数控加工工艺的分析和处理
数控车床零件的工艺分析及编程典型实例
![数控车床零件的工艺分析及编程典型实例](https://img.taocdn.com/s3/m/8e707df5aef8941ea76e0587.png)
数控车床零件的工艺分析及编程典型实例更新日期:来源:数控工作室根据下图所示的待车削零件,材料为45号钢,其中Ф85圆柱面不加工。
在数控车床上需要进行的工序为:切削Ф80mm 和Ф62mm 外圆;R70mm 弧面、锥面、退刀槽、螺纹及倒角。
要求分析工艺过程与工艺路线,编写加工程序。
图1 车削零件图1.零件加工工艺分析(1)设定工件坐标系按基准重合原则,将工件坐标系的原点设定在零件右端面与回转轴线的交点上,如图中Op点,并通过G50指令设定换刀点相对工件坐标系原点Op的坐标位置(200,100)(2)选择刀具根据零件图的加工要求,需要加工零件的端面、圆柱面、圆锥面、圆弧面、倒角以及切割螺纹退刀槽和螺纹,共需用三把刀具。
1号刀,外圆左偏刀,刀具型号为:CL-MTGNR-2020/R/1608 ISO30。
安装在1号刀位上。
3号刀,螺纹车刀,刀具型号为:TL-LHTR-2020/R/60/1.5 ISO30。
安装在3号刀位上。
5号刀,割槽刀,刀具型号为:ER-SGTFR-2012/R/3.0-0 IS030。
安装在5号刀位上。
(3)加工方案使用1号外圆左偏刀,先粗加工后精加工零件的端面和零件各段的外表面,粗加工时留0.5mm的精车余量;使用5号割槽刀切割螺纹退刀槽;然后使用3号螺纹车刀加工螺纹。
(4)确定切削用量切削深度:粗加工设定切削深度为3mm,精加工为0.5mm。
主轴转速:根据45号钢的切削性能,加工端面和各段外表面时设定切削速度为90m/min;车螺纹时设定主轴转速为250r/min。
进给速度:粗加工时设定进给速度为200mm/min,精加工时设定进给速度为50mm/min。
车削螺纹时设定进给速度为1.5mm/r。
2.编程与操作(1)编制程序(2)程序输入数控系统将程序在数控车床MDI方式下直接输入数控系统,或通过计算机通信接口将程序输入数控机床的数控系统。
然后在CRT 屏幕上模拟切削加工,检验程序的正确性。
62数控铣床加工工艺分析
![62数控铣床加工工艺分析](https://img.taocdn.com/s3/m/6d4544ea0342a8956bec0975f46527d3240ca62d.png)
62数控铣床加⼯⼯艺分析6.2数控铣床加⼯⼯艺分析6.2.1数控铣床加⼯零件的⼯艺性分析在选择并决定数控铣床加⼯零件及其加⼯内容后,应对零件的数控铣床加⼯⼯艺性进⾏全⾯、认真、仔细的分析。
主要内容包括产品的零件图样分析、零件结构⼯艺性分析与零件⽑坯的⼯艺性分析等内容。
1.零件图⼯艺分析⾸先应熟悉零件在产品中的作⽤、位置、装配关系和⼯作条件,搞清楚各项技术要求对零件装配质量和使⽤性能的影响,找出主要的和关键的技术要求,然后对零件图样进⾏分析。
针对数控铣削加⼯的特点,下⾯列举出⼀些经常遇到的⼯艺性问题作为对零件图进⾏⼯艺性分析的要点来加以分析与考虑。
(1)图样尺⼨的标注⽅法是否⽅便编程?构成⼯件轮廓图形的各种⼏何元素的条件是否充要?各⼏何元素的相互关系(如相切、相交、垂直和平⾏等)是否明确?有⽆引起⽭盾的多余尺⼨或影响⼯序安排的封闭尺⼨?等等。
(2)零件尺⼨所要求的加⼯精度、尺⼨公差是否都可以得到保证?不要以为数控机床加⼯精度⾼⽽放弃这种分析。
特别要注意过薄的腹板与缘板的厚度公差,“铣⼯怕铣薄”,数控铣削也是⼀样,因为加⼯时产⽣的切削拉⼒及薄板的弹性退让,极易产⽣切削⾯的振动,使薄板厚度尺⼨公差难以保证,其表⾯粗糙度也将恶化或变坏。
根据实践经验,当⾯积较⼤的薄板厚度⼩于3mm时就应充分重视这⼀问题。
(3)内槽及缘板之间的内转接圆弧是否过⼩?(4)零件铣削⾯的槽底圆⾓或腹板与缘板相交处的圆⾓半径r是否太⼤?(5)零件图中各加⼯⾯的凹圆弧(R与r)是否过于零乱,是否可以统⼀?因为在数控铣床上多换⼀次⼑要增加不少新问题,如增加铣⼑规格、计划停车次数和对⼑次数等,不但给编程带来许多⿇烦,增加⽣产准备时间⽽降低⽣产效率,⽽且也会因频繁换⼑增加了⼯件加⼯⾯上的接⼑阶差⽽降低了表⾯质量。
所以,在⼀个零件上的这种凹圆弧半径在数值上的⼀致性问题对数控铣削的⼯艺性显得相当重要。
⼀般来说,即使不能寻求完全统⼀,也要⼒求将数值相近的圆弧半径分组靠拢,达到局部统⼀,以尽量减少铣⼑规格与换⼑次数。
数控加工工艺分析
![数控加工工艺分析](https://img.taocdn.com/s3/m/d2711cc9e43a580216fc700abb68a98271feace4.png)
数控加工工艺分析数控加工工艺分析是指对数控加工过程中的各个环节和工艺条件进行细致分析和评估的过程。
通过对数控加工工艺的分析,可以有效提高加工效率、降低加工成本、改善产品质量,并且满足客户对产品的要求。
下面将从数控加工工艺设计、数控机床选择、刀具选择以及加工工艺参数等方面进行详细分析。
首先,数控加工工艺设计是数控加工的核心环节之一、在数控加工工艺设计时,需要确定加工过程中的每个工序的刀具路径和切削参数,包括切削速度、进给速度、切削深度等。
其中,切削路径的设计应尽量减少切削时间,减小切削力和刀具磨损。
切削参数的选择需要根据工件材料、刀具材料以及所要求的加工精度等方面综合考虑,以达到最佳的加工效果。
其次,数控机床的选择也是数控加工工艺分析的重要内容之一、数控机床的性能和精度直接影响加工质量和效率。
在数控机床选择时,应根据所要加工零件的尺寸、形状、材料以及工艺要求等因素来确定数控机床的类型和规格。
同时,还要考虑数控机床的刚性、稳定性、动态响应特性和自动刀具切换等功能,以满足不同加工需求的要求。
再次,刀具的选择对数控加工的质量和效率也有着重要影响。
刀具的选择应根据工件材料、切削任务以及加工精度的要求来确定。
一般而言,硬质合金刀具适用于加工硬材料和高速加工,而高速钢刀具适用于加工软材料,同时还可以根据不同的切削任务选择不同的刀具类型,如铣刀、钻头、车刀等。
最后,加工工艺参数的选择是数控加工工艺分析的重要环节之一、加工工艺参数的选择直接关系到加工质量和效率。
在选择加工工艺参数时,可以通过实验或者经验总结来确定最佳参数。
