高中数学第三章直线与方程3.2-3.2.3直线的一般式方程课件新人教A版必修2
高中数学 第三章 直线与方程 3.2.3 直线的一般式方程课件 新人教A版必修2
②若 B=0,则 x=- C ,表示与 x 轴垂直的一条直线. A
③若 C=0,则 Ax+By=0,表示过原点的一条直线.
2.在什么条件下,一般式方程可以转化为斜截式、点斜式或截距式方程?
提示:①若 B≠0,则直线的一般式方程可化为斜截式、点斜式,即
y=-
A B
x-
C B
与
y-
C B
即 x+3y+3=0.
题后反思 根据已知条件求直线方程的策略: 在求直线方程时,设一般式方程并不简单,常用的还是根据给定条件选用 四种特殊形式之一求方程再化为一般式方程,一般选用规律为: (1)已知直线的斜率和直线上点的坐标时,选用点斜式;(2)已知直线的斜 率和在y轴上的截距时,选用斜截式;(3)已知直线上两点坐标时,选用两 点式.(4)已知直线在x轴,y轴上的截距时,选用截距式.
解:(1)由直线方程的点斜式得 y-3= 3 (x-5),即 3 x-y-5 3 +3=0. (2)由斜截式得直线方程为 y=4x-2,即 4x-y-2=0.
(3)由两点式得 y 5 = x 1 ,即 2x+y-3=0. 1 5 2 1
(4)由截距式得直线方程为 x + y =1. 3 1
解:法一 (1)由 l1:2x+(m+1)y+4=0, l2:mx+3y-2=0 知: ①当 m=0 时,显然 l1 与 l2 不平行.
②当 m≠0 时,l1∥l2,需 2 = m 1 ≠ 4 . m 3 2
解得 m=2 或 m=-3,所以 m 的值为 2 或-3.
(2)由题意知,直线 l1⊥l2. ①若 1-a=0,即 a=1 时,直线 l1:3x-1=0 与直线 l2:5y+2=0 显然垂直.
2-【精品课件】3-2-3直线的一般方程
必有55xy--13==00, 即xy= =1535
.
即 l 过定点 A(15,35).以下同解法一.
第三章 直线与方程
数学
人教A版必修二 ·新课标
(2)直线 OA 的斜率为 k=3515- -00=3. 要使 l 不经过第二象限,需它在 y 轴上的截距不大于零, 即令 x=0 时,y=-a-5 3≤0,∴a≥3.
第三章 直线与方程
数学
人教A版必修二 ·新课标
解:(1)直线过点 P(1,0),∴m2-2m-3=2m-6. 解之得 m=3 或 m=1. (2)由斜率为 1,得-m2m2-2+2mm--31=1, 解之得 m=-1 或 m=43. (3)直线过定点 P(-1,-1),则-(m2-2m-3)-(2m2+ m-1)=2m-6,解之得 m=53或 m=-2.
第三章 直线与方程
数学
人教A版必修二 ·新课标
思路分析:根据条件,选择恰当的直线方程的形式, 最后化成一般式方程.
第三章 直线与方程
数学
人教A版必修二 ·新课标
解:(1)由点斜式方程得:y-3= 3(x-5),化简得 3x -y+3-5 3=0.
(2)x=-3,即 x+3=0. (3)由斜截式得 y=4x-2,即 4x-y-2=0. (4)y=3,即 y-3=0. (5)由两点式可得-y-1-55=2x--((--11)),整理得 2x+y-3= 0. (6)由截距式得-x3+-y1=1,整理得:x+3y+3=0.,
数学
人教A版必修二 ·新课标
1.若直线(2m2+m-3)x+(m2-m)y=4m-1 在 x 轴上的
截距为 1,则实数 m 为
A.1
B.2
Hale Waihona Puke ()C.-12D.2 或-12
高一数学人教版A版必修二课件:3.2.3 直线的一般式方程
答案
知识点二 直线的一般式与点斜式、斜截式、两点式、截距式的关系
返回
题型探究
重点难点 个个击破
类型一 直线一般式的性质
例1 设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0. (1)若直线l在x轴上的截距为-3,则m=_-__53_____. 解析 令y=0,
2m-6 则 x=m2-2m-3,
场景记忆法小妙招
超级记忆法--身体法
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系统 5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统
超级记忆法-记忆方法
TIP1:在使用身体记忆法时,可以与前面提到过的五感法结合起来,比如产生 一些听觉、视觉、触觉、嗅觉、味觉,记忆印象会更加深刻; TIP2:采用一些怪诞夸张的方法,比如上面例子中腿上面生长出了很多植物, 正常在我们常识中不可能发生的事情,会让我们印象更深。
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常宝贵的,不要全部用来玩手机哦~ TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者复习一下昨晚的内容,那么会让你记忆犹新。
如何利用规律实现更好记忆呢?
a-2 a+1,
在y轴上的截距为a-2,
∵ aa-+21≥0, a-2≤0,
得a<-1或a=2.
解析答案
类型二 判断两条直线的位置关系
例2 判断下列直线的位置关系:
(1)l1:2x-3y+4=0,l2:3y-2x+4=0; 解 直线l2的方程可写为-2x+3y+4=0, 由题意知-22=-33≠44, ∴l1∥l2.
高中数学第三章直线与方程3.2.2直线的两点式方程课件新人教A版必修2
ab
又过点 A,所以 4 + 2 =1
ab
因为直线在两坐标轴上的截距的绝对值相等,所以|a|=|b|
由①②联立方程组,解得
a b
6, 6,
或
a b
2, 2.
所以所求直线的方程为 x + y =1 或 x + y =1,
66
2 2
化简得直线 l 的方程为 x+y=6 或 x-y=2.
