七年级上册第一章有理数知识点小结

合集下载

七年级数学上册各章知识点总结

七年级数学上册各章知识点总结

[二]有理数减法法则: 减去一个数,等于 加上这个数的相反数 ,用字母表示为a-
b= a=+[-b] .
一.四有理数的乘除法
[一]有理数乘法法则:
一、两数相乘,同号 得正 ,异号 得负 ,并把 绝对值相

.
二、几个不是0的数相乘,积的符号由负因数的个数决定,当负因
数有偶数个时,积为 正数 ,当负因数有奇数个时,积为 负数 ;
图1
从正面看
从左面看
从上面看
图2
三、立体图形的展开图有些立体图形是有一些平面图形围 成的,把它们的表面适当剪开后在平面上展开得到的平图形 称为立体图形的展开图. [一]圆柱和圆锥的侧面展开图 [二]棱柱和棱锥的展开图 [三]根据展开图判断立体图形的规律: A展开图全是长方形或正方形时------长方体或正方体; B展开图中含有三角形时-----棱锥或棱柱; 若展开图中含有二个三角形三个长方形-----三棱柱; 若展开图中全是三角形[四个]-----[三]棱锥. C展开图中含有圆和长方形-----圆柱; D展开图中含有扇形------圆锥.
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4
有理数的分类
[四]、绝对值:数轴上表示数a的点与原点的距离叫做数a 的绝对4 -3 -2 -1 0 1 2 3 4
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
0的绝对值是
0
.
注意:一|a|≥0即对任意有理数a,它的绝对值是非负数 二绝对值最小数为0
当a<0时,无解.
五:方程的解与解方程:使方程两边相等的未 知数的值叫做方程的解,求方程解的过程叫 解方程.
六:关于移项:⑴移项实质是等式的基本性质一的 运用. ⑵移项时,一定记住要改变所移项的符号.

人教版七年级数学上册第一章有理数全章知识点总结归纳

人教版七年级数学上册第一章有理数全章知识点总结归纳

人教版七年级数学上册第一章有理数全章知识点总结归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数1) 大于的数为正数。

2) 在正数前面加上负号“-”的数为负数。

3) 数既不是正数也不是负数,是正数与负数的分界。

4) 在同一个问题中,分别用正数与负数表示的量具有相反的意义。

2、有理数1) 凡能写成分数形式的数,都是有理数,整数和分数统称有理数。

注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数:正整数、正分数。

负有理数:负整数、负分数。

零。

3) 自然数:和正整数;a>:a是正数;a<:a是负数;a≥0:a是正数或是非负数;a≤0:a是负数或是非正数。

3、数轴1) 用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:在直线上任取一个点表示数,这个点叫做原点;通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…2) 数轴的三要素:原点、正方向、单位长度。

3) 画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

4) 一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

4、相反数1) 只有符号不同的两个数叫做互为相反数。

注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。

2、设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点的两侧,表示a和-a。

初一上 数学知识点总结

初一上 数学知识点总结

初一上数学知识点总结初一上数学知识点总结七年级上册第一章:有理数。

★(有理数:rationalnumber;正数:positivenumber;负数:negativenumber。

)★通过本章的学习,你将认识一种新的数负数,并在有理数的范围内研究数的的表示、大小比较与运算等,这将使你的运算能力和用数学解决问题的能力得到提高。

★0既不是正数,也不是负数。

0是正数和负数的分界。

★整数的概念:正整数、0、负整数统称为整数。

★分数的概念:正负数和服分数统称为分数。

★有理数的概念:整数和分数统称为有理数。

★数轴的概念:一般地,在数学中人们用画图的方式把数“直观化”。

通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis),它满足以下要求:(1)在直线上任意取一点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,---;从原点向左,用类似的方法依次表示-1,-2,-3,---。

