有理数加减法知识点归纳
有理数的加减法复习
1.3有理数的加减法复习
有理数加法法则
1.同号两数相加,取相同的符号,并把绝对值相加.
2.绝对值不相等的异号两数相加,取绝对值较大的
加数的符号,并用较大的绝对值减去较小的绝对 值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.
运算步骤
1.先判断加法类型(同号异号等); 2.再确定和的符号; 3.最后进行绝对值的加减运算.
例6
计算
化零为整法
(1) -74-795-7 996 -79 997-799 998-7 999 999
(2) 899 994+89 995+8 996+897+88+8
例7
计算
同和结合法
(1) -1+3-5+7-…-17+19 (2) 1+2-3-4+5+67-8+…+2 001+2 002-2 003-2 004
例8
计算
裂项相消法
1 1 1 1 (1) + + + +…+ 2 6 12 20
1 2003 2004
(2)
1 1 + + 3 5 1 3
1 + … + 5 7
1 99 101
想一想
1 1 1 1-… … 2 4 6 100 2 24
例9
计算:
在1,2,3,… ,100前分别添上“+”或 “-”号,计算这100个数的和,所得的和中: (1)最大的和是多少? (2)最小的和是多少? (3)最小的非负数是多少?
同分母结合法
例4
【数学知识点】有理数的加减法运算法则
【数学知识点】有理数的加减法运算法则这篇文章给大家分享有理数的加减法运算法则及有理数的加减法运算顺口溜,供参考!有理数加法运算法则(1)同号两数相加,取与加数相同的符号,并把绝对值相加。
(2)异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两数相加得0。
(4)一个数同0相加仍得这个数。
(5)互为相反数的两个数,可以先相加。
(6)符号相同的数可以先相加。
(7)分母相同的数可以先相加。
(8)几个数相加能得整数的可以先相加。
有理数减法法则减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。
有理数加法顺口溜同号相加值(绝对值)相加,符号同原不变它。
异号相加值(绝对值)相减,符号就把大的抓。
互为相反数,相加便得0。
0加一个数仍得这个数。
有理数减法顺口溜减正等于加负,减负等于加正。
有理数乘法法则(1)同号得正,异号得负,并把绝对值相乘。
(2)任何数与零相乘,都得零。
(3)几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。
(4)几个数相乘,有一个因数为零,积就为零。
(5)几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
有理数乘除法则(1)除以一个不等于零的数,等于乘这个数的倒数。
(2)两数相除,同号得正,异号得负,并把绝对值相除。
零除以任意一个不等于零的数,都得零。
感谢您的阅读,祝您生活愉快。
第4-6节 有理数的加减法
第二章 第四节:有理数的加法(第1课时)知识点1.有理数加法的运算法则:同号两数相加:取相同加数的符号,并把绝对值相加。
异号两数相加:⑴绝对值相等时为和零;⑵ 绝对值不等时, 取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
⑶一个数同0相加,仍得这个数。
知识点2.有理数加法的运算例1计算下列各题: 1)(+4)+(+7); (2)(-4)+(-7); (3)(-53)+(-79); (4)(-27)+(-63); 变式:1.计算: (1)(-84)+(-59); (2)(+17)+(+37)+(+85); (3)(-28)+(-53)+(-47);例2计算下列各题:(充分利用法则)(1)(+4)+(-4); (2)0+(+2); (3)41)31(+- (4) (-10)+(+26);(5)(+12)+(-4); (6) 67+(-73); (7)(+9)+(-4); (8)(-56)+37【变式2】计算:(1)(+4)+(-7); (2) (+49)+(-82); (3)(-19)+0;(4)(-25)+13; (5)37+(-54); (6)(-135)+(+542)例3计算下列各题:(1)(-0.9)+(-2.7) ; (2)3.29+1.78; (3))433()52(-+-【变式3】计算:)1( 3.8+(-8.4); (2)(-2.9)+(-0.31); (3)(-9.18)+6.1 8;(4)4.23+(-6.77); (5) )7218()12724(++- (6))5.12()8.4()7.3(-+-+-(7) )542()4313()325(-+-+- (8))654()532(-+- (9))312()433(++-运算时注意(两定):1.定符号;2.定绝对值。
另特别强调学生的书写及格式。
另外:有兴趣和能力的同学可以试着做下面的题目 。
*1.用“>”或“<”号填空:(1)如果a >0,b >0,那么a+b ______0; (2)如果a <0,b <0,那么a+b ______0;(3)如果a >0,b <0,|a|>|b|,那么a+b ______0; (4)如果a <0,b >0,|a|>|b|,那么a+b ______0.*2.分别根据下列条件,利用|a|与|b|表示a+b=?(1)a >0,b >0; (2) a <0,b <0; (3)a >0,b <0,|a|>|b|; (4)a >0,b <0,|a|<|b3.若有理数y x ,满足,3||,5||==y x 且y x y x +=+||,求y x -的值。
有理数加减法知识点归纳
一、有理数的加法1、两个有理数相加有以下几种情况:①两个正数相加;②两个负数相加;③异号两数相加;④正数或负数或零与零相加..2、有理数的加法法则1同号两数相加;取相同的符号;并把绝对值相加;2绝对值不相等的异号两数相加;取绝对值较大的加数符号;并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;3一个数同0相加;仍得这个数..注:①有理数的加法和小学学过的加法有很大的区别;小学学习的加法都是非负数;不考虑符号;而有理数的加法涉及运算结果的符号;②有理数的加法在进行运算时;首先要判断两个加数的符号;是同号还是异号是否有零接下来确定用法则中的哪一条;③法则中;都是先强调符号;后计算绝对值;在应用法则的过程中一定要“先算符号”;“再算绝对值”..3、有理数加法的运算律1加法交换律:a+b=b+a;2加法结合律:a+b+c=a+b+c..根据有理数加法的运算律;进行有理数的运算时;可以任意交换加数的位置;也可以先把其中的几个数加起来;利用有理数的加法运算律;可使运算简便..4、有理数减法的意义有理数的减法的意义与小学学过的减法的意义相同..已知两个加数的和与其中一个加数;求另一个加数的运算;叫做减法..减法是加法的逆运算..5、有理数的减法法则设;则;.因此;.有理数的减法法则:减去一个数等于加上这个数的相反数.例5、计算1;2;3;4.分析根据有理数的加法法则;先定符号;再算绝对值.解:1原式=;2原式;3原式;4原式.例6、计算:1;2;3.分析适当运用运算律.解:1原式2原式3原式小结1尽量把正数分成一组;负数分成一组分别计算;2遇到分数运算时;尽量把异通分的分为一组.例7、计算1; 2; 3.分析把减法转化为加法.解:1原式;2原式;3原式.例8、计算:;解:原式。
有理数的加减法知识点讲解
仍得 这 个 数 .
