2015徐汇区初三一模数学试卷(含答案)

合集下载

2015年上海市各区中考一模数学试题(全含答案)

2015年上海市各区中考一模数学试题(全含答案)

2015年##市六区联考初三一模数学试卷〔满分150分,时间100分钟〕 2015.1一. 选择题〔本大题满分4×6=24分〕1. 如果把Rt ABC ∆的三边长度都扩大2倍,那么锐角A 的四个三角比的值〔 〕 A. 都扩大到原来的2倍; B. 都缩小到原来的12; C. 都没有变化; D. 都不能确定;2. 将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为〔 〕 A. 2(1)y x =+; B. 2(3)y x =-; C. 2(1)2y x =-+; D. 2(1)2y x =--;3. 一个小球被抛出后,如果距离地面的高度h 〔米〕和运行时间t 〔秒〕的函数解析式为25101h t t =-++,那么小球到达最高点时距离地面的高度是〔 〕A. 1米;B. 3米;C. 5米;D. 6米;4. 如图,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于〔 〕 A. 2; B. 4; C.245; D. 365; 5. 已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于〔 〕A. 2sin m α⋅;B. 2cos m α⋅;C. 2tan m α⋅;D. 2cot m α⋅; 6. 如图,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是〔 〕A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅; 二. 填空题〔本大题满分4×12=48分〕 7. 已知34x y =,那么22x yx y-=+; 8. 计算:33()22a ab -+-=; 9. 已知线段4a cm =,9b cm =,那么线段a 、b 的比例中项等于cm 10. 二次函数2253y x x =--+的图像与y 轴的交点坐标为; 11. 在Rt ABC ∆中,90C ∠=︒,如果6AB =,2cos 3A =,那么AC =; 12. 如图,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =,要使DE ∥AB ,那么:BC CD 应等于;13. 如果抛物线2(3)5y a x =+-不经过第一象限,那么a 的取值X 围是; 14. 已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于;15. 如图,当小杰沿着坡度1:5i =的坡面由B 到A 直行走了26米时,小杰实际上升的高度AC =米〔结论可保留根号〕16. 已知二次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个二次函数的图像一定经过除点(1,3)外的另一点,这点的坐标是;17. 已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时〔如图1〕,AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时〔如图2〕,AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH =米18. 把一个三角形绕其中一个顶点逆时针旋转并放大或缩小〔这个顶点不变〕,我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(3,2)B -,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为;三. 解答题〔本大题满分10+10+10+10+12+12+14=78分〕19. 已知在直角坐标平面内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0),与y 轴相交于点C ;〔1〕求抛物线的表达式; 〔2〕求△ABC 的面积;20. 如图,已知在△ABC 中,AD 是边BC 上的中线,设BA a =,BC b =; 〔1〕求AD 〔用向量,a b 的式子表示〕〔2〕如果点E 在中线AD 上,求作BE 在,BA BC 方向上的分向量;〔不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量〕21. 如图,某幢大楼的外墙边上竖直安装着一根旗杆CD ,小明在离旗杆下方大楼底部E 点24米的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°,上端D的仰角为45°,求旗杆CD 的长度;〔结果精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈〕22. 用含30°、45°、60°这三个特殊角的四个三角比与其组合可以表示某些实数,如:12可表示为1sin 30cos60tan 45sin 302=︒=︒=︒⋅︒=…;仿照上述材料,完成下列问题:〔1〕用含30°、45°、60°这三个特殊角的三角比或其组合表示32,即 填空:32====…; 〔2〕用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=23. 已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF〔1〕求证:AE EGAC CG=; 〔2〕如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅24. 已知在平面直角坐标系xOy 中,二次函数2y ax bx =+的图像经过点(1,3)-和点(1,5)-; 〔1〕求这个二次函数的解析式;〔2〕将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请用m 的代数式表示平移后函数图象顶点M 的坐标;〔3〕在第〔2〕小题的条件下,如果点P 的坐标为(2,3),CM 平分PCO ∠,求m 的值;25. 已知在矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =; 〔1〕求y 关于x 的函数解析式,并写出它的定义域; 〔2〕当4AP =时,求EBP ∠的正切值;〔3〕如果△EBC 是以EBC ∠为底角的等腰三角形,求AP 的长;2015年##市六区联考初三一模数学试卷参考答案一. 选择题1. C2. A3. D4. C5. B6. B 二.填空题7.15 8. 1322a b -- 9. 6 10. (0,3) 11. 4 12. 5313. 3a <- 14. 9 15.26 16. (3,3)- 17.3518. (3,0)- 三. 解答题19.〔1〕256y x x =-+; 〔2〕(2,0)A ,(3,0)B ,(0,6)C ,3ABC S ∆=;20.〔1〕12b a -; 〔2〕略; 21. 3.84CD m ≈22.〔1〕sin 60︒,cos30︒,tan 45sin60︒⋅︒; 〔2〕(sin 30cos60)tan 45cot 45︒+︒⋅︒÷︒; 23. 略;24.〔1〕24y x x =-; 〔2〕(2,4)M m -; 〔3〕92m =;25.〔1〕4y x x =-〔25x <≤〕; 〔2〕3tan 4EBP ∠=; 〔3〕53+;崇明县2014学年第一学期教学质量调研测试卷九年级数学〔测试时间: 100分钟,满分:150分〕一、选择题〔本大题共6题,每题4分,满分24分〕1、已知52a b =,那么下列等式中,不一定正确的是………………………………〔 〕 <A>25a b = <B>52a b = <C>7a b += <D>72a b b += 2、在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不一定成立的是 ……………………………………………………………………〔 〕<A>tan b a B = <B>cos a c B = <C>sin ac A =<D>cos a b A =3、如果二次函数2y ax bx c =++的图像如图所示,那么下列判断中,不正确的是………〔 〕<A>0a ><B>0b ><C>0c <<D>240b ac ->4、将二次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数表达式为…………………………………………………………………………〔 〕 <A>2(1)1y x =++<B>2(1)1y x =+-<C>2(1)1y x =-+<D>2(1)1y x =--5、下列说法正确的是……………………………………………………〔 〕<A> 相切两圆的连心线经过切点 <B> 长度相等的两条弧是等弧<C> 平分弦的直径垂直于弦<D> 相等的圆心角所对的弦相等6、如图,点D 、E 、F 、G 为ABC ∆两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ∆的面积三等分,那么下列结论正确的是 ………………………………………〔 〕<A>14DE FG = <B>1DF EGFB GC== <C>ADFB<D>AD DB〔第3题图〕〔第6题图〕二、填空题〔本大题共12题,每题4分,满分48分〕7、已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm,那么线段AP =cm .8、如果两个相似三角形的面积比为1:4,那么它们的周长比为. 9、如果二次函数22(1)51y m x x m =-++-的图像经过原点,那么m =. 10、抛物线221y x =-在y 轴右侧的部分是〔填"上升〞或"下降〞〕.11、如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为.12、已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是.13、某飞机的飞行高度为1500m,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制点的距离为m .14、已知正六边形的半径为2cm,那么这个正六边形的边心距为cm .15、如图,已知在ABC ∆中,90ACB ∠=︒,6AC =,点G 为重心,GH BC ⊥,垂足为点H ,那么GH =. 16、半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆心距O 1O 2的长为10cm,那么公共弦AB 的长为cm .17、如图,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45︒,斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为米.18、如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q处,EQ 与BC 交于点G ,那么EBG ∆的周长是cm .〔第15187题,19、〔本题满分10分〕计算:2014cos301(cot 45)sin 60︒-+-︒+︒20、〔本题满分10分,其中第<1>小题5分,第<2>小题5分〕已知:如图,□ABCD 中,E 是AD 中点,BE 交AC 于点F ,设BA a =、BC b =. 〔1〕用,a b 的线性组合表示FA ;〔2〕先化简,再直接在图中求作该向量:1151()()()2424a b a b a b -+-+++.21、〔本题满分10分,其中第<1>小题6分,第<2>小题4分〕ABC DEF G CFEDABC ABCDFGH QE如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =.〔1〕求AC 和AB 的长;〔2〕求sin BAD ∠的值.22、〔本题满分10分,其中第<1>小题5分,第<2>小题5分〕 如图,轮船从港口A 出发,沿着南偏西15︒的方向航行了100海里到达B 处,再从B 处沿着北偏东75︒的方向航行200海里到达了C 处. 〔1〕求证:AC AB ⊥;〔2〕轮船沿着BC 方向继续航行去往港口D 处,已知港口D 位于港口A 的正东方向,求轮 船还需航行多少海里.23、〔本题满分12分,其中第<1>小题6分,第<2>小题6分〕如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的比值.24、〔本题满分12分,其中每小题各4分〕如图,已知抛物线258y x bx c =++经过直线112y x =-+与坐标轴的两个交点A 、B ,点C 为抛物线上的一点,且90ABC ∠=︒. 〔1〕求抛物线的解析式;〔2〕求点C 坐标; 〔3〕直线112y x =-+上是否存在点P ,使得BCP ∆与OAB ∆相似,若存在,请直接写出P 点的坐标;若不存在,请说明理由. 25、〔本题满分14分,其中第<1>小题5分,第<2>小题5分,已知在ABC ∆中,5AB AC ==,6BC =,O 为边AB 上一动点为半径的圆交BC 于点D ,设OB x =,DC y =. 〔1〕如图1,求y 关于x 的函数关系式与定义域;〔2〕当⊙O 与线段AC 有且只有一个交点时,求x 的取值X 〔3〕如图2,若⊙O 与边AC 交于点E 当DEC ∆与ABC ∆相似时,求x 的值.2014学年 DDABCEF北AB C东一. 选择题1. 将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为〔 〕 A. 22(1)2y x =--+;B. 22(1)2y x =---; C. 22(1)2y x =-++;D. 22(1)2y x =-+-;2. 如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是〔 〕A.2BE EC =;B. 13EC AD =; C.23EF AE =;D. 23BF DF =; 3. 已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为〔 〕 A. 7sin α;B. 7cos α;C. 7tan α;D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是〔 〕A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅;D.DC ABAC BC=; 5. 已知二次函数222y ax x =-+〔0a >〕,那么它的图像一定不经过〔 〕 A. 第一象限;B. 第二象限;C. 第三象限;D. 第四象限;6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =, 那么:ADE BEC S S ∆∆=〔 〕A. 1:24;B. 1:20;C. 1:18;D. 1:16; 二. 填空题 7. 如果53a b =,那么a ba b -+的值等于; 8. 抛物线2(1)2y x =-+的顶点坐标是;9. 二次函数245y x x =--的图像的对称轴是直线; 10. 计算:cot30sin60︒-︒=;11. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为m ;12. 若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是〔填12y y >,12y y =或12y y <〕;13. 如图,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC =;14. 如图是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2,则斜坡AB 的长为米〔保留根号〕;15. 如图,正方形ABCD 被分割成9个全等的小正方形,P 、Q 是其中两个小正方形的顶 点,设AB a =,AD b =,则向量PQ =〔用向量a 、b 来表示〕;16. 如图,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为;17. 如图,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM =;18. 如图,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那么BN =;三. 解答题19. 已知二次函数2y ax bx c =++〔a 、b 、c 为常数,且0a ≠〕经过A 、B 、C 、D 四个点,其中横坐标x 与纵坐标y 的对应值如下表:A B CDx1- 0 13 y1-353〔1〕求二次函数解析式; 〔2〕求△ABD 的面积;20. 如图,在等腰梯形ABCD 中,AD ∥BC ,AB DC =,AC 与BD 交于点O ,:1:2AD BC =; 〔1〕设BA a =,BC b =,试用a ,b 表示BO ; 〔2〕先化简,再求作:3(2)2()2a b a b +-+〔直接作在原图中〕 21. 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米,求拉线CE 的长;[已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号] 22. 如图,MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ; 〔1〕求证:DE ∥BC ;〔2〕联结DE ,如果1DE =,3BC =,求MN 的长;23. 已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ;〔1〕求证:2AG GE GF =⋅; 〔2〕如果12DG GB =,且AG BF ⊥,求cos F ; 24. 已知如图,抛物线21:4C y ax ax c =++的图像开口向上,与x 轴交于点A 、B 〔A 在B 的左边〕,与y 轴交于点C ,顶点为P ,2AB =,且OA OC =; 〔1〕求抛物线1C 的对称轴和函数解析式;〔2〕把抛物线1C 的图像先向右平移3个单位,再向下平移m 个单位得到抛物线2C ,记顶点为M ,并与y 轴交于点(0,1)F -,求抛物线2C 的函数解析式;〔3〕在〔2〕的基础上,点G 是y 轴上一点,当△APF 与△FMG 相似时,求点G 的坐标; 25. 如图,梯形ABCD 中,AD ∥BC ,对角线AC BC ⊥,9AD =,12AC =,16BC =,点E 是边BC 上的一个动点,EAF BAC ∠=∠,AF 交CD 于点F ,交BC 延长线于点G ,设BE x =; 〔1〕试用x 的代数式表示FC ; 〔2〕设FGy EF=,求y 关于x 的函数关系式,并写出定义域; 〔3〕当△AEG 是等腰三角形时,直接写出BE 的长; 参考答案1、A2、C3、C4、D5、C6、B7、148、〔1,2〕 9、x =2 10、32 11、15 12、12y y > 13、6 14、6515、16、12 171718、19、 20、 21、 22、 23、 24、 25、所以,BE =72014学年##市宝山区初三一模数学试卷一. 选择题〔24分〕1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,2AC =下列判断正确的是〔 〕A. 30A ∠=︒;B. 45A ∠=︒;C. cot 2A =; D. tan 2A =; 2. 如图,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误 的是〔 〕A. AD AE DB EC =;B.AD DE DB BC =;C. AD AE AB AC =;D.AD DE AB BC=; 3. 如果在两个圆中有两条相等的弦,那么〔 〕A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;4. 已知非零向量a 、b 、c ,下列命题中是假命题的是〔 〕A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ;5. 已知O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与O 的位置关系为〔 〕A. 相切;B. 相交;C. 相切或相离;D. 相切或相交;6. 如图边长为3的等边△ABC 中,D 为AB 的三等分点〔12AD BD =〕,三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为〔 〕A. B. C. D. 二. 填空题〔48分〕7. 线段b 是线段a 和c 的比例中项,若1a =,2b =,则c =;8. 两个相似三角形的相似比为2:3,则它们的面积比为;9. 已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值X 围是;10. 已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为;11. 在△ABC 中,cot A =cos B =那么C ∠=; 12. B 在A 北偏东30°方向〔距A 〕2千米处,C 在B 的正东方向〔距B 〕2千米处,则C 和A 之间的距离为千米;13. 抛物线2(3)4y x =--+的对称轴是;14. 不经过第二象限的抛物线2y ax bx c =++的开口方向向;15. 已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>,则1y 2y ; 16. 如图,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =,则CE =;17. 如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,CD =则直径AB 的长为;18. 如图直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N 分别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH =;三. 解答题〔78分〕19. 计算:2sin 602cot 30cos 602cos 45tan 60︒+︒-︒︒+︒; 20. 如图,已知M 、N 分别是平行四边形ABCD 边DC 、BC 的中点,射线AM 和射线BC 相交于E ,设AB a =,AD b =,试用a 、b 表示AN ,AE ;〔直接写出结果〕21. 已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式 以与该抛物线的顶点坐标;22. 如图,D 为等边△ABC 边BC 上一点,DE ⊥AB 于E ,若:2:1BD CD =,DE =求AE ;23. 如图,P 为O 的直径MN 上一点,过P 作弦AC 、BD 使APM BPM ∠=∠,求证: PA PB =;24. 如图,正方形ABCD 中,〔1〕E 为边BC 的中点,AE 的垂直平分线分别交AB 、AE 、CD 于G 、F 、H ,求GF FH ; 〔2〕E 的位置改动为边BC 上一点,且BE k EC =,其他条件不变,求GF FH的值; 25. 〔1〕数学小组的单思稿同学认为形如的抛物线2y ax bx c =++,系数a 、b 、c 一旦确定,抛物线的形状、大小、位置就不会变化,所以称数a 、b 、c 为抛物线2y ax bx c =++ 的特征数,记作{,,}a b c ;请求出与y 轴交于点(0,3)C -的抛物线22y x x k =-+在单同学 眼中的特征数;〔2〕同数学小组的尤恪星同学喜欢将抛物线设成2()y a x m k =++的顶点式,因此坚持称 a 、m 、k 为抛物线的特征数,记作{,,}a m k ;请求出上述抛物线在尤同学眼中的特征数; 〔3〕同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同组的董和谐将上述抛物线表述成:特征数为{,,}u v w 的抛物线沿平行于某轴方向平移某单位 后的图像,即此时的特征数{,,}u v w 无论按单思稿同学还是按尤恪星同学的理解做出的结果 是一样的,请你根据数学推理将董和谐的表述完整地写出来;〔4〕在直角坐标系XOY 中,上述〔1〕中的抛物线与x 轴交于A 、B 两点〔A 在B 的左 边〕,请直接写出△ABC 的重心坐标;26. 如图在△ABC 中,10AB BC ==,AC =D 为边AB 上一动点〔D 和A 、B不重合〕,过D 作DE ∥BC 交AC 于E ,并以DE 为边向BC 一侧作正方形DEFG ,设AD =x ,〔1〕请用x 的代数式表示正方形DEFG 的面积,并求出当边FG 落在BC 边上时的x 的值; 〔2〕设正方形DEFG 与△ABC 重合部分的面积为y ,求y 关于x 的函数与其定义域;〔3〕点D 在运动过程中,是否存在D 、G 、B 三点中的两点落在以第三点为圆心的圆上 的情况?若存在,请直接写出此时AD 的值,若不存在,则请说明理由;2014学年第一学期长宁区学习能力诊断卷初三数学 试卷〔时间100分钟 满分150分〕一. 选择题〔本大题共6题,每题4分,满分24分〕1.如果两个相似三角形的面积比是1:6,那么它们的相似比是〔 〕A .1:36 B.1:6 C . 1:3 D . 1: 6 2. 在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于〔 〕A .35B . 45C . 34D . 433. 如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DE M ∽△ABC 〔点D 和点A 对应,点B 和E 对应〕,则点M 对应是F 、G 、H 、K 四点中的〔 〕A . FB . GC . KD . H第3题图4. 已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为〔 〕A . 1或7B . 1C . 7D . 25. 抛物线22212,2,2y x y x y x ==-=共有的性质是〔 〕 A . 开口向下; B . 对称轴是y 轴C . 都有最低点D . y 的值随x 的增大而减小6. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动的过程中速度不变,则以点B 为圆心,线段B P 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为图中的< >A .B .C .D .二. 填空题〔本大题共12题,每题4分,满分48分〕7. 已知线段a =2c m,c =8c m,则线段a 、c 的比例中项是_________c m.8. 计算:3()3a b a --=_________.9. 已知⊙P 在直角坐标平面内,它的半径是5,圆心P 〔-3,4〕,则坐标原点O 与⊙P 的位置位置关系是_________.10. 如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有________个.11. 抛物线23(1)2y x =--+的顶点坐标是________.12.抛物线223y x =-向左移动3个单位后所得抛物线解析式是________.13. 已知二次函数227y x x =+-的一个函数值是8,那么对应自变量x 的值是_________.14. 已知二次函数2(1)2y ax a x =-+-,当x >1时,y 的值随x 的增大而增大,当x <1时,y 的值随x 的增大而减小,则实数a 的值为_________.15. 某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年第三月新品研发资金y 〔元〕关于x 的函数关系式为y =_________.16. 如图所示,铁路的路基横断面都是等腰梯形,斜坡AB 的坡度为3,斜坡AB 的水平宽度BE =33m ,则斜坡AB =_________m.17. 如图,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联结DE ,则S △ABC :S △GED 的值为_________.18. 如图,正方形ABCD 绕点A 逆时针旋转,得到正方形'''AB C D .当两个正方形重叠部分的面积是原正方形面积的14时,1sin '2B AD ∠ _________. 第16题图 第17题图 第18题图三. <本大题共7题,满分78分>19.〔本题满分10分〕计算:201(sin 30)(2015tan 45).sin 60cos60o o o o --+-- 20. 〔本题满分10分〕 如图,已知O 为△ABC 内的一点,点D 、E 分别在边AB 、AC 上,且11,.34AD AE DB AC ==设,,OB m OC n ==试用m 、n 表示DE .21. 〔本题满分10分〕如图,AB 是⊙O 的弦,点C 、D 在弦AB 上,且AD =BC ,联结OC 、OD .求证:△OCD 是等腰三角形.22. 〔本题满分10分〕如图,在△ABC 中,AD 是BC 上的高,点G 在AD 上,过点G 作BC 的平行线分别与AB 、AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F . 设AD =80,BC =120,当四边形PEFQ 为正方形时,试求正方形的边长.23. 〔本题满分12分〕如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C地沿折线A -C -B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A地到B 地比原来少走多少千米?〔结果保留根号〕24. 〔本题满分12分〕如图,已知平面直角坐标平面上的△ABC ,AC =CB ,∠ACB =90°,且A 〔-1,0〕,B 〔m,n 〕C 〔3,0〕,若抛物线23y ax bx =+-经过A 、C 两点.(1) 求a 、b 的值(2) 将抛物线向上平移若干个单位得到的新抛物线恰好经过点B ,求新抛物线的解析式.(3) 设〔2〕中的新抛物线的顶点为P 点,Q 为新抛物线上P 点至B 点之间一点,以点Q 为圆心画圆,当⊙Q 与x 轴和直线BC 都相切时,联结PQ 、BQ ,求四边形ABQP 的面积.25. 〔本题满分14分〕如图,已知△ABC 是等边三角形,AB =4,D 是AC 边上一动点〔不与A 、C 重合〕,EF 垂直平分BD ,分别交AB 、BC 于点E 、F ,设CD =x ,AE =y .(1) 求证:△AED ∽△CDF ;(2) 求y 关于x 的函数关系式,并写出定义域;(3) 过点D 作DH ⊥AB ,垂足为点H ,当EH =1时,求线段CD 的长.F E D2014学年嘉定区九年级第一次质量调研数学试卷〔满分150分,考试时间100分钟〕考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:〔本大题共6题,每小题4分,满分24分〕[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.对于抛物线2)2(-=x y ,下列说法正确的是〔▲〕〔A 〕顶点坐标是)0,2(;〔B 〕顶点坐标是)2,0(;〔C 〕顶点坐标是)0,2(-;〔D 〕顶点坐标是)2,0(-.2.已知二次函数bx ax y +=2的图像如图1所示,那么a 、b 的符号为〔▲〕〔A 〕0>a ,0>b ;〔B 〕0<a ,0>b ;〔C 〕0>a ,0<b ;〔D 〕0<a ,0<b .3.在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边,下列等式中正确的是〔▲〕〔A 〕c a A =cos ;〔B 〕b c B =sin ;〔C 〕b a B =tan ;〔D 〕a b A =cot . 4.如图2,已知AB ∥CD ,AD 与BC 相交于点O , 2:1:=DO AO ,那么下列式子正确的是〔▲〕 〔A 〕2:1:=BC BO ;〔B 〕1:2:=AB CD ;〔C 〕2:1:=BC CO ;〔D 〕1:3:=DO AD . 5.已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b 的是〔▲〕〔A 〕a =b 2-;〔B 〕c a =,c b 3=;〔C 〕c b a =+2,c b a -=-;〔D=.6.在△ABC 中,︒=∠90C ,cm AC 3=,cm BC 4=.以点A 为圆心,图1 AB C DO图2半径为cm 3的圆记作圆A ,以点B 为圆心,半径为cm 4的圆记作圆B ,则圆A 与圆B 的位置关系是〔▲〕〔A 〕外离;〔B 〕外切;〔C 〕相交;〔D 〕内切.二、填空题:〔本大题共12题,每小题4分,满分48分〕7.如果函数2)1(x a y -=是二次函数,那么a 的取值X 围是 ▲ .8.在平面直角坐标系中,如果把抛物线22+=x y 向上平移2个单位,那么所得抛物线的表达式为 ▲ .9.已知抛物线122-+=x x y 的对称轴为l ,如果点)0,3(-M 与点N 关于这条对称轴l 对称,那么点N 的坐标是 ▲ .10.请写出一个经过点)1,0(,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的表达式可以是 ▲ .11.已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b ▲ .12.如果两个相似三角形的周长比为2:1,那么它们的对应中线的比为 ▲ .13.如图3,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于点F ,2=AB ,EC BE 3=,那么DF 的长为 ▲ . 14.在△ABC 中,︒=∠90C ,1312sin =A ,12=BC ,那么=AC ▲ . 15.小杰在楼上点A 处看到楼下点B 处的小丽的俯角是︒36,那么点B 处的小丽看点A 处的小杰的仰角是 ▲ 度.16.正九边形的中心角等于 ▲ 度.17.如图4,AB 、AC 都是圆O 的弦,AB OM ⊥,AC ON ⊥,垂足分别为点M 、N ,如果6=BC ,那么=MN ▲ .18.在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D 〔如图5〕,△ABD 沿直线AD翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠211,那么=BD ▲ . 三、解答题:〔本大题共7题,满分78分〕19.〔本题满分10分〕 计算:︒-+︒⋅︒+︒-45cos 21260tan 30cot 2130sin 1. N M O C B A 图4D F A B C D 图520.〔本题满分10分〕已知二次函数)0(22≠+-=m n x mx y 的图像经过点)1,2(-和)2,1(-,求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴.21.〔本题满分10分,每小题各5分〕如图6,已知AB 是圆O 的直径,10=AB ,弦CD 与AB 相交于点N ,︒=∠30ANC ,3:2:=AN ON ,CD OM ⊥,垂足为点M . 〔1〕求OM 的长;〔2〕求弦CD 的长. 22.〔本题满分10分,每小题各5分〕 如图7,某地下车库的入口处有斜坡AB ,它的坡度为2:1=i ,斜坡AB度为AH 〔BC AH ⊥〕,为了让行车更安全,现将斜坡的坡角改造为︒14〔图中的︒=∠14ACB 〕. 〔1〕求车库的高度AH ;〔2〕求点B 与点C 之间的距离〔结果精确到1米〕. 〔参考数据:24.014sin =︒,97.014cos =︒,25.014tan =︒,01.414cot =︒〕 23.〔本题满分12分,每小题各6分〕已知:如图8,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,BAD CDG ∠=∠.〔1〕求证:AC AG AB AD =; 〔2〕当BC GC ⊥时,求证:︒=∠90BAC .24.〔本题满分12分,每小题各4分〕如图9,在平面直角坐标系xoy 中,点A 坐标为)0,8(,点B 在y 轴的正半轴上,且34cot =∠OAB ,抛物线c bx x y ++-=241经过A 、B 两点. 〔1〕求b 、c 的值;〔2〕过点B 作OB CB ⊥,交这个抛物线于点C ,以点C为圆心,CB 为半径长的圆记作圆C ,以点A 为圆心,r为半径长的圆记作圆A .若圆C 与圆A 外切,求r 的值;〔3〕若点D 在这个抛物线上,△AOB 的面积是△OBD 面积的8倍,求点D 的坐标. 25.〔本题满分14分,其中第〔1〕小题4分,第〔2〕小题5分,第〔3〕小题5分〕已知在△ABC 中,8==AC AB ,4=BC ,点P 是边AC 上的一个动点,ABC APD ∠=∠,AD ∥BC ,联结DC .图8 B 图6 A BC H图7〔1〕如图10,如果DC ∥AB ,求AP 的长;〔2〕如图11,如果直线DC 与边BA 的延长线交于点E ,设x AP =,y AE =,求y 关于x 的函数解析式,并写出它的定义域;〔3〕如图12,如果直线DC 与边BA 的反向延长线交于点F ,联结BP ,当△CPD 与△CBF 相似时,试判断线段BP 与线段CF 的数量关系,并说明你的理由.2014学年奉贤区调研测试 九年级数学2015.01 〔满分150分,考试时间100分钟〕 一、选择题:〔本大题共6题,每题4分,满分24分〕[每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂] 1.已知y x 23=,那么下列等式一定成立的是〔▲〕 A .3,2==y x ;B .23=y x ;C .32=y x ;D .023=+y x . 2.在Rt △ABC 中,∠ACB =90°,BC =1,AC =2,则下列结论正确的是〔▲〕A .sin A =32;B .tan A =12; C .cos B =32; D .tan B =3. 3.抛物线221x y -=的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为〔▲〕 A .<0,-2> ;B . <0,2>;C .<-2,0>;D .<2,0>.4.在直角坐标平面中,M 〔2,0〕,圆M 的半径为4 ,那么点P 〔-2,3〕与圆M 的位置关系是〔▲〕A .点P 在圆内;B .点P 在圆上;C .点P 在圆外;D .不能确定.5.一斜坡长为10米,高度为1米,那么坡比为〔▲〕A .1:3;B .1:31;C .1:10;D .1:1010. 6.在同圆或等圆中,下列说法错误的是〔▲〕A .相等弦所对的弧相等;B .相等弦所对的圆心角相等;C .相等圆心角所对的弧相等;D .相等圆心角所对的弦相等.二、填空题:〔本大题共12题,每题4分,满分48分〕[请将结果直接填入答题纸的相应位置]7.若→a 与→e 方向相反且长度为3,那么→a =▲→e ;8.若α为锐角,已知cos α=21,那么tan α=▲; 9.△ABC 中,∠C =90°,G 为其重心,若CG =2,那么AB =▲; 10.一个矩形的周长为16,设其一边的长为x ,面积为S ,则S 关于x 的函数解析式是▲;A B C DP 图12 F AB C D P 图10 B A C D P图11 E <第15题图>11.如果抛物线12-+=mx x y 的顶点横坐标为1,那么m 的值为▲; 12.正n 边形的边长与半径的夹角为75°,那么n=▲; 13.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形上看,它最具美感,现在想要制作一X"黄金矩形〞的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边长等于▲厘米;14.已知抛物线经过点<5,-3>,其对称轴为直线x =4,则抛物线一定经过另一点的坐标是▲;15.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,若△PEF 的面积为3,那么△PDC 与△PAB 的面积和等于▲;16.已知圆A 与圆B 内切,AB =10,圆A 半径为4,那么圆B 的半径为▲;17.已知抛物线2)1(2++=x a y 过〔0,y 1〕、〔3,y 2〕,若y 1> y 2,那么a 的取值X 围是▲;18.已知在△ABC 中,∠C=90o ,AC=3,BC=4.在平面内将△ABC 绕B 点旋转,点A 落到A ’,点C 落到C ’,若旋转后点C 的对应点C ’和点A 、点B 正好在同一直线上,那么∠A ’AC ’的正切值等于▲;三、解答题:〔本大题共7题,满分78分〕19.〔本题满分10分〕计算:︒-︒-︒︒60cot 2345tan 60sin 230sin 2 20.〔本题满分10分,第〔1〕小题满分7分,第〔2〕小题满分3分〕一个弓形桥洞截面示意图如图所示,圆心为O ,弦AB 是水底线,OC ⊥AB ,AB =24m ,sin ∠COB =1312,DE 是水位线,DE ∥AB . 〔1〕当水位线DE =304m 时,求此时的水深;〔2〕若水位线以一定的速度下降,当水深8m 时,求此时∠ACD 的余切值.21.〔本题满分10分,每小题满分各5分〕如图,在△ABC 中,AB=AC =12,DC =4,过点C 作CE ∥AB 交BD 的延长线于点E ,→→→→==b BC a AB ,,〔1〕求→BE 〔用向量a 、b 的式子表示〕;<2〕求作向量→→+AC BD 21〔不要求写作法,但要指出所 作图中表示结论的向量〕. 22.〔本题满分10分〕在某反潜演习中,我军舰A 测得潜艇C 的俯角为300,位于军舰A 正上方2000米的反潜直升机B 测得潜艇C 的俯角为680,试根据以上数据求出潜艇C 离开海平面的下潜深度.〔结果保留整数.参考数据:sin680≈0.9,cos680≈0.4,tan680≈2.5,3≈1.7>23.〔本题满分12分,每小题满分各6分〕 如图,在四边形ABCD 中,∠B =∠ACD ,过D 作AC ∥DE 交BC 的延长线于点E ,且2CD AC DE =⋅第20题图 B 第22题图B 第21题图 A D EC B A。