一般而言,切削速度应根据材料硬度、刀具类型以及切削任务来选择,进给速度应根据刀具的尺寸和刚性、加工表面的粗糙度要求以及加工工艺的稳定性来选择,切削深度应根据加工目标和刀具的性能来确定。
此外,还要注意加工中的冷却液、润滑剂的使用以及工件夹紧装置的设计与选择等。
综上所述,数控加工工艺分析是数控加工过程中十分重要的环节,通过对加工工艺设计、数控机床选择、刀具选择以及加工工艺参数的详细分析和评估,可以优化加工过程,提高加工效率和产品质量。
数控加工工艺的分析与处理
![数控加工工艺的分析与处理](https://img.taocdn.com/s3/m/3457b271366baf1ffc4ffe4733687e21af45ffb4.png)
数控加工工艺的分析与处理随着科技的不断进步,数控加工技术在制造业中得到了广泛应用。
数控加工工艺的分析与处理是保证数控加工过程顺利进行的关键环节。
本文将从数控加工工艺的基本原理、分析方法与处理措施三个方面进行探讨。
一、数控加工工艺的基本原理数控加工是利用计算机控制数控机床进行精密切削或造型加工的一种加工方法。
其基本原理是将图纸上的几何尺寸、形状和位置要求转化为数学模型,并通过计算机编程的方式将这些模型转化为数控指令,进而控制数控机床的运动轨迹、切削参数等,实现零件的加工。
数控加工工艺的前提是要了解工件的设计要求和材料特性。
通过分析工件的几何形状、尺寸、表面质量要求以及材料的硬度、可加工性等参数,确定适合的数控加工方案。
在具体加工过程中,还需要根据工件的形状复杂程度、加工精度要求等因素,合理选择数控机床、刀具和切削参数等。
二、数控加工工艺的分析方法1.几何形状分析:对于复杂形状的工件,需要进行多视图的几何形状分析,确定加工的主要特征面、特征线和特征点。
2.加工工艺分析:根据工件的几何形状、尺寸和表面质量要求,结合加工设备和材料,分析出适合的加工工艺路线,并绘制出对应的加工工艺卡。
3.切削力与热量分析:分析切削力和热量对加工过程的影响,根据材料的可加工性和切削力的大小,选择合适的切削参数和冷却液。
4.程序分析:通过工艺分析,确定数控加工的主要工序和加工路径,在制定程序时,遵循合理、简洁、安全、高效的原则。
三、数控加工工艺的处理措施1.加工设备优化:根据工件的加工要求,选择合适的数控机床及其附件,提高加工效率和精度。
2.刀具选择与刀具磨损处理:根据工件材料和切削要求,选择合适的刀具,并进行定期检查和更换,及时处理刀具磨损问题。
3.切削参数调整:根据工艺分析结果,合理调整切削速度、切削深度和进给速度等切削参数,以保证加工质量。
4.刀具路径优化:通过选择合理的切削路径和切削顺序,减少进刀次数和加工时间,提高加工效率。
菱形凸台零件的数控加工及工艺分析毕业设计
![菱形凸台零件的数控加工及工艺分析毕业设计](https://img.taocdn.com/s3/m/74adc1bc710abb68a98271fe910ef12d2af9a9a1.png)
菱形凸台零件的数控加工及工艺分析毕业设计数控加工是指通过计算机控制的自动化机床加工零件的一种加工方法。
相比传统的手工操作,数控加工具有加工准确度高、加工速度快、重复性
好等优点。
对于菱形凸台零件来说,数控加工能够提供更稳定的加工精度,保证零件的尺寸和表面质量。
数控加工菱形凸台零件的工艺分析如下:
1.制定加工方案:根据产品图纸和工艺要求,制定加工方案。
确定加
工工艺路线、工艺参数和刀具选择等。
2.首先进行铣削加工:根据加工方案,先进行菱形凸台的铣削加工。
可以使用立式铣床、加工中心等数控机床进行铣削加工。
铣削时,主要应
注意工具切削力的控制、刀具的切削速度和进给速度的选择,保证零件表
面的精度和质量。
3.进行内外螺纹加工:接下来进行菱形凸台内外螺纹的加工。
通常使
用螺纹刀具进行螺纹铣削加工。
加工时,需要选择合适的刀具和切削参数,确保螺纹加工的精度和质量。
4.接着进行表面处理:对菱形凸台零件的表面进行加工处理。
可以选
择研磨、抛光等方式对零件进行表面处理,以提高零件的光洁度和美观度。
5.最后进行检测与修正:对菱形凸台零件进行检测,并进行修正。
可
以使用三坐标测量仪、形状测量仪等设备进行测量,检查零件的尺寸和形
状是否符合要求。
若发现问题,需要进行修正,保证零件的质量。
总结起来,菱形凸台零件的数控加工工艺主要包括制定加工方案、铣削加工、内外螺纹加工、表面处理和检测与修正。
通过科学的加工工艺和精确的数控加工设备,可以保证菱形凸台零件的加工质量和生产效率。
数控车削加工工艺分析
![数控车削加工工艺分析](https://img.taocdn.com/s3/m/e504a4c54128915f804d2b160b4e767f5acf8014.png)
OCCUPATION2011 5170数控车削加工工艺分析文/许新伟 韩长军零件数控车削加工工艺分析是制订车削工艺规程的重要内容之一,其主要包括选择各加工表面的加工方法、安排工序的先后顺序、确定刀具的走刀路线等。
技术人员应根据从生产实践中总结出来的一些综合性工艺原则,结合现场的实际生产条件,提出几种方案,通过对比分析,从中选择最佳方案。
一、拟定工艺路线1.加工方法的选择回转体零件的结构形状虽然是多种多样的,但它们都是由平面、内、外圆柱面、曲面、螺纹等组成,每一种表面都有多种加工方法,实际选择时应结合零件的加工精度、表面粗糙度、材料、结构形状、尺寸及生产类型等因素全面考虑。
2.加工顺序的安排在选定加工方法后,接下来就是划分工序和合理安排工序的顺序。
合理安排好切削加工、热处理和辅助工序的顺序,并解决好工序间的衔接问题,可以提高零件的加工质量、生产效率,降低加工成本。
在数控车床上加工零件,应按工序集中的原则划分工序,安排零件车削加工顺序一般遵循下列原则:(1)先粗后精。
按照粗车→(半精车)→精车的顺序进行,逐步提高零件的加工精度。
(2)先近后远。
这里所说的远与近,是按加工部位相对于换刀点的距离大小而言的。
(3)内外交叉。
对既有内表面(内型、腔),又有外表面的零件,安排加工顺序时,应先粗加工内外表面,然后精加工内外表面,加工内外表面时,通常先加工内型和内腔,然后加工外表面。
(4)刀具集中。
用一把刀加工完相应各部位,再换另一把刀,加工相应的其他部位,以减少空行程和换刀次数及换刀时间。
(5)基面先行。
用作精基准的表面应优先加工出来,原因是作为定位基准的表面越精确,装夹误差就越小。
例如加工轴类零件时,总是先加工中心孔,再以中心孔为精基准加工外圆表面和端面。