点 拔 两个有理数相加 , 先看加 数是同号还是异号 , 再确定所 用法则
以及 和 的 符号 , 后 计 算 和 的绝 对 值 , “ 看 , 定 ,三 算 ” 最 即 一 二 三运 .
注意 () 1 一个有理数E f _ l
。:。 6+ . +( )
点 拔 灵活 运用运算 律 , 使运算 简化 , 通常有下 列规律 : 互 为相 反 ① 数的两数 可先相加 ;② 符 号相同的两数可先相 加;③ 分母相 同的数 可先 相
加 : 几 个 数 相 加 能 得 整 数 的 可 以先 相 加 . ④
三有 散 j 法 : 理 曲E 刚 I 法
M e ako li i nt l fki ngtme, l i uityki st e . l whietmeq e l l h m l
交 换加 数 的位 置 , 不 变 . n+ 和 即
6
人 们 在 谈论 着 如 何 消磨 时 间 , 与此 同时 , 间 也 在不 声 不 响 地 消蚀 人 们 的 生命 。— — 迪 昂 ・ 西考 尔 特 时 鲍
( 1 ) + 6 +(1 ) ( 1 ) + 4 +( 1 )I + ) + 6 ] 一 5 +(1 ) 一 8 =[+ 5 +( 1 ) + 0 -(4 +( l ) + -
[一 ) 一 1 +( 1 ) 一 5 +( 1 ) :(5 ) 一 9 =0 (3 +( 1 ) 一 2 +( 1 ) 一 8 ] + 9 +(5 ) .
油
… … 一 一
升.
解 ( ) 先 求 已知 l 1应 0个 有 理 数 的 和 , 再求 出 此 和 的绝 对
有理数的加减法讲义
有理数的加减法讲义专题四有理数的加法1、相关知识链接(13)加法的定义:把两个数合成一个数的运算,叫做加法;(14)加法交换律:两个数相加,交换加数的位置,和不变;(15)加法分配律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
2、教材知识详解【知识点1】有理数加法法则(1)同号两数相加;取相同的符号,并把绝对值相加。
数学表示:若a>0、b>0,则a+b=|a|+|b|;若a<0、b<0,则a+b=-(|a|+|b|);(2)异号两数相加,绝对值相等(相反数)时和为0;绝对值不相等时,取绝对值较大的数的符号,并且用较大的绝对值减去较小的绝对值。
数学表示:若a>0、b<0,且|a|>|b|则a+b=|a|-|b|;若a>0、b<0,则a+b=|b|-|a|;(3)一个数同0相加,仍得这个数。
【例1】计算:(1)(+8)+(+2)(2)(-8)+(-2)(3)(-8)+(+2)(4)(+8)+(-2) (5)(-8)+(+8) (6)(-8)+ 0【知识点2】有理数加法的运算律 加法交换律:a + b = b + a加法结合律:(a + b )+ c = a +(b + c )【例2】计算 4.1+(+12)+(-12)+(-10.1)+7 【基础练习】1.如果规定存款为正,取款为负,请根据李明同学的存取款情况①一月份先存10元,后又存30元,两次合计存人 元,就是(+10)+(+30)= ②三月份先存人25元,后取出10元,两次合计存人元,就是(+25)+(-10)= 2.计算:(1)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (2)(—2.2)+3.8; (3)314+(—561);(4)(—561)+0; (5)(+251)+(—2.2);(6)(—152)+(+0.8);(7)(—6)+8+(—4)+12; (8)3173312741++⎪⎭⎫ ⎝⎛-+(9)0.36+(—7.4)+0.3+(—0.6)+0.64; (10)9+(—7)+ 10 +(—3)+(—9);3.用简便方法计算下列各题:(1) (2)(3))539()518()23()52()21(++++-+-(4))4.2()6.0()2.1()8(-+-+-+-75.9)219()29()5.0(+-++-)127()65()411()310(-++-+(5))37(75.0)27()43()34()5.3(-++++-+-+-3、用算式表示:温度由—5℃上升8℃后所达到的温度.4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?5. 一天下午要测量一次血压,下表是该病人星期一至星期五血压变化情况,该病人上个星期日的血压为160单位,血压的变化与前一天比较:请算出星期五该病人的血压【基础提高】1.计算:(1)3-8; (2)-4+7; (3) -6-9; (4)8-12;(5)-15+7; (6)0-2;(7)-5+9+3; (8)10+(-17)+8;2.计算:(1)-4.2+5.7+(-8.4)+10; (2)6.1-3.7-4.9+1.8;4.计算:(1)12+(-18)+(-7)+15;(2)-40+28+(-19)+( -24)+(-32);5.计算:(1)(+12)+(-18)+(-7)+(+15); 2)(-40)+(+28)+(-19)+(-24)+(32);(3)(+4.7)+(-8.9)+(+7.5)+(-6); (4) )31()21(54)32(21-+-++-+专题五 有理数的减法及加减混合运算1、 相关知识链接 减法是加法的逆运算。
有理数的加减法基础知识讲解
有理数的加减法基础知识讲解【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.【要点梳理】要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:算律加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点诠释:交换加数的位置时,不要忘记符号.要点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b-=+-.要点诠释:将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.【典型例题】类型一、有理数的加法运算1.计算:(1)(+20)+(+12); (2); (3)(+2)+(-11); (4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2) (3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.举一反三:【变式1】计算: 【答案】 【变式2】计算:(1) (+10)+(-11); (2) 【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2) 1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭12121123236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭113343⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭111113333433412⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12-1+-23⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341-1+-=-1+=-1+=-22323666类型二、有理数的减法运算2. 