2015年上海市徐汇区高三一模数学试卷(文科含答案WORD)

2015年上海市徐汇区高三一模数学试卷(文科含答案WORD)

2014学年第一学期徐汇区学习能力诊断卷高三数学(文科)一.填空题 1. 已知3sin 5θ=-,则cos 2θ= ; 【答案】7252. 若实数x ,y 满足4xy =,则224x y +的最小值 ; 【答案】163. 设i 是虚数单位,复数z 满足(2)5i z +⋅=,则||z = ;4. 函数2()2f x x =-(0x <)的反函数1()f x -= ;【答案】(2)x >-5. 若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则该抛物线的准线方程 为 ; 【答案】2x =-6. 若正四棱柱1111ABCD A BC D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是 ;(结果用反三角函数值表示)【答案】7. 已知无穷等比数列{}n a 的各项和为1,则首项1a 的取值范围为 ; 【答案】(0,1)(1,2)8. 若全集U R =,不等式11111x x+>-的解集为A ,则U C A = ;【答案】[1,0]-9. 设数列{}n a 的前n 项和为n S ,若11a =,11122n n S a ++=(*n N ∈),则{}n a 的通项公 式为 ; 【答案】13n -10. 已知圆22:(1)(1)2C x y -+-=,方向向量(1,1)d =的直线l 过点(0,4)P ,则圆C 上的点到直线l 的距离的最大值为 ;【答案】11. 如图:在梯形ABCD 中,AD ∥BC 且12AD BC =,AC 与BD 相交于O ,设A B a =, AD b =,用a ,b 表示BO ,则BO = ;【答案】2233a b -+ 12. 已知函数()2sin(2)6f x x π=+,将()y f x =的图像向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图像,若()y g x =的图像上各最高点到点(0,3)的距离的最小值 为1,则ϕ的值为 ; 【答案】6π 13. 在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点A ,B ,若A ,B 关 于原点对称,则称点对(,)A B 是函数()y f x =的一组“奇点对”(规定(,)A B 与(,)B A 是相同的“奇点对”),函数24(0)12(0)2x x x x x -+>⎧⎪⎨+<⎪⎩的“奇点对”的组数是 ;【答案】214. 设集合1234{(,,,)|{1,0,1},1,2,3,4}i A x x x x x i =∈-=,则集合A 中满足条件“12341||||||||3x x x x ≤+++≤”的元素个数为 ; 【答案】64二.选择题15.若1+是关于x 的实系数一元二次方程20x bx c ++=的一个复数根,则( ) A. 2,3b c =-=; B. 2,1b c ==-; C. 2,1b c =-=-; D. 2,3b c ==; 【答案】A16. 已知直线l 和平面α,无论直线l 和平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l ( )A. 相交;B. 平行;C. 垂直;D. 异面; 【答案】C17. 若函数()log ()a f x x b =+的图像如图所示(其中,a b 为常数),则函数()xg x a b =+ 的大致图像是( )A. B. C. D. 【答案】D18. 某电商“双十一”期间用电子支付系统进行商品买卖,全部商品共有n 类(*n N ∈),分别编号为1,2,…,n ,买家共有m 名(*m N ∈,m n <),分别编号为,1,2,…,m ,若1,0,ij i j a i j ⎧=⎨⎩第名买家购买第类商品第名买家不购买第类商品,1i m ≤≤,1j n ≤≤,则同时购买第1类和第2类商品的人数是( )A. 1112121222......m m a a a a a a +++++++;B. 1121112222......m m a a a a a a +++++++;C. 1112212212...m m a a a a a a +++;D. 1121122212...m m a a a a a a +++; 【答案】C三.解答题19. 已知函数()sin()4f x A x π=+,x R ∈,且53()122f π=; (1)求A 的值;(2)若3()()2f f θθ+-=,(0,)2πθ∈,求3()4f πθ-;【答案】(1(2)420. 已知函数()22xxf x k -=+⋅(k R ∈); (1)若函数()f x 为奇函数,求k 的值;(2)若函数()f x 在(,2]-∞上为减函数,求k 的取值范围; 【答案】(1)1k =-;(2)16k ≥21. 如图所示,某传动装置由两个陀螺1T ,2T 组成,陀螺之间没有滑动,每个陀螺都由具有 公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的13, 且1T ,2T 的轴相互垂直,它们相接触的直线与2T 的轴所成角2arctan 3θ=,若陀螺2T 中圆 锥的底面半径为r (0r >);(1)求陀螺2T 的体积;(2)当陀螺2T 转动一圈时,陀螺1T 中圆锥底面圆周上一点P 转动到点1P ,求P 与1P 之间的距离;【答案】(1)32954r π;(222. 已知椭圆2214x y γ+=:的右焦点为F ,左顶点为R ,点(2,1)A ,(2,1)B -,O 为坐标原点;(1)若P 是椭圆γ上任意一点,OP mOA nOB =+,求22m n +的值; (2)设Q 是椭圆γ上任意一点,(,0)S t ,(2,5)t ∈,求QS QR ⋅的取值范围;(3)过F 作斜率为k 的直线l 交椭圆γ于,C D 两点,交y 轴于点E ,若1EC CF λ=,2ED DF λ=,试探究12λλ+是否为定值,说明理由;【答案】(1)12;(2)2(1)[,0]3t +-;(3)为定值8-23. 已知有穷数列{}n a 各项均不相等,将{}n a 的项从大到小重新排序后相应的项数构成新数列{}n p ,称{}n p 为{}n a 的“序数列”,例如数列:123,,a a a 满足132a a a >>,则其序数 列{}n p 为1,3,2;(1)若,x y R +∈,2x y +=且x y ≠,写出数列:1,xy ,222x y +的序数列并说明理由;(2)求证:有穷数列{}n a 的序数列{}n p 为等差数列的充要条件是有穷数列{}n a 为单调数列;(3)若项数不少于5项的有穷数列{}n b 、{}n c 的通项公式分别是3()5nn b n =⋅(*n N ∈),2n c n tn =-+(*n N ∈),且{}n b 的序数列与{}n c 的序数列相同,求实数t 的取值范围; 【答案】(1)2212x y xy +>>,序数列为3,1,2; (2)略; (3)45t <<;。