1.直线的两点式方程
(1)定义:如图所示,直线 l 经过点 P1(x1,y1),P2(x2,y2)(其中 x1≠x2,y1≠y2),则方程
y y1 = x x1 叫做直线 l 的两点式方程,简称两点式. y2 y1 x2 x1
解决直线与坐标轴围成的三角形面积或周长问题时,一般选择 直线方程的截距式,若设直线在 x 轴,y 轴上的截距分别为 a,b,则直线与坐标
上的截距.与坐标轴垂直和过原点的直线均没有截距式.
由直线方程的截距式得直线 l 的方程为 x + y =1,即 x+4y-8=0. 82
由①②可得 5a2-32a+48=0,
解得
a b
4, 3
或
a b
12 5 9. 2
,
所以所求直线的方程为 x + y =1 或 5x + 2 y =1,即 3x+4y-12=0 或 15x+8y-36=0.
则 (2)说xy 明xy:11与22坐xy22标,. 轴垂直的直线没有两点式方程.
解:由题意可设 A(a,0),B(0,b),
由中点坐标公式可得
a 0
2 2
高中数学 3223直线的方程课件 新人教版A必修2
∴M52,-3, 又 BC 边上的中线经过点 A(-3,2). ∴由两点式得-y-3-22=52x----33, 即 10x+11y+8=0. 故 BC 边上的中线所在直线的方程为 10x+11y+8=0.
规律方法 ①首先要鉴别题目条件是否符合直线方程相应形式 的要求,对字母则需分类讨论;②注意问题叙述的异同,本题 中第一问是表示的线段,所以要添加范围;第二问则表示的是 直线.
2.线段的中点坐标公式
若点 P1,P2 的坐标分别为(x1,y1)、(x2,y2),设 P(x,y)是线段
P1P2
的中点,则x= y=
x1+x2 2
,
y1+2 y2.
试一试:若已知 A(x1,y1)及 AB 中点(x0,y0),如何求 B 点的坐 标?
提示
设 B(x,y),则由xy11+ +22 xy= =xy00, ,
【变式 1】 (2012·绍兴一中高一检测)已知△ABC 三个顶点坐标 A(2,-1),B(2,2),C(4,1),求三角形三条边所在的直线方程.
解 ∵A(2,-1),B(2,2), A、B 两点横坐标相同, ∴直线 AB 与 x 轴垂直,故其方程为 x=2. ∵A(2,-1),C(4,1), ∴由直线方程的两点式可得直线 AC 的方程为 -y-1-11=2x--44, 即 x-y-3=0. ∵B(2,2),C(4,1), ∴由直线方程的两点式可得直线 BC 的方程为2y--11=2x--44, 即 x+2y-6=0.
【变式 4】 (2012·菏泽一中高一检测)已知直线 l 的方程为 3x+ 4y-12=0,求直线 l′的方程,l′满足 (1)过点(-1,3),且与 l 平行; (2)过点(-1,3),且与 l 垂直.
解 法一 由题设 l 的方程可化为:y=-34x+3, ∴l 的斜率为-34, (1)由 l′与 l 平行, ∴l′的斜率为-34. 又∵l′过(-1,3), 由点斜式知方程为 y-3=-34(x+1), 即 3x+4y-9=0.
高中数学3.2.3《直线的一般式方程》课件(新人教A版必修2)
C.x+y-5=0 D.2x+y-7=0
§3.2.3直线的一般式方程
温复故知习新 回顾
①直线方程有几种形式?指明它们的条件及应用范围.
点斜式 y-y1 = k(x-x1)
斜截式 y = kx + b
两点式
y y1 y2 y1
x x1 x2 x1
( x1
x2 ,
y1
y2 )
截距式 x y 1a,b 0
ab
②什么叫二元一次方程?直线与二元一次方程有什么关系?
直线的一般式方程:
Ax+By+C=0(A,B不同时为0)
例题分析
例1、已知直线经过点A(6,- 4),斜率为 求直线的点斜式和一般式方程.
4 3
,
注意 对于直线方程的一般式,一般作如下约定:x的
系数为正,x,y的系数及常数项一般不出现分数,一般按 含x项,含y项、常数项顺序排列.
例题分析
例2、把直线l 的方程x –2y+6= 0化成斜截式,求出
直线l 的斜率和它在x轴与y轴上的截距,并画图.y. B.来自AOx
例3、设直线l 的方程为 (m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列
条件确定m的值: (1) l 在X轴上的截距是-3; (2)斜率是-1.
例题分析
例4、利用直线方程的一般式,求过点(0,3)并且 与坐标轴围成三角形面积是6的直线方程.
练习:
1、直线Ax+By+C=0通过第一、二、三象限,则( )
(A) A·B>0,A·C>0
直线方程的一般式课件可编辑全文
(2)方法 1:当 m=0 时,l1:x+6=0,l2:2x-3y=0 两直 线既不平行也不垂直;当 m≠0 时,
l1:y=-m1 x-m6 ,l2:y=-m-3 2x-23m,
解得 m=2 或 3.故选 A.
• [错因分析] 错解忽视了当m=2时,2m2- 5m+2=0且-(m2-4)=0.
• [思路分析] 直线的一般式方程Ax+By+C= 0中,A与B满足的条件是A与B不能同时为0, 即A2+B2≠0.当A=B=0时,方程变为C=0, 不[表正解示] 任直何线图l1 的形斜.率为2m2m-2-5m4+2,直线 l2 的斜率为 1,
• (2)当A=0且B≠0时,这条直线与y轴垂直.
• (3)要使直线与x轴,y轴都相交,则它与两轴 都不垂直,由(1)(2)知,当A≠0且B≠0,即当 AB≠0时,这条直线与x轴和y轴都相交.
• (4)将x=0,y=0代入直线方程Ax+By+C= 0,得C=0,故当C=0时,这条直线过原 点.
• (5)当A=0,B≠0,C=0时,直线方程化为y =0,直线与x轴重合.
斜率不存在 斜率 k=0
• ●自我检测
• 1.若方程Ax+By+C=0表示直线,则A,B 应满足的条件为( )
• A.A≠0
B.B≠0
• C.A·B≠0 D.A2+B2≠0
• [答案] D
• [解析] A,B不能同时为0,则A2+B2≠0.