计算:(1)(-32)-(+5); (2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.举一反三:【变式】(2020•泰安)若( )﹣(﹣2)=3,则括号内的数是( )A . ﹣1B . 1C . 5D . ﹣5【答案】B .根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.类型三、有理数的加减混合运算3.计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21)(3) (4)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭(5) (6) 【答案与解析】(1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法=(26+5)+[(-18)+(-16)] →符号相同的数先加= 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加=0(3) →同分母的数先加 (4) →统一成加法 →整数、小数、分数分别加 (5) 132.2532 1.87584+-+1355354624618-++-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦312128544⎛⎫=++-= ⎪⎝⎭132.2532 1.87584+-+→统一同一形式(小数或分数),把可凑整的放一起(6) →整数,分数分别加 【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换.举一反三:【变式】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2(2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4 类型四、有理数的加减混合运算在实际中的应用4. (2020秋•香洲区期末)邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置;(2.25 2.75)(3.125 1.875)=-++0.55 4.5=-+=1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-182********-++-=+2936=(2)C村离A村有多远?(3)邮递员一共骑了多少千米?【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.【答案与解析】解:(1)依题意得,数轴为:;(2)依题意得:C点与A点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.举一反三:【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:(1)第一名超过第二名多少分?(2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.。
有理数的加法与减法运算技巧
有理数的加法与减法运算技巧一、有理数加法运算技巧1.同号有理数相加:–取相同符号,并保留原有绝对值;–将绝对值相加,结果的绝对值即为两数相加的绝对值,符号与原数相同。
2.异号有理数相加:–取绝对值较大的数的符号;–用较大的绝对值减去较小的绝对值,结果的绝对值为两数相加的绝对值,符号与绝对值较大的数相同。
–任何有理数加零,结果为该有理数本身。
3.加法交换律:–对于任何两个有理数a和b,a + b = b + a。
二、有理数减法运算技巧1.同号有理数相减:–取相同符号,并保留原有绝对值;–将绝对值相减,结果的绝对值即为两数相减的绝对值,符号与原数相同。
2.异号有理数相减:–转换为加法运算,即将被减数取相反数后与减数相加;–按照同号有理数相加的方法进行计算。
–任何有理数减零,结果为该有理数本身。
3.减法交换律:–对于任何两个有理数a和b,a - b = b - a。
4.减法的性质:– a - (b + c) = (a - b) - c;– a - b = a + (-b)。
三、加减法运算技巧1.结合律:–对于任何三个有理数a、b和c,(a + b) + c = a + (b + c)。
2.分配律:–对于任何三个有理数a、b和c,a × (b + c) = a × b + a × c;–对于任何三个有理数a、b和c,(a + b) × c = a × c + b × c。
3.运算顺序:–先算乘除,后算加减;–同一级运算,按照从左到右的顺序进行计算。
4.带符号移项:–将含有未知数的项移到等式的一边,将常数项移到等式的另一边;–移项时,注意改变移项后项的符号。
5.运用括号:–括号前面是加号时,括号内的数不变号;–括号前面是减号时,括号内的数变号。
通过以上知识点的学习与理解,同学们可以掌握有理数加减法的运算技巧,并在实际运算中灵活运用,提高解题速度和正确率。
有理数加减法知识点
有理数加减法知识点一、有理数的定义有理数是可以表示为两个整数比的数,形式为a/b,其中a和b是整数,且b不为零。
有理数包括所有整数、分数和小数(有限或无限循环小数)。
二、有理数的加法1. 同号相加:两个正有理数或两个负有理数相加,取相同的符号,并将绝对值相加。
例如:+2/3 + +1/2 = +(2*2 + 1*3)/6 = +7/62. 异号相加:两个有理数,一个正数和一个负数相加,需要比较它们的绝对值。
如果绝对值相等,则结果为零;如果不相等,则结果取较大绝对值的符号,并用较大绝对值减去较小绝对值。
例如:-3/4 + 2/4 = +(2*1 - 3*1)/4 = 1/43. 加法的交换律和结合律:交换律:a + b = b + a结合律:(a + b) + c = a + (b + c)三、有理数的减法1. 有理数的减法可以转化为加法来进行计算:例如:5 - 3/4 可以转化为 5 + (-3/4),然后按照加法规则进行计算。
2. 减法的性质:a -b = a + (-b),其中 -b 表示 b 的相反数。
四、有理数加减法的运算规则1. 先计算同号的加减法。
2. 再计算异号的加减法。
3. 如果有多个数进行加减运算,可以按照从左到右的顺序依次进行。
4. 可以利用加法的交换律和结合律简化计算过程。
五、有理数加减法的实例1. 实例一:计算:1/2 + 3/4 - 1/4解:= (1/2 + 3/4) - 1/4= 1 + 1/4= 5/42. 实例二:计算:-2/3 - 1/6 + 1/2解:= -2/3 + (-1/6) + 1/2= -(2*2 + 1*4)/6 + 1/2= -9/6 + 3/6= -6/6= -1六、注意事项1. 在进行有理数加减法时,要注意分数的通分和约分。
2. 要注意运算的顺序,先进行括号内的运算,然后进行加减运算。
3. 在合并同类项时,要注意保持分母不变,只对分子进行加减运算。
有理数加减法的知识点
有理数加减法的知识点
1. 嘿,有理数的加法就是把两个有理数合起来呀!比如说2 和3 相加,不就是 2+3=5 嘛!这多简单呀,就像把两块积木摞在一起一样。
2. 哎呀,有理数的减法其实也不难理解呢,不就是一个数减去另一个数嘛。
就像你有 5 块糖,给出去 3 块,那就是 5-3=2,很好懂吧?
3. 要注意哦,有理数加减的时候符号很重要呀!正号负号可别弄混啦。
比如-2 加 3,就得好好想想符号该咋整啦,结果就是 1 呀,神奇吧?