2015上海数学各区一模试题归类

2015上海数学各区一模试题归类

2015 上海数学各区一模试题归类第一部分 选择题一、 二次函数1. (徐汇)将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为( )A. 22(1)2y x =--+;B. 22(1)2y x =---;C. 22(1)2y x =-++;D. 22(1)2y x =-+-;2. (徐汇)已知二次函数222y ax x =-+(0a >),那么它的图像一定不经过( )A. 第一象限;B. 第二象限;C. 第三象限;D. 第四象限;3. (六区)将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为( )A. 2(1)y x =+;B. 2(3)y x =-;C. 2(1)2y x =-+;D. 2(1)2y x =--;4. (六区)一个小球被抛出后,如果距离地面的高度h (米)和运行时间t (秒)的函数解析式为25101h t t =-++,那么小球到达最高点时距离地面的高度是( )A. 1米;B. 3米;C. 5米;D. 6米;5. (崇明)如果二次函数2y ax bx c =++的图像如图1-1-1,那么下列判断中,不正确的是( )A. 0a >B. 0b >C. 0c <D. 240b ac ->6. (崇明)将二次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数 表达式为( )A. 2(1)1y x =++B. 2(1)1y x =+-C. 2(1)1y x =-+D. 2(1)1y x =--7. (长宁)抛物线22212,2,2y x y x y x ==-=共有的性质是( ) A. 开口向下; B. 对称轴是y 轴 C. 都有最低点 D. y 的值随x 的增大而减小8. (嘉定)对于抛物线2)2(-=x y ,下列说法正确的是( )A. 顶点坐标是)0,2(;B. 顶点坐标是)2,0(;C. 顶点坐标是)0,2(-;D. 顶点坐标是)2,0(-.9. (嘉定)已知二次函数bx ax y +=2的图像如图1-1-2所示,那么a 、b 的符号为( )A. 0>a ,0>b ;B. 0<a ,0>b ;C. 0>a ,0<b ;D. 0<a ,0<b .1-1-1 y x O O xy 1-1-2O x yO x y O x y O x y 10.(奉贤)抛物线221x y -=的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为( ) A .(0,-2) ; B . (0,2); C .(-2,0); D .(2,0).11.(虹口)已知点,均在抛物线上,下列说法中,正确的是( )A .若,则;B .若,则;C .若,则;D .若,则.12.(虹口)二次函数(a 为常数)的图像如图1-1-3所示,则的取值范围为( )A . ;B .;C . ;D ..13.(金山)抛物线122+=x y 的顶点坐标是( )A. )1,2(;B. )1,0(;C. )0,1(;D. )2,1(. 14.(金山)已知反比例函数)0(≠=a xa y ,当0 x 时,它的图像y 随x 的增大而减小,那么二次函数 ax ax y -=2 的图像只可能是( )A. B. C. D.15.(闸北)在下列y 关于x 的函数中,一定是二次函数的是 ( ) A. 2x y =; B. 21xy =; C. 2kx y =; D. x k y 2=. 16.(普陀)如果二次函数2y ax bx c =++(0a ≠)的图像如图1-1-4,那么() A. 0a <,0b >,0c >; B. 0a >,0b <,0c >;C. 0a >,0b <,0c <;D. 0a >,0b >,0c <;二、 比例线段1.(徐汇) 如图1-2-1,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是( )A. 2BE EC =;B. 13EC AD =;C. 23EF AE =;D. 23BF DF =; 2. (六区)如图1-2-2,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于( ) A. 2; B. 4; C. 24; D. 365;FA CB E1-2-1 1-2-3B C D E y x O 1-1-4yx O3. (崇明)已知52a b =,那么下列等式中,不一定正确的是 ( ) A. 25a b = B. 52a b = C. 7a b += D. 72a b b += 4. (宝山)如图1-2-3,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误 的是( )A. AD AE DB EC =;B. AD DE DB BC =;C. AD AE AB AC =;D. AD DE AB BC=; 5. (嘉定)如图1-2-4,已知AB ∥CD ,AD 与BC 相交于点O , 2:1:=DO AO ,那么下列式子正确的是( )A. 2:1:=BC BO ;B. 1:2:=AB CD ;C. 2:1:=BC CO ;D. 1:3:=DO AD .6. (奉贤)已知y x 23=,那么下列等式一定成立的是( )A .3,2==y x ;B .23=y x ;C .32=y x ; D .023=+y x . 7. (闸北)如果点G 是△ABC 的重心,联结AG 并延长,交对边BC 于点D ,那么AG ︰AD 是( )A. 2︰3 ;B. 1︰2;C. 1︰3 ;D. 3︰4. 8. (闸北)已知点D 、E 分别在△ABC 的边AB 、AC 上,下列给出的条件中,不能判定DE ∥B C 的是( )A. BD ︰AB = CE ︰AC ;B. DE ︰BC = AB ︰AD ;C. AB ︰AC = AD ︰A E ;D. AD ︰DB = AE ︰EC .9. (普陀)如图1-2-5,直线1l ∥2l ∥3l ,两直线AC 和DF 与1l ,2l ,3l 分别相交于点A 、B 、C 和 点D 、 E 、F ,下列各式中,不一定成立的是( )A. AB DE BC EF =;B. AB DE AC DF =;C. AD BE BE CF =;D. EF BC FD CA=;三、 相似三角形1. (徐汇)如图1-3-1,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A B C D O 1-2-4 1-2-5 F E D C B A l 1l lA. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅;D. DC AB AC BC =; 2. (徐汇)如图1-3-2,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC , 如果:1:4AE EC =,那么:ADE BEC S S ∆∆=( )A. 1:24;B. 1:20;C. 1:18;D. 1:16;3. (六区)如图1-3-3,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对角线AC 与BD 相交 于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论 中,不正确的是( )A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅;4. (崇明)如图1-3-4 ,点D 、E 、F 、G 为ABC ∆两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC∆的面积三等分,那么下列结论正确的是( )A. 14DE FG =B. 1DF EG FB GC ==C. 32AD FB =+D. 22AD DB = 5. (长宁)如果两个相似三角形的面积比是1:6,那么它们的相似比是( )A .1:36 B.1:6 C. 1:3 D. 1: 66. (长宁)如图1-3-5,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DE M ∽△ABC (点D 和点A 对应,点B 和E 对应),则点M 对应是F 、G 、H 、K 四点中的( )A. FB. GC. KD. H7. (虹口)如图1-3-6,∠BAD =∠CAE ,添加下列一个条件后,仍不能确定△ABC ∽△ADE 的是( )A .∠B =∠D ; B .∠C =∠AED ; C .; D ..8. (虹口)如图1-3-7,在△ABC 中,D 、E 分别是边AB 、BC 上的点,且DE ∥AC ,若,则的值为( )A .;B .;C .;D ..9. (金山)已知ABC ∆∽DEF ∆,点A 、B 、C 对应点分别是D 、E 、F ,4:9:=DE AB ,那么1-3-1 A C B D A B C D E 1-3-2 1-3-3 S 3S 4S 2S 1O A C B D 1-3-4 A B C D E F G 1-3-5 A B C E D 1-3-6 AB C E D 1-3-7 ODEF ABC S S ∆∆:等于( )A. 3:2;B. 9:4;C. 16:81;D. 81:16.10.(闸北)如图1-3-8,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米. 他继续往前走3米到达点E 处(即CE =3米),测得自己影子EF 的长为2米.已知小明的身高是1.5米,那么路灯A 的高度AB 是( )A. 4.5米;B. 6米;C. 7.2米;D. 8米.11.(普陀)用一个2倍放大镜照一个△ABC ,下面说法中错误的是( )A. △ABC 放大后,是原来的2倍;B. △ABC 放大后,各边长是原来的2倍;C. △ABC 放大后,周长是原来的2倍;D. △ABC 放大后,面积是原来的4倍;四、 直角三角形锐角比1. (徐汇)已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为( ) A. 7sin α; B. 7cos α; C. 7tan α; D. 7cot α;2. (六区)如果把Rt ABC ∆的三边长度都扩大2倍,那么锐角A 的四个三角比的值( )A. 都扩大到原来的2倍;B. 都缩小到原来的12; C. 都没有变化; D. 都不能确定;3. (六区)已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于( )A. 2sin m α⋅;B. 2cos m α⋅;C. 2tan m α⋅;D. 2cot m α⋅; 4. (崇明)在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不一定 成立的是( )A. tan b a B =B. cos a c B =C. sin ac A = D. cos a b A =5. (宝山)如图1-4-1,在直角△ABC 中,90C ∠=︒,1BC =,2AC =)A. 30A ∠=︒;B. 45A ∠=︒;C. 2cot 2A =;D. 2tan 2A =;1-4-11-3-8 AD6. (长宁)在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于( )A .35 B. 45 C. 34 D. 437. (嘉定)在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边,下列等式中正确的是( )A. c a A =cos ;B. b c B =sin ;C. b a B =tan ;D. ab A =cot . 8. (奉贤)在Rt △ABC 中,∠ACB =90°,BC =1,AC =2,则下列结论正确的是( ) A .sin A =32; B .tan A =12; C .cos B =32; D .tan B =3. 9. (奉贤)一斜坡长为10米,高度为1米,那么坡比为( )A .1:3;B .1:31; C .1:10; D .1:1010. 10.(虹口)在Rt △ABC 中,,AC=5,BC=13,那么的值是( )A . ;B .;C .;D ..11.(金山)在ABC Rt ∆中, ︒=∠90C ,3,5==BC AB ,那么A sin 的值等于( )A. 43;B. 34;C. 53;D. 54. 12.(闸北)在直角△ABC 中,∠C =90°,∠A 、∠B 与∠C 的对边分别是a 、b 和c ,那么下列关系中, 正确的是( )A. cos A =c a ;B. tan A =a b ;C. sin A =c a ;D. cot A =ba . 13.(普陀)在Rt △ABC 中,已知90ACB ∠=︒,1BC =,2AB =,那么下列结论正确的是( )A. 3sin 2A =; B. 1tan 2A =; C. 3cos 2B =; D. 3cot 3B =;五、 平面向量1. (宝山)已知非零向量a 、b 、c ,下列命题中是假命题的是( )A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ; 2. (嘉定)已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b 的是( )A. a =b 2-;B. c a =,c b 3=;C. c b a =+2,c b a -=-;D. b a =.3. (虹口)如果,,且,那么与是( )A .与是相等向量;B .与是平行向量;C .与方向相同,长度不同;D .与方向相反,长度相同.4. (闸北)下列有关向量的等式中,不一定成立的是( )A. AB =-BA ;B. ︱AB ︱=︱BA ︱;C. AB +BC =AC ;D. ︱AB +BC ︱=︱AB ︱+︱BC |.5. (普陀)下列判断错误的是( )A. 00a =;B. 如果12a b =(b 为非零向量),那么a ∥b ; C. 设e 为单位向量,那么||1e =; D. 如果||||a b =,那么a b =或a b =-;六、 圆1. (崇明)下列说法正确的是 ( )A. 相切两圆的连心线经过切点B. 长度相等的两条弧是等弧C. 平分弦的直径垂直于弦D. 相等的圆心角所对的弦相等2. (宝山)如果在两个圆中有两条相等的弦,那么( )A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;3. (宝山)已知圆O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与圆O 的位置关系 为( )A. 相切;B. 相交;C. 相切或相离;D. 相切或相交;4. (长宁)已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为( )A. 1或7B. 1C. 7D. 25. (嘉定)在△ABC 中,︒=∠90C ,cm AC 3=,cm BC 4=.以点A 为圆心,半径为cm 3的圆记作 圆A ,以点B 为圆心,半径为cm 4的圆记作圆B ,则圆A 与圆B 的位置关系是( )A. 外离;B. 外切;C. 相交;D. 内切.6. (奉贤)在直角坐标平面中,M (2,0),圆M 的半径为4 ,点P (-2,3)与圆M 的位置关系是( )A .点P 在圆内;B .点P 在圆上;C .点P 在圆外;D .不能确定.7. (奉贤)在同圆或等圆中,下列说法错误的是( )A .相等弦所对的弧相等;B .相等弦所对的圆心角相等;C .相等圆心角所对的弧相等;D .相等圆心角所对的弦相等.8. (金山)正多边形的中心角是36º,那么这个正多边形的边数是( )A. 10;B. 8;C. 6;D. 5.9. (金山)已知⊙M 与⊙N 的半径分别为1和5,若两圆相切,那么这两圆的圆心距MN 的长等于( )A. 4;B. 6;C. 4或5;D. 4或610.(普陀)下列命题中,正确的个数是( )(1)三点确定一个圆; (2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等; (4)正五边形是轴对称图形;A. 1个;B. 2个;C. 3个;D. 4个;七、 综合1. (宝山)如图1-7-1边长为3的等边△ABC 中,D 为AB 的三等分点(12AD BD =),三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为( )A. B. C. D. 2. (长宁)如图1-7-2,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动的 过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图 象大致为图中的( )A. B. C. D.第二部分 填空题一、 二次函数1. (徐汇)抛物线2(1)2y x =-+的顶点坐标是 ;2. (徐汇)二次函数245y x x =--的图像的对称轴是直线 ;3. (徐汇)若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是 (填12y y >,12y y =或12y y <);4. (六区)二次函数2253y x x =--+的图像与y 轴的交点坐标为 ;5. (六区)如果抛物线2(3)5y a x =+-不经过第一象限,那么a 的取值范围是 ;6. (六区)已知二次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个二次函数的图像一 1-7-1A B C DE 1-7-2定经过除点(1,3)外的另一点,这点的坐标是 ; 7. (崇明)如果二次函数22(1)51y m x x m =-++-的图像经过原点,那么m = ;8. (崇明)抛物线221y x =-在y 轴右侧的部分是 (填“上升”或“下降”);9. (崇明)如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达 式为 ;10.(崇明)已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是 ;11.(宝山)抛物线2(3)4y x =--+的对称轴是 ;12.(宝山)不经过第二象限的抛物线2y ax bx c =++的开口方向向 ;13.(宝山)已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>, 则1y 2y ;14.(长宁)抛物线23(1)2y x =--+的顶点坐标是________;15.(长宁)抛物线223y x =-向左移动3个单位后所得抛物线解析式是________;16.(长宁)已知二次函数227y x x =+-的一个函数值是8,那么对应自变量x 的值是_________.17.(长宁)已知二次函数2(1)2y ax a x =-+-,当x >1时,y 的值随x 的增大而增大,当x <1时,y 的值 随x 的增大而减小,则实数a 的值为_________.18.(长宁)某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长 率都是x ,则该厂今年第三月新品研发资金y (元)关于x 的函数关系式为y =_________.19.(嘉定)如果函数2)1(x a y -=是二次函数,那么a 的取值范围是 ;20.(嘉定)在平面直角坐标系中,如果把抛物线22+=x y 向上平移2个单位,那么所得抛物线的 表达式为 .21.(嘉定)已知抛物线122-+=x x y 的对称轴为l ,如果点)0,3(-M 与点N 关于这条对称轴l 对称, 那么点N 的坐标是 .22.(嘉定)请写出一个经过点)1,0(,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的 表达式可以是 .23.(奉贤)一个矩形的周长为16,设其一边的长为x ,面积为S ,则S 关于x 的函数解析式是 ;24.(奉贤)如果抛物线12-+=mx x y 的顶点横坐标为1,那么m 的值为 ;25.(奉贤)已知抛物线经过点(5,-3),其对称轴为直线x =4,则抛物线一定经过另一点的坐标是 ;26.(奉贤)已知抛物线2)1(2++=x a y 过(0,y 1)、(3,y 2),若y 1> y 2,那么a 的取值范围是 ;27.(虹口)抛物线与y 轴交点的坐标为 .28.(虹口)抛物线向左平移2个单位得到的抛物线表达式为 .29.(虹口)若抛物线的对称轴是直线,则 .30.(虹口)请你写出一个..b 的值,使得函数,在时,y 的值随着x 的值增大而增大,则b 可以是 ▲ .31.(金山)将抛物线11-22+=)(x y 向上平移3个单位,那么平移后得到的抛物线的解析式是 32.(闸北)如果抛物线2)1(x m y -=的开口向上,那么m 的取值范围是 .33.(闸北)将抛物线5)3(2+--=x y 向下平移6个单位,所得到的抛物线的顶点坐标为 .34.(闸北)已知抛物线经过A (0,-3)、B (2,-3)、C (4,5),判断点D (-2,5)是否在该抛物线 上.你的结论是: (填“是”或“否”).35.(普陀)二次函数223y x x =--的图像与y 轴的交点坐标是 ;36.(普陀)如果将抛物线22y x =-平移,使顶点移到点(3,1)P -的位置,那么所得新抛物线的表达式 是 ;37.(普陀)用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x 厘米,面积为y 平 方厘米,写出y 关于x 的函数解析式: ;二、 比例线段1. (徐汇)如果53a b =,那么a b a b-+的值等于 ; 2. (徐汇)如图2-2-1,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC = ;3. (徐汇)如图2-2-2,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为 ;4. (六区)已知4y =,那么22x y x y-=+; 5. (六区)已知线段4a cm =,9b cm =,那么线段a 、b 的比例中项等于cm ;6. (六区)如图2-2-3,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =, 2-2-2 2-2-3要使DE ∥AB ,那么:BC CD 应等于 ;7. (六区)已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于 ;8. (崇明)已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm ,那么线段AP = cm ; 9. (崇明)如图2-2-4,已知在ABC ∆中,90ACB ∠=︒,6AC =,点G 为重心,GH BC ⊥,垂足为点H , 那么GH = 10.(宝山)线段b 是线段a 和c 的比例中项,若1a =,2b =,则c = ; 11.(长宁)已知线段a =2c m ,c =8c m ,则线段a 、c 的比例中项是_________c m ;12.(嘉定)已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b . 13.(奉贤)△ABC 中,∠C =90°,G 为其重心,若CG =2,那么AB = ;14.(奉贤)相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形上看,它最具美感,现在要制 作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边长等于 厘米; 15.(虹口)若,则 .16.(虹口)如图2-2-5,已知AB ∥CD ∥EF ,它们依次交直线、于点A 、D 、F 和点B 、C 、E ,如果 AD =6,DF =3,BC =5,那么BE = . 17.(金山)已知23x y =,那么=+-y x yx ; 18.(金山)如图2-2-6,已知ABC ∆中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,若4=AD ,2=BD ,3=DE ,那么=BC19.(闸北)已知y x =25,则yyx -的值是 . 20.(闸北)如果点P 是线段AB 的黄金分割点,且AP >PB ,那么APBP的比值是 . 21.(闸北)如图2-2-7,在平行四边形ABC D 中,点E 在BC 边上,且CE ︰BC =2︰3,AC 与DE 相交于 点F ,若S △AFD =9,则S △EFC = .2-2-4 ABCH G·2-2-5B AC D EF2-2-6BCDE2-2-7A B CEF 2-2-822.(普陀)已知:5:2x y =,那么():x y y += ;23.(普陀)如图2-2-8,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,与边AC 相交于点E , 如果3AD =,4BD =,2AE =,那么AC = ;24.(普陀)已知线段MN 的长为2厘米,点P 是线段MN 的黄金分割点,那么较长的线段MP 的长 是 厘米;三、 相似三角形1 . (徐汇)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m ;2. (崇明)如果两个相似三角形的面积比为1:4,那么它们的周长比为 ;3. (宝山)两个相似三角形的相似比为2:3,则它们的面积比为 ;4. (宝山)已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20, 则△DEF 的周长为 ;5. (宝山)如图2-3-1,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =, 则CE = ;6. (长宁)如图2-3-2,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联 结DE ,则S △ABC :S △GED 的值为_________.7. (嘉定)如果两个相似三角形的周长比为2:1,那么它们的对应中线的比为 .8. (嘉定)如图2-3-3,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于F ,2=AB ,EC BE 3=,那么DF 的长为 .9. (奉贤)如图2-3-4,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,若△PEF 的 面积为3,那么△PDC 与△P AB 的面积和等于 ;10.(虹口)如图2-3-5,在Rt △ABC 中,∠C=90°,点G 是△ABC 的重心,如果AC=, AG =2, 那么AB= .11.(虹口)如图2-3-6,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上), 那么 的值为 .C 2-3-5D A B G 2-3-4 2-3-1 B DE 2-3-2 GED C B A A C DE 2-3-3C A B2-3-6E DF C A B D F G2-3-712.(闸北)如图2-3-7,正方形DEFG 内接于Rt △ABC ,∠C =90°,AE =4,BF =9 ,则tan A = . 13.(闸北)如图2-3-8,梯形ABCD 中,AD //BC ,AB =DC ,点P 是AD 边上一点,联结PB 、PC ,且PD AP AB ⋅=2,则图中有 对相似三角形.14.(普陀)我们定义:如果一个图形上的点A '、B '、...、P '和另一个图形上的点A 、B 、...、P 分别 对应,且满足:(1)直线AA '、BB '、...、PP '都经过同一点O ;(2)...OA OB OP k OA OB OP'''====, 那么这两个图形叫做位似图形,点O 叫做位似中心,k 叫做位似比,如图2-3-9,在平面直角坐标系中, △ABC 和△A B C '''是以坐标原点O 为位似中心的位似图形,且OB BB '=,如果点5(,3)2A ,那么点A '的坐标为 ;四、直角三角形锐角比1. (徐汇)计算:cot30sin60︒-︒= ;2. (徐汇)如图2-4-1是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2, 则斜坡AB 的长为 米(保留根号);3. (徐汇)如图2-4-2,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM = ;4. (六区)在Rt ABC ∆中,90C ∠=︒,如果6AB =,2cos 3A =,那么AC = ; 5. (六区)如图2-4-3,当小杰沿着坡度1:5i =的坡面由B 到A 直行走了26米时,小杰实际上升的高度i = 1:2BDAEC2-4-1NPA M2-4-22-4-3ACB2-3-8ABDP2-3-9AC = 米(结论可保留根号)6. (六区)已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时(如图2-4-4),AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时(如图2),AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH = 米7. (崇明)某飞机的飞行高度为1500m ,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制 点的距离为 m .8. (崇明)如图2-4-5,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45︒, 斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为 米.9. (宝山)在△ABC 中,3cot 3A =,3cos 2B =,那么C ∠= ; 10.(宝山)B 在A 北偏东30°方向(距A )2千米处,C 在B 的正东方向(距B )2千米处,则C 和A 之间的距离为 千米;11.(长宁)如图2-4-6所示,铁路的路基横断面都是等腰梯形,斜坡AB 的坡度为1:3,斜坡AB 的水平 宽度BE =33m ,则斜坡AB =_________m. 12.(嘉定)在△ABC 中,︒=∠90C ,1312sin =A ,12=BC ,那么=AC . 13.(嘉定)小杰在楼上点A 处看到楼下点B 处的小丽的俯角是︒36,那么点B 处的小丽看点A 处的小杰 的仰角是 度. 14.(奉贤)若α为锐角,已知cos α=21,那么tan α= ; 15.(虹口)在以O 为坐标原点的直角坐标平面内有一点A (2,4),如果AO 与x 轴正半轴的夹角为, 那么= .16.(虹口)如图2-4-7,在△ABC 中,AD ⊥BC ,sin B =,BC =13,AD =12,则tan C 的值 . 17.(金山)在ABC Rt ∆中,︒=∠90C ,如果4:3:=BC AC ,那么A cos 的值为 18.(金山)如图2-4-8,斜坡AB 的坡度3:1=i ,该斜坡的水平距离=AC 6米,那么斜坡AB 的长2-4-4BAHO BAHO2-4-5DAB C2-4-6C2-4-7DBA等于 米19.(金山)如图2-4-9,在ABC Rt ∆中,︒=∠90ACB ,CD ⊥AB ,CD =4,A cos =32,那么BC = 20.(闸北)如果α是锐角,且tanα =cot20°,那么α= 度. 21.(闸北)计算:2sin60°+tan45°= .22.(闸北)如果一段斜坡的坡角是30°,那么这段斜坡的坡度是 .(请写成1︰m 的形式). 23.(普陀)在地面上离旗杆20米处的地方用测角仪器测得旗杆顶端的仰角为α,如果测角仪的高为 1.5米,那么旗杆的高为 米(用含α的三角比表示);五、 平面向量1. (徐汇)如图2-5-1,正方形ABCD 被分割成9个全等的小正方形, P 、Q 是其中两个小正方形的 顶点,设AB a =,AD b =,则向量PQ = (用向量a 、b 来表示);2. (六区)计算:33()22a ab -+-= ; 3. (长宁)计算:3()3a b a --=_________;4. (奉贤)若→a 与→e 方向相反且长度为3,那么→a = →e ;5. (虹口)如图2-5-2,在△ABC 中,DE ∥BC , BD=2AD ,设,,用向量、表示 向量DE = .6. (金山)计算:()+-b a 22________313=⎪⎭⎫⎝⎛-b a ;7. (金山)如图2-5-3, 在ABC ∆中,BE AD 、分别是边AC BC 、上的中线,BE AD 、相交于点G .设=AB a →,=AD b → ,那么=BE (用 a →、b →的 式子表示) 8. (普陀)计算:523()3a ab --= ;2-5-1BA BCDE2-5-22-4-8C 2-4-9B2-5-3DB六、 综合题(第18题)1. (徐汇)如图2-6-1,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那BN = ;2. (六区)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(3,2)B -,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为 ;3. (崇明)如图2-6-2,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH , 点C 落在Q 处,EQ 与BC 交于点G ,那么EBG ∆的周长是 cm4. (宝山)如图2-6-3直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N 分 别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH = ;5. (长宁)如图2-6-4,正方形ABCD 绕点A 逆时针旋转,得到正方形'''AB C D .当两个正方形重叠部分 的面积是原正方形面积的14时,1sin '2B AD ∠ _________. 6. (嘉定)在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D (如图2-6-5), △ABD 沿直线AD 翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠211,那么=BD . 7. (奉贤)已知在△ABC 中,∠C=90o ,AC=3,BC=4.在平面内将△ABC 绕B 点旋转,点A 落到A ’,2-6-1PBA CMN2-6-2ABCDFG H QE2-6-3EDBC MH2-6-4D 'C 'B 'DCBAABCD2-6-5C2-6-6ABFE点C 落到C ’,若旋转后点C 的对应点C ’和点A 、点B 正好在同一直线上,那么∠A ’AC ’的正切值 等于 ;8. (虹口)如图2-6-6,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,联结DE ,F 为线段DE 上一点,且∠AFE =∠B .若AB =5,AD =8,AE =4,则AF 的长为 .9. (金山)如图2-6-7,在ABC Rt ∆中,︒=∠90C ,4=AC ,3=BC .将ABC ∆绕着点C 旋转︒90, 点A 、B 的对应点分别是D 、E ,那么ADE ∠tan 的值为10. (闸北)如图2-6-8,在Rt △ABC 中,∠C =90°,点D 在边AB 上,线段D C 绕点D 逆时针旋转, 端点C 恰巧落在边AC 上的点E 处.如果m DB AD =,n ECAE=.那么m 与n 满足的关系式是: m = (用含n 的代数式表示m ).11.(普陀)如图2-6-9,已知△ABC 中,AB AC =,tan 2B =,AD ⊥BC 于点D ,G 是△ABC 的 重心,将△ABC 绕着重心G 旋转,得到△111A B C ,并且点1B 在直线AD 上,联结1CC ,那么11tan CC B 的值等于 ;七、圆与正多边形1. (崇明)已知正六边形的半径为2cm ,那么这个正六边形的边心距为 cm ;2. (崇明)半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆心距O 1O 2的长为10cm , 那么公共弦AB 的长为 cm ;3. (宝山)已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值范围是 ;4. (宝山)如图2-7-1,圆O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,6CD =径AB 的长为 ;2-7-1MOB CD N MO C BA2-7-22-7-3OAB2-6-7B C ABD E C2-6-82-7-42-6-95. (长宁)已知⊙P 在直角坐标平面内,它的半径是5,圆心P (-3,4),则坐标原点O 与⊙P 的位置位置 关系是_________.6. (长宁)如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有________个.7. (嘉定)正九边形的中心角等于 度;8. (嘉定)如图2-7-2,AB 、AC 都是圆O 的弦,AB OM ⊥,AC ON ⊥,垂足分别为点M 、N , 如果6=BC ,那么=MN .9. (奉贤)正n 边形的边长与半径的夹角为75°,那么n= ;10.(奉贤)已知圆A 与圆B 内切,AB =10,圆A 半径为4,那么圆B 的半径为 ; 11.(金山)已知⊙O 的半径为5,点A 在⊙O 外,那么线段OA 的的取值范围是 12.(金山)如图2-7-3,已知直线AB 与⊙O 相交于A 、B 两点, 30=∠OAB ,半径2=OA , 那么弦AB =_________13.(金山)已知⊙A 与⊙B 的半径分别为3和2,若两圆相交,那么这两圆的圆心距AB 的取值 范围是14.(普陀)正八边形的中心角为 ;15.(普陀)如图2-7-4,已知圆O 的半径为5,圆O 的一条弦AB 长为8,那么以3为半径的同心圆与 弦AB 位置关系是 ;第三部分 基础解答题一、 二次函数1. (徐汇)已知二次函数2y ax bx c =++(a 、b 、c 为常数,且0a ≠)经过A 、B 、C 、D 四个点, 其中横坐标x 与纵坐标y 的对应值如下表: (1)求二次函数解析式; (2)求△ABD 的面积;2. (六区)已知在直角坐标平面内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0), 与y 轴相交于点C ; (1)求抛物线的表达式;(2)求△ABC 的面积;3. (宝山)已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式 以及该抛物线的顶点坐标;4. (嘉定)已知二次函数)0(22≠+-=m n x mx y 的图像经过点)1,2(-和)2,1(-,求这个二次函数的 解析式,并求出它的图像的顶点坐标和对称轴.5. (虹口)(1)求该二次函数的解析式;(2)用配方法求出该二次函数图像的顶点坐标和对称轴.6. (金山)抛物线2(0)y ax bx c a =++≠向右平移2个单位得到抛物线1)3(2--=x a y ,且平移后的抛物线经过点)12(,A . (1)求平移后抛物线的解析式;(2)设原抛物线与y 轴的交点为B ,顶点为P , 平移后抛物线的对称轴与x 轴交于点M , 求BPM ∆的面积.xyO7. (闸北)已知二次函数c bx x y ++-=22的图像经过点A (0,4)和B (1,-2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y =a (x +m )2+k 的形式; (2)写出该抛物线顶点C 的坐标,并求出△CAO 的面积.8. (普陀)如图,已知二次函数的图像与x 轴交于点(1,0)A 和点B ,与y 轴交于点(0,6)C ,对称轴为 直线2x =,求二次函数解析式并写出图像最低点坐标二、 比例线段1. (徐汇)MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ; (1)求证:DE ∥BC ;(2)联结DE ,如果1DE =,3BC =,求MN 的长;三、 相似三角形1. (徐汇)已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ;(1)求证:2AG GE GF =⋅; (2)如果12DG GB =,且AG BF ⊥,求cos F ;2. (六区)已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F , 使EF DE =,联结BF ,交边AC 于点G ,联结CF (1)求证:AE EGAC CG=; (2)如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅3. (崇明)如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的比值.4. (宝山)如图,D 为等边△ABC 边BC 上一点,DE ⊥AB 于E ,若:2:1BD CD =,DE =23AE ;DABCEF5. (宝山)如图,正方形ABCD 中,(1)E 为边BC 的中点,AE 的垂直平分线分别交AB 、AE 、CD 于G 、F 、H ,求GFFH; (2)E 的位置改动为边BC 上一点,且BE k EC =,其他条件不变,求GFFH的值;6. (长宁)如图,在△ABC 中,AD 是BC 上的高,点G 在AD 上,过点G 作BC 的平行线分别与AB 、 AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F . 设AD =80,BC =120,当四 边形PEFQ 为正方形时,试求正方形的边长.7. (嘉定)已知:如图,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,BAD CDG ∠=∠. (1)求证:ACAGAB AD =; (2)当BC GC ⊥时,求证:︒=∠90BAC .8. (奉贤)如图,在四边形ABCD 中,∠B =∠ACD ,过D 作AC ∥DE 交BC 的延长线于点E ,且2CD AC DE =⋅FEDG C A E D BF1 2 G C A E FB(1)求证:∠DAC =∠DCE ;(2)若DE AC AD AB AD ⋅+⋅=2,求证:∠ACD =90o .9. (虹口)如图,在△ABC 中,点D 在边AC 上,AE 分别交线段BD 、边BC 于点F 、G ,∠1=∠2, .求证:.10.(虹口)如图,在Rt △CAB 与Rt △CEF 中,∠ACB=∠FCE=90°,∠CAB=∠CFE ,AC 与EF 相交于 点G ,BC =15,AC=20.(1)求证:∠CEF =∠CAF ; (2)若AE =7,求AF 的长.11.(金山)如图,ABC ∆中,PC 平分ACB ∠,PC PB = (1)求证:APC ∆∽ACB ∆;(2)若2=AP ,6=PC ,求AC 的长.ADE CBABCP12.(闸北)如图,已知等腰梯形ABCD 中,AD ∥BC ,AD =1,BC =3, AB =CD =2,点E 在BC 边上, AE 与BD 交于点F ,∠BAE =∠DBC , (1)求证:△ABE ∽△BCD ;(2)求tan ∠DBC 的值; (3)求线段BF 的长.13.(普陀)如图,已知在△ABC 中,90ACB ︒∠=,点D 在边BC 上,CE AB ⊥,CF AD ⊥,E 、F 分别是垂足(1)求证:2AC AF AD =⋅(2)联结EF ,求证:AE DB AD EF ⋅=⋅四、 直角三角形锐角比1. (徐汇)如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线 杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米, 求拉线CE 的长; 【已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号】2. (六区)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD ,小明在离旗杆下方大楼底部E 点24米 的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°, 上端D 的仰角为45°,求旗杆CD 的长度;(结果精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)图8A BCDF3. (崇明)计算:2014cos301(cot 45)sin 60︒-+-︒+︒4. (六区)用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:12可表示为1sin 30cos60tan 45sin 302=︒=︒=︒⋅︒=…;仿照上述材料,完成下列问题: (1)用含30°、45°、60°这三个特殊角的三角比或其组合表示32,即填空:32= = = =…; (2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=5. (崇明)如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =.(1)求AC 和AB 的长; (2)求sin BAD ∠的值.6. (崇明)如图,轮船从港口A 出发,沿着南偏西15︒的方向航行了100海里到达B 处,再从B 处沿着北 偏东75︒的方向航行200海里到达了C 处. (1)求证:AC AB ⊥;(2)轮船沿着BC 方向继续航行去往港口D 处,已知港口D 位于港口A 的正东方向,求轮 船还需航行多少海里.DA BC北AB C东。