二、确定走刀路线走刀路线是指刀具从起刀点开始移动起,直至返回并结束加工程序所经过的路径,其包括刀具切削加工的路径及刀具引入、切出等非切削空行程,主要考虑以下几个问题:一是刀具引入、出。
数控机床的加工工艺分析与优化
![数控机床的加工工艺分析与优化](https://img.taocdn.com/s3/m/3138e14bbb1aa8114431b90d6c85ec3a86c28b64.png)
数控机床的加工工艺分析与优化随着科技的不断发展,数控机床在工业制造领域中扮演着重要的角色。
数控机床通过自动化技术和计算机控制技术实现了对工件的精密加工。
在进行数控机床加工时,优化加工工艺对于提高生产效率和产品质量至关重要。
本文将对数控机床的加工工艺进行分析与优化探讨。
首先,需要从工件材料的选择入手。
加工工艺的设计必须考虑到工件的材料特性,例如硬度、切削性能等。
不同材料的加工难度不同,因此需要选用合适的刀具和切削参数。
对于高硬度材料,可以选择硬质合金刀具进行加工;对于高粘性材料,可以选择高速钢刀具。
通过合理选择工件材料,可以大幅提高加工效率和产品质量。
其次,对于数控机床的刀具路径进行优化。
刀具路径的优化可以减少机床刀具在加工过程中的移动距离,从而缩短加工时间。
根据工件的形状和尺寸,可以采用合适的刀具路径,如直线插补、圆弧插补、等间距插补等。
通过减少刀具路径的长度,节省了刀具的磨损和加工时间,提高了加工效率。
第三,合理选择切削参数。
切削参数的选择对于数控机床加工中切削力、表面质量、切削温度等方面有着重要的影响。
切削速度、进给速度和切削深度是三个主要参数。
较大的切削速度会造成较大的切削力,适当的切削速度可以在一定程度上降低切削温度。
进给速度的增加可以提高加工效率,但过大的进给速度可能会导致加工质量下降。
因此,需要根据实际情况合理选择切削参数,以达到最佳的加工效果。
此外,对于数控机床的夹具设计也需要进行优化。
夹具的设计直接影响到工件的定位和固定,对于保证加工精度和稳定性至关重要。
夹具设计时需要考虑工件的形状、尺寸和加工要求。
合理设计夹具,可避免工件在加工过程中的振动和变形,提高加工精度和产品质量。
最后,加工过程中的刀具管理也是重要的环节。
切削工具的选择对加工工艺至关重要。
刀具的选择应根据工件材料、尺寸、形状等因素进行。
同时,需要定期对刀具进行维护和检查,包括刀具的磨损程度、刃口是否损坏等。
定期更换刀具,可以保证加工质量和加工效率。
数控铣床零件加工工艺分析与程序设计毕业论文
![数控铣床零件加工工艺分析与程序设计毕业论文](https://img.taocdn.com/s3/m/e28e1d3e8f9951e79b89680203d8ce2f01666514.png)
数控铣床零件加工工艺分析与程序设计毕业论文数控铣床是一种用数控技术控制刀具在工件上进行铣削加工的设备。
在数控铣床零件加工过程中,合理的工艺分析和程序设计对于保证加工精度和提高加工效率至关重要。
本文将以数控铣床零件加工工艺分析与程序设计为研究内容,分析其重要性并提出相应的设计方法。
首先,工艺分析对于数控铣床零件加工至关重要。
工艺分析是指通过对零件特点、材料性能等进行分析,确定合理的加工方法和加工工艺参数。
在数控铣床零件加工过程中,不同的零件要求不同的加工方法和参数,只有通过工艺分析才能确定最佳的加工工艺路线和参数,以保证零件的加工质量和效率。
工艺分析还可以提前预测可能出现的问题,如加工难度较大的区域、切削力较大的位置等,从而采取相应的措施,保证加工的顺利进行。
其次,程序设计是数控铣床零件加工的核心环节。
程序设计是指根据工艺分析的结果,编写数控程序,以实现对数控铣床的控制。
程序设计的质量直接影响加工结果,良好的程序设计可以提高加工精度和效率。
在程序设计过程中,需要根据零件的几何形状、尺寸和加工要求,确定数控刀具的刀补和补偿方案,编写合理的切削路径和切削轨迹,以保证零件的尺寸精度和表面质量。
此外,程序设计还需要考虑加工过程中可能出现的问题,如加工力的控制、材料的选择等,以提高加工的效率和稳定性。
在数控铣床零件加工工艺分析与程序设计过程中,可以采取以下方法:1.对零件进行全面的分析。
包括几何形状、尺寸、材料特性等方面的分析,确定加工目标和要求。
2.根据零件的特点和加工目标,选择合适的加工方法和加工工艺参数。
如铣床的进给速度、主轴转速、切削进给量等。
3.根据工艺分析结果,编写数控程序。
程序要考虑到零件的几何形状、加工道具的特点和刀具的路径。
4.在程序设计过程中,需要进行模拟实验和试加工。
通过试验和实际加工,检验程序的准确性和可行性。
5.对程序进行评估和调整。
根据试加工和实际情况,对程序进行调整和改进,以提高加工效率和质量。
第1章_数控加工工艺分析
![第1章_数控加工工艺分析](https://img.taocdn.com/s3/m/78f570a401f69e31423294cd.png)
零件的数控铣削结构工艺性图例
8
9
10
1.2 加工方法的选择
• 对于外圆面,可采用车削、磨削加工等方法; • 内孔加工可采用钻、扩、铰、镗、磨等加工方法; • 数控铣或加工中心加工零件的表面为平面、曲面、
轮廓、孔和螺纹等,所选加工方法要与零件的表面 特征、所要求达到的精度及表面粗糙度相适应。下 面,作为重点探讨。
• 平面轮廓多由直线和圆弧或各种曲线构成,通常采用 三坐标数控铣床进行两轴半坐标加工。下图为由直线 和圆弧构成的零件平面轮廓ABCDEA,采用半径为R 的立铣刀沿周向加工,虚线ABCDEA为刀具中心的 运动轨迹。为保证加工面光滑,刀具沿PA切入,沿 AK切出 。
12
• 三、固定斜角平面加工 • 固定斜角平面是与水平面成一固定夹角的斜面,
不完全定位中只设置与加工要求有关的 支承点,用较少的元件达到定位要求。
平板工件磨平面: 工件只有厚度和 平行度要求,通 过电磁工作台只 限制三个自由度。
27
六点定位原理的应用
欠定位--按照加工要求应该被限制的自由度没
有被限制的定位称为欠定位。装夹中不允许有
欠定位。
加工部位
圆柱体工件
a
b
c
28
六点定位原理的应用
24
六点定位原理
夹具用合理 分布的六个 支承点,分 别限制工件 的六个自由 度,使工件 在夹具中的 位置完全确 定,称为 “六点定位 原理”。
25
六点定位原理的应用
完全定位--工件的6个自由度全部被夹具中 的定位元件所限制。