4. 有理数加减法里还有互为相反数呢,它们加起来可是等于 0 哟!这
就好像两个对手碰到一起抵消啦。
像 3 和-3,加起来就是 0。
5. 别小看有理数加减法呀,生活中很多地方都能用到呢。
好比你买东西找零钱不就是在做加减法嘛,是不是很有意思呀?
6. 学有理数加减法可不能马虎哟,认真学就能掌握好啦。
就像走路一样,一步步踏稳了,就能走得稳稳当当的啦。
我的观点结论就是:有理数加减法虽然基础,但真的很重要,好好学肯定能学好!。
专题03_有理数的加减法(知识点串讲)(解析版)
专题03 有理数的加减法重点突破知识点一 有理数的加法(基础)有理数的加法法则:(先确定符号,再算绝对值) 1. 同号两数相加,取相同的符号,并把绝对值相加;2. 异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4. 一个数同0相加,仍得这个数。
有理数的加法运算律:1. 两个数相加,交换加数的位置,和不变。
即a b b a +=+;2. 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
即()()a b c a b c ++=++。
知识点二 有理数的减法(基础) 有理数的减法法则:减去一个数等于加上这个数的相反数。
即()a b a b -=+-。
【注意减法运算2个要素发生变化】:减号变成加号;减数变成它的相反数。
有理数减法步骤: 1.将减号变为加号。
2.将减数变为它的相反数。
3.按照加法法则进行计算。
考查题型考查题型一 有理数加法运算典例1.(2018·广东初一期中)计算-(-1)+|-1|,其结果为( ) A .-2 B .2 C .0 D .-1【答案】B 【解析】试题提示:由题可得:原式=1+1=2,故选B.a b的值()变式1-1.(2019·呼伦贝尔市期末)有理数a、b在数轴上的位置如图所示,则A.大于0B.小于0C.小于a D.大于b【答案】A【提示】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【名师点拨】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.变式1-2.(2019·庆阳市期中)若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7【答案】D【提示】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【名师点拨】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.变式1-3.(2019·扬州市期中)若|m|=3,|n|=5,且m-n>0,则m+n的值是()A.-2 B.-8或8 C.-8或-2 D.8或-2【答案】C【详解】∵|m|=3,|n|=5,∴m=±3,n=±5,∵m-n>0,∴m=±3,n=-5,∴m+n=±3-5,∴m+n=-2或m+n=-8.故选C .变式1-4.(2018·上饶市期末)若m 是有理数,则m m +的值是( ) A .正数 B .负数C .0或正数D .0或负数【答案】C【提示】根据:如果m>0,则|m|=m; 如果m<0,则|m|=-m; 如果m=0,则|m|=0.【详解】如果m 是正数,则m m +是正数;如果m 是负数,则m m +是0;如果m 是0,则m m +是0. 故选C【名师点拨】本题考核知识点:有理数的绝对值.解题关键点:理解绝对值的意义. 考查题型二 有理数加法中的符号问题典例2.(2018·重庆市期末)将 6-(+3)+(-2) 改写成省略括号的和的形式是( ) A .6-3-2 B .-6-3-2C .6-3+2D .6+3-2【答案】A【提示】先把加减法统一成加法,再省略括号和加号.【详解】将6﹣(+3)+(﹣2)改写成省略括号的和的形式为6﹣3﹣2. 故选A .【名师点拨】本题考查了有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.变式2-1.(2020·银川市期中)把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 【答案】C【解析】(+3)﹣(+5)﹣(﹣1)+(﹣7)=(+3)+(-5)+(+1)+(﹣7)=3﹣5+1﹣7, 故选:C.变式2-2.(2020·邯郸市期末)若两个非零的有理数a ,b 满足:|a|=-a ,|b|=b ,a +b <0,则在数轴上表示数a ,b 的点正确的是( ) A .B .C .D .【答案】D【提示】根据|a|=-a 得出a 是负数,根据|b|=b 得出b 是正数,根据a+b <0得出a 的绝对值比b 大,在数轴上表示出来即可.【详解】解:∵a 、b 是两个非零的有理数满足:|a|=-a ,|b|=b ,a+b <0, ∴a <0,b >0, ∵a+b <0, ∴|a|>|b|,∴在数轴上表示为:故选D.【名师点拨】本题考查数轴,绝对值,有理数的加法法则等知识点,解题关键是确定出a <0,b >0,|a|>|b|. 变式2-3.(2019·深圳市期中)如果a <0,b >0,a +b <0 ,那么下列关系式中正确的是( ) A .a b b a ->>-> B .a a b b >->>- C .a b b a >>->- D .b a b a >>->-【答案】A【提示】由于a <0,b >0,a+b <0,则|a|>b ,于是有-a>b ,-b>a ,易得a ,b ,-a ,-b 的大小关系. 【详解】∵a <0,b >0,a+b <0, ∴|a|>b , ∴-a>b ,-b>a ,∴a ,b ,-a ,-b 的大小关系为:-a>b>-b>a , 故选A .【名师点拨】本题考查了有理数的加法法则,有理数的大小比较,异号两数的加法法则确定出|a|>b 是解题的关键. 考查题型三 有理数加法在实际生活中的应用典例3(2018·厦门市期末)下列温度是由-3℃上升5℃的是( ) A .2℃ B .-2℃C .8℃D .-8℃【答案】A【提示】物体温度升高时,用初始温度加上上升的温度就是上升之后的温度,即是所求 【详解】(-3℃)+5℃= 2℃ 故本题答案应为:A【名师点拨】此题考查了温度的有关计算,是一道基础题.熟练掌握其基础知识是解题的关键变式3-1.(2019·石家庄市期中)在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m ,在向东行驶lm ,这时车模的位置表示什么数?”用算式表示以上过程和结果的是( )A.(﹣3)﹣(+1)=﹣4 B.(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+4【答案】B【详解】由题意可得:(﹣3)+(+1)=﹣2.故选B.变式3-2.