年徐汇区初三数学一模试卷及答案

年徐汇区初三数学一模试卷及答案

2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷 2017.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B )(A)32=y x ; (B)3=-y x x ; (C )35=+y y x ; (D)52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A)512; (B )125; (C )135; (D)1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A)2)3(22--=x y ; (B)2)3(22+-=x y ; (C)2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A)BC DE //; (B )B AED ∠=∠;(C)AC AB AD AE =; (D) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B)31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A ) (A )1≥x ;ﻩ (B)0≥x ﻩ; (C )1-≥x ; (D)2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =,B C =b ,那么=AC __b a-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___. 17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.图3F ABCDE 图2AB C DA B C DEF图1三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.解:原式123113232-+--⨯= 232133-++-=332--=20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于 点B ,与y 轴交于点C ,顶点为D . 求:(1)点D C B 、、坐标; (2)BCD ∆的面积.解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ; ∴点B 坐标是)0,5(.(2)过点D 作y DA ⊥轴,垂足为A .∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=.21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =,=b.求:(1)向量(用向量a 、b 表示); (2)B tan 的值.解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥; ∴CF AF =;∴CE BE =.∵BC AD //,AB DE //,∴四边形ABED 是平行四边形; ∴AB DE =;∴=a=,=b 2121=;∴b a21+=.(2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ; 又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC , ∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B .图4ABC DE F22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号); (2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).(参考数据:41.12≈,73.13≈).解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ;∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里);∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里;它从B 处到达小岛C 的航行时间约为3.7小时.23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足 CE AD CD AE ⋅=⋅.(1)求证:AB DE //; (2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =; ∵B DAB ∠=∠,∴BD AD =;∴CD BD CE AE =; ∴AB DE //.(2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2; 又BD AD =,∴AB DF AD ⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠; ∴ADF ∆∽DBA ∆; ∴1==BD AD DF AF ; ∴AF DF =.图6ABCD E24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧), ∵OC OB =;∴)0,3(B ; ∴0339=++-b ,解得2=b ; ∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ;∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ; ∴︒=︒⨯-︒=∠90452180DCB ; ∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ;当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去); ∴点M 的坐标是)53,56(--.25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域; (4分) (2)当PEQ ∆是等腰三角形时,求BD 的长; (4分) (3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值. (6分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABACBD EC ; ∴x BD EC ==;y x PE --=3;∵AC DF //,∴ABBDAP DF =;即323x y y x =--, ∴3239+-=x xy ;定义域为:30<<x . (2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ;图8QPDBAC E B AC备用图QPDBAC EF︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ;︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =,∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠; ∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB ADBC DE =;即33223x x -=; 解得 7324254-=x .。

2016届上海徐汇区初三数学一模试卷加答案(完美word版)

2016届上海徐汇区初三数学一模试卷加答案(完美word版)

2015学年第一学期徐汇区学习能力诊断卷初三数学 试卷 2016.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列两个图形一定相似的是(A )两个菱形; (B )两个矩形; (C )两个正方形; (D )两个等腰梯形. 2.如图1,如果EF CD AB ////,那么下列结论正确的是(A )EF CD AE AC =; (B )DF CEBD AC =; (C )CD AB CE AC =; (D ) CEBD DF AC =. 3.将抛物线2)1(22-+=x y 向右平移2个单位,再向上平移2个单位后所得新抛物线的 表达式是(A )2)3(2+=x y ;(B )2)3(+=x y ;(C )2)1(-=x y ;(D )2)1(2-=x y . 4.点G 是ABC ∆的重心,如果5==AC AB ,8=BC ,那么AG 的长是 (A )1; (B )2 ; (C )3; (D ) 4.5.如果从甲船看乙船,乙船在甲船的北偏东︒30方向,那么从乙船看甲船,甲船在乙船的 (A )南偏西︒30方向; (B )南偏西︒60方向; (C )南偏东︒30方向; (D )南偏东︒60方向.6.如图2,梯形ABCD 中,BC AD //,︒=∠90BAC ,AC AB =,点E 是边AB 上一 点,︒=∠45ECD ,那么下列结论错误的是(A )ECB AED ∠=∠; (B )ACE ADE ∠=∠ ; (C )AD BE 2=; (D ) CE BC 2=.二.填空题(本大题共12题,每题4分,满分48分)7.计算:=+-+b a b a2131)32(2__▲___.8.如果32=b a ,那么=+-ba ab __▲___. 9.已知二次函数122-=x y ,如果y 随x 的增大而增大,那么x 的取值范围是__▲___. 10.如果两个相似三角形的面积比是9:4,那么它们对应高的比是__▲___.A BC DEF图1图2A BCDE11.如图3所示,一皮带轮的坡比是4.2:1,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是__▲___米.12.已知点)4,1(M 在抛物线142+-=ax ax y 上,如果点N 和点M 关于该抛物线的对称 轴对称,那么点N 的坐标是__▲___. 13.点D 在ABC ∆的边AB 上,3=AC ,4=AB ,B ACD ∠=∠,那么AD 的长是_▲_. 14.如图4,在□ABCD 中,6=AB ,4=AD ,BAD ∠的平分线AE 分别交BD 、CD于F 、E ,那么=BFDF__▲___. 15.如图5,在ABC ∆中,BC AH ⊥于H ,正方形DEFG 内接于ABC ∆,点E D 、分别在边AC AB 、上,点F G 、在边BC 上,如果20=BC ,正方形DEFG 的面积为 25,那么AH 的长是__▲___.16.如图6,在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,43tan =∠ACD ,5=AB ,那么CD 的长是__▲___.17.如图7,在梯形ABCD 中,BC AD //,AD BC 2=,点E 是CD 的中点,AC 与BE交于点F ,那么ABF ∆和CEF ∆的面积比是__▲___.18.如图8,在ABC Rt ∆中,︒=∠90BAC ,3=AB ,53cos =B ,将ABC ∆绕着点A 旋转得ADE ∆,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是_▲_.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)计算:︒︒+︒︒-︒60cos 45cot 30cos 30tan 245sin 4.20.(本题满分10分)抛物线c x x y +-=22经过点)1,2(.(1)求抛物线的顶点坐标; (5分)(2)将抛物线c x x y +-=22沿y 轴向下平移后,所得新抛物线与x 轴交于B A 、两 点,如果2=AB ,求新抛物线的表达式. (5分)ABCDEF G H 图5 A B CD图6 ABC D E F 图7 ABC D E图8 图3如图9,在ABC ∆中,点E D 、分别在边AC AB 、上,43=AB AD ,3=AE ,1=CE ,6=BC .(1)求DE 的长; (5分)(2)过点D 作AC DF //交BC 于F ,设AB a =,=b,求向量(用向量a 、b 表示). (5分)22.(本题满分10分)如图10,热气球在离地面800米的A 处,在A 处测得一大楼楼顶C 的俯角是︒30,热气球沿着水平方向向此大楼飞行400米后到达B 处,从B 处再次测得此大楼楼顶C 的俯角是︒45,求该大楼CD 的高度. 参考数据:41.12≈,73.13≈.23.(本题满分12分)如图11,在ACB ∆中,BC AC =,点D 在边AC 上,BD AB =,ED BE =,且ABD CBE ∠=∠,DE 与CB 交于点F .求证:(1)BE AD BD ⋅=2; (6分)(2)DF BC BF CD ⋅=⋅. (6分)ABCDE 图9ABCDE F 图11如图12,在AOB Rt ∆中,︒=∠90AOB ,已知点)1,1(--A ,点B 在第二象限,22=OB ,抛物线c bx x y ++=253经过点A 和B . (1)求点B 的坐标; (3分)(2)求抛物线c bx x y ++=253的对称轴; (3分) (3)如果该抛物线的对称轴分别和边BO AO 、的延长线交于点D C 、,设点E 在直线AB 上,当BOE ∆和BCD ∆相似时,直接写出点E 的坐标.(6分)25.(本题满分14分)如图13,四边形ABCD 中,︒=∠60C ,5==AD AB ,8==CD CB ,点Q P 、分别是边BC AD 、上的动点,AQ 和BP 交于点E ,且BAD BEQ ∠-︒=∠2190,设P A 、两点的距离为x .(1)求BEQ ∠的正切值; (4分) (2)设y PEAE=,求y 关于x 的函数解析式及定义域; (5分) (3)当AEP ∆是等腰三角形时,求Q B 、两点的距离. (5分)DB AC QPE图132015学年第一学期徐汇区初三年级数学学科 期终学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.D ; 4.B ; 5.A ; 6.D . 二.填空题:(本大题共12题,满分48分)7.b a 213311+; 8.51; 9.0≥x ; 10.3:2; 11.26; 12.)4,3(; 13.49; 14.32; 15.320; 16.512; 17.1:6; 18.524.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. 解:原式21123332224+⨯⨯-⨯=;……………………………………………(5分)2122+-=;……………………………………………………………(3分) 122+=.…………………………………………………………………(2分) 20.解:(1)由题意,得144=+-c ,解得1=c ;…………………………………(1分)∴抛物线的解析式为122+-=x x y ;……………………………………(1分)即2)1(-=x y ;……………………………………………………………(1分) ∴顶点坐标是)0,1(.………………………………………………………(2分) (2)设平移后的抛物线解析式是n x x y -+-=122;………………………(1分)∴ 该抛物线的对称轴是直线1=x ;………………………………………(1分) 又2=AB ,由抛物线的对称性可得)0,0(A 、)0,2(B ;………………(1分) ∴01=-n ,解得1=n ;…………………………………………………(1分) ∴新抛物线的表达式是x x y 22-=.……………………………………(1分)21.解:(1)∵3=AE ,1=CE ,∴43=AC AE ;……………………………………(1分)又43=AB AD ,∴ABADAC AE =; …………………………………………(1分) ∴BC DE //.∴ ABADBC DE =……………………………………………(1分)即436=DE ,解得29=DE .……………………………………………(2分)(2)∵AC DF //,∴ABBDAC DF =;……………………………………………(1分) 又43=AB AD ,∴41=AC DF ,即AC DF 41=;……………………………(2分) ∵b a+=,∴b a 4141+=. ……………………………………(2分)22.解: 分别延长DC AB 、交于点E . ……………………………………………(1分)∵AB 与地面平行,DC 与地面垂直,∴AB DE ⊥,∴︒=∠90E . …(1分)在CEB Rt ∆中,︒=∠45EBC ,∴︒=∠45ECB ,∴BE EC =;……(1分) 设x CE =,则x BE =,400+=x AE . ………………………………(1分) 在AEC Rt ∆中,︒=∠90E ,∴AEECCAE =∠tan ; ……………………(1分) 即40030tan +=︒x x,解得)13(200+=x ;…………………………(2分)即546)173.1(200)13(200=+⨯≈+=CE (米) ;……………………(2分) ∴254546800=-=CD (米); ……………………………………………(1分) 答: 大楼CD 的高度254米. 23.证明:(1)∵BC AC =,∴ABC A ∠=∠; ……………………………………(1分) ∵ED BE =,∴DBE BDE ∠=∠;…………………………………(1分)∵ABD CBE ∠=∠,∴CBD ABD CBD CBE ∠+∠=∠+∠, 即ABC DBE ∠=∠,∴A BDE ∠=∠;∴BED ∆∽BCA ∆ ;……(1分) ∵BD AB =,∴BDA A ∠=∠;∴ABC BDA ∠=∠;又A A ∠=∠,∴ABD ∆∽BCA ∆;…………………………………(1分) ∴BED ∆∽ADB ∆ ;……………………………………………………(1分) ∴BEBD BD AD =,即BE AD BD ⋅=2.…………………………………(1分) (2)∵ABD ∆∽BCA ∆,∴C ABD ∠=∠;………………………………(1分) 又ABD CBE ∠=∠,∴C CBE ∠=∠;……………………………(1分)∴BE AC //,∴EFDFBE DC =;…………………………………………(1分) ∵BED ∆∽BCA ∆,∴C E ∠=∠,1==ABBDBC BE ;………………(1分)∴CBE E ∠=∠,∴EF BF =;………………………………………(1分)又BC BE =,∴BFDFBC DC =;…………………………………………(1分) 即DF BC BF CD ⋅=⋅.24.解:(1)分别过点B A 、作y 轴的垂线,垂足分别是D C 、.可得ACO ∆∽ODB ∆,∴OAOBAC OD OC BD ==;∵)1,1(--A ,∴2=OA ; ∴2,2==OD BD ;∴)2,2(-B …………………………………………(3分)(2)由题意,可得⎪⎪⎩⎪⎪⎨⎧=+--=+-;22512;153c b c b ……………………………………………(1分) 解得⎪⎪⎩⎪⎪⎨⎧-=-=;514;56c b ……………………………………………………………(1分) ∴51456532--=x x y ; ∴对称轴是直线1=x .……………………………………………………(1分) (3)点)0,34(-E 或)58,54(--E .…………………………………………(各3分)25.解:(1)联结BD AC 、交于点O .…………………………………………………(1分)∴AD AB =,∴BAD BAD ABD ADB ∠-︒=∠-︒=∠=∠21902180,又BAD BEQ ∠-︒=∠2190,∴ADB BEQ ∠=∠; ∵AD AB =,CD CB =,∴BD AC ⊥,DO BO =; ∵︒=∠60BCD ,∴BCD ∆是等边三角形,∴8==BC BD ; 在AOD Rt ∆中,︒=∠90AOD ,∴3452222=-=-=DO AD AO ,∴43tan ==∠DO AO ADO ; ∴43tan =∠BEQ . ………………………………………………………(3分)(2)如图,联结BD 交AQ 于F .∵ADB BEQ AEP ∠=∠=∠,DAF EAP ∠=∠, ∴AEP ∆∽ADF ∆,∴DFADPE AE =;…………………(1分) ∵ABD ADB BEQ ∠=∠=∠,AFB BFE ∠=∠; ∴BFE ∆∽AFB ∆ ;∴BAF FBE ∠=∠;∴PBD ∆∽FAB ∆ ;∴BDPDAB BF =; 即855x BF -=,得8525x BF -=;∴85398xBF DF +=-=;…(2分) ∴39540+=x y ,定义域是50<≤x .…………………………………(2分)DB ACQ PE F(3)如图,联结BD 交AQ 于F .∵AEP ∆∽ADF ∆,当AEP ∆是等腰三角形时; ∴ADF ∆也是等腰三角形. 分情况讨论:︒1 当AD AF =时,0=BQ ,但此时点E Q B 、、重合,BEQ ∠不存在,不合题意,舍去;……………………………………(1分)︒2 当DF AF =时,解得4825〈=DF ,此时AF 与边BC 没有交点(即点Q 不在边BC 上),不合题意,舍去;…………………………………(2分)︒3 当5==AD DF 时,得3=BF ,此时1=y ,∴51=x ,符合题意; 联结AC 交BD 于O ,过点Q 作BF QG ⊥于G ;可得3tan =∠BFQ , 因此,解得339-=BQ ,即Q B 、两点的距离是339-.…(2分)综合︒1、︒2、︒3,当AEP ∆是等腰三角形时,Q B 、两点的距离是339-.古今名言敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈 兴于《诗》,立于礼,成于乐——孔子 己所不欲,勿施于人——孔子 读书破万卷,下笔如有神——杜甫 读书有三到,谓心到,眼到,口到——朱熹 立身以立学为先,立学以读书为本——欧阳修 读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿 书卷多情似故人,晨昏忧乐每相亲——于谦DB ACQ PEF书犹药也,善读之可以医愚——刘向莫等闲,白了少年头,空悲切——岳飞发奋识遍天下字,立志读尽人间书——苏轼鸟欲高飞先振翅,人求上进先读书——李苦禅立志宜思真品格,读书须尽苦功夫——阮元非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。

上海市2015年初中毕业统一学业考试数学试题(附答案)

上海市2015年初中毕业统一学业考试数学试题(附答案)

上海市2015年初中毕业统一学业考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中,是有理数的为()A.B.C.πD.0答案:D 【解析】本题考查有理数的概念,难度较小.整数与分数统称有理数,0是整数,所以有理数为D,故选D.2.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a-1=-a C.(-a)2=-a2D.答案:A 【解析】本题考查幂的相关运算,解题关键在于理解相关运算法则,难度较小.a0=1(a≠0),;;(-a)2=a2;,所以正确的只有A,故选A.3.下列y关于x的函数中,是正比例函数的为()A.y=x2B.C.D.答案:C 【解析】本题考查正比例函数的概念,难度较小.A选项中,y是关于x的二次函数;B选项中,y是关于x的反比例函数;C选项中,y是关于x的正比例函数;D选项中,y是关于x的一次函数,故选C.4.如果一个正多边形的中心角为72°,那么这个正多边形的边数是()A.4 B.5 C.6 D.7答案:B 【解析】本题考查正多边形中角的相关计算,难度较小.360°÷72°=5,所以此多边形为正五边形,故选B.5.下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率答案:C 【解析】本题考查统计量的特征,难度较小.平均数、众数是表示数据集中趋势的统计量,方差是衡量一组数据的波动程度的量,频率是表示数据出现次数的统计量,故选C.6.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D.要使四边形OACB为菱形,还需添加一个条件,这个条件可以是()A.AD=BDB.OD=CDC.∠CAD=∠CBDD.∠OCA=∠OCB答案:B 【解析】本题考查菱形的判定条件、圆中的相关概念及性质,难度较小.若使四边形为菱形,只需要证明两条对角线互相垂直平分即可.此题的条件中已有OC⊥AB,根据圆的性质可以证明AD=BD,只要添加的条件能够证明CD=OD即可,故选B.【易错分析】由于对菱形的判定方法掌握不准确而错选A,C,D.第Ⅱ卷(非选择题共126分)二、填空题(本大题共12小题,每小题4分,共48分.请把答案填在题中的横线上)7.计算:|-2|+2=________.答案:4 【解析】本题考查有理数的计算,解题的关键在于绝对值的化简,难度较小.原式=2+2=4.8.方程的解是________.答案:2 【解析】本题考查含二次根式的方程的解法,难度较小.两边平方化为整式方程3x-2=4,解得x=2,经检验x=2是方程的解.9.如果分式有意义,那么x的取值范围是________.答案:x≠-3 【解析】本题考查分式有意义的条件,难度较小.分式有意义的条件是分母不为0,所以x+3≠0,解得x≠-3.10.如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是__________.答案:m<-4 【解析】本题考查一元二次方程根的讨论,难度较小.一元二次方程没有实数根,则Δ=b2-4ac=42+4m<0,解得m<-4.11.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是,如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.答案:77 【解析】本题考查华氏温度与摄氏温度的换算,根据两者间的函数关系式代入计算即可,难度较小.把x=25代入函数解析式计算即可,.12.如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.答案:y=x2+2x+3 【解析】本题考查二次函数的图象的平移,难度较小.解题的关键在于确定二次函数与y轴交点的纵坐标,两个函数交点纵坐标的差即为平移的距离.原抛物线与y轴的交点为(0,-1),新交点坐标为(0,3),相差4个点,所以需要将原抛物线向上平移4个单位,所得到的关系式为y=x2+2x-1+4=x2+2x+3.13.某校学生会倡议双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是________.答案:【解析】本题考查概率的计算,难度较小.从50位同学中随机抽取7位同学,小杰被抽到的概率是.14.已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:那么“科技创新社团”成员年龄的中位数是________岁.答案:14 【解析】本题考查中位数的确定,难度较小.中位数为一组数据从小到大排列位于最中间的一个数或两个数的平均数,”科技创新社团”共有53人,位于最中间的是第27人,年龄位于第27位的是14岁,所以成员年龄的中位数是14岁.15.如图,已知在△ABC中,D,E分别是边AB,边AC的中点,,那么向量用向量m,n表示为________.答案:【解析】本题考查用向量表示线段,难度中等.向量与向量的方向不同,所以D点的方向应为负,点D处于的中点,所以向量的起点是,点E处于的中点,所以向量的终点是,所以向量用向量m,n表示为.16.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.答案:22.5°【解析】本题考查正方形的性质及三角形全等的判定,难度中等.因为EF ⊥AC于点E,所以∠AEF=∠ADF=90°,因为AE=AD,AF=AF,所以△AEF≌△ADF,所以∠DAF=∠EAF.因为∠DAC=45°,所以∠DAF=22.5°.17.在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B 在⊙D内,那么⊙D的半径长可以等于________(只需写出一个符合要求的数).答案:14(答案不唯一,任意大于13且小于18的数均可)【解析】本题考查圆与圆,点与圆的位置关系,难度较大.由于⊙B过点A,所以⊙B的半径为5,由勾股定理得BD=13,DE=18.由于⊙D与⊙B相交,且点B在⊙D内,所以⊙D的半径r满足13<r<18.18.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于________.答案:【解析】本题考查三角形中长度的相关计算,难度中等.作DF⊥CE于点F,由题意知∠BAC=∠DAC=30°,因为AB=AC,所以∠B=∠ACB=∠ACD=75°,所以∠ECD=30°,所以∠E=45°,△ACE∽△CDE,设EF=DF=x,则,,CD=2x.所以,所以,解得,所以.三、解答题(本大题共7小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分)先化简,再求值:,其中.答案:(本小题满分10分)本题考查分式的化简求值,难度较小.解:.当时,.20.(本小题满分10分)解不等式组:并把解集在数轴上表示出来.答案:(本小题满分10分)本题考查一元一次不等式组的解法及在数轴上表示不等式组的解集,难度较小.解:由4x>2x-6得x>-3.由得x≤2,∴原不等式组的解集是-3<x≤2.21.(本小题满分10分)已知:如图:在平面直角坐标系xOy中,正比例函数的图象经过点A,点A的纵坐标为4,反比例函数的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.答案:(本小题满分10分)本题考查一次函数与反比例函数的应用,涉及数形结合思想及线段垂直平分线的性质,难度中等.解:(1)∵正比例函数的图象经过点A,点A的纵坐标为4,∴点A的坐标是(3,4).∵反比例函数的图象经过点A,∴m=12,∴反比例函数的解析式为.(2)∵AC=AB,∴点A在线段BC的中垂线上,∵BC∥x轴,点C在y轴上,点A的坐标是(3,4),∴点B的横坐标为6.∵点B在反比例函数的图象上,∴点B的坐标是(6,2).设直线AB的表达式为y=kx+b,∴∴直线AB的表达式为.22.(本小题满分10分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高架道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:)答案:(本小题满分10分)本题考查通过解直角三角形解决实际问题,解题的关键在于根据题意确定需要求解的直有三角形,难度中等.解:(1)连接AP,由题意得AH⊥MN,AH=15,AP=39.在Rt△APH中,由勾股定理得PH=36.答:此时汽车与点H的距离为36米.(2)由题意可知,PQ段高架道路旁需要安装隔音板,QC⊥AB,∠QDC=30°,QC=39.在Rt△DCQ中,DQ=2QC=78.在Rt△ADH中,.∴PQ=PH-DH+DQ≈114-15×1.7=88.5≈89.答:高架道路旁安装的隔音板至少需要89米长.23.(本小题满分12分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD·CE=CD·DE.答案:(本小题满分12分)本题考查平行四边形的性质及三角形相似的判定及性质,难度中等.证明:(1)∵OE=OB,∴∠OBE=∠OEB.∵平行四边形ABCD的对角线相交于点O,∴OB=OD.∴OE=OD,∴∠ODE=∠OED,在△BDE中,∵∠OBE+∠OEB+∠OED+∠ODE=180°,∴∠BED=90°,即DE⊥BE.(2)∵OE⊥CD,∴∠CDE+∠DEO=90°.又∵∠CEO+∠DEO=90°,∴∠CDE=∠CEO.∵∠OBE=∠OEB,∴∠OBE=∠CDE.∵∠BED=∠DEC,∴△DBE∽△CDE,∴,∴BD·CE=CD·DE.24.(本小题满分12分)已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,,点P在抛物线上,线段AP与y轴的正半轴相交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.(1)求这条抛物线的表达式;(2)用含m的代数式表示线段CO的长;(3)当时,求∠PAD的正弦值.答案:(本小题满分12分)本题考查二次函数,相似三角形,三角函数的综合应用,解题关键在于根据题意确定相似三角形,难度较大.解:(1)由抛物线y=ax2-4与y轴相交于点B,得点B的坐标为(0,-4).∵点A在x轴的负半轴上,,∴点A的坐标为(-2,0).∵抛物线y=ax2-4与x轴相交于点A,∴a=1,∴这条抛物线的表达式为y=x2-4.(2)∵点P在抛物线上,它的横坐标为m,∴点P的坐标为(m,m2-4).由题意,得点P在第一象限内,因此m>0,m2-4>0.过点P作PH⊥x轴,垂足为点H.∵CO∥PH,∴,∴,解得CO=2m-4.(3)过点P作PG⊥y轴,垂足为点G.∵OD∥PG,∴,∴,即,在Rt△ODC中,∵,∴,解得m=3或m=1(舍去),∴CO=2.在Rt△AOC中,,∴,即∠PAD的正弦值为.25.(本小题满分14分)已知:如图,AB是半圆O的直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP的延长线与射线OQ相交于点E,与弦CD相交于点F(点F与点C,D不重合),AB=20,.设OP=x,△CPF的面积为y.(1)求证:AP=OQ;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△OPE是直角三角形时,求线段OP的长.答案:(本小题满分14分)本题考查圆与全等三角形,相似三角形,三角函数,直角三角形的判定及性质,涉及分类讨论,数形结合等多种思想方法,难度较大.解:(1)证明:连接OD.∵CD∥AB,∴∠C=∠AOP.∵OC=OD,∴∠C=∠D,∴∠AOP=∠D.又∵AO=OD,OP=DQ,∴△AOP≌△ODQ,∴AP=OQ.(2)∵CD∥AB,∴∠CFP=∠A.∵△AOP≌△ODQ,∴∠A=∠DOQ,∴∠CFP=∠DOQ.又∵∠C=∠D,∴△CFP∽△DOQ,∴.过点O作OH⊥CD,垂足为点H.∵,,∴CH=8,OH=6,CD=16.∴,∵CP=10-x,∴,∴所求函数的解析式为,即,定义域为.(3)∵CD∥AB,∴∠EOA=∠DQO.又∵∠A=∠DOQ,∴∠AEO=∠D≠90°.∴当△OPE是直角三角形时,只可能是∠POE=90°或∠OPE=90°.①∠POE=90°时,在Rt△OCQ中,,∴.∵CD=16,∴.∵,∴不合题意,舍去.②当∠OPE=90°时,得∠DQO=∠OPA=90°,∴点O为CD的中点,∴.综上所述,当△OPE是直角三角形时,线段OP的长是8.综评:本套试卷难度适中,知识覆盖面广,覆盖数与代数,空间与图形,统计与概率,综合与实践四大领域,能正确反映课程标准对考生“四基”“四能”的考查要求,试题多数为常规题,从而让不同的考生都能获得比较满意的成绩,个别试题具有一定的难度,用于区分不同层次考生对数学知识的掌握程度,具有较好的区分度.本卷中的特色题:反映函数与方程思想的题有第11,25题;反映数形结合思想的题有第15,16,17,21,22,24,25题;反映分类讨论思想的题有第25题;与实际生活联系紧密的试题有第11,13,14,22题;较难的题有第18,24,25题.。

初三数学一模考解读2015.12(定稿)

初三数学一模考解读2015.12(定稿)

C'
D
A
C
第 18 题图
D'
D
A
图5
B
12
11.重心定理: 【例题 1】如图,△ABC 中,∠BAC=90°,点 G 是△ABC 的重心, 如果 AG=4,那么 BC 的长为 . 【例题 2】已知点 G 是面积为 27cm 的△ABC 的重心, 那么△AGC 的面积等于 cm . G · A
2 2
1 2 x 共有的性质是( ) 2
B.对称轴是 y 轴; D. y 的值随 x 的值的增大而减小.
7
6. 二次函数的运动(平移) 2 【例题 1】将抛物线 y=-2x 向右平移 1 个单位,再向上平移 2 个单位后,抛物线的表达式 为( ) 2 2 2 2 A.y =-2(x-1) +2; B.y =-2(x-1) -2;C.y =-2(x+1) +2 ;D.y =-2(x+1) - 2
2
A
D
DC AB D. . AC BC
B
C
【例题 2】在△ABC 中,点 D、E 分别在边 AB、AC 上,如果 AD=2,BD=3,那么由下列条件能 够判定 DE//BC 的是( ) A)
DE 2 ; BC 3
B)
DE 2 ; BC 5
B)
C)
AE 2 ; AC 3
D)
【例题 3】如图,DE//BC, EF//AB,则下列比例式中,不成立的是(
15
14.圆的相关性质(多在选择题) 【例题 1】如果在两个圆 中有两条相等的弦,那么„„„„„„„„„„„„( ...