★相反数的概念:只有符号不同的两个数叫做互为相反数(oppositenumber)。

互为相反数的两个点关于原点对称。

★绝对值的概念:一般地,数轴上表示数的a的点与原点的距离叫做数a的绝对值。

(absolutevalue)。

记作a。

由绝对值的定义可知:一个整数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

★有理数比较大小:数学中规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。

所以由这个规定可知:(1)正数大于0,0大于负数;正数大于负数;(2)两个负数,绝对值大的反而小。

备注:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值。

★有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

人教版七年级数学上册第一章有理数及其运算知识点总结大全

人教版七年级数学上册第一章有理数及其运算知识点总结大全

有理数及其运算知识点总结大全一、本章知识概述本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分:主要内容是有理数的有关概念.首先是理解有理数的意义及分类,判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量.其次是认识数轴,用数轴上的点表示有理数,借助数轴认识相反数的概念及互为相反数的一对数在数轴上的位置关系,利用数轴比较有理数的大小.第三是理解绝对值的概念及求一个数的绝对值,利用绝对值比较两个负数的大小,通过应用题解决实际问题,体会绝对值的意义和作用.第二部分:学习有理数的加减法运算,通过探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,利用有理数的加法法则进行有理数的加法运算,并利用运算律简化运算;通过探索有理数减法法则的过程,理解有理数的减法法则,利用有理数的减法法则进行有理数的减法运算;利用有理数的加、减法法则进行包括整数、分数或小数的有理数的加减混合运算,并适当利用运算律简化运算;综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系.第三部分:主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力.根据有理数乘法法则进行有理数的乘法运算,运用乘法运算律简化计算;根据有理数除法法则进行有理数的除法运算,求有理数的倒数;根据有理数乘方的意义进行有理数的乘方运算,通过实例感受当底数大于1时,乘方运算结果的快速增长.根据有理数混合运算顺序的规定,进行有理数加、减、乘、除、乘方的混合运算,在运算过程中,合理使用运算律简化运算;使用计算器进行有理数的加、减、乘、除、乘方运算,使用计算器进行实际问题的复杂运算.二、重点知识归纳及讲解1、正数和负数的概念 比0大的数叫做正数;在正数前面加上“-”号的数叫做负数;0既不是正数,也不是负数. 为了突出数的符号,可以在正数前面加“+”号,一般地“+”号往往省略不写,但负数前面的“-”号不能省略. 对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数.2、有理数的概念及分类 整数和分数统称为有理数:正数、负数和零也统称为有理数.整数包括正整数、零和负整数、分数包括正分数和负分数;正数包括正整数和负整数;负整数包括负整数和负分数. 到目前为止,我们学过的数细分有五类:正整数、正分数、零、负整数、负分数,因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.有时为了研究的需要,整数也可以看作是分母为1的分数,但本章中的分数是指不包括分母是1的分数. 通常把正整数和零统为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数.3、数轴的概念及画法 规定了原点、正方向和单位长度的直线叫做数轴. 数轴的概念中包含有三层含义:一是说数轴是一条直线,可以向两端无限延伸;二是说数轴具有原点,正方向和单位长度三要素,三者缺一不可;三是说数轴原点的选定,正方向的取向、单位长度大小的确定,是根据实际需要规定的.画数轴的步骤:(1)画一条直线,一般画成水平的直线;(2)在直线上选取一点为原点,用实心点表示,在原点下边标上0;(3)用箭头表示正方向,一般规定向右为正;(4)选取适当的长度为单位长度,用细短线画出,并在下边标上对应的数.4、相反数的概念 如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0. 在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等,这就是相反数的几何意义. 一般地,数a的相反数是-a,这里a表示任意一个数,可以是正数、负数或零,还可以代表任意一个代数式,表示或求一个数的相反数,只要在这个数的前面添上一个“-”号就可以了. 相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数;不能理解为只要符号不同的两个数就互为相反数,只有符合不同的两个数是说除了符号不同以外完全相同.5、绝对值的概念 在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值记作“|a|”. 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,这就是绝对值的代数意义,也可表示为:6、绝对值的有关性质(1)对任意有理数a,都有|a|≥0;(2)若|a|=0,则a=0;(3)若|a|=|b|,则a=b或a=-b;(4)若|a|=b(b>0),则a=±b;(5)若|a|+|b|=0,则a=0且b=0;(6)对任意有理数a,都有|a|=|-a|.7、有理数大小的比较法则 在数轴上表示的两个数,右边的数总比左边的数大; 正数都大于0,负数都小于0,正数大于一切负数; 两个负数,绝对值大的反而小.8、有理数加法法则在中,a 叫做底数,n 叫做指数,叫做幂.n a na 的读法有两种:n a (1)读作a 的n 次幂.(2)读作a 的n 次方.20、有理数的乘方法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.21、科学记数法把一个大于10的数记成的形式,其中a 的整数位数只有一位,这种记数的方法,叫做科学记10na 数法.22、有理数的混合运算有理数的运算中,加减为一级运算,乘除为二级运算,乘方(及开方——乘方的逆运算,以后将讲到)为三级运算.对于有理数的混合运算,要特别注意运算顺序及正确使用符号法则确定各步运算结果的符号.有理数的运算顺序是:先算乘方,再算乘除,最后算加减,对于同级运算,一般从左到右依次进行.如果有括号,就先算括号内的,且一般先算小括号内的,再算中括号内的,最后算大括号内的.如果能利用运算律简化计算,可变更上面的运算顺序,灵活处理.三、难点知识剖析1、负数的产生及其意义 随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,为了满足实际需要,引入了负数、负数是由于实际需要产生的,负数也是客观存在的数 . 正数和负数通常表示具有相反意义的量,若正数表示某种意义的量,则负数就表示其相反意义的量,反之亦然 .2、数集的概念 把一些数放在一起,就组成一个数的集合,简称数集、所有的有理数组成的数集叫做有理数集,类似地,所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,等等 .3、多重符号的化简规律 单独一个有理数前面的“+”号和“-”号,一般都是性质符号,读作“正”号或“负”号 . 括号前是“+”号时,去掉括号和“+”号后,括号内的数不变,括号前是“-”号时,去掉括号和“-”号后,括号内的数就变成它的相反数 . 在一个数的前面添加一个“+”号,仍然与原数相同;在一个数的前面添加一个“-”号,就成为原数的相反数 .4、两个负有理数的大小比较 两个负有理数的大小比较与其它数一样,可以利用数轴找准两个负有理数在数轴上的对应点,右边的数总比左边的数大 . 两个负有理数的大小比较,还可以利用绝对值,求这两个数的绝对值,比较两个数绝对值的大小,绝对值大的反而小 .5、有关绝对值的计算及化简107。