(2019·石家庄市期中)一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是()A.盈利了290元B.亏损了48元C.盈利了242元D.盈利了-242元【答案】C【提示】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.【详解】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.【名师点拨】本题考查正数和负数、有理数的加法,解题的关键是掌握正数和负数、有理数的加法.±kg,现随机选取10袋面粉进行质量变式3-3.(2020·沈阳市期末)面粉厂规定某种面粉每袋的标准质量为500.2检测,结果如下表所示:则不符合要求的有()A.1袋B.2袋C.3袋D.4袋【答案】A【提示】提示表格数据,找到符合标准的质量区间即可解题.±kg,即质量在49.8kg——50.2kg之间的都符合要求,【详解】解:∵每袋的标准质量为500.2根据统计表可知第5袋49.7kg不符合要求,故选A.【名师点拨】本题考查了有理数的实际应用,属于简单题,熟悉概念是解题关键.考查题型四有理数加法运算律典例4.(2019·忠县期中)计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律【答案】D【提示】根据加法交换律与结合律即可求解.【详解】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选:D.【名师点拨】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.变式4-1.(2018·新蔡县期中)计算()+()+()+()等于()A.-1 B.1 C.0 D. 4【答案】A【提示】有理数的加减运算,适当运用加法交换律.【详解】解:故选:A.【名师点拨】本题考查有理数的加减运算,熟记有理数的加减运算法则,同时能够题目数字特点进行灵活计算.变式4-2.(2019淮南市期中)-1+2-3+4-5+6+…-2017+2018的值为()A.1 B.-1 C.2018 D.1009【答案】D【提示】从左边开始,相邻的两项分成一组,组共分成1009组,每组的和是1,据此即可求解.【详解】原式=(−1+2)+(−3+4)+(−5+6)+…(−2015+2016)+(−2017+2018),=1+1+1+…+1=1×1009,=1009.故选D.【名师点拨】属于规律型:数字的变化类,考查有理数的加减混合运算,掌握运算法则是解题的关键.变式4-3.(2019·南阳市期中)下列交换加数的位置的变形中,正确的是A.1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【详解】A. 1−4+5−4=1−4−4+5,故错误;B. 13111311=-34644436-+--+--,故错误; C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确. 故选D.考查题型五 有理数减法运算典例5.(2020·济南市期末)﹣3﹣(﹣2)的值是( ) A .﹣1 B .1C .5D .﹣5【答案】A【提示】利用有理数的减法的运算法则进行计算即可得出答案. 【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【名师点拨】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键. 变式5-1.(2019·郯城县期末)比﹣1小2的数是( ) A .3 B .1C .﹣2D .﹣3【答案】D【提示】根据题意可得算式,再计算即可. 【详解】-1-2=-3, 故选D .【名师点拨】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数. 变式5-2.(2019·重庆市期末)若 |a |= 3, |b | =1 ,且 a > b ,那么 a -b 的值是( ) A .4 B .2C .-4D .4或2【答案】D根据绝对值的性质可得a =±3,b =±1,再根据a >b ,可得①a =3,b =1②a =3,b =﹣1,然后计算出a -b 即可. 【详解】∵|a |=3,|b |=1,∴a =±3,b =±1. ∵a >b ,∴有两种情况: ①a =3,b =1,则:a -b =2; ②a =3,b =﹣1,则a -b =4. 故选D .【名师点拨】本题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.变式5-3.(2018·自贡市期中)若x <0,则()x x --等于( )A .-xB .0C .2xD .-2x【答案】D【提示】根据有理数的加法法则和绝对值的代数意义进行提示解答即可. 【详解】()2x x x x x --=+=, ∵0x <, ∴20x <, ∴原式=22x x =-. 故选D.【名师点拨】“由已知条件0x <得到20x <,进而根据绝对值的代数意义得到:22x x =-”是解答本题的关键. 考查题型六 有理数减法在实际生活中的应用典例6.(2019临河区期末)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃ B .6℃ C .﹣6℃ D .﹣10℃ 【答案】A【解析】提示:用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 详解:2-(-8) =2+8 =10(℃). 故选:A .名师点拨:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键. 变式6-1.(2019·长兴县月考)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A .星期一B .星期二C .星期三D .星期四【答案】C【提示】利用每天的最高温度减去最低温度求得每一天的温差,比较即可解答. 【详解】星期一温差:10﹣3=7℃; 星期二温差:12﹣0=12℃; 星期三温差:11﹣(﹣2)=13℃;星期四温差:9﹣(﹣3)=12℃; 综上,周三的温差最大. 故选C .【名师点拨】本题考查了有理数的减法的应用,根据题意正确列出算式,准确计算有理数减法是解题的关键. 变式6-2.(2018·吕梁市期末)我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为 A .-5℃ B .5℃C .10℃D .15℃【答案】D【详解】解:5−(−10) =5+10=15℃. 故选D.变式6-3.(2020·寿阳县期末)甲、乙、丙三地海拔分别为20m ,15m -,10m -,那么最高的地方比最低的地方高( ) A .10m B .25mC .35mD .5m【答案】C【提示】根据正数与负数在实际生活中的应用、有理数的减法即可得.