A.这两条弦所对的圆心角相等; B.这两条弦所对的弧相等; C.这两条弦都被与它垂直的半径平分; D.这两条弦所对的弦心距相等. 【例题 2】正多边形的中心角是 36 º,那么这个正多边形的边数是( ) (A) 10 ; (B ) 8 ; (C) ;6 (D) 5 . 【例题 3】下列说法正确的是„„„„„„„„„„„„„„„„„„„( ) (A) 相切两圆的连心线经过切点 (B) 长度相等的两条弧是等弧 (C) 平分弦的直径垂直于弦 (D) 相等的圆心角所对的弦相等 【例题 4】 半径分别为 8 cm 与 6 cm 的 O1 与 O2 相交于 A、 B 两点, 圆心距 O1O2 的长为 10 cm, 那么公共弦 AB 的长为 cm.

上海市徐汇区2015年中考一模(即期末)数学试卷及答案

上海市徐汇区2015年中考一模(即期末)数学试卷及答案

徐汇区2015年数学一模一. 选择题1. 将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为( ) A. 22(1)2y x =--+; B. 22(1)2y x =---; C. 22(1)2y x =-++; D. 22(1)2y x =-+-;2. 如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是( )A.2BE EC =; B. 13EC AD =; C.23EF AE =; D. 23BF DF =;3. 已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为( ) A. 7sin α; B. 7cos α; C. 7tan α; D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△D C A 成立的是( )A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅; D.DC ABAC BC=; 5. 已知二次函数222y ax x =-+(0a >),那么它的图像一定不经过( ) A. 第一象限; B. 第二象限; C. 第三象限; D. 第四象限; 6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =, 那么:ADE BEC S S ∆∆=( )A. 1:24;B. 1:20;C. 1:18;D. 1:16;二. 填空题7. 如果53a b =,那么a b a b-+的值等于 ; 8. 抛物线2(1)2y x =-+的顶点坐标是 ;9. 二次函数245y x x =--的图像的对称轴是直线 ; 10. 计算:cot 30sin 60︒-︒= ;11. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m ;12. 若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是 (填12y y >,12y y =或12y y <);13. 如图,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC = ;14. 如图是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2,则斜坡AB 的长为 米(保留根号);15. 如图,正方形ABCD 被分割成9个全等的小正方形,P 、Q 是其中两个小正方形的顶 点,设AB a =,AD b =,则向量PQ = (用向量a 、b 来表示); 16. 如图,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为 ;17. 如图,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM = ;18. 如图,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那么BN = ;三. 解答题19. 已知二次函数2y ax bx c =++(a 、b 、c 为常数,且0a ≠)经过A 、B 、C 、D 四个点,其中横坐标x 与纵坐标y 的对应值如下表:(1(2)求△ABD 的面积;20. 如图,在等腰梯形ABCD 中,AD ∥BC ,AB DC =,AC 与BD 交于点O ,:1:2AD BC =;(1)设BA a =uu r r ,BC b =u u u r r ,试用a r ,b r 表示BO uu u r ;(2)先化简,再求作:3(2)2()2a b a b +-+r rr r (直接作在原图中)21. 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米,求拉线CE 的长; 【已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号】22. 如图,MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ;(1)求证:DE ∥BC ;(2)联结DE ,如果1DE =,3BC =,求MN 的长;23. 已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ; (1)求证:2AG GE GF =⋅; (2)如果12DG GB =,且AG BF ⊥,求cos F ;24. 已知如图,抛物线21:4C y ax ax c =++的图像开口向上,与x 轴交于点A 、B (A 在B 的左边),与y 轴交于点C ,顶点为P ,2AB =,且OA OC =; (1)求抛物线1C 的对称轴和函数解析式;(2)把抛物线1C 的图像先向右平移3个单位,再向下平移m 个单位得到抛物线2C ,记顶点为M ,并与y 轴交于点(0,1)F -,求抛物线2C 的函数解析式;(3)在(2)的基础上,点G 是y 轴上一点,当△APF 与△FMG 相似时,求点G 的坐标;25. 如图,梯形ABCD 中,AD ∥BC ,对角线AC BC ⊥,9AD =,12AC =,16BC =,点E是边BC 上的一个动点,EAF BAC ∠=∠,AF 交CD 于点F ,交BC 延长线于点G ,设B E x =;(1)试用x 的代数式表示FC ; (2)设FGy EF=,求y 关于x 的函数关系式,并写出定义域; (3)当△AEG 是等腰三角形时,直接写出BE 的长;参考答案1、A2、C3、C4、D5、C6、B7、14 8、(1,2) 9、x =2 10 11、15 12、12y y 13、6 14、 15、16、12 17 18、19、20、21、22、23、24、25、所以,BE =7。

徐汇区中考数学二模试卷含答案

徐汇区中考数学二模试卷含答案

2015学年第二学期徐汇区学习能力诊断卷初三年级数学学科 2016.4(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.不等式组⎩⎨⎧≤+>-41,11x x 的解集是(A )2<x ; (B )32≤<x ; (C )3≥x ; (D )空集. 2.实数n 、m 是连续整数,如果m n <<26,那么n m +的值是(A )7; (B )9; (C )11; (D )13.3.如图1,在ABC ∆中,BC 的垂直平分线EF 交ABC ∠的平分线BD 于E ,如果︒=∠60BAC ,︒=∠24ACE , 那么BCE ∠的大小是(A )︒24; (B )︒30; (C )︒32; (D )︒36. 4.已知两组数据:432、、和543、、,那么下列说法正确的是(A )中位数不相等,方差不相等; (B )平均数相等,方差不相等; (C )中位数不相等,平均数相等; (D )平均数不相等,方差相等.5.从1、2、3、4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线2x y =上的概率是(A )241; (B )121 ; (C )61; (D ) 41. 6.下列命题中假命题是(A )两边及第三边上的高对应相等的两个三角形全等;(B )两边及第三边上的中线对应相等的两个三角形全等; (C )两边及它们的夹角对应相等的两个三角形全等; (D )两边及其中一边上的中线对应相等的两个三角形全等. 二.填空题(本大题共12题,每题4分,满分48分) 7.计算:=÷ab b a 2423__▲___. 8.计算:=-)3(2m m __▲___. 9.方程0312=--x 的解是__▲___.B ADC E F图110.如果将抛物线1)2(2+-=x y 向左平移1个单位后经过点),1(m A ,那么m 的值是▲_. 11.点E 是ABC ∆的重心,a AB =,=,那么=_▲_(用a ϖ、b ϖ表示).12.建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务,如果设建筑公司实际每天修x 米,那么可得方程是__▲___. 13.为了了解某区5500名初三学生的的体重情况,随机抽测了400名学生的体重,统计结__▲___14.如图2,在□ABCD 中,AC 、BD 相交于O ,请添加一个条件▲ ,可得□ABCD是矩形. 15.梯形ABCD 中,BC AD //,2=AD ,6=BC ,点E 是边BC 上的点,如果AE 将梯形ABCD 的面积平分,那么BE 的长是_▲ _. 16.如果直线)0(>+=k b kx y 是由正比例函数kx y =的图像向左平移1个单位得到,那么 不等式0>+b kx 的解集是__▲___.17.一次越野跑中,当小明跑了1600米时,小杰跑了1400米,小明、小杰在此后所跑的路程y (米)与时间t (秒)之间的函数关系(如图3),那么这次越野跑的全程为▲米. 18.如图4,在ABC ∆中,︒=∠90CAB ,6=AB ,4=AC ,CD 是ABC∆的中线,将ABC ∆沿直线CD 翻折,点B '是点B 的对应点,点E 是线段CD 上的点,如果B BA CAE '∠=∠,那么CE 的长是__▲___.三.(本大题共7题,满分78分) 19.(本题满分10分)计算:13245tan 30cot )3(02++︒-︒-+-ππ.图4D B A C图2 A B C D O解方程组:⎩⎨⎧=+-=-444;122y xy x y x .21.(本题满分10分) 如图5,抛物线2212++=bx x y 与y 轴交于点C ,与x 轴交于点)0,1(A 和点B (点B 在点A 右侧).(1)求该抛物线的顶点D 的坐标; (2)求四边形CADB 的面积. 22.(本题满分10分)如图6 ①,三个直径为a 的等圆⊙P 、⊙Q 、⊙O C . (1)那么OA 的长是__▲___(用含a 的代数式表示); (2)探索: 现有若干个直径为a 的圆圈分别按如图6 ②所示的方案一和如图6 ③所示的方案二的方式排放,那么这两种方案中n 层圆圈的高度=n h __▲___,='nh __▲___(用 含n 、a 的代数式表示);(3)应用:现有一种长方体集装箱,箱内长为6米,宽为5.2米,高为5.2米.用这种集装箱装运长为6米,底面直径(横截面的外圆直径)为1.0米的圆柱形铜管,你认为 采用第(2)题中的哪种方案在该种集装箱中装运铜管数多?通过计算说明理由.(参考数据:41.12≈,73.13≈)23.(本题满分12分)如图7, 在ABC ∆中,AC AB =,点D 在边AC 上,DE BD AD ==,联结BE ,︒=∠=∠72DBE ABC .(1)联结CE ,求证:BE CE =;(2)分别延长CE 、AB 交于点F ,求证:四边形DBFE 是菱形.图5B xy O AC图7 A BC D E图6① 图6② 图6③ OQPC AB如图8,直线4+=mx y 与反比例函数)0(>=k xky 的图像交于点A 、B ,与x 轴、y 轴分别交于D 、C ,2tan =∠CDO ,2:1:=CD AC .(1)求反比例函数解析式;(2)联结BO ,求DBO ∠的正切值;(3)点M 在直线1-=x 上,点N 在反比例函数图像上,如果以点A 、B 、M 、N 为顶点的四边形是平行四边形,求点N25.(本题满分14分)如图9,线段1=PA ,点D 是线段PA 延长线上的点,)1(>=a a AD ,点O 是线段AP 延长线上的点,OD OP OA ⋅=2,以O 圆心,OA 为半径作扇形OAB ,︒=∠90BOA ,点C 是弧AB 上的点,联结PC 、DC .(1)联结BD 交弧AB 于E ,当2=a 时,求BE 的长; (2)当以PC 为半径的⊙P 和以CD 为半径的⊙C 相切时,求a 的值;(3)当直线DC 经过点B ,且满足OP BC OA PC ⋅=⋅时,求扇形OAB 的半径长.DBACOP图92015学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.C ; 3.C ; 4.D ; 5.B ; 6.A . 二.填空题:(本大题共12题,满分48分)7.b a 22;8.m m 622-;9.5=x ;10.1;11.a b ϖϖ3231-;12.240010400=--xx ;13.21.0;14.答案不唯一,如:BD AC =等;15.4;16.1->x ;17.2200;18.516.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. 解:原式131313-+--+-=π;……………………………………………(5分)3133++--=π;……………………………………………………(3分) 2-=π.……………………………………………………………………(2分) 20.解:由方程②得22±=-y x ;………………………………………………………(2分)与方程①组合得方程组; (Ⅰ)⎩⎨⎧=-=-22,1y x y x 或(Ⅱ)⎩⎨⎧-=-=-;22,1y x y x ……………………………………(4分)解方程组(Ⅰ)、(Ⅱ)得⎩⎨⎧==0,1y x 或⎩⎨⎧-=-=;4,3y x .………………………………(4分)∴原方程组的解是⎩⎨⎧==0,111y x 或⎩⎨⎧-=-=.4,322y x21.解:(1)由题意,得021212=++⨯b ;……………………………………………(1分)解得25-=b ; ……………………………………………………………(1分)∴抛物线的表达式是225212+-=x x y ;………………………………(1分)顶点)89,25(-D .……………………………………………………………(2分)(2)由题意,得)0,4(B 和)2,0(C ;……………………………………………(2分)∴1675893212321=⨯⨯+⨯⨯=+=∆∆ADB ABC CADB S S S .………………(3分)22.解:(1)a OA 23=;………………………………………………………………(2分) (2)na h n =,a a n h n +-=')1(23;…………………………………(各2分) (3)按方案二在该种集装箱中装运铜管数多.…………………………………(1分)由题意,按方案一装运铜管数6252525=⨯=(根);…………………(1分)∵5.21.01.0)1(23≤+⨯-n ,即4865.20865.0≤n ; 得68.28≤n ,又n 是整数,∴n 的最大值是28;……………………(1分)∴按方案二装运铜管数68624142514=⨯+⨯=(根).………………(1分)23.证明:(1)∵AC AB =,∴ABC ACB ∠=∠; …………………………………(1分)∵ED BD =,∴DBE BED ∠=∠;…………………………………(1分)∵DBE ABC ∠=∠,∴DEB ACB ∠=∠,∴ABC ∆∽DBE ∆;…(1分)∴BECBDB AB =; …………………………………………………………(1分) 又DBC DBE DBC ABC ∠-∠=∠-∠;即CBE ABD ∠=∠;∴ABD ∆∽CBE ∆;∴1==BDADBE CE ;……………………………(1分)∴BE CE =.……………………………………………………………(1分) (2)∵︒=∠=∠72ABC ACB ,∴︒=︒⨯-︒=∠36722180A ;………(1分) ∵BD AD =,∴︒=∠=∠36A DBA ;………………………………(1分)∴︒=︒-︒=∠363672DBC ;∵ABC ∆∽DBE ∆,∴︒=∠=∠36A EDB ;∴DBA EDB ∠=∠,∴AB DE //;…………………………………(1分) ∵ABD ∆∽CBE ∆,∴︒=∠=∠36A ECB ;∴DBC ECB ∠=∠,∴DB CE //;…………………………………(1分) ∴四边形DBFE 是平行四边形;………………………………………(1分)又DE BD =,∴四边形DBFE 是菱形.……………………………(1分)24.解:(1)过点A 作OC AG ⊥,垂足是G . 易得OD AG //;∴21===CD AC OC CG OD AG ;由题意,得)4,0(C ,∴4=OC ;在DOC Rt ∆中,︒=∠90DOC ,2tan =∠CDO ,∴2=OD ;∴1=AG ,2=CG ;∴)6,1(A ;………………………………………(3分) ∴16k =,得6=k ;∴xy 6=. ………………………………………(1分) (2)过点O 作AB OF ⊥,垂足是F .由题意,得)0,2(-D ;∴直线AB 的表达式是42+=x y ;…………(1分) 又点B 是直线AB 与双曲线xy 6=的交点,∴)2,3(--B ,5=DB ; 在DOC Rt ∆中,可解得554=OF ,552=DF ;…………………(1分) ∴557=BF ;……………………………………………………………(1分) 在BFO Rt ∆中,︒=∠90BFO ,74tan ==∠BF OF DBO .…………(1分)(3)以AB 分别为对角线和边两种情况讨论.︒1当AB 是对角线时,由题意,可知直线1-=x 与双曲线xy 6=的交点就是 点N ,∴)6,1(--N ;……………………………………………………(2分)︒2当AB 是边时,将AB 向右平移2个单位,点B 落在直线1-=x 上,∴)2,3(N ;………………………………………………………………(1分)当AB 是边时,将AB 向左平移2个单位,点A 落在直线1-=x 上,∴)56,5(--N ;…………………………………………………………(1分)综合︒1、︒2,)6,1(--N 或)2,3(N 或)56,5(--N . 25.解:(1)过点O 作BE OF ⊥,垂足为F .设x OA =,则1-=x OP ,a x OD +=;∵OD OP OA ⋅=2, 即))(1(2a x x x +-=,解得1-=a a x ;…………………………………(1分) ∴1-=a a OA ,11-=a OP ,12-=a a OD ;当2=a 时,可得2=OA ,4=OD ,∴52=BD ; 易得BOF ∆∽DOB ∆,∴ODOB OB BF =,又2==OA OB ∴552=BF ,∴554=BE . …………………………………………(3分) (2)当点C 与点A 重合时,a PAADPC CD ==.………………………………(1分) 当点C 与点A 不重合时,联结OC ,∵OA OC =,∴OD OP OC ⋅=2;即OD OCOC OP =,又DOC COP ∠=∠,∴OCP ∆∽ODC ∆, ∴a OCOD PC CD ==,∴aPC CD =;又1>a ,∴PC CD >;………(1分) ∵⊙P 和⊙C 相切,PC 是圆心距,∴⊙P 和⊙C 相只能内切;……(1分) ∴PC PC CD =-;即PC PC aPC =-;……………………………(1分) 解得2=a .…………………………………………………………………(1分) (3)联结BP 、OC .∵OCP ∆∽ODC ∆,∴D OCP ∠=∠;∵OB OC =,∴OCB OBC ∠=∠;∵︒=∠+∠90OBC D ,∴︒=∠+∠90OCB OCP ,即︒=∠90BCP .…………………………(1分) ∵OP BC OA PC ⋅=⋅,OB OA =,∴OBOPBC PC =; 又︒=∠=∠90BCP BOP ,∴BOP ∆∽BCP ∆;………………………(1分) ∴1==BPBPCB OB ;∴OB CB =,∴OC OB CB ==; ∴OBC ∆是等边三角形,∴︒=∠60OBC ;……………………………(1分) 在BOD Rt ∆中,︒=∠90BOD ,a OBODDOB ==∠tan , 即360tan =︒=a ,2331+=-=a a OA .…………………………(2分)。

