩形A P C O |k|, |k| 3.
又图像在二 ,四象限,
k 3 3 解析式为y . x
A
o x
提高篇:(1)如图,点P是反比例函数
图象上的一点,过点P分别向x轴、y
轴作垂线,若阴影部分面积为3,则 这个反比例函数的关系式 是 .
N
y
p
o
提示:S矩形
由1-3m<0 得-3m<- 1
1 ∴ m> 3
6、如图,函数 和y=-kx+1(k≠0)在同一坐 标系内的图象大致是 ( D )
6
y
6
y
4
4
以前做过这 样的题目吗?
x
2
2
-5
O
-2
5
x
-5
O
-2
5
-4
-4
A
6
B
y
6
y
4
4
方法:先假设某个 函数图象已经画好, 再确定另外的是否 符合条件.
5
2
2
-5
8 例:已知如图反比例函 数y 与一次函数y x 2的图 x 交于A, B两点.求(1) A, B两点的坐标 ; (2)AOB的面积.
8 y , 解 : (1) x y x 2.
y A
N M O
x 4, x 2, 解得 或 y 2; y 4.
解:当X=0时, y=2. 即 C (0 ,2) 当y=0时, x=2. 即 A (2 ,0) ∴S⊿AOC =2 ∴S四边形DCOE =4-2=2 ∴K=-2
k 例: (2007武汉市)如图,已知双曲线 y (x>0) x
思索归纳
经过矩形OABC边AB的中点F,交BC于点E, 且四边形OEBF的面积为2,则k2 =____。
k y=kx(k≠0)( 特殊的一次函数 y 或y kx 1或xy k(k 0) x )
y
图象 及象限
y
y x 0 x k>0 0
y x
o x
o k<0
k>0
k<0
当k>0时,y随x的增大而增大;
性质 当k<0时,y随x的增大而减小.
在每一个象限内: 当k>0时,y随x的增大而减小; 当k<0时,y随x的增大而增大.
SAOB SOMB SOAM 2 4 6.
(2)解法二: y x 2,当x 0时, y 2, N (0,2).
ON 2.
作AC y轴于C, BD y轴于D.
AC 2, BD 4,