【详解】由正数与负数的意义得:最高的地方的海拔为20m ,最低的地方的海拔为15m - 则最高的地方比最低的地方高20(15)201535()m --=+= 故选:C .【名师点拨】本题考查了正数与负数在实际生活中的应用、有理数的减法,理解负数的意义是解题关键. 考查题型七 有理数加减混合运算典例7(2018·南阳市期中)计算:①﹣13+(﹣20)﹣(﹣33);②(+12)﹣(﹣13)+(﹣14)﹣(+16) 【答案】①0;②512. 【解析】①﹣13+(﹣20)﹣(﹣33) =﹣33+33 =0;②(+12)﹣(﹣13)+(﹣14)﹣(+16) =12+13﹣14﹣16 =643212121212+-- =512.变式7-1.(2019·河池市期中)计算:(1) 6789-+- (2) 2(5)(8)5---+-- 【答案】(1)-2;(2)-10 【详解】解:(1)6789-+- =189-+- =79-2=-(2)2(5)(8)5---+--2585=-+--385=--55=-- 10=-【名师点拨】此题考查的是有理数的加减法混合运算,掌握有理数的加、减法法则是解决此题的关键. 变式7-2.(2019·枣庄市期中)请根据如图所示的对话解答下列问题.求:(1)a ,b ,c 的值; (2)8-a +b -c 的值.【答案】(1)a =-3,b =±7,c=-1或-15; (2)33或5. 【详解】解:(1)∵a 的相反数是3,b 的绝对值是7, ∴a=-3,b=±7; ∵a=-3,b=±7,c 和b 的和是-8, ∴当b=7时,c= -15, 当b= -7时,c= -1,(2)当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33; 当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5. 故答案为(1)a=-3,b=±7;c=-1或-15;(2)33或5. 【名师点拨】本题考查有理数的加减混合运算,掌握相反数和绝对值的概念是解题关键.。
有理数的加减乘除、幂运算
有理数的加减乘除运算重点:有理数的加法法则、减法法则、乘法法则、除法法则。
有理数的加法结合律、交换律;乘法交换律、结合律、乘法分配律。
混合运算的顺序。
难点:有理数运算法则的理解,尤其是有理数加法和减法法则的理解;有理数运算中的符号问题;运用运算律进行简算问题;运算的准确性问题等。
二、知识要点梳理知识点一:有理数的加法把两个有理数合成一个有理数的运算叫做有理数的加法。
要点诠释:相加的两个有理数有以下几种情况:(1)两数都是正数;(2)两数都是负数;(3)两数异号,即一个是正数,一个是负数;(4)一个是正数,一个是0;(5)一个是负数,一个是0;(6)两个都是0。
知识点二:有理数加法法则根据有理数的加法法则,两数相加,先弄清这两个加数是同号还是异号,根据法则确定和的符号,然后根据法则求出和的绝对值。
要点诠释:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
知识点三:有理数加法的运算定律要点诠释:(1)加法交换律:。
(2)加法结合律:。
知识点四:有理数减法法则要点诠释:减去一个数,等于加上这个数的相反数,即知识点六:有理数加减法统一成加法的意义要点诠释:对于有理数的加减混合运算中的减法,可以根据有理数减法法则将减法转化为加法。
这样一来,就将原来的混合运算统一为加法运算。
统一成加法以后的式子是几个正数或负数的和的形式,有时,我们把这样的式子叫做代数和。
知识点七:有理数加减混合运算的方法要点诠释:(1)运用减法法则将有理数混合运算中的减法转化为加法。
(2)运用加法法则、加法交换律、加法结合律简便运算。
知识点八:有理数乘法法则要点诠释:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
知识点九:有理数乘法法则的推广要点诠释:(1)几个不等于0的数相乘,积的符号由负因数的个数决定。
有理数的加减法(基础)知识讲解
有理数的加减法(基础)知识讲解有理数的加减法(基础)知识讲解有理数是数学中的一个重要概念,它包括整数和分数。
有理数的加减运算是我们学习数学的基础,本文将对有理数的加减法进行详细讲解。
一、有理数的加法有理数的加法满足以下规则:1. 同号相加,取相同符号,数值相加。
例如:2 + 3 = 5,-2 + (-3) = -5。
2. 异号相加,取绝对值较大的数的符号,数值取两数绝对值之差。
例如:2 + (-3) = -1,-2 + 3 = 1。
3. 加0不变。
例如:5 + 0 = 5,-3 + 0 = -3。
二、有理数的减法有理数的减法可以看作是加法的逆运算,减法满足以下规则:1. 一个数减去另一个数,可以转化为加上这个数的相反数。
例如:5 - 3 可以转化为 5 + (-3)。
2. 减0不变。
例如:5 - 0 = 5,-3 - 0 = -3。
三、加减法综合运算有理数的加减法可以综合运算,按照运算顺序依次计算。
例如:计算4 + (-3) - 2 + 5 - (-1)。
首先,根据加法规则,4 + (-3) = 4 - 3 = 1。
然后,依次计算 1 - 2 = -1,-1 + 5 = 4,4 - (-1) = 4 + 1 = 5。
四、简便计算方法对于一些较为复杂的加减法计算,我们可以利用简便的计算方法来简化运算过程。
1. 数字和0相加或相减,结果不变。
例如:28 + 0 = 28,13 - 0 = 13。
2. 相同数字相加或相减,可以直接运用倍数法则。
例如:3 + 3 = 6,4 - 4 = 0。
3. 在连续加减运算中,可以根据加法交换律和结合律进行合并运算。
例如:2 + 3 - 4 + 6 = (2 + 6) + (3 - 4) = 8 + (-1) = 7。
五、实际应用有理数的加减法在我们日常生活中有很多应用,例如:1. 温度计的读数变化可以看作是有理数的加减运算。
当温度从20℃降低3℃,再上升5℃,我们可以计算出最终的温度。
人教版七年级数学上册 1.3有理数的加减法 知识点归纳
人教版七年级数学上册1.3有理数的加减法知识点归纳有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。
例1、计算(-3)+(-5)分析:两数的符号都是“-”号,所以得数的符号是“-”号。
-3的绝对值是3,-5的绝对值是5 。
3+5=8所以(-3)+(-5)=-8 。
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
例2、计算(-3)+5分析:-3的绝对值是3,5的绝对值是5 。
5>3所以得数的符号是“+”号,“+”号可以省略。
5-3=2所以(-3)+5=2 。
③互为相反数的两个数相加得0 。
例3、(-6)+6=0④一个数与0相加,仍得这个数。
例4、6+0=6,-10+0=-10 。