2023-2024学年上海市徐汇区九年级(上)期末数学试卷(一模)及答案解析

2023-2024学年上海市徐汇区九年级(上)期末数学试卷(一模)及答案解析

2023-2024学年上海市徐汇区九年级(上)期末数学试卷(一模)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列抛物线中,对称轴为直线x=1的抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=x2+2x D.y=x2﹣2x 2.(4分)如图,在直角坐标系xOy中,已知点A(4,3),直线OA与x轴正半轴的夹角为α,那么sinα的值是()A.B.C.D.3.(4分)下列两个三角形一定相似的是()A.两个直角三角形B.两个等腰三角形C.两个等边三角形D.两个面积相等的三角形4.(4分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,设,,那么向量、、、关于、的分解式中,下列结论正确的是()A.B.=﹣C.﹣D.5.(4分)世博会期间,从一架离地200米的无人机A上,测得地面监测点B的俯角是60°,那么此时无人机A与地面监测点B的距离是()A.米B.米C.200米D.米6.(4分)如图,点D是△ABC内一点,点E在线段BD的延长线上,BE与AC交于点O,分别联结AD、AE、CE,如果,那么下列结论正确的是()A.CE∥AD B.BD=ADC.∠ABE=∠CBE D.BO•AE=AO•BC.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)求值:2sin60°﹣cot30°=.8.(4分)已知点P是线段AB的黄金分割点(AP>BP),AB=2,那么BP =.9.(4分)已知△ABC∽△DEF,如果它们对应高的比AM:,那么△ABC和△DEF的面积比是.10.(4分)在△ABC中,点D、E分别在边AB、AC上,如果AD:AB=2:3,AE=4,CE =2,DE=3,那么BC的长是.11.(4分)如图,AB∥CD∥EF,如果AD=2,DF=1.5,CE=1.8,那么BE的长是.12.(4分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于D,如果△BCD和△ABD的面积比为9:16,CD=12,那么AB的长是.13.(4分)如图,一段东西向的限速公路MN长500米,在此公路的南面有一监测点P,从监测点P观察,限速公路MN的端点M在监测点P的北偏西60°方向,端点N在监测点P的东北方向,那么监测点P到限速公路MN的距离是米(结果保留根号).14.(4分)将抛物线y=﹣x2向右平移后,所得新抛物线的顶点是B,新抛物线与原抛物线交于点A(如图所示),联结OA、AB,如果△AOB是等边三角形,那么点B的坐标是.15.(4分)如图,在△ABC中,AD和BE是△ABC的高,且交于点F,已知AB=13,BC =14,AC=15,那么∠AFE的正切值是.16.(4分)中国古代数学书《御制数理精蕴》中有一道题大意如下:如图,从前有一座方城,四面城墙的中间都有城门,出南门后往前直走8里到宝塔A处(即EA=8里),出西门往前直走2里到B处(即DB=2里),此时,视线刚好能紧靠城墙角C看见宝塔A,如果设正方形的中心为O,点O、D、B在一直线上,点O、E、A在一直线上,那么这座方城每一面的城墙长是里.17.(4分)在△ABC中,AB=AC=6,BC=4,如果将△ABC绕着点B旋转,使得点C落在边AC上,此时,点A落在点A′处,联结AA′,那么AA′的长是.18.(4分)如图,在△ABC中,∠BAC=90°,,如果点P在△ABC的内部,且满足∠APC=∠BPC=135°,那么CP的长是.三、(本大题共7题,第19-22题每题10分:第23、24题每题12分;第25题14分;满分78分)19.(10分)已知:.(1)求代数式的值;(2)当2a+3b﹣3=35时,求a、b的值.20.(10分)已知抛物线y=﹣x2+bx+3与y轴交于点C,与x轴交于点A(﹣1,0)和点B,顶点为D.(1)求此抛物线的表达式及顶点D坐标;(2)联结CD、BD,求∠CDB的余弦值.21.(10分)如图,在梯形ABCD中,AD∥BC,BD平分∠ABC,CD=BD=8,AB=5.(1)求BC的长;(2)设,,求向量(用向量,表示).22.(10分)小杰在学习了“仰角、俯角、坡比”后,他在自己居住的小区设计了如下测量方案:小杰利用小区中的一个斜坡CD,首先在斜坡CD的底端C测得高楼顶端A的仰角是60°,然后沿斜坡CD向上走到D处,再测得高楼顶端A的仰角是37°,已知斜坡CD的坡比是i=1:6,斜坡CD的底端C到高楼AB底端B的距离是20米,且B、C、E三点在一直线上(如图所示).假设测角仪器的高度忽略不计,请根据小杰的方案,完成下列问题:(1)求高楼AB的高度;(2)求点D离地面的距离(结果精确到0.1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73)23.(12分)如图,在▱ABCD中,点E在边AB上,DE2=AE•CD.(1)求证:AD•CD=CE•DE;(2)当点E是边AB的中点时,分别延长DE、CB交于点F,求证:AB2=2EF2.24.(12分)如图,在平面直角坐标系xOy中,第二象限的点M在抛物线y=ax2(a>0)上,点M到两坐标轴的距离都是2.(1)求该抛物线的表达式;(2)将抛物线y=ax2(a>0)先向右平移个单位,再向下平移k(k>0)个单位后,所得新抛物线与x轴交于点A(m,0)和点B(n,0),已知m<n,且mn=﹣4,与y 轴负半轴交于点C.①求k的值;②设直线与上述新抛物线的对称轴的交点为D,点P是直线上位于点D下方的一点,分别联结CD、CP,如果,求点P的坐标.25.(14分)如图,在Rt△ABC中,∠BAC=90°,,点D是边AB上的动点(点D不与点B重合),以CD为斜边在直线BC上方作等腰直角三角形DEC.(1)当点D是边AB的中点时,求sin∠DCB的值;(2)联结AE,点D在边AB上运动的过程中,∠EAC的大小是否变化?如果变化,请说明理由;如果不变,请求出∠EAC的大小;(3)设DE与AC的交点为G,点P是边BC上的一点,且∠CPD=∠CGD,如果点P 到直线CD的距离等于线段GE的长度,求△CDE的面积.2023-2024学年上海市徐汇区九年级(上)期末数学试卷(一模)参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列抛物线中,对称轴为直线x=1的抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=x2+2x D.y=x2﹣2x【分析】分别求出题目中四个选项中所给出的抛物线的对称轴即可.【解答】解:∵抛物线y=x2+1的对称轴为y轴;∴选项A不符合题意;∵抛物线y=x2﹣1的对称轴为y轴;、∴选项A不符合题意;∵抛物线y=x2+2x=(x+1)2﹣1,∴该抛物线的对称轴为x=﹣1;∴选项C不符合题意;∵抛物线y=x2﹣2x=(x﹣1)2﹣1,∴该抛物线的对称轴为x=1,∴选项D符合题意.故选:D.【点评】此题主要考查了二次函数的对称轴,熟练掌握求二次函数对称轴的方法与技巧是解决问题的关键.2.(4分)如图,在直角坐标系xOy中,已知点A(4,3),直线OA与x轴正半轴的夹角为α,那么sinα的值是()A.B.C.D.【分析】过点A作x轴的垂线,构造出直角三角形即可解决问题.【解答】解:过点A作x轴的垂线,垂足为B,由点A的坐标为(4,3)可知,OB=4,AB=3,所以AO=.在Rt△AOB中,sinα=.故选:A.【点评】本题考查解直角三角形,能构造出直角三角形是解题的关键.3.(4分)下列两个三角形一定相似的是()A.两个直角三角形B.两个等腰三角形C.两个等边三角形D.两个面积相等的三角形【分析】由相似三角形的判定,即可判断.【解答】解:A、B、D中的两个三角形不一定相似,故A、B、D不符合题意;C、两个等边三角形相似,故C符合题意.故选:C.【点评】本题考查相似三角形的判定,等边三角形、等腰三角形的性质,关键是掌握相似三角形的判定方法.4.(4分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,设,,那么向量、、、关于、的分解式中,下列结论正确的是()A.B.=﹣C.﹣D.【分析】根据平行四边形对角线互相平分结合平面向量的运算法则逐一判断即可.【解答】解:∵平行四边形ABCD的对角线AC和BD交于点O,,,∴,,=,=,故选项A、C、D错误,选项B正确,故选:B.【点评】本题考查了平面向量的运算法则,平行四边形的性质,熟记平面向量的运算法则是解题的关键.5.(4分)世博会期间,从一架离地200米的无人机A上,测得地面监测点B的俯角是60°,那么此时无人机A与地面监测点B的距离是()A.米B.米C.200米D.米【分析】根据正切的定义求出AB,得到答案.【解答】解:在Rt△ABC中,AC=200米,∠ABC=60°,∵sin B=,∴AB===(米),故选:B.【点评】本题考查的是解直角三角形﹣仰角俯角问题,掌握锐角三角函数的定义是解题的关键.6.(4分)如图,点D是△ABC内一点,点E在线段BD的延长线上,BE与AC交于点O,分别联结AD、AE、CE,如果,那么下列结论正确的是()A.CE∥AD B.BD=ADC.∠ABE=∠CBE D.BO•AE=AO•BC.【分析】利用相似三角形的判定与性质解答即可.【解答】解:∵,∴△ADE∽△ABC,∴∠ACB=∠AED,∠BAC=∠DAE,∴∠BAD=∠CAE,∵∠AOE=∠BOC,∴△AOE∽△BOC,∴,∴BO•AE=AO•BC.∴D选项的结论正确.∵,∴△BAD∽△CAE,∴∠ABE=∠ACE,显然OE与OC不一定相等,∴∠ACE与∠BEC不一定相等,∴CE与BD不一定平行,∴A,C不一定正确,∵BD与AD不一定相等,∴B不一定正确.故选:D.【点评】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)求值:2sin60°﹣cot30°=0.【分析】把sin60=,cot30°=代入原式得到2×﹣,然后进行二次根式的运算即可.【解答】解:原式=2×﹣=﹣=0.故答案为0.【点评】本题考查了特殊角的三角函数值:sin60°=,cot30°=.8.(4分)已知点P是线段AB的黄金分割点(AP>BP),AB=2,那么BP=3﹣.【分析】根据黄金分割点的定义,知AP是较长线段;所以AP=AB,代入数据即可得出AP的长度,进而得出BP.【解答】解:由于P为线段AB=2的黄金分割点,且AP>BP,则AP=a==﹣1.BP=2﹣(﹣1)=;故答案为:3﹣【点评】此题考查黄金分割问题,理解黄金分割点的概念.要求熟记黄金比的值.9.(4分)已知△ABC∽△DEF,如果它们对应高的比AM:,那么△ABC和△DEF的面积比是2:9.【分析】相似三角形面积的比等于相似比的平方,由此即可计算.【解答】解:∵△ABC∽△DEF,它们对应高的比是AM:,∴△ABC和△DEF的相似比是:3,∴△ABC和△DEF的面积比是:32=2:9.故答案为:2:9.【点评】本题考查相似三角形的性质,关键是掌握相似三角形面积的比等于相似比的平方.10.(4分)在△ABC中,点D、E分别在边AB、AC上,如果AD:AB=2:3,AE=4,CE=2,DE=3,那么BC的长是.【分析】根据题意推出=,结合∠A=∠A,即可推出△ADE∽△ABC,根据相似三角形的性质求解即可.【解答】解:如图,∵AE=4,EC=2,∴AC=AE+EC=6,∴==,∵AD:AB=2:3,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴==,∵DE=3,∴BC=,故答案为:.【点评】本题考查了相似三角形的性质和判定等知识,熟练掌握相似三角形的判定与性质是解此题的关键.11.(4分)如图,AB∥CD∥EF,如果AD=2,DF=1.5,CE=1.8,那么BE的长是 4.2.【分析】根据平行线分线段成比例定理求解即可.【解答】解:∵AB∥CD∥EF,∴=,∵AD=2,DF=1.5,CE=1.8,∴=,解得BE=4.2.故答案为:4.2.【点评】本题考查平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解答的关键,注意比例线段要对应.12.(4分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于D,如果△BCD和△ABD的面积比为9:16,CD=12,那么AB的长是.【分析】先证明△ABD∽△BCD,根据相似三角形的性质求出AD和BD,进而求出AB 即可.【解答】解:∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵BD⊥AC,∴∠ABD+∠A=90°,∠ADB=∠BDC=90°,∴∠CBD=∠A,∴△ABD∽△BCD,∴,∵△BCD和△ABD的面积比为9:16,∴=,∵CD=12,∴BD=16,AD=,∴AB==.故答案为:.【点评】本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定方法.13.(4分)如图,一段东西向的限速公路MN长500米,在此公路的南面有一监测点P,从监测点P观察,限速公路MN的端点M在监测点P的北偏西60°方向,端点N在监测点P的东北方向,那么监测点P到限速公路MN的距离是(250﹣250)米(结果保留根号).【分析】过点P作PA⊥MN于点A,则∠PAM=∠PAN=90°,设PA=x米,证△PAN是等腰直角三角形,得NA=PA=x米,再由锐角三角函数定义得MA=x米,然后由MA+NA=MN,求出x=250﹣250,即可得出结论.【解答】解:如图,过点P作PA⊥MN于点A,则∠PAM=∠PAN=90°,设PA=x米,由题意可知,∠MPA=60°,∠NPA=45°,∴△PAN是等腰直角三角形,∴NA=PA=x米,∵tan∠MPA==tan60°=,∴MA=PA=x(米),∵MA+NA=MN=500,∴x+x=500,解得:x=250﹣250,即监测点P到限速公路MN的距离是(250﹣250)米,故答案为:(250﹣250).【点评】本题考查了解直角三角形的应用—方向角问题,正确作出辅助线构造直角三角形是解题的关键.14.(4分)将抛物线y=﹣x2向右平移后,所得新抛物线的顶点是B,新抛物线与原抛物线交于点A(如图所示),联结OA、AB,如果△AOB是等边三角形,那么点B的坐标是(2,0).【分析】由题意设A点的坐标为(m,﹣m2),然后根据等边三角形的性质得到B(2m,0),m=m2,解得m=,从而求得B(2,0).【解答】解:∵点A抛物线y=﹣x2上,∴设A点的坐标为(m,﹣m2),∵△AOB是等边三角形,∴B(2m,0),m=m2,∴m=或m=0(舍去),∴B(2,0),故答案为:(2,0).【点评】本题考查了二次函数图象与几何变换,等边三角形的性质,二次函数图象上点的坐标特征,根据题意得到关于m的方程是解题的关键.15.(4分)如图,在△ABC中,AD和BE是△ABC的高,且交于点F,已知AB=13,BC=14,AC=15,那么∠AFE的正切值是.【分析】利用勾股定理求出BE的长,再将∠AFE转化成∠C即可解决问题.【解答】解:令AE=x,在Rt△ABE中,BE2=132﹣x2.在Rt△BCE中,BE2=152﹣(14﹣x)2.则132﹣x2=152﹣(14﹣x)2,解得x=5,所以BE=,CE=14﹣5=9.又因为∠AFE+∠CAD=90°,∠C+∠CAD=90°,所以∠AFE=∠C.在Rt△BCE中,tan C=,所以tan∠AFE=tan C=.故答案为:.【点评】本题考查解直角三角形,利用勾股定理求出BE的长是解题的关键.16.(4分)中国古代数学书《御制数理精蕴》中有一道题大意如下:如图,从前有一座方城,四面城墙的中间都有城门,出南门后往前直走8里到宝塔A处(即EA=8里),出西门往前直走2里到B处(即DB=2里),此时,视线刚好能紧靠城墙角C看见宝塔A,如果设正方形的中心为O,点O、D、B在一直线上,点O、E、A在一直线上,那么这座方城每一面的城墙长是8里.【分析】先根据正方形的性质得出OB∥CE,再根据相似三角形的性质列方程求解.【解答】解:设正方形是灭一面城墙的长度为2x里,∵正方形的中心为O,∴OD=CD=OE=CE=x里,OB∥CE,∴△ACE∽△ABO,∴,即:,解得:x=4,或x=﹣4(不合题意,舍去),∴2x=8,故答案为:8.【点评】本题考查了正方形的性质,掌握正方形的性质和相似三角形的性质是解题的关键.17.(4分)在△ABC中,AB=AC=6,BC=4,如果将△ABC绕着点B旋转,使得点C落在边AC上,此时,点A落在点A′处,联结AA′,那么AA′的长是4.【分析】作出图形,可以利用SAS证明△BA'A≌△ABC,从而得到AA'=BC,进而得到AA'的长.【解答】解:作出符合题意的图形如下:由题意,知△A'BC'≌△ABC,∴∠A'BC'=∠ABC,∴∠A'BC'﹣∠ABC'=∠ABC﹣∠ABC′,即∠A'BA=∠C'BC,∵AB=AC,BC=BC',∴∠ABC=∠C=∠BC'C,∴∠C'BC=∠BAC,∴∠A'BA=∠BAC,∵A'B=AB=AC,∴△BA'A≌△ABC(SAS),∴AA'=BC=4,故答案为:4.【点评】本题考查旋转的性质,等腰三角形的性质,全等三角形的判定和性质,理解题意,准确画出图形是解题的关键.18.(4分)如图,在△ABC中,∠BAC=90°,,如果点P在△ABC的内部,且满足∠APC=∠BPC=135°,那么CP的长是.【分析】通过证明△ACP∽△CBP,可得CP=AP,BP=CP,由勾股定理可求解.【解答】解:∵∠BAC=90°,AB=AC=,∴BC=AC=,∠ACB=45°,∵∠APC=∠BPC=135°,∴∠ACP+∠CAP=45°=∠ACP+∠BCP,∠APB=90°,∴∠BCP=∠CAP,∴△ACP∽△CBP,∴,∴CP=AP,BP=CP,∴BP=2AP,∵BP2+AP2=AB2,∴5AP2=5,∴AP=1,∴CP=,故答案为:.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,证明△ACP∽△CBP是解题的关键.三、(本大题共7题,第19-22题每题10分:第23、24题每题12分;第25题14分;满分78分)19.(10分)已知:.(1)求代数式的值;(2)当2a+3b﹣3=35时,求a、b的值.【分析】令a=2k,b=5k,(1)把a=2k,b=5k,代入即可求值;(2)把a=2k,b=5k,代入2a+3b﹣3=35,求出k=2,即可得到a=4,b=10.【解答】解:∵,∴令a=2k,b=5k,(1)===﹣2;(2)∵2a+3b﹣3=35时,∴2×2k+3×5k﹣3=35,∴k=2,∴a=2k=4,b=5k=10.【点评】本题考查比例的性质,关键是令a=2k,b=5k,即可求解.20.(10分)已知抛物线y=﹣x2+bx+3与y轴交于点C,与x轴交于点A(﹣1,0)和点B,(1)求此抛物线的表达式及顶点D坐标;(2)联结CD、BD,求∠CDB的余弦值.【分析】(1)依据题意,将(﹣1,0)代入y=﹣x2+bx+3求出b进而的表达式,再化成顶点式可得D的坐标;(2)依据题意,令y=0,可求得B的坐标,令x=0,求得C的坐标,再分别求出BC,BD,CD的长,由勾股定理逆定理可得∠DCB=90°,进而求出cos∠CDB的值.【解答】解:(1)由题意,将(﹣1,0)代入y=﹣x2+bx+3得,﹣1﹣b+3=0,∴b=2.∴抛物线为y=﹣x2+2x+3.又y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4).(2)如图,由题意,令y=0,即﹣x2+2x+3=0.∴x=3或x=﹣1.∴B(3,0).又令x=0,∴y=3.∴CD==,DB==2,BC==3.∴BC2+CD2=BD2.∴∠BCD=90°.∴cos∠CDB===.【点评】本题主要考查了抛物线的图象与性质、解直角三角形,解题时要熟练掌握并能灵活运用是关键.21.(10分)如图,在梯形ABCD中,AD∥BC,BD平分∠ABC,CD=BD=8,AB=5.(1)求BC的长;(2)设,,求向量(用向量,表示).【分析】(1)证明△ABD∽△DBC,得出比例式求出BC的长即可;(2)过点D作DE∥AB,求出,再根据平行四边形法则求出即可.【解答】解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD=5,∵CD=BD=8,∴∠DBC=∠C,∴∠ABD=∠DBC,∠ADB=∠C,∴△ABD∽△DBC,∴,∴,∴BC=;(2)如图,过点D作DE∥AB,则四边形ABED是菱形,∴BE=AD=5,∴BE=BC,∴,∵,∴=.【点评】本题考查了平面向量,相似三角形的判定与性质,证明△ABD∽△DBC,是解(1)的关键.22.(10分)小杰在学习了“仰角、俯角、坡比”后,他在自己居住的小区设计了如下测量方案:小杰利用小区中的一个斜坡CD,首先在斜坡CD的底端C测得高楼顶端A的仰角是60°,然后沿斜坡CD向上走到D处,再测得高楼顶端A的仰角是37°,已知斜坡CD的坡比是i=1:6,斜坡CD的底端C到高楼AB底端B的距离是20米,且B、C、E三点在一直线上(如图所示).假设测角仪器的高度忽略不计,请根据小杰的方案,完成下列问题:(1)求高楼AB的高度;(2)求点D离地面的距离(结果精确到0.1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73)【分析】(1)根据正切的定义求出AB;(2)过点D作DG⊥BE于点G,DH⊥AB于点H,设DG=x米,根据坡度的概念用x 表示出DH,根据正切的定义列出方程,解方程得到答案.【解答】解:(1)在Rt△ABC中,BC=20米,∠ACB=60°,∵tan∠ACB=,∴AB=BC•tan∠ACB=20×=60(米),答:高楼AB的高度为60米;(2)过点D作DG⊥BE于点G,DH⊥AB于点H,则四边形HBGD为矩形,∴BH=DG,DH=BG,设DG=x米,∴AH=AB﹣BH=(60﹣x)米,∵斜坡CD的坡比是i=1:6,∴CG=6x米,∴BG=(20+6x)米,在Rt△AHD中,tan∠ADH=,∴≈0.75,解得:x=≈6.2,经检验,x是原方程的解,答:点D离地面的距离约为6.2米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,熟记锐角三角函数的定义是解题的关键.23.(12分)如图,在▱ABCD中,点E在边AB上,DE2=AE•CD.(1)求证:AD•CD=CE•DE;(2)当点E是边AB的中点时,分别延长DE、CB交于点F,求证:AB2=2EF2.【分析】(1)根据相似三角形的判定与性质求解即可;(2)结合平行四边形的性质利用AAS证明△ADE≌△BFE,根据全等三角形的性质得出DE=EF,等量代换即可得解.【解答】证明:(1)在▱ABCD中,AB∥CD,∴∠AED=∠CDE,∵DE2=AE•CD,∴=,∴△ADE∽△ECD,∴=,∴AD•CD=CE•DE;(2)如图,在▱ABCD中,AB=CD,AD∥BC,∴∠A=∠FBE,∠ADE=∠F,∵点E是边AB的中点,∴AE=BE,∴△ADE≌△BFE(AAS),∴DE=EF,∵DE2=AE•CD,∴EF2=AB•AB,∴AB2=2EF2.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的性质,熟记相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.(12分)如图,在平面直角坐标系xOy中,第二象限的点M在抛物线y=ax2(a>0)上,点M到两坐标轴的距离都是2.(1)求该抛物线的表达式;(2)将抛物线y=ax2(a>0)先向右平移个单位,再向下平移k(k>0)个单位后,所得新抛物线与x轴交于点A(m,0)和点B(n,0),已知m<n,且mn=﹣4,与y 轴负半轴交于点C.①求k的值;②设直线与上述新抛物线的对称轴的交点为D,点P是直线上位于点D下方的一点,分别联结CD 、CP ,如果,求点P 的坐标.【分析】(1)由待定系数法即可求解;(2)①令y =(x ﹣)2﹣k =0,解得:x =±,即可求解;②由直线OD 的表达式知,tan ∠CPH =,则tan ∠POH =,在Rt △OPH 中,tan ∠POH===,即可求解.【解答】解:(1)由题意得,点M (﹣2,2),将点M 的坐标代入抛物线表达式得:2=4a ,解得:a =,则抛物线的表达式为:y =x 2;(2)①平移后的抛物线表达式为:y =(x ﹣)2﹣k ,令y =(x ﹣)2﹣k =0,解得:x =±,∵mn =﹣4,则(+)(﹣)=﹣4,解得:k =;②由①抛物线的表达式为:y =(x ﹣)2﹣k =x 2﹣x ﹣2,其对称轴为直线x =,则点C (0,﹣2),当x =时,=﹣2,即点D (,﹣2),∵点C 、D 的纵坐标相同,则CD∥x轴,由直线OD的表达式知,tan∠CPH=,则tan∠POH=,∵=tan∠CPH,设CH=3x,则PH=4x,在Rt△OPH中,tan∠POH===,解得:x=,则点P的坐标为:(,﹣).【点评】本题考查了二次函数综合题,考查了二次函数的性质,待定系数法求解析式,直角三角形的性质,灵活运用这些性质解决问题是解题的关键.25.(14分)如图,在Rt△ABC中,∠BAC=90°,,点D是边AB上的动点(点D不与点B重合),以CD为斜边在直线BC上方作等腰直角三角形DEC.(1)当点D是边AB的中点时,求sin∠DCB的值;(2)联结AE,点D在边AB上运动的过程中,∠EAC的大小是否变化?如果变化,请说明理由;如果不变,请求出∠EAC的大小;(3)设DE与AC的交点为G,点P是边BC上的一点,且∠CPD=∠CGD,如果点P 到直线CD的距离等于线段GE的长度,求△CDE的面积.【分析】(1)作DH⊥CB于点H,由勾股定理求出CD的长,则可得出答案;(2)连接AE,证出A,D,C,E四点共圆,得出∠EAC=∠EDC,由等腰直角三角形的性质可得出答案;(3)过点D作DN⊥BC于点N,PM⊥CD于点M,连接PG,证明△CEG≌△CMP(AAS),由全等三角形的性质得出CP=CG,证明△CGD≌△CPD(SSS),由全等三角形的性质得出∠DCG=∠PCD,DA=DN=BN,设DA=a,则BD=a,求出a的值,则可得出答案.【解答】解:(1)作DH⊥CB于点H,∵∠BAC=90°,,∴BC=AB=4,∵点D是边AB的中点,∴BD=,∴DH=BH=1,∴CH=BC﹣BH=3,∴CD===,∴sin∠DCB=;(2)∠EAC的大小不变化.连接AE,∵∠DAC=∠DEC=90°,∴A,D,C,E四点共圆,∴∠EAC=∠EDC,∵△DEC为等腰直角三角形,∴∠EDC=45°,∴∠EAC=45°.(3)过点D作DN⊥BC于点N,PM⊥CD于点M,连接PG,∵点P到直线CD的距离等于线段GE的长度,∴PM=EG,∵∠DCE=∠ACB=45°,∴∠ACE=∠BCD,∵∠E=∠PMC=90°,∴△CEG≌△CMP(AAS),∴CP=CG,∴∠CGP=∠CPG,又∵∠CGD=∠CPD,∴∠DGP=∠DPG,∴DG=DP,∴△CGD≌△CPD(SSS),∴∠DCG=∠PCD,∵DN⊥BC,DA⊥AC,∴DA=DN=BN,设DA=a,则BD=a,∴a+a=2,∴CD2=AD2+AC2==32﹣16,===8﹣4.∴S△CDE【点评】本题是三角形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定与性质,三角形的面积,熟练掌握全等三角形的判定与性质是解题的关键。

上海中考数学一模2015年25题汇编(含答案)

上海中考数学一模2015年25题汇编(含答案)