2.直线 2x+y+4=0 的斜率 k=( )
A.2
B.-2
ax+by=1
a,b 分别是直线 直线不垂直于 在 x 轴,y 轴上的 x 轴和 y 轴,且 两个非零截距 不过原点
高中数学 第三章 直线与方程 3.2 直线的方程 3.2.3 直线的一般式方程课件 新人教A版必修2
() A.2,3
B.-2,-3
C.-2,3
D.2,-3
解析:-x2+-y3=1 为直线的截距式,在 x 轴,y 轴
上的截距分别为-2,-3.
答案:B
4.直线 l 过点(-1,2)和点(2,5),则直线 l 的方程 为______________.
解析:由题意直线过两点,由直线的两点式方程可得:
y-2 x-(-1)
[典例 1] 已知 A(-3,2),B(5,-4),C(0,-2), 在△ABC 中,求:
(1)BC 边的方程; (2)BC 边上的中线所在直线的方程.
பைடு நூலகம்
[自主解答] (1)BC 边过两点 B(5,-4),C(0,-2),
y-(-4) x-5
由两点式得,
= ,即 2x+5y+10=0,
-2-(-4) 0-5
2.直线方程的一般式
(1)直线与二元一次方程的关系. ①在平面直角坐标系中,对于任何一条直线,都可 以用一个关于 x、y 的二元一次方程表示. ②每个关于 x、y 的二元一次方程都表示一条直线. (2)直线的一般方程的定义. 我们把关于 x、y 的二元一次方程 Ax+Bx+C=0(其 中 A、B 不同时为 0)叫做直线的一般式方程,简称一般式.
(1)求边 BC 所在直线的方程; (2)求边 BC 上的中线 AM 所在的直线方程. 解:(1)直线 BC 过点 B(3,-3),C(0,2),由两点式, 得2y++33=x0--33,整理得 5x+3y-6=0,所以边 BC 所在 的直线方程为 5x+3y-6=0.
(2)因为 B(3,-3),C(0,2),所以由中点坐标公式 可得边 BC 上的中点 M 的坐标为3+2 0,-32+2,即 32,-12,可得直线 AM 的方程为-y-12-00=x32--((--55)), 整理得直线 AM 的方程为 x+13y+5=0.
高考数学第三章直线与方程3.2.3直线的一般式方程课件新人教A版必修2
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
答案
返回
题型探究
重点突破
题型一 直线的一般形式与其他形式的转化 例1 (1)下列直线中,斜率为-43,且不经过第一象限的是( B ) A.3x+4y+7=0 B.4x+3y+7=0 C.4x+3y-42=0 D.3x+4y-42=0 解析 将一般式化为斜截式,斜率为-43的有:B、C 两项. 又 y=-43x+14 过点(0,14)即直线过第一象限, 所以只有B项正确.
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/7/12
最新中小学教学课件
35
谢谢欣赏!
2019/7/12
最新中小学教学课件
36
C.第一、三、四象限 D.第二、三、四象限 解析 由 ax+by=c,得 y=-abx+bc, ∵ab<0,∴直线的斜率 k=-ab>0, 直线在 y 轴上的截距cb<0. 由此可知直线通过第一、三、四象限.
12345
解析答案
12345
3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( A ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 解析 由题意,得所求直线斜率为12,且过点(1,0). 故所求直线方程为 y=12(x-1),即 x-2y-1=0.
高中数学第3章直线与方程3.2.3直线方程的一般式课件新人教A版必修2
〔跟踪练习2〕 设直线l的方程为2x+(k-3)y-2k+6=0(k≠3),根据下列条件分别确定k的 值: (1)直线l的斜率为-1; (2)直线l在x轴,y轴上的截距之和等于0. [解析] (1)∵直线 l 的斜率存在,∴直线 l 的方程可化为 y=-k-2 3x+2.由题
意得-k-2 3=-1,解得 k=5.
[解析] 分离参数得:(x-y-1)t+2x+y+3=0,
由2x-x+y-y+13==00 得xy= =- -5323.
∴直线过定点-23,-53.
忽视特殊情形,转化不等价致错
典例 6 已知两直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,当 l1∥l2时,求m的值.
(4)二元一次方程与直线的关系:二元一次方程的每一组解都可以看成平面直 角坐标系中一个点的坐标,这个方程的全体解组成的集合,就是坐标满足二元一 次方程的全体点的集合,这些点的集合就组成了一条直线.二元一次方程与平面 直角坐标系中的直线是一一对应的.
[归纳总结] AB>0 时,k<0,倾斜角 α 为钝角;AB<0 时,k>0,倾斜角 α 为锐 角;A=0 时,k=0,倾斜角 α=0°;B=0 时,k 不存在,倾斜角 α=90°.
〔跟踪练习4〕
已知2a1+3b1=1,2a2+3b2=1,则过点A(a1,b1),B(a2,b2)的直线方程为 _2_x+__3_y_=__1.
[解析] 由条件知,点A,B的坐标满足方程2x+3y=1,又经过A,B两点有
且仅有一条直线,∴过A,B的直线方程为2x+3y=1.
2.过直线定点
典例 5 直线(2λ+1)x+(1-λ)y+λ-4=0恒过定点_(_1_,3_)___.
[警示] (1)已知直线 l1:A1x+B1y+C1=0,直线 l2:A2x+B2y+C2=0,则 A1B2 -A2B1=0⇔l1∥l2 或 l1 与 l2 重合.