计算有理数的加减法时,要先定符号,再算绝对值。
小学所学的加法运算定律对有理数仍然适用。
加法运算定律:①加法交换律:两个数相加,交换加数的位置,和不变。
字母表示:a+b=b+a②加法结合律:三个数相加,先把前面两个数相加,或者先把后面两个数相加,和不变。
字母表示:a+b+c=a+(b+c)③如果一个算式中只有加法运算,则加数的顺序可以任意交换。
有理数减法法则:减去一个数,等于加上这个数的相反数。
字母表示:a-b=a+(-b)运用有理数减法法则,可以把减法转化为加法,之后就可以用有理数加法法则来计算。
例5、5-8-7=5+(-8)+(-7)=(-3)+(-7)=-10拆括号法则:①a+(-b)=a-b②a-(-b)=a+b例6、10+(-8)-(-7) =10-8+7=2+7=9。
有理数的加法与减法运算
有理数的加法与减法运算一、有理数加法运算:1.定义:有理数的加法是将两个有理数相加得到一个新的有理数。
2.加法法则:a)同号相加,保留同号,并把绝对值相加。
b)异号相加,保留绝对值较大的符号,并把绝对值相减。
3.加法运算顺序:先算同号相加,再算异号相加。
4.加法运算中的特殊现象:a)两数相加等于其中一数。
b)两数相加等于0。
二、有理数减法运算:1.定义:有理数的减法是已知两个有理数,求其中一个有理数比另一个有理数少多少。
2.减法法则:a)将减法转换为加法,即减去一个数等于加上这个数的相反数。
b)按照加法法则进行计算。
3.减法运算顺序:先算同号相减,再算异号相减。
4.减法运算中的特殊现象:a)两数相减等于其中一数。
b)两数相减等于0。
三、有理数加减混合运算:1.定义:有理数的加减混合运算是有理数加法和减法的组合。
2.运算顺序:先算加法,再算减法。
3.运算中的特殊现象:a)加减混合运算中出现0。
b)加减混合运算中出现负数。
四、有理数加减法运算的计算法则:1.先算绝对值,再确定符号。
2.异号相加,保留绝对值较大的符号。
3.同号相加,保留同号,并把绝对值相加。
4.减法转换为加法,即减去一个数等于加上这个数的相反数。
五、有理数加减法运算的应用:1.解决实际问题:例如,计算购物后的总价,计算距离等。
2.简化表达式:例如,化简代数式,求解方程等。
3.数学证明:例如,证明恒等式,证明不等式等。
以上是对有理数的加法与减法运算的详细归纳,希望对您的学习有所帮助。
习题及方法:1.习题:计算2 + 3。
解题思路:根据加法法则,同号相加,保留同号,并把绝对值相加。
2.习题:计算-2 + 3。
解题思路:根据加法法则,异号相加,保留绝对值较大的符号,并把绝对值相减。
3.习题:计算5 - 2。
解题思路:根据减法法则,将减法转换为加法,即减去一个数等于加上这个数的相反数,然后按照加法法则进行计算。
4.习题:计算-5 + 3。
解题思路:根据减法法则,将减法转换为加法,即减去一个数等于加上这个数的相反数,然后按照加法法则进行计算。
有理数(三):有理数的加减法
有理数的加法【知识导学】1. 同号两数相加,取同样的符号,并把绝对值相加;2. 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;3. 一个数同0相加,仍得到这个数;4. 有理数加法的运算定律:(1)加法交换律:___________________;(2)加法结合律:___________________;【课堂例题】知识点一:有理数加法法则及应用例1.计算。
(1)()()37-+-= (2)()58-+= (3)()58+-= (4)()66-+=(5)()44+-= (6)()010+-= (7)()()144-++= (8)()53-+= (9)()13 2.54⎛⎫-++= ⎪⎝⎭例2.某一天,某市早上气温是-4℃,到中午气温上升了13℃,则中午的气温是_______℃。
例3.规定盈利用正数表示,亏损用负数表示,某工厂今年第一季度盈利28000元,第二季度亏损4300元,则工厂上半年盈余或亏损可以用算式表示为( )。
A .(+28000)+(+4300)B .(-28000)+(+4300)C .(+28000)+(-4300)D .(-28000)+(-4300)知识点二:有理数加法运算定律的应用例4.算式7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]应用了( )。
A .加法交换律B .加法结合律C .加法交换律和加法结合律D .以上都不对例5.运用运算定律计算下列各题。
(1)5.68.1 4.4+-+() (2)0.7+-++-+-2571()()()36103(3)()()()452542-+++-++- (4)()()2.49 5.24 6.519.24-+-+-+例6.股民小王上星期五以收盘价67元买进某公司股票,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?【课堂练习】1. 口算。
有理数的运算知识点汇总及练习
有理数的运算知识点汇总及练习有理数的运算知识点汇总:一、有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3.一个数与相加,仍得这个数.有理数加法运算律:1.加法的交换律:a+b=b+a;2.加法的结合律:(a+b)+c=a+(b+c).在运用运算律时,可以灵活运用以下规律:1)互为相反数的两个数先相加——“相反数结合法”;2)符号相同的两个数先相加——“同号结合法”;3)分母相同的数先相加——“同分母结合法”;4)几个数相加得到整数,先相加——“凑整法”;5)整数与整数、小数与小数相加——“同形结合法”。
有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).二、有理数的乘除法有理数乘法法则:1.两数相乘,同号得正,异号得负,并把绝对值相乘;2.任何数同0相乘,都得0;3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;4.几个数相乘,如果其中有因数为0,则积等于0.有理数乘法的运算律:1)乘法的交换律:ab=ba;2)乘法的结合律:(ab)c=a(bc);3)乘法的分配律:a(b+c)=ab+ac。
有理数除法法则:1.除以一个不等于0的数,等于乘以这个数的倒数。
2.两数相除,同号得正,异号得负,并把绝对值相除。
三、有理数的加减乘除混合运算乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
有理数加减乘除混合运算,如果有括号先计算括号里的,如果无括则按照‘先乘除,后加减’的顺序进行。
知识点3:有理数乘方乘方的概念:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
乘方中,相同的因式叫做底数,相同因式的个数叫做指数。
记作an,在an中,a叫做底数,n叫做指数。