26
六点定位原理的应用
不完全定位—根据工件加工表面的不同加工 要求,定位支承点少于6个的定位。
4
• 4. 保证基准统一原则 • 有些零件需要在铣完一面后再重新安装
数控加工零件的工艺分析与数控铣削加工工艺
![数控加工零件的工艺分析与数控铣削加工工艺](https://img.taocdn.com/s3/m/ebb3892bfbd6195f312b3169a45177232f60e42c.png)
数控加工零件的工艺分析与数控铣削加工工艺数控加工是指利用计算机数控系统,通过编写程序控制机床工作来加工零件的一种加工方式。
在工业生产中,数控加工因其高精度、高效率、高灵活性等优点而被广泛应用。
其中数控铣削是一种常见的数控加工方式,本文将从工艺分析、数控铣削加工工艺等方面进行探讨。
一、数控加工零件的工艺分析工艺分析是数控加工的一项前置工作,它的目的是确定加工工艺,选择合适的加工设备和刀具,制定加工程序等,从而保证加工质量和效率。
具体而言,工艺分析主要包括以下几个方面:1. 零件的材质和形状:不同材质的加工性能不同,加工时需要选择相应的切削参数和刀具;而零件的形状和结构也会影响加工难度和精度,需要对其进行全面分析和评估。
2. 加工精度和表面质量要求:根据零件的要求,确定加工精度和表面质量目标,制定相应的切削参数和工艺措施。
3. 工序分析:对零件进行逐个工序分析,确定加工顺序、加工方向、加工路径和刀具选择等重要内容,同时把握好每个工序的加工质量和效率。
4. 刀具选择:根据加工材料、零件形状和要求,选择合适的刀具和刀具尺寸,保证零件的加工质量和加工效率。
5. 加工程序制定:通过数控编程软件,编写机床加工程序,包括各种切削参数、刀具路径、指令参数等信息,为数控加工提供参考。
二、数控铣削加工工艺数控铣削是一种高速旋转的刀具在工件表面上进行切削的加工方式,它广泛应用于金属、塑料等材料制件的加工中。
数控铣削在工件制作中具有大量价值和应用,且数控铣削加工工艺也是半自动化和自动化制造中的重要工艺之一。
要把好铣削的关,需要具备以下几点:1. 刀具选择:刀具的选择是影响加工效率和加工质量的重要因素之一。
首先需要考虑切削材料,选择高速钢、硬质合金、陶瓷等材质的刀具;其次要考虑刀具尺寸和形状,根据零件的要求选择合适的刀具。
2. 切削参数:切削参数包括切削速度、进给量和切削深度等,这些参数的选定与零件材料、刀具材料、刀具尺寸和表面质量等因素密切相关。
对于数控车削加工工艺分析
![对于数控车削加工工艺分析](https://img.taocdn.com/s3/m/5f9876cf0342a8956bec0975f46527d3240ca6bd.png)
对于数控车削加工工艺分析数控车削加工是一种智能化的机械加工技术,它通过计算机程序控制旋转切削刃进行精密加工工艺。
这种工艺应用广泛,例如在机械零件加工、汽车零件加工、航空航天零件加工等领域都有广泛的应用,目前已经成为现代化生产制造的重要组成部分。
为了加深对数控车削加工工艺的了解,本文将对其原理、工艺特点以及影响加工质量的因素进行分析。
一、数控车削加工的原理数控车削加工采用计算机程序控制旋转切削刃的切入切出轨迹,在由精密控制系统控制旋转刀具和旋转工件期间,以非常高效和准确的方式切割材料,从而精密的完成机械零件的加工过程。
二、数控车削加工的工艺特点1. 具有良好的加工精度,能够加工出高精度的工件。
2. 高效率、高精度的加工速度和工艺性能,可适应不同工件的要求。
3. 可以对复杂的形状进行加工,不受常规工具的限制。
4. 可以进行多种立体加工,将一些复杂的形状在三维环境下加工成工件。
5. 可以进行长周期的连续加工,而且可靠性强。
三、影响加工质量的因素影响数控车削加工工艺质量的因素有很多,在设计和操作过程中需要进行充分考虑和控制,这样才能够保证加工出来的工件有稳定的质量、快速的加工速度、高效的生产效率。
1. 材料的性质材料的性质是决定加工工艺的一个重要因素。
因为不同材料的硬度和韧性特性不同,需要在数控车削加工过程中采用不同的切削参数。
材料越硬,加工难度越大,刀具寿命也会受到影响。
2. 设备选择设备选择是另一个影响加工质量的因素。
不同的数控车削加工设备有不同的处理能力,操作熟练程度也会影响最终的加工质量。
3. 加工环境加工环境是影响加工精度的另一个因素。
加工环境中产生的光、温、震动等因素都会对加工精度产生影响。
尤其是在高精度加工时,需要保持温度和光线等因素尽量稳定,以确保加工精度。
4. 物理和化学参数螺纹角、工件直径、转速、切削宽度等物理参数自然会影响到加工质量,需要根据具体情况调整。
此外,切削液、切削油等物化参数也是影响加工质量的因素,这会直接影响到工具的磨损和寿命。
数控铣床零件加工工艺分析与程序设计毕业论文
![数控铣床零件加工工艺分析与程序设计毕业论文](https://img.taocdn.com/s3/m/e35a9ae4f021dd36a32d7375a417866fb84ac088.png)
数控铣床零件加工工艺分析与程序设计毕业论文一、综述在我们的日常生活中,数控铣床扮演着至关重要的角色。
它就像是一个精密的工匠,能够按照我们的需求,打造出各种复杂的零件。
那么如何更好地利用数控铣床进行零件加工呢?这就是我们今天要探讨的主题——数控铣床零件加工工艺分析与程序设计。
当我们面对一个需要加工的零件时,首先需要考虑的是这个零件的工艺分析。
这就像我们做饭前要有个菜谱一样,知道要先放什么,后放什么才能让饭菜更美味。
对于数控铣床来说,工艺分析就像是它的“菜谱”。
我们需要了解这个零件的材料、形状、大小以及加工要求等等,才能决定如何切削、切削的深度、切削的速度等等。
这一步非常关键,因为它直接影响到后续加工的质量和效率。
接下来就是程序设计了,这一步就像是给数控铣床写“指令”。
我们知道数控铣床是通过计算机控制的,那么我们需要把工艺分析的结果转化为计算机能理解的指令。
这个过程需要专业的知识和技能,因为每一个指令都会直接影响到零件的加工效果。
写指令的过程中,我们要考虑到刀具的路径、切削的速度、换刀的时间等等,确保每一步都准确无误。
1. 背景介绍:数控铣床在现代制造业中的地位和作用走进现代化的制造车间,我们总能被那些精密的机械设备所吸引。
其中数控铣床凭借其独特的优势,在现代制造业中占据了举足轻重的地位。
它不仅仅是一台机器,更是制造业的得力助手,工业发展的得力干将。