高中数学第三章3.2.2直线的两点式方程3.2.3直线的一般式方程学案含解析新人教A版必修0
3.2.2 & 3.2.3 直线的两点式方程直线的一般式方程两点式、截距式[提出问题]某区商业中心O有通往东、西、南、北的四条大街,某公园位于东大街北侧、北大街东P处,如图所示.公园到东大街、北大街的垂直距离分别为1 km和4 km.现在要在公园前修建一条直线大道分别与东大街、北大街交汇于A,B两处,并使区商业中心O到A,B两处的距离之和最短.问题1:在上述问题中,实际上解题关键是确定直线AB,那么直线AB的方程确定后,点A,B能否确定?提示:可以确定.问题2:根据上图知建立平面坐标系后,A,B两点的坐标值相当于在x轴、y轴上的什么量?提示:在x轴、y轴上的截距.问题3:那么若已知直线在坐标轴的截距可以确定直线方程吗?提示:可以.[导入新知]直线的两点式与截距式方程两点式截距式条件P1(x1,y1)和P2(x2,y2),其中x1≠x2,y1≠y2在x轴上截距a,在y轴上截距b图形方程y-y1y2-y1=x-x1x2-x1xa+yb=1适用范围不表示垂直于坐标轴的直线不表示垂直于坐标轴的直线及过原点的直线1.要注意方程y -y 1y 2-y 1=x -x 1x 2-x 1和方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)形式不同,适用范围也不同.前者为分式形式方程,形式对称,但不能表示垂直于坐标轴的直线.后者为整式形式方程,适用于过任何两点的直线方程.2.直线方程的截距式为x a +yb=1,x 项对应的分母是直线在x 轴上的截距,y 项对应的分母是直线在y 轴上的截距,中间以“+”相连,等式的另一端是1,由方程可以直接读出直线在两轴上的截距,如x 3-y 4=1,x 3+y4=-1就不是直线的截距式方程.直线方程的一般式[提出问题]观察下列直线方程: 直线l 1:y -2=3(x -1); 直线l 2:y =3x +2;直线l 3:y -23-2=x -14-1;直线l 4:x 4+y3=1.问题1:上述直线方程的形式分别是什么? 提示:点斜式、斜截式、两点式、截距式.问题2:上述形式的直线方程能化成二元一次方程Ax +By +C =0的形式吗? 提示:能.问题3:二元一次方程Ax +By +C =0都能表示直线吗? 提示:能. [导入新知]1.直线与二元一次方程的关系(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x ,y 的二元一次方程表示.(2)每个关于x ,y 的二元一次方程都表示一条直线. 2.直线的一般式方程的定义我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.[化解疑难]1.求直线的一般式方程的策略(1)当A ≠0时,方程可化为x+BA y +C A =0,只需求B A ,C A 的值;若B ≠0,则方程化为A Bx +y+C B =0,只需确定A B ,CB的值.因此,只要给出两个条件,就可以求出直线方程. (2)在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选用四种特殊形式之一求方程,然后可以转化为一般式.2.直线的一般式转化为其他形式的步骤 (1)一般式化为斜截式的步骤 ①移项得By =-Ax -C ;②当B ≠0时,得斜截式:y =-A B x -C B.(2)一般式化为截距式的步骤①把常数项移到方程右边,得Ax +By =-C ; ②当C ≠0时,方程两边同除以-C ,得Ax -C +By-C =1;③化为截距式:x -C A +y-C B=1.由于直线方程的斜截式和截距式是唯一的,而两点式和点斜式不唯一,因此,通常情况下,一般式不化为两点式和点斜式.利用两点式求直线方程[例1] 三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程. [解] 由两点式,直线AB 所在直线方程为y --10--1=x -3-1-3,即x +4y +1=0. 同理,直线BC 所在直线方程为y -3-1-3=x -13-1,即2x +y -5=0.直线AC 所在直线方程为y -30-3=x -1-1-1,即3x -2y +3=0. [类题通法]求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.[活学活用]1.已知直线经过点A (-3,-1)和点B (3,7),则它在y 轴上的截距是________. 答案:32.若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________. 答案:- 2直线的截距式方程及应用[例2] 直线l 过点P ⎝ ⎛⎭⎪3,2,且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点.(1)当△AOB 的周长为12时,求直线l 的方程. (2)当△AOB 的面积为6时,求直线l 的方程. [解] (1)设直线l 的方程为x a +yb=1(a >0,b >0), 由题意知,a +b +a 2+b 2=12.又因为直线l 过点P ⎝ ⎛⎭⎪⎫43,2,所以43a +2b=1,即5a 2-32a +48=0,解得⎩⎨⎧a 1=4,b 1=3或⎩⎪⎨⎪⎧a 2=125,b 2=92,所以直线l 的方程为3x +4y -12=0或15x +8y -36=0.(2)设直线l 的方程为x a +y b=1(a >0,b >0), 由题意知,ab =12,43a +2b =1,消去b ,得a 2-6a +8=0,解得⎩⎨⎧ a 1=4,b 1=3或⎩⎨⎧a 2=2,b 2=6,所以直线l 的方程为3x +4y -12=0或3x +y -6=0. [类题通法]用截距式方程解决问题的优点及注意事项(1)由截距式方程可直接确定直线与x 轴和y 轴的交点的坐标,因此用截距式画直线比较方便.(2)在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式.(3)但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中要注意分类讨论.[活学活用]求经过点A (-2,2),并且和两坐标轴围成的三角形面积是1的直线方程. 解:设直线在x 轴、y 轴上的截距分别是a ,b , 则有S =12|a ·b |=1.∴ab =±2.设直线的方程是x a +y b=1.∵直线过点(-2,2),代入直线方程得-2a +2b=1,即b =2aa +2.∴ab =2a 2a +2=±2.当2a 2a +2=-2时,化简得a 2+a +2=0,方程无解; 当2a 2a +2=2时,化简得a 2-a -2=0,解得⎩⎨⎧ a =-1,b =-2,或⎩⎨⎧a =2,b =1.∴直线方程是x -1+y -2=1或x 2+y1=1,即2x +y +2=0或x +2y -2=0.