七年级上册数学第一章总结知识点

七年级上册数学第一章总结知识点

七年级上册数学第一章总结知识点一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数,例如1,0, - 5等;分数包括有限小数和无限循环小数,如0.5=(1)/(2),0.3̇=(1)/(3)等。

2. 有理数的分类。

- 按定义分类:有理数可分为整数和分数。

整数又分为正整数、0、负整数;分数分为正分数和负分数。

- 按性质符号分类:有理数可分为正有理数(正整数和正分数)、0、负有理数(负整数和负分数)。

3. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 数轴上的点与有理数一一对应(所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可能表示无理数)。

- 利用数轴可以比较有理数的大小,数轴上右边的数总比左边的数大。

4. 相反数。

- 只有符号不同的两个数叫做互为相反数。

0的相反数是0。

- 若a与b互为相反数,则a + b=0;反之,若a + b = 0,则a与b互为相反数。

- 在数轴上,表示互为相反数的两个点位于原点两侧,且到原点的距离相等。

5. 绝对值。

- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

即| a|=a(a > 0) 0(a = 0) - a(a < 0)- 两个负数比较大小,绝对值大的反而小。

二、有理数的运算。

1. 有理数的加法。

- 法则:- 同号两数相加,取相同的符号,并把绝对值相加。

例如3+5 = 8,(-3)+(-5)=-(3 + 5)=-8。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

如5+(-3)=+(5 - 3)=2,3+(-5)=-(5 - 3)=-2。

- 一个数同0相加,仍得这个数。

- 运算律:- 加法交换律:a + b=b + a。

初中数学七年级上册知识点总结(最新最全)