数控铣床简单来说,就是一台通过数字化程序控制来进行零件加工的机器。
它的作用可大了去了,在现代化的生产线上,零件的精度和效率要求越来越高,这时候数控铣床就派上了用场。
它可以根据预设的程序,精确地加工出各种复杂形状的零件。
想象一下没有数控铣床的话,很多精密的机械设备可能就无法生产出来,我们的日常生活也会因此受到很大的影响。
可以说数控铣床是现代制造业的“得力助手”。
从汽车、飞机到电子产品,几乎所有的制造行业都离不开它。
随着科技的发展,数控铣床的功能也越来越强大,不仅能加工出更精密的零件,还能提高生产效率。
数控加工工艺分析的一般步骤与方法
![数控加工工艺分析的一般步骤与方法](https://img.taocdn.com/s3/m/a55e71cf534de518964bcf84b9d528ea81c72fe0.png)
3)确定进给量
进给速度是数控机床切削用量中的重要参数,主要根 据零件的加工精度和表面粗糙度要求以及刀具与零件的材料 性质来选取。当加工精度和表面粗糙度要求高时进给量应选 择得小些。最大进给量受机床刚度和进给系统的性能影响, 并与数控系统脉冲当量的大小有关。
1)以零件的装夹定位方式划分工序 一般加工零件外形时以内形定位,加工零件内形时以外
形定位。可根据定位方式的不同来划分工序
2)按所用刀具划分工序 为了减少换刀次数,压缩空行程运行的时间,减少不必
要的定位误差,可以按照使用相同刀具来集中加工工序的方 法进行零件的加工工序划分。
数控车削加工工艺
3)按粗、精加工划分工序 一般情况下先进行粗加工,再进行精加工。通常在一次
0
50 100 零件批量
零件生产批量与总加工费用的关系
数控车削加工工艺
2.数控加工零件的工艺性分析
数控加工工艺分析主要从数控加工的可能性和方便性方 面分析: (1)零件图上尺寸数据的给出,应符合程序编制方便的原则
1)零件图上尺寸标注方法应该适应数控加工编程的特点 2)构成零件轮廓几何元素的条件要充分
(2)零件各加工部位的结构工艺性应符合数控加工的特点
1)零件的内腔和外形最好采用统一的几何类型和尺寸。这 样可以减少使用刀具的规格和加工中换刀的次数,使得 编程方便,生产效益提高。
2)应该采用统一的定位基准
数控车削加工工艺
3.加工方法的选择与加工方案的确定
(1)加工方法的选择
加工方法的选择要同时保证加工精度和表面粗糙度的要 求。由于获得同一级精度与表面粗糙度的加工方法有多种, 因而在进行选择时,要结合零件的形状、尺寸的大小和热处 理等具体要求来考虑。例如对于IT7级精度的孔,采用车削、 镗削、铰削、磨削等加工方法,均可达到精度要求。
数控铣削加工工艺分析
![数控铣削加工工艺分析](https://img.taocdn.com/s3/m/00b0585b6fdb6f1aff00bed5b9f3f90f76c64d9a.png)
数控铣削加工工艺分析数控铣削加工是现代制造业中常见的加工方式之一,它使用数控铣床进行金属材料的削除加工。
与传统的手工和半自动铣削相比,数控铣削具有高效、精度高、重复性好等优点。
本文将从工艺流程、工艺参数和加工工具选择等方面,对数控铣削加工的工艺进行详细的分析。
一、工艺流程1.加工准备:明确加工件的尺寸要求、材料和加工工艺要求,并选择合适的加工刀具和夹具。
2.编写加工程序:根据零件的几何形状和加工要求,编写数控机床可识别的加工程序。
3.加工装夹:根据加工程序,选择适当的夹具和装夹方式,在数控铣床上夹紧工件。
4.设定工艺参数:根据加工材料的性质和加工要求,设置合理的切削速度、进给速度和切削深度等参数。
5.加工加工:启动数控机床,进行自动化加工,监控加工过程的稳定性和正确性。
6.加工检验:对加工后的零件进行检验,检查尺寸精度和表面质量是否符合要求。
7.加工记录:记录加工过程中的工艺参数和检验结果,以备后续生产参考。
二、工艺参数1.切削速度:是指刀具在单位时间内切削的长度。
根据加工材料的硬度和切削性能,合理选择切削速度,既能保证加工效率,又能保证刀具寿命。
2.进给速度:是指刀具在单位时间内在加工方向上移动的距离。
进给速度的选择应考虑切削力和切削表面的要求。
3.切削深度:是指刀具在一次进给过程中所削除的材料层厚度。
切削深度的选择应使得切削力合理,既能保证加工效率,又能避免切削表面的质量。
4.刀具半径补偿:数控铣床会自动根据刀具半径补偿值进行补偿,使得加工轮廓与设计轮廓一致。
5.加工顺序:根据零件的几何形状和切削力的分布情况,合理选择加工顺序,避免零件变形和加工过程中的切削力过大。
三、加工工具选择1.刀具材料:刀具材料应具有一定的硬度、耐磨性和耐冲击性,常用的刀具材料有硬质合金、高速钢和陶瓷等。
2.刀具形状:根据零件的几何形状和加工要求,选择合适的刀具形状,如平面铣刀、立铣刀、球头铣刀等。
3.切削刃数:根据加工材料的硬度和切削性能,选择合适的刀具刃数,既能保证加工效率,又能保证刀具寿命。
数控车床零件加工工艺分析
![数控车床零件加工工艺分析](https://img.taocdn.com/s3/m/e33ca221b90d6c85ec3ac63b.png)
数控车床零件加工工艺分析一、数控车床的加工工艺1.数控车床主要加工对象数控车床的主要加工对象有:精度要求高的回转体零件、表面粗糙度要求高的回转体零件、表面形状复杂的回转体零件、带特殊螺纹的回转体零件。
2.数控车床加工工艺的主要内容选择适合在数控车床上加工的零件,确定工序内容;分析被加工零件的图样,明确加工内容和技术要求;确定零件的加工方案,制定数控加工工艺路线;加工工序的设计;数控加工程序的调整。
3.数控车床加工路线的拟订车削加工工艺路线的拟订是制定车削工艺规程的重要内容之一,其主要内容包括:选择各加工表面的加工方法、划分加工阶段、划分工序以及安排工序的先后顺序等。
(1)加工方法的选择。
每一种表面都有多种加工方法,具体选择时应根据零件的加工精度、表面粗糙度、材料、结构形状、尺寸及生产类型等因素,选用相应的加工方法和加工方案。
(2)加工阶段的划分。
粗加工阶段:其任务是切除毛坯上大部分多余的金属,使毛坯在形状和尺寸上接近零件成品;半精加工阶段:其任务是使主要表面达到一定精度,留有一定的精加工余量,为主要表面的精加工做好准备;精加工阶段:其主要任务是保证主要表面达到规定的尺寸精度和表面粗糙度要求,主要目标是全面保证加工质量;光整加工阶段:对零件精度和表面粗糙度要求很高的表面,需要进行光整加工,其主要目的是提高尺寸精度、减小表面粗糙度。