直线方程的一般式应用[例3] (1)12m 的值; (2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?[解] (1)法一:由l 1:2x +(m +1)y +4=0,l 2:mx +3y -2=0,①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2, 需2m =m +13≠4-2. 解得m =2或m =-3.∴m 的值为2或-3. 法二:令2×3=m (m +1),解得m =-3或m =2. 当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, l 1与l 2不重合,l 1∥l 2,∴m 的值为2或-3. (2)法一:由题意,l 1⊥l 2, ①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0,显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3,当l 1⊥l 2时,k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-a +21-a ·⎝ ⎛⎭⎪⎫-a -12a +3=-1,所以a =-1. 综上可知,当a =1或a =-1时,l 1⊥l 2. 法二:由l 1⊥l 2,所以(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1.将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2. [类题通法]1.直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0. (1)若l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)若l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0(m ≠C ),与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +m =0.[活学活用](1)求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程; (2)求经过点A (2,1)且与直线2x +y -10=0垂直的直线l 的方程. 解:(1)法一:设直线l 的斜率为k , ∵l 与直线3x +4y +1=0平行,∴k =-34.又∵l 经过点(1,2),可得所求直线方程为y -2= -34(x -1),即3x +4y -11=0. 法二:设与直线3x +4y +1=0平行的直线l 的方程为3x +4y +m =0. ∵l 经过点(1,2),∴3×1+4×2+m =0,解得m =-11. ∴所求直线方程为3x +4y -11=0. (2)法一:设直线l 的斜率为k . ∵直线l 与直线2x +y -10=0垂直, ∴k ·(-2)=-1,∴k =12.又∵l 经过点A (2,1),∴所求直线l 的方程为y -1=12(x -2),即x -2y =0.法二:设与直线2x +y -10=0垂直的直线方程为x -2y +m =0. ∵直线l 经过点A (2,1), ∴2-2×1+m =0, ∴m =0.∴所求直线l 的方程为x -2y =0.3.探究直线在坐标轴上的截距问题[典例] 求过点A (4,2),且在两坐标轴上的截距的绝对值相等的直线l 的方程.[解] 当直线过原点时,它在x 轴、y 轴上的截距都是0,满足题意.此时,直线的斜率为12,所以直线方程为y =12x . 当直线不过原点时,由题意可设直线方程为x a +y b=1,又过点A ,所以4a +2b=1①.因为直线在两坐标轴上的截距的绝对值相等,所以|a |=|b |②.由①②联立方程组,解得⎩⎨⎧a =6,b =6,或⎩⎨⎧a =2,b =-2.所以所求直线的方程为x 6+y 6=1或x2+y-2=1, 化简得直线l 的方程为x +y =6或x -y =2. 综上,直线l 的方程为y =12x 或x +y =6或x -y =2.[多维探究] 1.截距相等问题求过点A (4,2)且在两坐标轴上截距相等的直线l 的方程.解:①当直线过原点时,它在x 轴、y 轴上截距都是0,满足题意,此时直线斜率为12,所以直线方程为y =12x .②当直线不过原点时,由题意可设直线方程为x a +ya=1,又过A (4,2), ∴a =6,∴方程为x +y -6=0.综上,直线方程为y =12x 或x +y -6=0.2.截距和为零问题求过点A (4,2)且在两坐标轴上截距互为相反数的直线l 的方程.解:①当直线过原点时,它在x 轴、y 轴上截距都是0,满足题意,此时直线斜率为12,所以直线方程为y =12x .②当直线不过原点时,由题意可设直线方程为x a -ya=1.又过A (4,2),∴4-2a=1,即a =2,∴x -y =2.综上,直线l 的方程为y =12x 或x -y =2.3.截距成倍数问题求过点A (4,2)且在x 轴上截距是在y 轴上截距的3倍,求直线l 的方程.解:①当直线过原点时,它在x 轴、y 轴上截距都是0,满足题意,此时直线斜率为12,所以直线方程为y =12x .②当直线不过原点时,由题意可设直线方程为x 3a +y a =1,又直线过A (4,2),所以43a +2a=1,解得a =103,方程为x +3y -10=0.综上,所求直线方程为y =12x 或x +3y -10=0.4.截距和是定数问题求过点A (4,2)且在两坐标轴上截距之和为12的直线l 的方程.解:设直线l 的方程为x a +yb=1,由题意得⎩⎨⎧4a +2b=1,a +b =12.∴4b +2a =ab ,即4(12-a )+2a =a (12-a ), ∴a 2-14a +48=0,解得a =6或a =8.因此⎩⎨⎧ a =6,b =6,或⎩⎨⎧a =8,b =4.∴所求直线l 的方程为x +y -6=0或x +2y -8=0. [方法感悟]如果题目中出现直线在两坐标轴上的“截距相等”“截距的绝对值相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,可采用截距式求直线方程,但一定要注意考虑“零截距”的情况.[随堂即时演练]1.直线x 3-y4=1在两坐标轴上的截距之和为( ) A .1 B .-1 C .7 D .-7答案:B2.直线5x -2y -10=0在x 轴上的截距为a ,在y 轴上的截距为b ,则有( ) A .a =2,b =5 B .a =2,b =-5 C .a =-2,b =5 D .a =-2,b =-5 答案:B3.直线l 过点(-1,2)和点(2,5),则直线l 的方程为________.答案:x -y +3=04.斜率为2,且经过点A (1,3)的直线的一般式方程为________.答案:2x -y +1=05.