乘方的性质:1)负数的奇次幂是负数,负数的偶次幂的正数。
2)正数的任何次幂都是正数,0的任何正整数次幂都是0.练10:混合运算中的简便运算技巧1.计算:15\div\frac{5}{1}-\frac{51\times(-1/2)}{\frac{7}{-7} -\frac{8}{-27}}$$化XXX:15\times\frac{1}{5}-\frac{51}{2}\div\frac{7}{-7+8/27}$$继续化简得:3- \frac{51}{2}\div\frac{7\times27-8}{27}$$最终结果为:frac{249}{22}$$2.某个家庭为了估计自己家6月份的用电量,对月初的一周每天电表的读数进行了记录,上周日电表的读数是115度.以后每日的读数如下表(表中单位:度),请你估计6月份大约用多少度电.星期。
有理数加减法知识点归纳
有理数加减法知识点归纳有理数是数学中的一个重要概念,是整数和分数的统称。
在我们日常生活和学习中,有理数加减法是一项基础且必要的计算技巧。
下面将对有理数加减法的知识点进行归纳和总结。
一、有理数的概念有理数是可以表示为两个整数的比值的数,并且这个比值可以是正数、负数或零。
有理数包括整数和分数,可以用分数或小数形式表示。
二、有理数的加法1. 同号数相加:同号的有理数相加,绝对值相加,然后保留原来的符号。
例如,正数加正数,负数加负数。
2. 异号数相加:异号的有理数相加,绝对值相减,结果的符号取绝对值较大的数的符号。
即正数加负数,取绝对值较大的符号。
三、有理数的减法有理数的减法可以转换为加法进行计算。
要注意减法的运算规则,减法是加上被减数的相反数。
四、加减法结合运算在有理数的加减法中,可以根据需要进行括号的运用,按照从左至右的顺序依次进行运算。
五、绝对值与相反数1. 绝对值:一个有理数的绝对值是它去掉符号的值。
例如,|-5| = 5,|-2/3| = 2/3。
2. 相反数:一个有理数的相反数是与它绝对值相等、但符号相反的数。
例如,5和-5互为相反数,2/3和-2/3互为相反数。
六、加法和减法的计算规则1. 加法的交换律:a + b = b + a,对于任意的有理数a和b。
2. 加法的结合律:(a + b) + c = a + (b + c),对于任意的有理数a、b和c。
3. 加法的零元素:a + 0 = a = 0 + a,对于任意的有理数a。
4. 减法的定义:a - b = a + (-b),对于任意的有理数a和b。
七、应用举例1. 同号数相加:2 + 3 = 5,(-4.5) + (-2.7) = -7.2。
2. 异号数相加:(-2) + 5 = 3,(-1/2) + 1/3 = 1/6。
3. 同号数相减:5 - 2 = 3,(-7.2) - (-4.5) = -2.7。
4. 异号数相减:2 - 5 = -3,1/3 - (-1/2) = 5/6。
有理数的加减法知识点总结
有理数的加减法知识点总结有理数是指可以表示为分数形式的数,包括正整数、负整数、零以及带分数等。
有理数的加减法是数学中最基础、常见且重要的运算之一。
本文将对有理数的加减法进行知识点总结,帮助读者理解和掌握这一内容。
1. 有理数的加法有理数的加法遵循以下规则:- 同号相加,取绝对值相加后再用相同的符号。
例如:(+5) + (+3) = +8;(-4) + (-2) = -6。
- 异号相加,取绝对值较大的数减去绝对值较小的数,最后结果的符号与绝对值较大的数相同。
例如:(+5) + (-3) = +2;(-4) + (+2) = -2。
- 零与任何有理数的和都等于这个有理数本身。
例如:(+7) + 0 = +7;(-3) + 0 = -3。
2. 有理数的减法有理数的减法可以通过加法的规则进行转化。
对于有理数a和b,a - b 可以等价地表示为 a + (-b)。
例如:(+5) - (+3) = (+5) + (-3) = +2;(-4) - (-2) = (-4) + (+2) = -6。
3. 有理数的运算顺序当有多个有理数进行加减运算时,应遵循从左至右的顺序进行计算。
例如:(+5) + (+3) - (+2) = (+5 + 3) - (+2) = +8 - (+2) = +6。
4. 括号的运用括号在有理数的加减法中起到改变计算顺序的作用,优先计算括号中的运算。
例如:(+5) + [(+3) + (-2)] = (+5) + [+1] = +6。
5. 绝对值与加减法的关系绝对值是一个有理数去掉符号后的值。
在有理数的加减法中,对于同号相加产生的结果,其绝对值一定会增大;对于异号相加产生的结果,绝对值的大小取决于绝对值较大的数。
例如:(+2) + (+3) = +5,绝对值增大;(+2) + (-3) = -1,绝对值较大的数为3,结果为-1。
6. 实际问题中的运用有理数的加减法运算经常在实际问题中使用,例如计算温度变化、海拔高度差等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、有理数的加法
1、两个有理数相加有以下几种情况:
①两个正数相加;②两个负数相加;
③异号两数相加;④正数或负数或零与零相加。
2、有理数的加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数。
注:
①有理数的加法和小学学过的加法有很大的区别,小学学习的加法都是非负数,不考虑符号,而有理数的加法涉及运算结果的符号;
②有理数的加法在进行运算时,首先要判断两个加数的符号,是同号还是异号?是否有零?接下来确定用法则中的哪一条;
③法则中,都是先强调符号,后计算绝对值,在应用法则的过程中一定要“先算符号”,“再算绝对值”。
3、有理数加法的运算律
(1)加法交换律:a+b=b+a;
(2)加法结合律:(a+b)+c=a+(b+c)。
根据有理数加法的运算律,进行有理数的运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用有理数的加法运
算律,可使运算简便。
4、有理数减法的意义
有理数的减法的意义与小学学过的减法的意义相同。
已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。
减法是加法的逆运算。
5、有理数的减法法则
设,则,
.
因此,.
有理数的减法法则:减去一个数等于加上这个数的相反数.
例5、计算
(1);(2);
(3);(4).
[分析]根据有理数的加法法则,先定符号,再算绝对值.
解:(1)原式=;
(2)原式;
(3)原式;
(4)原式.
例6、计算:
(1);
(2);
(3).
[分析]适当运用运算律.
解:(1)原式
(2)原式
(3)原式
[小结](1)尽量把正数分成一组,负数分成一组分别计算;
(2)遇到分数运算时,尽量把异通分的分为一组.
例7、计算
(1);(2);(3).[分析]把减法转化为加法.
解:(1)原式;
(2)原式;
(3)原式.
例8、计算:;
解:原式。