(3)工序的划分原则。
工序集中原则:指每一道工序包括尽可能多的加工内容,从而使工序的总数减少。
工序分散原则:就是将工件加工分散在较多的工序内进行,每道工序的加工内容很少。
(4)加工顺序的安排。
先粗后精、先远后近、内外交叉原则、基面先行原则。
二、零件加工工艺分析1.零件图的分析图1如图1,该零件是一个典型的螺纹轴(带内孔)零件。
零件长度中等,而且长度尺寸要求不高,均属于自由公差范围。
该工件右侧有一直径为28mm、公差为0.021mm、深度为14mm的内孔,表面粗糙度值为1.6μm,可以作为同轴配合的孔。
机械类数控零件加工工艺分析毕业论文设计
![机械类数控零件加工工艺分析毕业论文设计](https://img.taocdn.com/s3/m/0dc859416d85ec3a87c24028915f804d2a168717.png)
机械类数控零件加工工艺分析毕业论文设计摘要:数控技术是现代机械制造的重要手段之一,对于提高零件加工精度、缩短生产周期和提高生产效率起着重要作用。
本文以其中一种机械零件为研究对象,通过对其加工工艺的分析与优化,探讨了数控加工工艺在提高终产品质量方面的应用价值。
关键词:数控加工,零件加工,工艺分析,优化1.引言随着机械制造业的不断发展,数控技术在零件加工中的应用越来越广泛。
传统的加工方式对于复杂形状零件的加工精度和效率无法满足要求,而数控加工可以通过程序控制加工设备的运动轨迹,提高加工精度和生产效率。
因此,对于数控加工工艺的分析与优化具有重要的意义。
2.零件加工基本工艺零件加工的基本工艺包括:设计与方案分析、工序规划与工艺策划、数控编程与加工、零件检测与工艺优化。
其中,数控编程与加工是实现数控加工的核心环节,通过编写工艺卡和数控加工程序,控制机床的运动轨迹,实现零件的精确加工。
3.加工工艺分析对于该机械零件,加工工艺的分析主要包括:零件的结构特点分析、工艺性分析和先进性分析。
3.1零件结构特点分析通过对零件结构的分析,了解零件的材料要求、加工精度要求以及表面处理要求等。
3.2工艺性分析工艺性分析是指根据零件结构特点,分析零件加工中可能出现的工艺性问题,并制定相应的工艺技术措施。
常见的工艺性问题包括:内外轮廓加工、槽加工、孔加工、螺纹加工等。
3.3先进性分析先进性分析主要从工艺技术的角度评价零件加工工艺的先进性,包括:数控编程、刀具选择、加工路径设计等。
通过引入先进的工艺技术,可以提高加工效率和加工质量。
4.加工工艺优化通过分析零件加工工艺中存在的问题和不足之处,可以提出相应的优化措施。
在数控编程方面,可以采用优化的刀具路径设计,减少切削路径的交叉和重复,提高加工效率。
在刀具选择方面,可以选用合适的刀具材质和刀具类型,提高切削效果。
在加工参数选择方面,可以根据零件材料和加工要求选择合适的进给速度、切削速度和切削深度,实现更高的加工质量。
数控车床车削典型零件工艺分析
![数控车床车削典型零件工艺分析](https://img.taocdn.com/s3/m/45e8930c842458fb770bf78a6529647d2728342f.png)
数控车床车削典型零件工艺分析数控车床是一种利用数控技术进行自动化车削加工的机床,广泛应用于制造业的各个领域。
下面将以数控车床车削典型零件为例进行工艺分析。
以加工一台螺杆为例,工艺分析如下:1.零件材质选择:根据螺杆的使用要求,选择适当的材料,常见的有碳钢、不锈钢等。
2.设计图纸:根据产品需求,在CAD软件中绘制螺杆的设计图纸,包括尺寸、形状等。
3.工艺规程编制:根据零件的设计要求,编制螺杆的工艺规程,包括车削工序、工艺参数、刀具选择等。
4.刀具选择:根据工艺规程选择适合的刀具,考虑切削力、刀具寿命等因素。
5.数控编程:根据工艺规程,利用CAM软件编写数控程序,确定刀具路径、切削深度、进给速度等参数。
6.夹紧装夹:将材料切割到合适的长度后,将工件固定在数控车床的主轴上,使用合适的夹具夹紧。
7.车削加工:根据数控程序进行车削加工,包括外径车削、内径车削、螺纹加工等工序。
8.检测与修正:每一道工序完成后,需要进行质量检测,确保零件尺寸、表面粗糙度等符合要求。
若发现问题,及时进行修正。
9.表面处理:根据产品要求,对螺杆表面进行处理,如抛光、镀层等。
10.质量检验:经过表面处理后,对零件进行再次质量检验,确保各项指标符合要求。
11.包装运输:将加工好的螺杆进行包装和标识,便于运输和使用。
以上是加工一台螺杆的工艺流程,数控车床的精度高、重复性好,能够高效、精确地进行复杂零件的加工。
在实际应用中,根据不同的零部件要求,工艺流程可能会有所不同,但总的来说,工艺分析包括材料选择、工艺规程编制、刀具选择、数控编程、夹紧装夹、车削加工、检测与修正、表面处理、质量检验、包装运输等环节。
通过合理的工艺分析和流程设计,可以实现零件的高效、精确加工,提高生产效率和产品质量。
数控车削加工工艺与分析
![数控车削加工工艺与分析](https://img.taocdn.com/s3/m/1a7b741aa216147917112848.png)
数控加工工艺分析的一般步骤与 方法
10.工艺加工路线的确定
工艺加工路线是指数控加工过程中 刀位点相对于被加工零件的运动轨迹。 编程时,确定工艺加工路线的原则是: (1)保证零件的加工精度和表面粗糙度; (2)方便数值计算,减少编程工作量; (3)缩短加工运行路线,减少空运行行程。
数控车削工艺
1. 选择正确数控车削加工内容
(c)“矩形”进给路
数控加工工艺分析的一般步骤与 方法
5. 零件的安装
1、设计基准、工艺基准和编程计算基准统一。 2、尽量减少装夹次数,尽可能在一次定位装夹 后,加工出全部待加工表面。 3、避免采用占机人工调整加工方案,以便能充 分发挥出数控机床的效能。
数控加工工艺分析的一般步骤与 方法
6. 夹具的选择
3. 加工方法的选择与加工方案的确定 1.加工方法的选择 数控车削内、外回转表面的加工方案的确定,应 注意以下几点。 (1)加工精度为IT8~IT9级、表面粗糙度Ra1.6~3.2 m、 除淬火钢以外的常用金属,可采用普通型数控车床,按粗车、 半精车、精车的方案加工。 (2)加工精度为 IT6~IT7级、表面粗糙度Ra0.2~0.63 m、 除淬火钢以外的常用金属,可采用精密型数控车床,按粗车、 半精车、精车、细车的方案加工。 (3)加工精度为IT5级、表面粗糙度Ra<0.2 m的除淬火 钢以外的常用金属,可采用高档精密型数控车床,按粗车、 半精车、精车、精密车的方案加工。