K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。

2015年上海市徐汇区中考数学一模试卷

2015年上海市徐汇区中考数学一模试卷

2015年上海市徐汇区中考数学一模试卷参考答案与试题解析一、选择题(共6小题,每小题6分,满分36分)1.(6分)(2015•徐汇区一模)将抛物线y=﹣2x2向右平移一个单位,再向上平移2个单位后,抛物线的表达式为()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣2【考点】:函数及其相关概念M411二次函数的的图象、性质M442【难易度】:容易题.【分析】:抛物线y=﹣2x2的顶点坐标为(0,0),点(0,0)向右平移一个单位,再向上平移2个单位后得到对应点的坐标为(1,2),所以平移后抛物线的表达式为y=﹣2(x﹣1)2+2.【解答】:答案A.【点评】:本题考查了二次函数的图象与几何变换,难度不大,熟知函数平移“上加下减,左加右减”的法则是解答此题的关键.2.(6分)(2015•徐汇区一模)如图,▱ABCD中,E是边BC上的点,AE交BD于点F,如果BE:BC=2:3,那么下列各式错误的是()A.=2 B.=C.=D.=【考点】:平行线分线段成比例定理M33I平行四边形(包括矩形、菱形、正方形)的判定与性质M344【难易度】:容易题【分析】:由平行四边形的性质及平行线分线段成比例逐项判断有.因为BE:BC=2:3,所以==2,故A正确;因为四边形ABCD为平行四边形,所以AD∥BC,AD=BC,则==,故B正确;因为AD∥BE,所以===,故C不正确;所以===,故D正确;【解答】:答案C.【点评】:本题主要考查平行四边形的性质及平行线分线段成比例,是中考常见的考点,难度不大,熟知平行线分线段所得线段对应成比例是解答本题的关键.3.(6分)(2015•徐汇区一模)已知Rt△ABC中,∠C=90°,∠CAB=α,AC=7,那么BC 为()A.7sinαB.7cosαC.7tanαD.7cotα【考点】:锐角的三角比的概念(正切、余切、正弦、余弦)M361解直角三角形M364【难易度】:容易题【分析】:由题意画出图形,因为Rt△ABC中,∠C=90°,∠CAB=α,AC=7,所以tanα==,则BC=tanα.【解答】:答案C.【点评】:本题考查锐角三角函数的定义及其运用,是中考的常规题目,难度不大,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.(6分)(2015•徐汇区一模)如图,在四边形ABCD中,AD∥BC,如果添加下列条件,不能使得△ABC∽△DCA成立的是()A.∠BAC=∠ADC B.∠B=∠ACD C.AC2=AD•BC D.=【考点】:平行四边形(包括矩形、菱形、正方形)的判定与性质M344相似三角形性质、判定M33M;【难易度】:容易题【分析】:由题意,因为AD∥BC,所以∠DAC=∠BCA,则当∠BAC=∠ADC时,△ABC∽△DCA;当∠B=∠ACD时,△ABC∽△DCA;当=,即AC2=AD•BC时,△ABC∽△DCA;当=时,不能判断△ABC∽△DCA.【解答】:答案D.【点评】:本题考查了相似三角形的性质与判定,属于基础题,是中考考查的热点,难度不大,需要熟记:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.5.(6分)(2015•徐汇区一模)已知二次函数y=ax2﹣2x+2(a>0),那么它的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】:二次函数的的图象、性质M442【难易度】:中等题【分析】:因为二次函数y=ax2﹣2x+2(a>0)的对称轴为直线x=﹣=﹣=>0,所以其顶点坐标在第一或四象限,又当x=0时,y=2,所以抛物线一定经过第二象限,则此函数的图象一定不经过第三象限.【解答】:答案C.【点评】:本题考查了二次函数的图像与性质,是中考必考的内容,难度适中,熟知二次函数的对称轴方程是解答此题的关键.6.(6分)(2015•徐汇区一模)如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AE:EC=1:4,那么S△ADE:S△EBC=()A.1:24 B.1:20 C.1:18 D.1:16【考点】:相似三角形性质、判定M33M【难易度】:较难题【分析】:因为=,所以=,则S△ABE=S△EBC,又DE∥BC,所以==,则=,所以S△BDE=4S△ADE,又S△BDE=S△ABE﹣S△ADE,而4S△ADE=S△EBC﹣S△ADE,所以=,【解答】:答案B.【点评】:本题考查了平行线分线段成比例的性质以及三角形的面积,难度较大,熟知相似三角形的面积比等于相似比的平方、同高三角形的面积比即为底的比是解答本题的关键.二、填空题(共11小题,每小题4分,满分44分)7.(4分)(2015•徐汇区一模)如果=,那么的值等于.【考点】:比例的性质M33H【难易度】:容易题【分析】:由=,得a=.则===,【解答】:答案为:.【点评】:本题考查了比例的性质,难度不大,用a表示出b是解答本题的关键.8.(4分)(2015•徐汇区一模)抛物线y=(x﹣1)2+2的顶点坐标是.【考点】:二次函数的的图象、性质M442【难易度】:容易题【分析】:因为y=(x﹣1)2+2是抛物线的顶点式,则根据顶点式的坐标特点可知,顶点坐标为(1,2).【解答】:答案为:(1,2)【点评】:本题考查了二次函数的顶点坐标,难度不大,本题给的函数是顶点式,则根据抛物线y=a(x﹣h)2+k的顶点坐标为(h,k)可直接得出答案.9.(4分)(2015•徐汇区一模)二次函数y=x2﹣4x﹣5的图象的对称轴是直线.【考点】:二次函数的的图象、性质M442【难易度】:容易题【分析】:根据二次函数的对称轴公式得,二次函数y=x2﹣4x﹣5的对称轴为直线x=﹣=﹣=2,即直线x=2.【解答】:答案为:x=2.【点评】:本题考查了抛物线对称轴的计算,难度不大,根据对称轴对称轴的计算公式可直接得出答案.10.(4分)(2015•徐汇区一模)计算:cos30°﹣sin60°=.【考点】:特殊角的锐角三角比值M362【难易度】:容易题【分析】:根据特殊三角函数值,则原式=﹣=0。

上海市17区县2015年中考一模(即期末)数学试题集12份

上海市17区县2015年中考一模(即期末)数学试题集12份

目录宝山区2015年初三一模数学试卷 (1)长宁区2015届第一学期初三数学教学质量检测试卷 (10)崇明县2014学年第一学期教学质量调研测试卷 (17)奉贤区2014学年调研测试 (28)虹口区2014学年度第一学期期终教学质量监控测试 (36)黄浦区2015年初三一模数学试卷 (43)嘉定区2014学年九年级第一次质量调研 (51)金山区2014-2015学年第一学期期末质量检测 (60)五区联考2015年上海市初三一模数学试卷 (68)普陀区2015届度第一学期初三质量调研 (74)徐汇区2015年数学一模 (84)闸北区2015届九年级数学学科期末练习卷 (93)宝山区2015年初三一模数学试卷一. 选择题(24分)1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,2AC =,下列判断正确的是( )A. 30A ∠=︒;B. 45A ∠=︒;C. 2cot 2A =; D. 2tan 2A =; 2. 如图,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误 的是( )A. AD AE DB EC =;B. AD DE DB BC =;C. AD AE AB AC =;D. AD DE AB BC=;3. 如果在两个圆中有两条相等的弦,那么( )A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;4. 已知非零向量a 、b 、c ,下列命题中是假命题的是( )A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ;5. 已知O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与O 的位置关系 为( )A. 相切;B. 相交;C. 相切或相离;D. 相切或相交;6. 如图边长为3的等边△ABC 中,D 为AB 的三等分点(12AD BD =),三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程 为x ,2DE y =,则y 关于x 的函数图像大致为( )A. B. C. D.二. 填空题(48分)7. 线段b 是线段a 和c 的比例中项,若1a =,2b =,则c = ;8. 两个相似三角形的相似比为2:3,则它们的面积比为 ;9. 已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值范围是 ;10. 已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为 ;11. 在△ABC 中,3cot 3A =,3cos 2B =,那么C ∠= ; 12. B 在A 北偏东30°方向(距A )2千米处,C 在B 的正东方向(距B )2千米处,则C和A 之间的距离为 千米;13. 抛物线2(3)4y x =--+的对称轴是 ;14. 不经过第二象限的抛物线2y ax bx c =++的开口方向向 ;15. 已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>,则1y 2y ;16. 如图,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =,则CE = ;17. 如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,26CD =,则直径AB 的长为 ;18. 如图直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N分别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH = ;三. 解答题(78分)19. 计算:2sin 602cot 30cos 602cos 45tan 60︒+︒-︒︒+︒;20. 如图,已知M 、N 分别是平行四边形ABCD 边DC 、BC 的中点,射线AM 和射线BC相交于E ,设AB a =,AD b =,试用a 、b 表示AN ,AE ;(直接写出结果)21. 已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式以及该抛物线的顶点坐标;22. 如图,D为等边△ABC边BC上一点,DE⊥AB于E,若:2:1BD CD=,DE= 23,求AE;23. 如图,P为O的直径MN上一点,过P作弦AC、BD使APM BPM∠=∠,求证:PA PB=;24. 如图,正方形ABCD中,(1)E为边BC的中点,AE的垂直平分线分别交AB、AE、CD于G、F、H,求GF FH;(2)E的位置改动为边BC上一点,且BEkEC=,其他条件不变,求GFFH的值;25. (1)数学小组的单思稿同学认为形如的抛物线2y ax bx c =++,系数a 、b 、c 一旦 确定,抛物线的形状、大小、位置就不会变化,所以称数a 、b 、c 为抛物线2y ax bx c =++ 的特征数,记作{,,}a b c ;请求出与y 轴交于点(0,3)C -的抛物线22y x x k =-+在单同学 眼中的特征数;(2)同数学小组的尤恪星同学喜欢将抛物线设成2()y a x m k =++的顶点式,因此坚持称a 、m 、k 为抛物线的特征数,记作{,,}a m k ;请求出上述抛物线在尤同学眼中的特征数;(3)同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同 组的董和谐将上述抛物线表述成:特征数为{,,}u v w 的抛物线沿平行于某轴方向平移某单位 后的图像,即此时的特征数{,,}u v w 无论按单思稿同学还是按尤恪星同学的理解做出的结果 是一样的,请你根据数学推理将董和谐的表述完整地写出来;(4)在直角坐标系XOY 中,上述(1)中的抛物线与x 轴交于A 、B 两点(A 在B 的左 边),请直接写出△ABC 的重心坐标;26. 如图在△ABC 中,10AB BC ==,45AC =,D 为边AB 上一动点(D 和A 、B 不重合),过D 作DE ∥BC 交AC 于E ,并以DE 为边向BC 一侧作正方形DEFG ,设 AD =x ,(1)请用x 的代数式表示正方形DEFG 的面积,并求出当边FG 落在BC 边上时的x 的值;(2)设正方形DEFG 与△ABC 重合部分的面积为y ,求y 关于x 的函数及其定义域;(3)点D 在运动过程中,是否存在D 、G 、B 三点中的两点落在以第三点为圆心的圆上 的情况?若存在,请直接写出此时AD 的值,若不存在,则请说明理由;长宁区2015届第一学期初三数学教学质量检测试卷(考试时间100分钟,满分150分) 2015.1考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、单项选择题:(本大题共6题,每题4分,满分24分)1、如果两个相似三角形的面积比是1:6,则它们的相似比( )A .1:36 ;B .1:6 ;C .1:3 ;D .1:6.2、在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于( )A .53;B .54 ;C .43 ;D .34. 3、如图,点A B C DEFGH K ,,,,,,,,都是7×8方格纸中的格点,为使DEM ABC △∽△(点D 和A 对应, 点E和B 对应),则点M 应是F G H K ,,,四点中的( )A. F ; B. G ; C. K ; D. H . 4、已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为( )A . 1或7; B. 1; C . 7; D . 2. AB CK HG F D E第3题图 第6题图5、抛物线y =2x 2,y =﹣2x 2,221x y =共有的性质是( ) A .开口向下; B .对称轴是y 轴;C .都有最低点; D. y 的值随x 的值的增大而减小. 6、如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( ) A .; B . ; C . ; D . .二、填空题:(本大题共12题,每题4分,满分48分)7、已知线段a =2 cm ,c=8 cm ,则线段a 、c 的比例中项是 ▲ cm .8、计算: 3(→a -→b )-3→a = ▲ .9、已知⊙P 在直角坐标平面内,它的半径是5, 圆心P (-3,4),则坐标原点O 与⊙P 的位置关系是 ▲ .10、如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有 ▲ 个.11、抛物线()2132+--=x y 的顶点坐标是 ▲ . 12、将抛物线322-=x y 向左移动3个单位后所得抛物线的解析式是 ▲ .13.已知二次函数722-+=x x y 的一个函数值是8,那么对应的自变量x 的值是 ▲ .14、已知二次函数2)1(2-+-=x a ax y ,当x >1时,y 的值随x 的值的增大而增大,当x <1时,y 的值随x 的值的增大而减小,则实数a 的值为 ▲ .15、某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年第三月新产品的研发资金y (万元)关于x 的函数关系式为 y = ▲ .16、如图所示,铁路的路基横断面是等腰梯形,斜坡AB 的坡度为1:3,斜坡AB 的水平宽度BE =33m ,则斜坡AB = ▲ m .D'C'B'D C B A 第18题图 B D CAG 第17题图 E 第16题图E D C B A第21题图 D C B A O17、如图,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联结DE .则GED ABC S S ∆∆:的值为 ▲ .18、如图,正方形ABCD 绕点A 逆时针旋转,得到正方形'''D C AB .当两正方形重叠部分的面积是原正方形面积的41时,AD B '21sin ∠= ▲ . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:()()0245tan 201530sin 60cos 60sin 1︒-︒︒-+︒--20.(本题满分10分)如图,已知O 为△ABC 内的一点,点D 、E 分别在边AB 、AC 上,且31=DB AD ,41=AC AE .设m OB =,n OC =,试用n m ,表示DE .21.(本题满分10分)如图,AB 是⊙O 的弦,点C 、D 在弦AB 上,且AD =BC ,联结OC 、OD .求证:△OCD 是等腰三角形.22.(本题满分10分)如图,在△ABC 中,AD 是BC 边上的高,点G 在AD 上,过G 作BC的平行线分别与AB 、AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F .设AD =80,BC =120,当四边形PEFQ 为正方形时,试求此正方形的边长.第20题图 E DO C B A第22题图F E QG P C B D A A BC 第23题图23.(本题满分12分)如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C 地沿折线A-C-B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果保留根号)24.(本题满分12分)如图,已知直角坐标平面上的△ABC ,AC=CB ,∠ACB =90°,且A (-1,0),B (m ,n ),C (3,0)。

徐汇区初三数学-一模

徐汇区初三数学-一模

2015学年第一学期徐汇学习能力诊断卷初三数学 试卷(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分)…【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列两个图形一定相似的是(A )两个菱形; (B )两个矩形; (C )两个正方形; (D )两个等腰梯形. 2.如图1,如果EF CD AB ////,那么下列结论正确的是(A )EF CD AE AC =; (B )DF CEBD AC =; (C )CD AB CE AC =; (D ) CEBD DF AC =. 3.将抛物线2)1(22-+=x y 向右平移2个单位,再向上平移2个单位后所得新抛物线的 表达式是(A )2)3(2+=x y ;(B )2)3(+=x y ;(C )2)1(-=x y ;(D )2)1(2-=x y .,4.点G 是ABC ∆的重心,如果5==AC AB ,8=BC ,那么AG 的长是(A )1; (B )2 ; (C )3; (D ) 4.5.如果从甲船看乙船,乙船在甲船的北偏东︒30方向,那么从乙船看甲船,甲船在乙船的 (A )南偏西︒30方向; (B )南偏西︒60方向; (C )南偏东︒30方向; (D )南偏东︒60方向.6.如图2,梯形ABCD 中,BC AD //,︒=∠90BAC ,AC AB =,点E 是边AB 上一 点,︒=∠45ECD ,那么下列结论错误的是(A )ECB AED ∠=∠; (B )ACE ADE ∠=∠ ; (C )AD BE 2=; (D ) CE BC 2=.二.填空题(本大题共12题,每题4分,满分48分)7.计算:=+-+b a b a2131)32(2__▲___.8.如果32=b a ,那么=+-ba ab __▲___. ]A BCD ~F图1图2, BCD《9.已知二次函数122-=x y ,如果y 随x 的增大而增大,那么x 的取值范围是__▲___. 10.如果两个相似三角形的面积比是9:4,那么它们对应高的比是__▲___. 11.如图3所示,一皮带轮的坡比是4.2:1,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是__▲___米. 12.已知点)4,1(M 在抛物线142+-=ax ax y 上,如果点N 和点M 关于该抛物线的对称轴对称,那么点N 的坐标是__▲___.(13.点D 在ABC ∆的边AB 上,3=AC ,4=AB ,B ACD ∠=∠,那么AD 的长是_▲_. 14.如图4,在□ABCD 中,6=AB ,4=AD ,BAD ∠的平分线AE 分别交BD 、CD于F 、E ,那么=BFDF__▲___. 15.如图5,在ABC ∆中,BC AH ⊥于H ,正方形DEFG 内接于ABC ∆,点E D 、分别在边AC AB 、上,点F G 、在边BC 上,如果20=BC ,正方形DEFG 的面积为 25,那么AH 的长是__▲___.16.如图6,在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,43tan =∠ACD ,5=AB ,那么CD 的长是__▲___.17.如图7,在梯形ABCD 中,BC AD //,AD BC 2=,点E 是CD 的中点,AC 与BE》交于点F ,那么ABF ∆和CEF ∆的面积比是__▲___.18.如图8,在ABC Rt ∆中,︒=∠90BAC ,3=AB ,53cos =B ,将ABC ∆绕着点A 旋转得ADE ∆,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是_▲_.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;( 满分78分)19.(本题满分10分)计算:︒︒+︒︒-︒60cos 45cot 30cos 30tan 245sin 4.20.(本题满分10分)抛物线c x x y +-=22经过点)1,2(.|BCD<F G H& A B CD图6 ABC $E F图7 ABC DE图8 图3(1)求抛物线的顶点坐标; (5分) ¥(2)将抛物线c x x y +-=22沿y 轴向下平移后,所得新抛物线与x 轴交于B A 、两点,如果2=AB ,求新抛物线的表达式. (5分) 21.(本题满分10分)如图9,在ABC ∆中,点E D 、分别在边AC AB 、上,43=AB AD ,3=AE ,1=CE ,6=BC .(1)求DE 的长; (5分)(2)过点D 作AC DF //交BC 于F ,设AB a =,=b,求向量(用向量a 、b 表示). (5分)22.(本题满分10分) ]如图10,热气球在离地面800米的A 处,在A 处测得一大楼楼顶C 的俯角是︒30,热气球沿着水平方向向此大楼飞行400米后到达B 处,从B 处再次测得此大楼楼顶C 的俯角是︒45,求该大楼CD 的高度.参考数据:41.12≈,73.13≈.}23.(本题满分12分)如图11,在ACB ∆中,BC AC =,点D 在边AC 上,BD AB =,ED BE =,且ABD CBE ∠=∠,DE 与CB 交于点F .求证:(1)BE AD BD ⋅=2; (6分)(2)DF BC BF CD ⋅=⋅. (6分)A;CD E~ABCD E F 图11')24.(本题满分12分)如图12,在AOB Rt ∆中,︒=∠90AOB ,已知点)1,1(--A ,点B 在第二象限,22=OB ,抛物线c bx x y ++=253经过点A 和B . (1)求点B 的坐标; (3分)(2)求抛物线c bx x y ++=253的对称轴; (3分) (3)如果该抛物线的对称轴分别和边BO AO 、的延长线交于点D C 、,设点E 在直线AB 上,当BOE ∆和BCD ∆相似时,直接写出点E 的坐标.(6分)(25.(本题满分14分)如图13,四边形ABCD 中,︒=∠60C ,5==AD AB ,8==CD CB ,点Q P 、分别是边BC AD 、上的动点,AQ 和BP 交于点E ,且BAD BEQ ∠-︒=∠2190,设P A 、两点的距离为x . '(1)求BEQ ∠的正切值; (4分) (2)设y PEAE=,求y 关于x 的函数解析式及定义域; (5分)(3)当AEP ∆是等腰三角形时,求Q B 、两点的距离. (5分) |:2015学年第一学期徐汇区初三年级数学学科 期终学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.D ; 4.B ; 5.A ; 6.D . 二.填空题:(本大题共12题,满分48分)、7.b a 213311+; 8.51; 9.0≥x ; 10.3:2; 11.26; 12.)4,3(;13.49; 14.32; 15.320; 16.512; 17.1:6; 18.524.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. 解:原式21123332224+⨯⨯-⨯=;……………………………………………(5分)2122+-=;……………………………………………………………(3分) 122+=.…………………………………………………………………(2分) 20.解:(1)由题意,得144=+-c ,解得1=c ;…………………………………(1分)∴抛物线的解析式为122+-=x x y ;……………………………………(1分)/DB AC QPE图13即2)1(-=x y ;……………………………………………………………(1分) ∴顶点坐标是)0,1(.………………………………………………………(2分)(2)设平移后的抛物线解析式是n x x y -+-=122;………………………(1分)∴ 该抛物线的对称轴是直线1=x ;………………………………………(1分) 又2=AB ,由抛物线的对称性可得)0,0(A 、)0,2(B ;………………(1分) ∴01=-n ,解得1=n ;…………………………………………………(1分) ∴新抛物线的表达式是x x y 22-=.……………………………………(1分)21.解:(1)∵3=AE ,1=CE ,∴43=AC AE ;……………………………………(1分)|又43=AB AD ,∴ABADAC AE =; …………………………………………(1分) ∴BC DE //.∴ ABADBC DE =……………………………………………(1分) 即436=DE ,解得29=DE .……………………………………………(2分)(2)∵AC DF //,∴ABBDAC DF =;……………………………………………(1分) 又43=AB AD ,∴41=AC DF ,即AC DF 41=;……………………………(2分) ∵b a+=,∴b a 4141+=. ……………………………………(2分)22.解: 分别延长DC AB 、交于点E . ……………………………………………(1分)∵AB 与地面平行,DC 与地面垂直,∴AB DE ⊥,∴︒=∠90E . …(1分) ,在CEB Rt ∆中,︒=∠45EBC ,∴︒=∠45ECB ,∴BE EC =;……(1分)设x CE =,则x BE =,400+=x AE . ………………………………(1分) 在AEC Rt ∆中,︒=∠90E ,∴AEECCAE =∠tan ; ……………………(1分) 即40030tan +=︒x x,解得)13(200+=x ;…………………………(2分)即546)173.1(200)13(200=+⨯≈+=CE (米) ;……………………(2分) ∴254546800=-=CD (米); ……………………………………………(1分) 答: 大楼CD 的高度254米. 23.证明:(1)∵BC AC =,∴ABC A ∠=∠; ……………………………………(1分)#∵ED BE =,∴DBE BDE ∠=∠;…………………………………(1分)∵ABD CBE ∠=∠,∴CBD ABD CBD CBE ∠+∠=∠+∠,即ABC DBE ∠=∠,∴A BDE ∠=∠;∴BED ∆∽BCA ∆ ;……(1分) ∵BD AB =,∴BDA A ∠=∠;∴ABC BDA ∠=∠;又A A ∠=∠,∴ABD ∆∽BCA ∆;…………………………………(1分) ∴BED ∆∽ADB ∆ ;……………………………………………………(1分)∴BEBDBD AD =,即BE AD BD ⋅=2.…………………………………(1分) (2)∵ABD ∆∽BCA ∆,∴C ABD ∠=∠;………………………………(1分);又ABD CBE ∠=∠,∴C CBE ∠=∠;……………………………(1分)∴BE AC //,∴EFDFBE DC =;…………………………………………(1分) ∵BED ∆∽BCA ∆,∴C E ∠=∠,1==ABBDBC BE ;………………(1分)∴CBE E ∠=∠,∴EF BF =;………………………………………(1分)又BC BE =,∴BFDFBC DC =;…………………………………………(1分) 即DF BC BF CD ⋅=⋅.24.解:(1)分别过点B A 、作y 轴的垂线,垂足分别是D C 、.可得ACO ∆∽ODB ∆,∴OAOBAC OD OC BD ==;∵)1,1(--A ,∴2=OA ; (∴2,2==OD BD ;∴)2,2(-B …………………………………………(3分)(2)由题意,可得⎪⎪⎩⎪⎪⎨⎧=+--=+-;22512;153c b c b ……………………………………………(1分) 解得⎪⎪⎩⎪⎪⎨⎧-=-=;514;56c b ……………………………………………………………(1分) ∴51456532--=x x y ; ∴对称轴是直线1=x .……………………………………………………(1分) (3)点)0,34(-E 或)58,54(--E .…………………………………………(各3分)25.解:(1)联结BD AC 、交于点O .…………………………………………………(1分)@∴AD AB =,∴BAD BAD ABD ADB ∠-︒=∠-︒=∠=∠21902180,又BAD BEQ ∠-︒=∠2190,∴ADB BEQ ∠=∠; ∵AD AB =,CD CB =,∴BD AC ⊥,DO BO =; ∵︒=∠60BCD ,∴BCD ∆是等边三角形,∴8==BC BD ; 在AOD Rt ∆中,︒=∠90AOD ,∴3452222=-=-=DO AD AO ,∴43tan ==∠DO AO ADO ; ∴43tan =∠BEQ . ………………………………………………………(3分)(2)如图,联结BD 交AQ 于F .∵ADB BEQ AEP ∠=∠=∠,DAF EAP ∠=∠, ∴AEP ∆∽ADF ∆,∴DFADPE AE =;…………………(1分) ∵ABD ADB BEQ ∠=∠=∠,AFB BFE ∠=∠; ∴BFE ∆∽AFB ∆ ;∴BAF FBE ∠=∠;∴PBD ∆∽FAB ∆ ;∴BDPDAB BF =; 即855x BF -=,得8525x BF -=;∴85398x BF DF +=-=;…(2分) ∴39540+=x y ,定义域是50<≤x .…………………………………(2分)(3)如图,联结BD 交AQ 于F .∵AEP ∆∽ADF ∆,当AEP ∆是等腰三角形时; ∴ADF ∆也是等腰三角形. 分情况讨论:︒1 当AD AF =时,0=BQ ,但此时点E Q B 、、重合,BEQ ∠不存在,不合题意,舍去;……………………………………(1分)︒2 当DF AF =时,解得4825〈=DF ,此时AF 与边BC 没有交点(即点Q 不在边BC 上),不合题意,舍去;…………………………………(2分)︒3 当5==AD DF 时,得3=BF ,此时1=y ,∴51=x ,符合题意; 联结AC 交BD 于O ,过点Q 作BF QG ⊥于G ;可得3tan =∠BFQ ,D:ACQPEFDB ACQ PE F因此,解得339-=BQ ,即Q B 、两点的距离是339-.…(2分)综合︒1、︒2、︒3,当AEP ∆是等腰三角形时,Q B 、两点的距离是339-.。