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级数学上册:全册各章知识点总结

七年级数学上册:全册各章知识点总结

第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。

三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。

2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。

4.相反数的商为-1。

5.相反数的绝对值相等。

四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

初一数学上册知识点第一章有理数

初一数学上册知识点第一章有理数

相反数
第一章 有理数
3. 互为相反数的两个数分别位于原点的两侧;
4. 互为相反数的两个数到原点的距离相等.
5. 一般地,设a是一个正数,数轴上与原点的距 离是a的点有两个,它们分别在原点的左右,表 示a和–a,我们说这两点关于原点对称.
几何意义
知识点 3
相反数
第一章 有理数
6. 在一个数前面加上“–”号表示求这个数 的相反数。
7. 若a与b互为相反数,则a+b=0(或a=-b);反之, 若a+b=0(或a=-b),则a与b互为相反数。 8. 若a与b互为相反数,则|a|=|b|。
知识点 4 绝对值
定义
第一章 有理数
一般地,数轴上表示数a的点与原 点的距离叫做数a的绝对值.
性质
绝对值的性质 (1) |a|≥0;
a (2) | a | a
知识点 11
乘法 交换律
乘法
乘法
运算律 结合律
乘法 分配律
第一章 有理数
两个数相乘,交换两个因数的位置,积不
变.
ab=ba
三个数相乘,先把前两个数相乘,或先把后两 个数相乘,积不变. (ab)c = a(bc)
一个数同两个数的和相乘,等于把这个数分 别同这两个数相乘,再把积相加.
a(b+c)=ab+ac
0
(a 0) (a 0) . (a 0)
知识点 5
方法1
有理 数大 小的 比较
方法2
第一章 有理数
数轴上表示的两个数,右边的总 比左边的大.
正数大于0,0大于负数,正数大于负 数;两个负数,绝对值大的反而小.
知识点 6
第一章 有理数
有理数加法法则

初一数学第一章有理数知识点总结

初一数学第一章有理数知识点总结

初一数学第一章有理数知识点总结初一数学第一章有理数知识点总结学优教育加法法则朋友式相处快乐式学习『知识梳理』②绝对值不相等的异号数相加,取绝对值较大的加数符号,并③一个数同0相加,仍得这个数.①同号两数相加,取相同的符号,并把绝对值相加.用较大的绝对值减去较小的绝对值.算有理数加法运步骤①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.①两个加数相加,交换加数的位置,和不变.abba(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(ab)ca(bc)(加法结合律)①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.运算律运算技巧减法法则:减去一个数,等于加这个数的相反数.aba(b)运有算理数减法理数的有理数的运算运算步骤①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.①两个数相乘,交换因数的位置,积相等.abba(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.abca(bc)(乘法结合律)乘③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把法运积相加.a(bc)abac(乘法分配律)算律①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的乘个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.法②几个数相乘,如果有一个因数为0,则积为0.法则③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有的小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及推其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对广值,有括号的先算括号里的数.有理数的乘法第1页共6页学优教育朋友式相处快乐式学习1b有理数除法运算有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.aba,(b0)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.理数的有理数的运算有理数的乘方求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在an 中,a叫做底数,n叫做指数,读作a的n次幂。

人教版七年级数学上册知识点归纳(附例题解析)

人教版七年级数学上册知识点归纳(附例题解析)

人教版七年级数学上册知识点归纳(附例题解析)第一章:有理数一、有理数的基础知识1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。

概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。

②正数和负数的应用:正数和负数通常表示具有相反意义的量。

③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A、一个数前面有“-”号,这个数就是负数;B、非负数就是正数;C、一个数前面没有“-”号,这个数就是正数;D、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-,正整数集合{}整数集合{}负整数集合{}正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是____________, 0米的意义是______________。

例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。

例5 若0>a,则a是;若0<a,则a是;若ba<,则ba-是;若ba>,则ba-是;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

七年级数学有理数知识点总结3篇

七年级数学有理数知识点总结3篇

七年级数学有理数知识点总结3篇七年级数学有理数知识点总结1.1 正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。