只需确定每次背吃刀量 也需计算粗车时终刀距S。 ap ,而不需计算终刀距 , 按此种加工路线,刀具切 编程方便。但在每次切 削运动的距离较短,精车 削中背吃刀量 是变化的 , 时背吃刀量相同。 且刀具切削运动的路线 较长。
数控加工工艺分析的一般步骤与 方法
数控加工工艺分析的一般步骤与方法
![数控加工工艺分析的一般步骤与方法](https://img.taocdn.com/s3/m/5464a750e53a580217fcfe4e.png)
数控加工工艺分析的一般步骤与方法Last revised by LE LE in 2021数控加工工艺分析的一般步骤与方法程序编制人员在进行工艺分析时,要有机床说明书、编程手册、切削用量表、标准工具、夹具手册等资料,根据被加工工件的材料、轮廓形状、加工精度等选用合适的机床,制定加工方案,确定零件的加工工序,各工序所用刀具、夹具和切削用量等。
此外,编程人员应不断总结、积累工艺分析方面的实际经验,编写出高质量的数控加工工序。
一、机床的合理选用在数控机床上加工零件时,一般用两种情况。
第一种情况:有零件图样和毛坯,要选择适合加工该零件的数控机床。
第二种情况:已有了数控机床,要选择适合在该机床上加工的零件。
无论何种情况,考虑的主要因素有,毛坯的材料种类、零件轮廓复杂程度、尺寸大小、加工精度、零件数量、热处理要求等。
概括起来有三点:①要保证加工零件的技术要求,加工出合格产品。
②有利于提高生产率。
③尽可能降低生产成本及加工费用。
二、数控加工零件工艺性分析数控加工工艺分析涉及面广,在此仅从数控加工的可能性和方便性两方面加以分析。
㈠零件图样上尺寸数据的给出应符合编程方便的原则1.零件图尺寸标注方法应适应数控加工的特点,在数控加工零件图上,应以同一基准引注尺寸或是直接给出坐标尺寸。
这种标注方法即便于编程,也便于尺寸间的相互协调,在保持设计基准、工艺基准、检测基准与编程原点设置的一致性方面带来很大方便。
由于零件设计人员一般在尺寸标注中较多的考虑装配等使用性能方面,而不得不采用局部分散的标注方法,这样就会给工序安排与数控加工带来许多不便。
由于数控加工精度和重复定位精度都很高,不会因产生较大的积累误差而破坏使用性能,因此可以将局部的分散标注法改为同一基准引注尺寸或直接给出坐标尺寸的标注法。
2.构成零件轮廓的几何要素的条件应充分在手工编程时,要计算基点或节点坐标。
在自动编程时,要对构成零件轮廓的所有几何要素进行定义。
因此在分析零件图时,要分析几何要素的给定条件是否充分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控加工工艺的分析和处理姓名:专业:机械加工与自动化班级:前言:数控加工作为一种先进的加工方法, 被广泛地用于航空工业、舰船工业以及电子工业等高精度、复杂零件的加工生产。
在数控加工中,影响数控加工质量的因素很多,即工艺系统中的各组成部分,包括机床、刀具、夹具的制造误差、安装误差以及刀具使用中的磨损等都直接影响工件的加工精度。
也就是说,在加工过程中整个工艺系统会产生各种误差,从而改变刀具和工件在切削运动过程中的相互位置关系而影响零件的加工精度及质量。
摘要从加工工艺角度论述了提高数控加工精度,表面加工质量的解决措施,只在提高数控加工质量,利于更高效的使用数控机床,提高数控车床质量,第一要合理考虑工艺因素;第二要掌握数控车床的三大操作技巧,即一刀多尖、刀具圆弧半径补偿和刀具磨损参数的有效运用。
浅谈提高数控车床加工质量的措施一:机床的合理选择数控加工在中国制造业中已经有了较长的使用时间,虽然有严格的数控机床操作规、良好的机床维护保养,但是其本身的精度损失是不可避免的。
为了控制产品的加工质量,我们定期对数控设备进行检测维修,明确每台设备的加工精度,明确每台设备的加工任务。
对于大批量成批生产的零件加工工厂,应严格区分粗、精加工的设备使用,因为粗加工时追求的是高速度、高的去除率、低的加工精度,精加工则相反,要求高的加工精度。
而粗加工时对设备的精度损害是最严重的,因此我们将使用年限较长、精度最差的设备定为专用的粗加工设备,新设备和精度好的设备定为精加工设备,做到对现有设备资源的合理搭配、明确分工,将机床对加工质量的影响降到了最低,同时又保护了昂贵的数控设备,延长了设备的寿命。
二:图纸分析1确定正确的加工工艺方案(1)合理实际切入切出路线。
在数控机床上加工零件时,为减少接到痕迹,保证轮廓的表面质量,对刀具的切入和切除的程序要仔细设计。
刀具的切入切点要沿零件周边外延,以保证工件的轮廓光滑,如刀具沿零件轮廓直接垂直切入零件,将在零件的外形上留下明显的痕迹,刀具要沿零件轮廓的法线切入和切除。
在轮廓加工过程中应避免进给停顿,否则由于切削力的变化也会产生刀痕,刀具切入过程一般需要采取较小的进给速度,为提高切削效率。
切入时从一个切削层换到另一个切削层,比切除后在突然切入好,这样可以保证恒定的切削参数,包括切削速度,进给量与切削速度的一致性,要尽量的提高毛培的成型精度,使表面加工余量均匀。
(2)例如制定加工顺序一般遵循下列原则:(1)先粗后精。
按照粗车半精车精车的顺序进行,逐步提高加工精度。
(2)先近后远。
离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。
此外,先近后远车削还有利于保持坯件或半成品的刚性,改善其切削条件。
(3)外交叉。
对既有表面又有外表面需加工的零件,应先进行外表面的粗加工,后进行外表面的精加工。
(4)基面先行。
用作精基准的表面应优先加工出来,定位基准的表面越精确,装夹误差越小。
2.选择正确的切削加工方式(1)车削圆钢类零件时尽量使用同一把刀车削不同的外圆,以减少接到痕迹。
一般,应避免车削非连续表面是;要注意选择合适大小的主偏角和副偏角,以避免刀具的干涉而产生刀痕。
此类零件的圆弧表面加工时应选取较小的偏角,并将刀尖倒成圆角,圆角半径应小于表面的半径。
三:编程1.数控车床的编程总原则是先粗后精、先进后远、先后外、程序段最少、走刀路线最短,编程时常取零件要求尺寸的中值作为编程尺寸依据。
如果遇到比机床所规定的最小编程单位还要小的数值时,应尽量向其最大实体尺寸靠拢并圆整。