徐汇区中考数学二模试卷及答案

徐汇区中考数学二模试卷及答案
成了任务,如果设建筑公司实际每天修 x 米,那么可得方程是 __▲ ___. 13.为了了解某区 5500名初三学生的的体重情况,随机抽测了 400 名学生 的体重,统计结
果列表如下:
体重(千克)
频数
频率
40— 45
44
45— 50
66
50— 55
84
55— 60
86
60— 65
72
65— 70
48
7.计算: 4a3b2 2ab __▲___. 8.计算: 2m(m 3) __▲___. 9.方程 2x 1 3 0的解是 __▲ ___. 10.如果将抛物线 y (x 2)2 1向左平移 1个单位后经过点 A(1, m) ,那么 m 的值是▲ _. 11.点 E 是 ABC 的重心, AB a , AC b,那么 BE _▲ _(用 a 、b 表示). 12.建筑公司修建一条 400 米长的道路,开工后每天比原计划多修 10 米, 结果提前 2 天完
2015 学年第二学期徐汇区学习能力诊断卷 初三年级数学学科
(时间 100 分钟 满分 150 分)
考生注意∶
1.本试卷含三个大题,共 25 题;答题时,考生务必按答题要求在答题纸 规定的位置上作答,在草稿纸、本试卷上答题一律无效;
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应 位置上写出证明或计算的主要步骤.
程 y(米)与时间 t (秒)之间的函数关系(如图 3),那么这次越野 跑的全程为▲米.
18.如图 4,在 ABC 中, CAB 90 , AB 6 , AC 4 , CD 是 ABC 的
中线,将 ABC 沿直线 CD 翻折,点 B 是点 B 的对应点, 点 E 是线段

上海中考数学一模2015年25题汇编(含答案)

上海中考数学一模2015年25题汇编(含答案)

K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。

2015年初三一模数学试卷及答案

2015年初三一模数学试卷及答案

2015年高级中等学校招生模拟考试(一)数 学 试 卷 2015.5考生须知 1.本试卷共6页,共五道大题,页,共五道大题,2929道小题,满分120分.考试时间120分钟。

分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,请将本试卷、答题卡一并交回。

考试结束,请将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.是符合题意的. 1.把8000用科学计数法表示是A .28010´ B .3810´ C .40.810´ D .4810´ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是四个点,其中绝对值相等的点是 A.A.点点A 与点D B. 点A 与点C C. 点B 与点CD. 点B 与点D 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球从袋子里模出一个小球. . 袋子里各种颜色小球的数量统计如表所示所示..小华模到褐色小球的概率为小华模到褐色小球的概率为 A .101 B .51C .41D .21 5. 如图,如图,AD AD 是∠EAC 的平分线,AD∥BC,∠B=30°,的平分线,AD∥BC,∠B=30°,则∠C 为A .30°.30°B B .60°.60°C C .80°.80°D D .120°.120°6.如图,已知⊙O 的半径为1010,弦,弦AB 长为1616,则点,则点O 到AB 的距离是的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其颜色颜色 红色红色 橙色橙色 黄色黄色 绿色绿色 蓝色蓝色 紫色紫色 褐色褐色 数量数量 6433225xD CB A 123–1–2–3O中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的绩的A .平均数.平均数B .众数.众数C .中位数.中位数D .方差.方差 8.如图,已知正方形ABCD 中,中,G G 、P 分别是DC DC、、BC 上的点,上的点,E E 、F 分别分别 是AP AP、、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时,不动时, 下列结论成立的是下列结论成立的是A .线段.线段EF 的长逐渐增大的长逐渐增大B B .线段EF 的长逐渐减小的长逐渐减小C .线段.线段EF 的长不改变的长不改变D D .线段EF 的长不能确定的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),), 则不等式2x≥ax+4的解集为的解集为 A .x≥B. x≤3x≤3C . x ≤D .x ≥3≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分) 1111.函数.函数y=1x-3中自变量x 的取值范围是的取值范围是___________________________________________________.. 1212.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式___________________________________________________.. 1313.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第 个.GFEPDCBA①②③④ ⑤xy图2OPEDCBA图11414..如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16=16,,则矩形ABCD 的面积为的面积为. 15.当三角形中一个内角α是另一个内角β的一半时,的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米立方米(含)(含)(含)内,内,内,每立方米每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算. 小王家2014年4月30日抄表示数550立方米,立方米,55月1日起实施阶梯水价,日起实施阶梯水价,66月抄表时因用户家中无人未见表,家中无人未见表,88月12日抄表示数706立方米,那么小王家本期用水量为立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为日均用水量为 立方米立方米. . 如果按这样每日用水量计算,如果按这样每日用水量计算,小李家今小李家今后每年的水费将达到后每年的水费将达到 元(一年按365天计算)天计算). . 三、解答题(本题共30分,每小题5分)1717.如图,点.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F Ð=Ð.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-°+1919.解不等式组:.解不等式组:240,3(1) 2.x x x -<ìí+³+î2020.已知.已知32a b =,求代数式2243(3)9a ba b a b ++-的值的值. .21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化传承优秀传统文化,,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》其中《三国演义》的单价比《红岩》的单价多比《红岩》的单价多282828元元.若学校购买《三国演义》用了若学校购买《三国演义》用了120012001200元,购买《红岩》用了元,购买《红岩》用了元,购买《红岩》用了400400400元,求《三元,求《三国演义》和《红岩》的单价各多少元国演义》和《红岩》的单价各多少元. .FEDCB A2222.已知.已知.已知::关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根;方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;是平行四边形;(2)若∠ABC =60°,BD =4=4,求平行四边形,求平行四边形ADEF 的面积.的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司个季度工人的工资总额与公司 的股东总利润情况见右表:的股东总利润情况见右表: 该公司老板根据表中数据,该公司老板根据表中数据,作出了图作出了图1,并声称股东利润和工人工资同步增长,并声称股东利润和工人工资同步增长,公司和工人做到了公司和工人做到了“有福同享”.针对老板的说法,解决下列问题:针对老板的说法,解决下列问题: (1)这三个月工人个人的月收入分别是)这三个月工人个人的月收入分别是 万元;万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图;图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)的观察,你如何看待老板的说法?(用一两句话概括)月份月份 工人工资总额(万元)工人工资总额(万元) 股东总利润(万元)股东总利润(万元) 1 28 14 2 30 16 33218股东利润工人工资40302010月份(万元)总额1234O 图11231234股东月份(万元)个人收入O 图225. 如图,如图,AB AB 是⊙是⊙O O 的直径,的直径,C C 是弧AB 的中点,的中点,D D 是⊙是⊙O O 的 切线CN 上一点,上一点,BD BD 交AC 于点E ,且BA= BD . (1)求证:∠)求证:∠ACD=45ACD=45ACD=45°;°;°; (2)若OB=2OB=2,求,求DC 的长.的长.2626.阅读下面材料:.阅读下面材料:.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△,在△ABC ABC 中,中,∠A ∠A=2=2=2∠B,∠B,∠B,CD CD 平分∠A 平分∠ACB CB CB,,AD=2.2AD=2.2,,AC=3.6求BC 的长的长. .小聪思考:因为CD 平分∠A 平分∠ACB CB CB,所以可在,所以可在BC 边上取点E ,使EC=AC EC=AC,连接,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△)△BDE BDE 是__________________三角形三角形三角形. .(2)BC 的长为的长为__________. __________. 参考小聪思考问题的方法,解决问题:参考小聪思考问题的方法,解决问题:如图3,已知△,已知△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, BD 平分∠平分∠ABC,BD=ABC,BD=2.3,BC=2.求AD 的长的长. . 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)2727.在平面直角坐标系.在平面直角坐标系xOy 中,二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,a a 为正整数为正整数. . (1)求a 的值的值. . (2)将二次函数y=y=((a-1a-1))x 2+2x+1的图象向右平移m 个单位,个单位,向下平移m 2+1个单位,当个单位,当 -2 -2≤x ≤1时,二次函数有最小值时,二次函数有最小值-3-3-3,, 求实数m 的值的值. .A B C D图1 ED C B A图2 ABC D图3 NED CBA Oyx11O27题图题图2828..在等边△在等边△ABC ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD BD,CD,,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠)若∠PAB=30PAB=30PAB=30°,求∠°,求∠°,求∠ACE ACE 的度数;的度数;(3)如图2,若6060°°<∠PAB <120<120°,判断由线段°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明形,并证明. .29. 对某种几何图形给出如下定义:对某种几何图形给出如下定义:符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹的轨迹..例如例如,,平面内到定点的距离等于定长的点的轨迹平面内到定点的距离等于定长的点的轨迹,,是以定点为圆心是以定点为圆心,,定长为半径的圆定长为半径的圆. . (1)如图1,在△,在△ABC ABC 中,中,AB=AC AB=AC AB=AC,∠,∠,∠BAC=9BAC=9BAC=90°,0°,0°,A(0A(0A(0,,2)2),,B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE DE,且,且DE DE⊥⊥x 轴于点G. G. 则直线DE 的表达式是的表达式是 . .(2)当△)当△ABC ABC 是等边三角形时,在(是等边三角形时,在(11)的条件下,动点C 形成的轨迹也是一条直线形成的轨迹也是一条直线. . .①当点B 运动到如图2的位置时,的位置时,AC AC AC∥∥x 轴,则C 点的坐标是点的坐标是 . .②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式形成直线的示意图,并求出这条直线的表达式. .③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,CH=CE,则则CE 的取值范围是的取值范围是 . .xy AOxyA O图1AB CP AB CP图2 图2xy A C BO图1xy GDE CBAO数学试卷答案及评分参考一、选择题(本题共30分,每小题3分) 题 号12345 6 7 8 9 10 答 案 BC B B ADCCAC二、填空题(本题共18分,每小题3分)题号题号 1111 12121313 14 15 1616答案答案x ≠3k ›0即可即可不唯一不唯一60120o156,1.5,4047.5三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ; 在△ABC 和△和△F F DE 中A F AB DF B EDF Ð=Ðìï=íïÐ=Ðî…………………………3分∴△ABC ≌△FDE (ASA)(ASA),…………………,…………………4分 ∴BC=DE. …………………………………5分18.18.解:原式解:原式解:原式=1+=1+22-2222´+……………………………………4分=1+22-2+2 =3+2…………………………………………………………5分 19. 解①得:x<2,…………………………………………………………2分 解②得:解②得:x x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分2020..解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =,∴23a b =. ………………………………………………4分 ∴原式=662aa a=--.……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分.由题意,得120040028x x=+……………………………………3分. 解得x=14.x=14.……………………………………4分. 经检验,经检验,x=14x=14x=14是原方程的解,且符合题意是原方程的解,且符合题意是原方程的解,且符合题意. . ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.2222..(1)证明:△2(41)4(33)k k k =+-+ 2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数是整数∴12k ¹即210k -¹. ∴△2(21)0k =->∴方程有两个不相等的实数根∴方程有两个不相等的实数根..………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线,的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴,∴BE=DE; BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形是平行四边形. .………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线,的平分线, ∴∠ABD =∠EBD =30°,=30°,∴DG =BD =×4=24=2,………………………………………,………………………………………3分∵BE =DE ,∴BH =DH =2=2,, ∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一)答案不唯一..…………………………………5分25. (1)证明:∵)证明:∵C C 是弧AB 的中点,∴弧AC=AC=弧弧BC,∴AC=BC. ∵AB 是⊙是⊙O O 的直径,的直径, ∴∠∴∠ACB=90ACB=90ACB=90°°,∴∠∴∠BAC=BAC=BAC=∠∠CBA=45CBA=45°°, 连接OC, ∵OC=OA, ∴∠∴∠AC0=45AC0=45AC0=45°°. ∵CN 是⊙是⊙O O 切线,∴∠切线,∴∠OCD=90OCD=90OCD=90°°,∴∠∴∠ACD=45ACD=45ACD=45°°.………………………………2分. (2) 解:作BH BH⊥⊥DC 于H 点,…………………………3分. ∵∠∵∠ACD=45ACD=45ACD=45°°,∴∠∴∠DCB=135DCB=135DCB=135°°, ∴∠∴∠BCH=45BCH=45BCH=45°°, ∵OB=2OB=2,∴,∴,∴BA= BD=4,AC= BC=BA= BD=4,AC= BC=22. ∵BC=22,∴BH= CH=2, 设DC=x,DC=x,在在Rt Rt△△DBH 中,中,利用勾股定理:2222)24x ++=(,………4分解得:解得:x=x=223-±(舍负的),∴,∴x=x=223-+, ∴DC 的长为:223-+……………………………5分.2626.解:.解:(1)△)△BDE BDE 是等腰三角形………………………1分 (2)BC 的长为5.8.5.8.………………………………………………………………2分. ∵△∵△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, ∴∠A ∴∠ABC=BC=BC=∠∠C= 80°,∵°,∵°,∵BD BD 平分∠平分∠B. B. ∴∠∴∠1=1=1=∠∠2= 40°,∠°,∠°,∠BDC= 60BDC= 60°,°,.在BA 边上取点E ,使BE=BC=2BE=BC=2,连接,连接DE DE,,. ………………………3分 则△DEB ≌△DBC ,∴∠,∴∠BED=BED=BED=∠∠C= 80°,°,°, ∴∠∴∠4=604=604=60°,∴∠°,∴∠°,∴∠3=603=603=60°,°,°,在DA 边上取点F ,使DF=DB DF=DB,连接,连接FE FE,…………………………,…………………………4分 则△BDE ≌△FDE ,∴∠,∴∠5=5=5=∠∠1= 40°,°,°,BE=EF=2, BE=EF=2, ∵∠A ∵∠A=20=20=20°,∴∠°,∴∠°,∴∠6=206=206=20°,∴°,∴°,∴AF=EF=2, AF=EF=2, ∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F EDC BAHOABCDEN 1231234个人收入(万)月份工人股东O图2五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.27.解:解:(1)∵二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,令y=0y=0,则(,则(,则(a-1a-1a-1))x 2+2x+1=0+2x+1=0,, ∴=4-4(a-1)0D ³,解得a ≤2.2. …………………………………1分.∵a 为正整数为正整数..∴a=1、2 又∵又∵y=y=y=((a-1a-1))x 2+2x+1是二次函数,∴是二次函数,∴a-1a-1a-1≠≠0,∴,∴a a ≠1,∴a 的值为2.2.………………………………………2分 (2)∵a=2,∴二次函数表达式为y=x 2+2x+1+2x+1,,将二次函数y=x 2+2x+1化成顶点式y=y=((x+1x+1))2二次函数图象向右平移m 个单位,向下平移m 2+1个单位个单位后的表达式为y=y=((x+1-m x+1-m))2-(m 2+1+1)). 此时函数的顶点坐标为(此时函数的顶点坐标为(m-1, -m m-1, -m 2-1-1)).…………………………………4分当m-1m-1<<-2,即m <-1时,时, x=-2时,二次函数有最小值时,二次函数有最小值-3-3-3,, ∴-3=(-1-m -1-m))2-(m 2+1+1)),解得32m =-且符合题目要求且符合题目要求.. ………………………………5分当 -2≤m-1m-1≤≤1,1,即即-1-1≤≤m ≤2,2,时,当时,当时,当 x= m-1时,二次函数有最小值时,二次函数有最小值-m -m 2-1=-3-1=-3,, 解得2m =±.∵-2m =不符合不符合-1-1-1≤≤m ≤2的条件,舍去的条件,舍去.. ∴2m =.……………………………………6分当m-1m-1>>1,即m >2时,当时,当 x=1时,二次函数有最小值时,二次函数有最小值-3-3-3,,∴-3=(2-m 2-m))2-(m 2+1+1)),解得32m =,不符合m >2的条件舍去的条件舍去..综上所述,m 的值为32-或2 ……………………………………7分 2828.解:.解:(1)补全图形,如图1所示所示. .……………………………1分 (2)连接AD AD,如图,如图2.2.∵点∵点D 与点B 关于直线AP 对称,∴对称,∴AD=AB AD=AB AD=AB,∠,∠DAP =∠BAP =30°. ∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°……………………………3分PEDCBA 图1PEDCBA图2(3)线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..…………………………… 4分证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称,对称, ∴AD=AB AD=AB,,DE=BE DE=BE,, 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.AB=AC,AB=AD. ∴AD=AC, ∴∠ADE = ∠ACE. ∴∠ABE = ∠ACE.ACE.设设AC AC,,BE 交于点F, 又∵∠AFB = ∠CFE.CFE.∴∠∴∠∴∠B B AC =∠BEC=60°. ∴线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..………7分29. 解:(1)x=2.x=2.…………………………1分. (2)①)①C C 点坐标为点坐标为: :43,23()…………………………3分.②由①②由①C C 点坐标为点坐标为: :43,23()再求得其它一个点C 的坐标,如(3,1),或(,或(00,-2-2)等)等)等代入表达式y=kx+b y=kx+b,解得,解得b=-23k ìïí=ïî. ∴直线的表达式是32y x =-.………………………5分.动点C 运动形成直线如图所示运动形成直线如图所示..……………6分.③423393EC £<.…………………………8分.图3FP CBADExy FAEO。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年徐汇区初三数学第一学期学习能力诊断卷
(时间100分钟 满分150分) 2015.1
一. 选择题(本大题共6题,每题4分,满分24分)
1. 将抛物线22y x =-向右平移1个单位,再向上平移2个单位后,抛物线的表达式为( )
A . 22(1)2;y x =--+
B . 22(1)2;y x =---
C . 22(1)2;y x =-++
D . 22(1)2;y x =-++
2. 如图,□ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE :BC =2:3,那么下列各式错误的是( )
A . 2;BE EC =
B . 1;3E
C A
D = C . 2;3EF A
E = D . 2;3
BF DF =
第2题图 第4题图 第6题图
3. 已知Rt △ABC 中,∠C =90°,∠CAB = α,AC =7,那么BC 为( )
A . 7sin ;α
B . 7cos ;α
C . 7tan ;α
D . 7cot .α
4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )
A . ∠BAC =∠ADC ;
B . ∠B =∠ACD ;
C . 2;AC A
D BC =⋅ D .
.DC AB AC BC = 5. 已知二次函数222(0)y ax x a =-+>,那么它的图像一定不经过( )
A . 第一象限;
B . 第二象限;
C . 第三象限 ;
D . 第四象限.
6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果AE :EC =1:4,那么S △ADE :S △BEC =( )
A . 1:24;
B . 1:20;
C . 1:18;
D . 1:16
二. 填空题(本大题共12题,每题4分,满分48分)
7. 如果,53a b =那么a b a b
-+的值等于_________. 8. 抛物线2(1)2y x =-+的顶点坐标是_________.
9. 二次函数245y x x =--的图像的对称轴是直线_________.
10. 计算:cot 30sin 60o o -=_________.
11. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为_________m .
12. 若点A (-3,1y )、B (0,2y )是二次函数2
2(1)1y x =--图像上的两点,那么1y 与2y 的大小关系是_________(填12y y >、12y y =或12y y <).
13. 如图,l 1∥l 2∥l 3,如果DE =6,EF =2,BC =1.5,那么AC =_________.
14. 如图是拦水坝的横断面,斜坡AB 的高度为6米,斜坡的坡比为1:2,则斜坡AB 的长为
_________米(保留根号).
15. 如图,正方形ABCD 被分成9个全等的小正方形,P 、Q 是其中两个小正方形的顶点,
设,,AB a AD b ==则向量PQ =_________(用向量a 、b 表示).
第13题图 第14题图 第15题图
16. 如图,△ABC 中,∠BAC =90°,点G 是△ABC 的重心,如果AG =4,那么BC 的长为
_________.
17. 如图,已知4tan 3
O =,点P 在边OA 上,OP =5,点M 、N 在边OB 上,PM =PN ,如果MN =2,那么PM =_________.
18. 如图,在△ABC 中,∠ABC =90°,AB =6,BC =8.点M 、N 分别在边AB 、BC 上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且AP =4,那么BN =_________.
第16题图 第17题图 第18题图
三. (本大题共7题,19-22每题10分,23、24每题10分,25题14分,满分78分)
19. 已知二次函数2
y ax bx c =++(,,a b c 为常数,且0a ≠)经过A 、B 、C 、D 四点,其中横坐标x 与纵坐标y 的对应值如下表: A B C D x
-1 0 1 3 y -1 3 5 3 (1) 求二次函数的解析式;
(2) 求△ABD 的面积.
20. 如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O ,AD :BC =1:2.
(1)设,,BA a BC b ==试用a 、b 表示BO ;
(2)先化简,再求作:3(2)2()2
a b a b +-+(直接作在右图中).
21. 如图,在电线杆上的C处引拉线CE、CF固定电线杆. 拉线CE和地面成60°角,在离电线杆6米处安置测角仪AB,在A处测得电线杆上C处的仰角为23°,已知测角仪AB的
高为1.5米,求拉线CE的长.(已知
5125
sin23,cos23,tan23,
131312
o o o
≈≈≈结果保留根
号)

22. 如图,MN经过△ABC的顶点A,MN∥BC,AM=AN,MC交AB于D,NB交AC于
E.
(1)求证:DE∥BC;
(2)联结DE,如果DE=1,BC=3,求MN的长.
N
M
E
D
C
B
A
23. 已知菱形ABCD 中,AB =8,点G 是对角线BD 上一点,CG 交BA 的延长线于点F .
(1)求证:2;AG GE GF =⋅
(2)如果12
DG GB =,且AG ⊥BF ,求co s F . G E
F
D
C
B A
24. 已知:,如图,抛物线21:4C y ax ax c =++的图像开口向上,与x 轴交于点A 、B (A
在B 的左边),与y 轴交于点C ,顶点为P ,AB =2,且OA =OC .
(1)求抛物线1C 的对称轴和函数解析式;
(2)把抛物线1C 的图像先向右平移3个单位,再向下平移m 个单位得到抛物线2C ,记
顶点为M ,并与y 轴交于点F (0,-1),求抛物线2C 的函数解析式;
(3)在(2)的基础上,点G 是y 轴上一点,当△APF 与△FMG 相似时,求点G 的坐
标.
25. 如图,梯形ABCD中,AD∥BC,对角线AC⊥BC,AD=9,AC=12,BC=16,点E是
边BC上一个动点,∠EAF=∠BAC,AF交CD于点F、交BC延长线于点G. 设BE=x.
(1)试用x的代数式表示FC;
(2)设FG
y
EF
,求y关于x的函数解析式,并写出定义域;
(3)当△AEG是等腰三角形时,直接写出BE的长.
F
G E D
C B
A
备用图
D C
B
A
2014学年第一学期徐汇区初三数学答案(2015.1)
1、A
2、C
3、C
4、D
5、C
6、B
7、41
8、(1,2)
9、x=2 10、2
3 11、15 12、21y y > 13、6 14、56 15、b a 3
231+- 16、12 17、17 18、
19、
20、
21、
22、
23、
24、
25、。

相关文档
最新文档