(例:2的相反数是-2;0的相反数是0)数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

mì求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。

在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

七年级第一章有理数知识点总结

七年级第一章有理数知识点总结

一、有理数概念及性质
1.什么是有理数
有理数是形式上存在分数表示,或者可以等价转化为分数表示的自然数,整数,分数及其各自的正负数的数的总称。

2.有理数的性质
(1)有理数的封闭性:有理数组成的集合,是一个封闭的集合,它满足交换律,结合律,分配律,有界律以及加减乘除定律。

(2)有理数的可比较性:有理数可以相互比较大小。

(3)有理数的可折叠性:有理数可以折叠为一个更小的数,而且当两个有理数可以折叠时,它们可以折叠到一个相同的因数上。

二、有理数的加减法
(1)有理数的加法
有理数的加法只要把两个加数的分母约到相同,然后将相同的分母下的分子相加即可。

(2)有理数的减法
有理数的减法只要把两个减数的分母约到相同,然后将相同的分母下的分子相减即可。

三、有理数的乘法
有理数的乘法是把两个乘数的分子相乘,分母也相乘,得到的结果是两个乘数的乘积。

四、有理数的除法
有理数的除法是把被除数的分母乘以除数的分子,分子乘以除数的分母,得到的结果是两个数的商。

五、有理数的最简形式
有理数的最简形式,即最简分数,是指把一个分数的分子和分母都约分到最简形式,使得同时存在它们的最大公约数。

六、有理数的基本运算。

七年级数学上册知识点总结第一章

七年级数学上册知识点总结第一章

七年级数学上册知识点总结第一章第一章有理数一.正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数留意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(假如出推断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简洁推断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与削减;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,削减降低了的数一般记为负数。

3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

留意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数;(2)有理数的分类: ①按正、负分类:②按有理数的意义来分:总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数? 0和正整数;a0 ? a是正数;a0 ? a是负数;a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级数学上册知识点总结——第一章 有理数

七年级数学上册知识点总结——第一章 有理数

七年级数学上册第一章有理数知识点总结一、知识框架二、知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类:①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0⇔a+b=0⇔a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a ≠0,那么a 的倒数是a 1;若ab=1⇔a 、b 互为倒数;若ab=-1⇔a 、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,a.即无意义13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时:(-a)n=-a n或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=a n或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.有效数字是指从该数字左边第一个非0的数字到该数字末尾的数字个数。

七年级上册第一章有理数知识点小结

七年级上册第一章有理数知识点小结

⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩第一章《有理数》知识点1、具有相反意义的量①在实际中表示意义相反的量上升5米记为:5, -8则表示下降8米。

②正数:大于0的数。

③负数:在正数的前面加上“-”。

④0既不是正数也不是负数。

把正数和0统称为非负数。

⑤有理数的分类1、按整数与分数分正整数整数 0负整数有理数正分数分数负分数( 若a≥0则a是正数或0,a是非负数;若a≤0则a是负数或0,a是非正数 )2、数轴:规定了原点、正方向和单位长度的一条直线。

①三要素:原点、正方向、单位长度。

通常原点用“O”表示,向右的方向为正方向,单位长度为1.②如何画数轴1、画直线(一般画成水平的),定原点,标出原点“O”;2、取原点向右的方向为正方向,并标出箭头;3、选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点。

③数轴上的点与有理数:(1)数轴上的点与有理数一一对应(2)右边的数>左边的数3、相反数①只有符号不同的两个数,叫做互为相反数。

0的相反数是0。

②a的相反数-a③a与b互为相反数:a+b=0④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b, a-b+c的相反数是-a+b-c⑥求一个数的相反数方法:在这个数的前面加“-”号.⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

4、绝对值一个正数的绝对值等于它本身;(1)当a是正数时,︱a︱=a;一个负数的绝对值等于它的相反数;(2)当a是负数时,︱a︱=-a;0的绝对值等于0。

(3)当a=0时,︱a︱=0。

互为相反数的两个数的绝对值相等。

几何意义:从数轴上看,一个数的绝对值是表示这个数的点离开原点距离。

|a|是重要的非负数,即|a|≥0注意:|a|·|b|=|a·b|,若 |a|+|b|=0,,则a=0,b=0 5、有理数的大小比较正数大于负数,0大于负数;两个负数比较,绝对值大的的反而小。

在以向右为正方向的数轴上,右边的点表示的数比左边的点表示的数大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎧⎪⎨⎪⎩










第一章《有理数》知识点
1、具有相反意义的量
①在实际中表示意义相反的量上升5米记为:5, -8则表示下降8米。

②正数:大于0的数。

③负数:在正数的前面加上“-”。

④0既不是正数也不是负数。

把正数和0统称为非负数。

⑤有理数的分类
1、按正数与分数分
正整数
整数 0
负整数
有理数
正分数
分数
负分数
2、数轴
①三要素:原点、正方向、单位长度。

通常原点用“O”表示,向右的方向为正方向,单位长度为1.
②如何画数轴
1、画直线(一般画成水平的),定原点,标出原点“O”;
2、取原点向右的方向为正方向,并标出箭头;
3、选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点。