2.如图O1234G40G97G99M3S800M25T0101GOX80.Z80.Z5.X0Z3.G1Z0F0.03G03X10.Z-10.R10.F0.02 GO1X48.Z-70.X60.Z-91.X62.GOX80.Z50.T0202GOX50Z-50.G01X43.F0.01GO4U0.2G01X49.GOX80.Z50.T0303GOX49.0Z0G92X47.1W-47.F2.0X46.5X45.9X45.5X45.4GOX80.Z50.M26M05M303.尺寸为0.026040φ+,则编程时写φ40.013.4.编程时尽量符合各点重合的原则。
也就是说,编程的原点要和设计的基准、对刀点的位置尽量重合起来,减少由于基准不重合所带来的加工误差。
在很多情况下,若图样上的尺寸基准与编程所需要的尺寸基准不一致,故应首先将图样上的各个基准尺寸换算为编程坐标系中的尺寸。
当需要掌握控制某些重要尺寸的允许变动量时,还要通过尺寸链解算才能得到,然后才可进行下一步编程工作。
四:车刀1. 刀具的选材和角度刀具材料在切削中一方面受到高温,高压和剧烈的摩擦作用,要求其硬度高,耐磨性和耐热型好;另一方面又要求受到压力,冲击力和震动,要求强度和韧性足够,但是,强度和韧性的材料其硬度与耐磨性必然较差,反之亦然。
解决方法:车刀的几何角度有主偏角、刀尖角、副偏角、刃倾角、前角、后角和副后角。
主偏角影响刀尖强度和切削层断面形状。
车削细长轴、薄壁套筒零件时,为了防止径向切削分力造成工件弯曲变形,主偏角应取大些(如90。
);端面、台阶面车刀的主偏角取93。
左右为宜;对于一般工件粗车时主偏角为75。
时,刀具的强度和散热性能最好,宜选用。
刀尖角在螺纹车刀中是一个主要角度,作为成形刀具其刀尖角的大小直接决定牙型,对于普通螺纹车刀,刃倾角为10。
时,其刀尖角为59。
16‘圆弧半径r 由公式r =0.144p 计算(式中P 为螺距)。
副偏角对表面粗糙度影响最大,主、副偏角愈小,刀尖圆角半径愈大的车刀加工出的表面粗糙度愈细化。
切削用量切削用量包括a 进给量f 和切削速度u ,其选择原则是:粗车时应该选一个尽可能大的切削深度a ,然后选择一个较大的进给量f ,最后在根据刀具允许的耐用度选一个合理的切削速度v ,而对于精车,因为精车工序直接决定工件的尺寸精度,形状精度和表面粗糙度,选择用量时要避免积屑减少残留面积,减少径向切削力Fy ,避免震动,所以切削深度和进给量要较少而切削速度要高。
例如五.切削液的合理选用切削液的主要作用是:冷却和润滑。
车削中常用的切削液是乳化液,浓度为5—25%;数控车床可以选用10号或20号机油为切削液;当有足够流量的切削液能完全冷却硬质合金刀具时,在车削钢等塑性材料时,以加冷却液为好;车铸铁、黄铜等脆性材料时,一般不加切削液,因为崩碎切屑与切削液混在一起容易阻塞机床拖板的运动;用高速钢刀具切削钢等塑性金属时,要加切削液。
六.工件装夹与切削。
(1)工件装夹方法的合理选择除一般轴类零件用三爪自定心卡盘直接装夹外,对于一些特殊零件,必须合理选择装夹方法,否则对零件的加工质量将带来负面影响,不能发挥数控车床高精度加工的优越性。
例如:细长轴零件在车削时,由于工件散热条件差,温升高,轴向因热变形造成较大的伸长量,如果用“一夹一顶”方法装夹,尾座顶尖就不能用固定顶尖,否则细长轴易产生弯曲变形,科学合理的装夹方法是改用弹性活动顶尖顶轴的右端,并且卡爪部位用钢丝过渡夹紧,另外,在中间可以安装中心架或跟刀架,在跟刀架的支承爪调整中其压紧力要适度,如果有间隙则达不到提高工件刚性的目的,如果压紧力过大,则细长轴加工后,表面必会呈现“竹节”状口],影响圆柱度。
车薄壁工件时为了防止径同夹紧力引起工件变形,可以采用轴向夹紧、开口环过渡夹紧或用软爪夹紧的方法,另外可以在一端预先留较厚的工艺凸缘用来装夹,待套筒加工完毕后再切除工艺凸缘。
车削曲轴时可以在中间搭一个中心架来提高工件的刚度,以防因切削力而引起变形。
(3)切削技巧一刀多尖的运用“一刀多尖”的运用技巧所谓“一刀多尖”,是指一把车刀在一道工序中利用它的多个刀尖来加工不同的工件表面,当多把车刀使用并编程。
如1号位车刀刀号为T01,其中一个刀尖车外圆,另一个刀尖车端面,车外圆刀尖对刀数值输入到偏置号“T0005”中,则外圆车刀编程时用“T0105”指令;车端面刀尖对刀数值输入到偏置号“T0006”中,则端面车刀编程时指令为“T0106”,可见一把车刀可同时充当两把车刀使用,可以间接扩充数控车床的刀库容量,且刀具角度比较好选择。
刀尖圆径的功能的运用数控车床的数控系统目前正在推广“刀尖圆弧半径补偿”功能,刀具在切削过程中会出现磨损,其刀尖点为空间的一个虚点,数控编程时是以这个虚点轨迹来编程的,而实际切削圆弧表面时,刀具实际切削点为刀尖圆弧上各实际分布点,必然会造成一边多切,另一边少切的现象,而运用刀尖圆弧补偿功能(即G41,G42,G40)进行运算,始终保证当前刀尖点是刀具圆弧与理论圆弧轮廓的切点,此功能在数控车床上运用简单有效,其操作要点是测量刀尖圆弧半径值,确定刀尖方位号,一次性在刀补表里对应输入,编程时在精车程序段起点之前和终点之后的程序段中用G41和G42建立刀具圆弧补偿功能,并要求在所在程序段中必须使用G01指令,否则H1无效。
刀具磨损的合理运用不管是成批大量生产还是单件小批量生产,数控车床加工工件时必须有一个加工试件(单件生产为正式件)的过程。
如何快速而准确地保证加工尺寸精度,现在在数控车床系统中增设了刀具磨损的补偿功能(有些老式系统在刀具偏置中用增减参数的方法实现),能够很有效地实现工件尺寸的快速调例如在同一零件上要加工00.0320φ-.00.0424φ-。
00.0326φ-。
00.0428φ-尺寸,首先编程、试切、对刀,如果一次连续自动加工,势必因工艺系统误差或测量误差导致工件报废,而有效的步骤是:首先设定某一磨损量如0.600,然后正常加工,待加工完毕后,取消磨损值,设定为O ,逐段精密测量,则每段理论直径相应增加0.600,与实际测量尺寸比较,如果偏大,则将相应的程序段指令的x 值减小相应的增量值,反之亦 然再精车时,轴径直径对中率极高。
轴向磨损量的运用亦然。
结束语本文从加工工艺的角度探究了提高数控加工质量的一系列方法,并且在实际加工中到到了验证,为数控加工工艺人员提供了一些解决问题的参考方案,有助于更高效的利用数控机床。