三角形的顶点坐标为A (0,-5),B (-3,3),C (2,0),求直线AB 和直线AC 的方程. 解:直线AB 的方程为8x +3y +15=0,直线AC 的方程为5x -2y -10=0.[课时达标检测]一、选择题1.平面直角坐标系中,直线x +3y +2=0的斜率为( )A.33 B .-33C. 3 D .- 3答案:B2.直线ax +by =1(a ,b 均不为0)与两坐标轴围成的三角形的面积为( )A.12ab B.12|ab |C.12ab D.12|ab |答案:D3.已知直线ax +by +c =0的图象如图,则( )A .若c >0,则a >0,b >0B .若c >0,则a <0,b >0C .若c <0,则a >0,b <0D .若c <0,则a >0,b >0答案:D4.已知直线l :Ax +By +C =0(A ,B 不同时为0),点P (x 0,y 0)在l 上,则l 的方程可化为()A .A (x +x 0)+B (y +y 0)+C =0B .A (x +x 0)+B (y +y 0)=0C .A (x -x 0)+B (y -y 0)+C =0D .A (x -x 0)+B (y -y 0)=0答案:D5.若直线x +2ay -1=0与(a -1)x -ay +1=0平行,则a 的值为( )A.12B.12或0 C .0D .-2 答案:A二、填空题6.若直线l 1:ax +(1-a )y =3与l 2:(a -1)x +(2a +3)y =2互相垂直,则实数a =________. 答案:1或-37.垂直于直线3x -4y -7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是________.答案:3或-38.过点P (2,-1),在x 轴、y 轴上的截距分别为a ,b ,且满足a =3b 的直线方程为____________.答案:x +3y +1=0或x +2y =0三、解答题9.已知在△ABC 中,点A ,B 的坐标分别为(-1,2),(4,3),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标;(2)求直线MN 的方程.解:(1)设点C (m ,n ),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,由中点坐标公式得⎩⎪⎨⎪⎧ m -12=0,n +32=0,解得⎩⎨⎧m =1,n =-3.∴点C 的坐标为(1,-3).(2)由(1)知,点M ,N 的坐标分别为M 0,-12,N 52,0, 由直线方程的截距式,得直线MN 的方程是x 52+y-12=1,即y =15x -12.10.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R).(1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.解:(1)当a =-1时,直线l 的方程为y +3=0,不符合题意; 当a ≠-1时,直线l 在x 轴上的截距为a -2a +1,在y 轴上的截距为a -2,因为l 在两坐标轴上的截距相等,所以a -2a +1=a -2,解得a =2或a =0, 所以直线l 的方程为3x +y =0或x +y +2=0.(2)将直线l 的方程化为y =-(a +1)x +a -2,所以⎩⎨⎧ -a +1>0,a -2≤0或⎩⎨⎧-a +1=0,a -2≤0,解得a ≤-1.综上所述,实数a 的取值范围是{a |a ≤-1}.。
(教师参考)高中数学 3.2.3 直线的一般式方程课件1 新人教A版必修2
2019/1/17
例1 根据下列条件,写出直线的方程,并把它化成一般式:
4 1.过点A(6,-4),斜率为- ; 3 4 y+4=- (x-6)4x+3y-12=0 3
2.经过点P(3,-2),Q(5,-4);
y+2 x-3 = x+y-1=0 -4+2 5-3
3 3.在x轴,y轴上的截距分别是 ,-3; 2 x y 1 2x-y-3=0 3 3 2
2019/1/17
总结: 由上面讨论可知, (1)平面上任一条直线都可以用一个关于x,y的 二元一次方程表示, (2)任一关于x,y的二元一次方程都表示一条直 线.
2019/1/17
1.直线的一般式方程
我们把关于x,y的二元一次方程 Ax+By+C=0 (A,B不同时为零) 叫做直线的一般式方程,简称一般式
2019/1/17
例2 把直线 化成斜截式,求出 直线的斜率以及它在y轴上的截距。
3 3 解:将直线的一般式方程化为斜截式: y x , 5
3 它的斜率为: ,它在y轴上的截距是3 5
思考:若已知直线 的截距.
l
2019/1/17
2.二元一次方程的系数和常数项对直线 的位置的影响
2019/1/17
探究:在方程 Ax By C 0中, 1.当 A 0,B 0,C 0 时,方程表示的直线与x轴 平行 ; 2.当 A 0,B 0,C为任意实数时,方程表示的直线与x轴垂直;
3.当
(2)将l的方程化为 y=-(a+1)x+a-2, ∴欲使l不经过第二象限,
(a 1) 0 当且仅当 a 2 0
(a 1) 0 或 ,∴ a -1 a 2 0
2021学年数学人教A版必修2课件:3-2-3 直线的一般式方程
知识点二 直线方程的互化 [填一填]
1.直线的一般式 Ax+By+C=0(B≠0),化为斜截式为 y=-ABx-CB ;化为截距式为 -xCA+-yCB=1 .
2.点斜式 y-y0=k(x-x0),化为一般式为 kx-y-(kx0-y0)=0 ; 斜截式 y=kx+b,化为一般式为 kx-y+b=0 ;两点式yy2--yy11= xx2--xx11,化为一般式为(y2-y1)x-(x2-x1)y+(x2-x1)y1-(y2-y1)x1=0 ; 截距式ax+by=1 化为一般式为 bx+ay-ab=0 .
[答一答] 3.直线的一般式方程与其他形式比较,有什么优点? 提示:坐标平面内的任何一条直线,都可以用一般式表示, 而其他形式都有一定的局限性.
4.已知直线的一般式方程 Ax+By+C=0,如何求直线的斜 率?
提示:若 B≠0,直线方程可化为 y=-ABx-CB,故直线的斜 率为-AB,若 B=0,则直线的斜率不存在.
3.根据两直线的一般式方程判定两直线垂直的方法 (1)若一个斜率为零,另一个不存在,则垂直;若两个都存 在斜率,化成斜截式后,则 k1k2=-1. (2)一般地,设 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0, l1⊥l2⇔A1A2+B1B2=0. 第二种方法可避免讨论,减小失误.
1二次函数的最值问题在应用问题中常常出现,要特别注 意.
2建立直角坐标系,将实际问题转化为与直线方程有关的பைடு நூலகம்问题.
[变式训练 3] 一条光线从点 A(3,2)发出,经 x 轴反射后, 通过点 B(-1,6),求入射光线和反射光线所在的直线方程.