③数轴上的点与有理数:
(1)数轴上的点与有理数一一对应(2)右边的数>左边的数
3、相反数
①只有符号不同的两个数,叫做互为相反数。

0的相反数是0。

②a的相反数-a
③a与b互为相反数:a+b=0
④a-b的相反数是:-a+b或b-a
⑤a+b的相反数是:-a-b
⑥求一个数的相反数方法:在这个数的前面加“-”号.
⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

4、绝对值
一个正数的绝对值等于它本身;(1)当a是正数时,︱a︱=a;
一个负数的绝对值等于它的相反数;(2)当a是负数时,︱a︱=-a;
0的绝对值等于0。

(3)当a=0时,︱a︱=0。

互为相反数的两个数的绝对值相等。

几何意义:从数轴上看,一个数的绝对值是表示这个数的点离开原点距离。

5、有理数的大小比较
正数大于负数,0大于负数;两个负数比较,绝对值大的的反而小。

在以向右为正方向的数轴上,右边的点表示的数比左边的点表示的数大。

比较一群数的大小时,先将数分成三类:正数、0、负数。

6、有理数的运算
①有理数的加法:
加法一般步骤:
1、确定符号:同号取相同的符号。

异号取绝对值大的加数的符号。

2、确定绝对值:同号将绝对值相加。

异号用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数与0相加,仍得这个数。

用字母表示加法的交换律a+b=b+a;加法结合律a+b+c=(a+b)+c=a+(b+c)。

三个或三个以上有理数相加,可以写成这些数的连加式,对于连加式,根据加法
交换律和加法结合律,可以任意交换加数的位置,也可先把其中的某几个数相加。

根据算式的特征,恰当地运用运算律,可以使运算简便:
1、符号相同的数先相加——同号结合法
2、互为相反数的先相加——相反数结合法
3、分母相同的数先相加——同分母结合法
4、正数与正数,小数与小数相加——同形结合法
②有理数的减法:
减法法则:减去一个数,等于加上这个数的相反数。

加减法混合运算,把减法转化为加法再计算。

③代数和:有理数加减混合运算时,将加减法统一成加法运算,转化为求几个正数或负数的和。

在一个和式中,可以把各个加数的括号和括号前面的加号省略不写,写成省略加号的和的形式。

④有理数的乘法:
乘法步骤:1、确定符号:同号正,异号负。

2、绝对值:求积。

任何数与0相乘,都得0。

任何数与—1相乘都得这个数的相反数。

多个有理数相乘的运算:
几个非0有理数相乘时,当负因数个数是偶数时,积为正;负因数个数是奇数时,积为负;
乘法交换律:。

乘法结合律。

乘法对于加法的分配律。

④有理数的除法:
除法步骤:1、确定符号:同号正,异号负。

2、绝对值:相除。

除以一个不等于0的数等于乘上这个数的倒数。

0除以任何一个不等于0的数都得0。

7、倒数
①乘积是1的两个数叫作互为倒数。

②a的倒数是1
a
(a≠0)
③a与b互为倒数 ab=1
④正数的倒数还是正数,负数的倒数还是负数,0没有倒数。

8、乘方
①求几个相同因数的积的运算叫做乘方
a·a·…·a=a n
②底数、指数、幂
9、科学记数法
①把一个绝对值大于10的数表示成a×10n(其中1≤|a|<10,n为正整数)
②指数n与原数的整数位数之间的关系。

(n=原数的整数位数-1)
10、混合运算顺序
①三级(乘方)二级(乘除)一级(加减);
②同一级运算应从左到右进行;
③有括号的先做括号内的运算;
④能简便运算的应尽量简便。

11、本身之数
①倒数是它本身的数是±1 ②绝对值是它本身的数是非负数(正数和0)③平方等于它本身的数是0,1 ④立方等于经本身的数是±1,0
⑤偶数次幂等于本身的数是0、1 ⑥奇数次幂等于本身的数是±1,0
⑦相反数是它本身的数是0
12、数之最
①最小的正整数是1 ②最大的负整数是-1 ③绝对值最小的数是0
④平方最小的数是0 ⑤最小的非负数是0 ⑥最大的非正数0
⑦没有最大和最小的有理数⑧没有最大的正数和最小的负数。

相关文档
最新文档