解:因为点 A(3,2)关于 x 轴的对称点为 A′(3,-2),所以 由两点式可得直线 A′B 的方程为-y-2-66=3x++11,即 2x+y-4 =0.
人教A版高中数学必修2第三章3.2.3直线的一般式方程课件
斜率和一点坐标 斜率k和截距b
点斜式 斜截式
两点坐标
两点式 点斜式
yy0k(xx0)
y kxb
y y1 x x1 y2 y1 x2 x1
yy0k(xx0)
两个截距
人教A版高中数学必修2第三章3.2.3直 线的一 般式方 程课件 【精品 】
化成一般式
截距式
x y 1 ab
Ax+By+C=0
1)x的系数为正; 2)x,y的系数及常数项一般不出现分数; 3)按含x项,含y项、常数项顺序排列.
人教A版高中数学必修2第三章3.2.3直 线的一 般式方 程课件 【精品 】
人教A版高中数学必修2第三章3.2.3直 线的一 般式方 程课件 【精品 】
例 2 把直线L的一般式方程 x-2y+6=0 化成斜截式, 求出L的斜率以及它在x轴与y轴上的截距,并画出图 形。
方程为:AxBym0
(其中m≠C,m为待定系数)
人教A版高中数学必修2第三章3.2.3直 线的一 般式方 程课件 【精品 】
人教A版高中数学必修2第三章3.2.3直 线的一 般式方 程课件 【精品 】
三、直线系方程:
2)与直线l:AxByC0垂直的直线系 方程为:BxAym0
(其中m为待定系数)
人教A版高中数学必修2第三章3.2.3直 线的一 般式方 程课件 【精品 】
2、设直线l 的方程为 (m2-2m-3)x+(2m2+m-1)y=2m-6,分别根据下列
条件确定m的值: (1) l 在X轴上的截距是-3; (2)斜率是-1.
人教A版高中数学必修2第三章3.2.3直 线的一 般式方 程课件 【精品 】
人教A版高中数学必修2第三章3.2.3直 线的一 般式方 程课件 【精品 】
高中数学(人教A版)必修二课件:3.2.3直线的一般式方程
法二:由题意可设所求的直线方程为 x-2y+C=0. 因为所求的直线过点(-2,1), 所以-2-2×1+C=0. 所以 C=4. 即所求的直线方程为 x-2y+4=0.
答案:x-2y+4=0
探究点 1 直线的一般式方程 根据下列条件分别写出直线的方程, 并化为一般式方 程. (1)斜率是 3,且经过点 A(5,3). (2)斜率为 4,在 y 轴上的截距为-2. (3)经过 A(-1,5),B(2,-1)两点. (4)在 x 轴,y 轴上的截距分别为-3,-1.
Ax+By+C= 一般式直于 x 轴 ③C=0 表示的直线 过原点
对任何直线 都适用
判断正误(正确的打“√” ,错误的打“×”) (1)任何直线方程都能表示为一般式.( √ ) (2) 任 何 一 条 直 线 的 一 般 式 方 程 都 能 与 其 他 四 种 形 式 互 化.( × ) (3)对于二元一次方程 Ax+By+C=0,当 A=0,B≠0 时, 方程表示垂直于 x 轴的直线.( × )
直线方程的五种形式的对比 名称 方程的形式 常数的几何意义 (x1,y1)是直线上 点斜式 y-y1=k(x-x1) 一定点,k 是斜 率 k 是斜率, b 是直 斜截式 y=kx+b 线在 y 轴上的截 距 不垂直于 x 轴 不垂直于 x 轴 适用范围
名称
方程的形式 y-y1 x-x1 = y2-y1 x2-x1 (x2≠x1,y2≠y1) x y + =1 a b (ab≠0)
经过两点 P(2,0)与(0,-3)的直线的一般式方程是( A.3x-2y-1=0 B.3x+2y+1=0 C.3x-2y-6=0 D.3x+2y+6=0
)
答案:C
直线 x+ 3y+2=0 的倾斜角是( A.30° C.120°
【全优课堂】2014年秋高中数学 3.2.2-3直线的一般式方程课件 新人教A版必修2
【答案】2
4.过点 A (-1,-2),B (3,5)的直线的一般式方程为________.
【答案】7x-4y-1=0
要点阐释 1.直线的两点式方程 y-y1 x-x1 (1) = (x ≠x , y ≠y )不能表示斜率不存在以及斜率 y2-y1 x2-x1 1 2 1 2 为零的直线. (2)两点式方程可以变形为(y-y1)(x2-x1)=(x-x1)· (y2-y1),在 此方程中,不再有 x1≠x2,y1≠y2 的限制,因而此方程可以表示所 有的直线.
解: (1)由点斜式方程得 y-3= 3(x-5), 整理得 3x-y+3-5 3=0; y-5 x--1 (2)由两点式方程得 = , -1-5 2--1 整理1, -3 -1 整理得 x+3y+3=0.
2.根据下列条件分别写出直线的方程,并化为一般式方程. (1)经过点 B (4,2),平行于 x 轴; (2)在 x 轴和
【解析】 3 ∵直线 l 的方程为 3x+4y-20=0,∴kl=- . 4 3 (1)设过 A 且与 l 平行的直线为 l1,∵kl=kl1,∴kl1=- . 4 3 ∴l1 的方程为 y-2=- (x-2),即 3x+4y-14=0. 4 (2)设过 A 且与 l 垂直的直线为 l2, 3 4 ∵kl· kl2=-1,∴-4· kl2=-1,∴kl2= . 3 4 ∴l2 的方程为 y-2= (x-2),即 4x-3y-2=0. 3
自学导引 1.直线的两点式与截距式方程 (1)直线的两点式方程 已知直线 l 经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2),则直线 l y2-y1 y2-y1 x2-x1 ,代入点斜式方程得 y-y1= 的斜率 k=________ (x-x1),当 x - x 2 1 y-y1 x-x1 = y1≠y2 时,方程可写为________________ y2-y1 x2-x1 ,这个方程是由直线 l 上 的两点确定的,因此称为直线的两点式方程,简称两点式. 说明:若 P1(x1,y1),P2(x2,y2)中有 x1=x2 或 y1=y2 时,直线 P1P2 没有两点式方程.当 x1=x2 时,直线 P1P2 平行于 y 轴,直线 方程为 x-x1=0 或 x=x1;当 y1=y2 时,直线 P1P2 平行于 x 轴,直 线方程为 y-y1=0 或 y=y1.
新课标人教A版高中数学必修二3.2.3直线的一般式方程课件
新课标人教A版高中数学必修二3.2.3 直线的 一般式 方程课 件
思考
(1)平面上任意一条直线都可以用一个关于 x , y 的二元一次方程表示吗?
⑴倾斜角α≠90°,直线的斜率k存在,其方程 y-y0 = k(x-x0)是关于x,y的二元一次方程。
⑵倾斜角α=90°,直线的斜率k不存在,其方程为 x=a,可以看成是关于x,y的二元一次方程(y的 系数为0)。
新课标人教A版高中数学必修二3.2.3 直线的 一程,并把它化成一
般式: 1.过点A(6,-4),斜率为-
y43+;4=-43(x-6)4x+3y-12=0
2.经过点P(3,-2),Q(5,-4);
-y4++22=x5--33x+y-1=0
3.在x轴,y轴上的截距分别是
直角坐标系是把方程和直线联系起来的桥梁,这 是笛卡尔的伟大贡献。
新课标人教A版高中数学必修二3.2.3 直线的 一般式 方程课 件
新课标人教A版高中数学必修二3.2.3 直线的 一般式 方程课 件
课堂小结
1、直线方程的一般式Ax+By+c=0(A,B不同时为 零)的两方面含义:
(1)直线方程都是关于x,y的二元一次方程。 (2)关于x,y的二元一次图象又都是一条直线。
新课标人教A版高中数学必修二3.2.3 直线的 一般式 方程课 件
探 究 (1)在方程Ax+By+C=0中,A,B,C为何值时, 方程表示的直线:平行于x轴?
y
l
新课标人教A版高中数学必修二3.2.3 直线的 一般式 方程课 件
O
x
(1) A=0 , B≠0 ,C≠0。
新课标人教A版高中数学必修二3.2.3 直线的 一般式 方程课 件
(人教A版)必修2课件:第三章 直线与方程
BC:x-4y-1=0,AC:x-y+2=0.
第三章 章末归纳总结
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
专题三 两条直线的位置关系 (1)已知直线的斜截式方程:l1:y=k1x+b1,l2:y=k2x+ b2,则l1∥l2⇔k1=k2,且b1≠b2; l1⊥l2⇔k1k2=-1; l1与l2相交⇔k1≠k2.
第三章 章末归纳总结
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
有|2x0-y0+3|= 5
52·|x0+y20-1|,
即|2x0-y0+3|=|x0+y0-1|, ∴x0-2y0+4=0或3x0+2=0;
由于P在第一象限,∴3x0+2=0不可能.
联立方程2x0-y0+123=0和x0-2y0+4=0,
第三章 章末归纳总结
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
由题意,得|AB|=5,
∴(
3k-2 k+1
-
3k-7 k+1
)2+(-
4k-1 k+1
+
9k-1 k+1
)2=52,解得k=0.
∴所求直线l的方程为y=1.
第三章 章末归纳总结
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
第三章 章末归纳总结
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
[解析] 设AB、AC边的中线分别为CD、BE,其中D、E 为中点,
∵点B在中线y-1=0上, ∴设点B的坐标为(xB,1). ∵点D为AB的中点,又点A的坐标为(1,3), ∴点D的坐标为(xB+2 1,2). ∵点D在中线CD:x-2y+1=0上, ∴xB+2 1-2×2+1=0,∴xB=5.
[剖析] 直线的点斜式方程是以直线斜率存在为前提的, 当直线斜率不存在时,不能建立和使用直线的点斜式方 程.在错解中,设直线l的方程为y=k(x-3)+1,已经默认了 直线l的斜率存在,从而漏去了直线l斜率不存在的情况,而本 题中过P点且斜率不存在的直线恰好符合题意,所以错解丢掉 了一个解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[点式
截距式
条件 P1(x1,y1)和 P2(x2,y2) 在 x 轴上截距 a, 其中 x1≠x2,y1≠y2 在 y 轴上截距 b
图形
类型 1 利用两点式求直线方程(自主研析) [典例 1] 三角形的三个顶点是 A(-1,0),B(3,- 1),C(1,3),求三角形三边所在直线的方程.
[变式训练] 设直线 l 的方程为(a+1)x+y-2+a= 0,若 l 经过第一象限,求实数 a 的取值范围.
解:直线 l 的方程可化为点斜式 y-3=-(a+1)(x+ 1),由点斜式的性质,得 l 过定点 P(-1,3),如图.
3-0 所以 kPO=-1-0=-3.
1.求直线的两点式方程. 当已知两点坐标,求过这两点的直线方程,首先要 判断是否满足两点式方程的适用条件:两点的连线不垂 直于坐标轴,若满足,则考虑用两点式求方程.
y-(-1) 解:由两点式,直线 AB 所在直线方程为:
0-(-1)
x-3 = ,即 x+4y+1=0.
-1-3
解:(1)设直线 l 的方程为xa+by=1(a>0,b>0), 由题意知,a+b+ a2+b2=12.
又因为直线 l 过点 P43,2, 所以34a+2b=1,即 5a2-32a+48=0,
a1=4,a2=152, 解得b1=3,b2=92,
类型 4 直线方程的综合应用 [典例 4] 已知直线 l:5ax-5y-a+3=0. (1)求证:不论 a 为何值,直线 l 总经过第一象限; (2)为使直线不经过第二象限,求 a 的取值范围. (1)证明:将直线 l 的方程整理为 y-35=ax-15,