自由基本体聚合原理及生产工艺
本体聚合实验报告
一、实验目的1. 掌握自由基本体聚合的原理及合成方法;2. 了解有机玻璃的生产工艺;3. 通过实验,观察和掌握本体聚合过程中的现象,分析影响聚合反应的因素;4. 熟悉实验操作技能,提高实验数据处理和分析能力。
二、实验原理本体聚合是指在没有介质存在的情况下,单体在引发剂、热、光、辐射等作用下进行的聚合反应。
聚甲基丙烯酸甲酯(PMMA),俗称有机玻璃,因其优良的光学性能、比重小以及在低温下仍能保持其独特的性能而被广泛的应用。
本体聚合是制备PMMA的主要方法之一。
实验采用本体聚合法制备PMMA,即在无溶剂或其他介质的情况下,将甲基丙烯酸甲酯(MMA)与引发剂混合,在一定温度下进行聚合反应。
反应过程中,MMA分子在引发剂的作用下生成自由基,自由基与MMA分子反应生成聚合物。
随着反应的进行,体系粘度逐渐增大,散热困难,易产生局部过热,甚至引发爆聚。
三、实验药品及仪器药品:甲基丙烯酸甲酯(MMA)、过氧化苯甲酰(BPO)、甲苯仪器:恒温水浴锅、三口烧瓶、直型冷凝管、磨口锥形瓶、牛角管、温度计、秒表四、实验步骤1. 准备实验仪器,检查设备是否完好;2. 称取一定量的MMA和过氧化苯甲酰,加入三口烧瓶中;3. 将三口烧瓶放入恒温水浴锅中,加热至预定温度;4. 开始计时,观察体系粘度变化、颜色变化、气泡产生等现象;5. 反应结束后,将聚合物取出,冷却、称重;6. 对聚合物进行表征,如红外光谱、凝胶渗透色谱等。
五、实验结果与分析1. 在实验过程中,观察到体系粘度逐渐增大,颜色由无色变为淡黄色,并伴随气泡产生;2. 随着反应时间的延长,体系粘度继续增大,颜色加深,气泡增多;3. 反应结束后,聚合物质量为理论质量的95%。
分析:本体聚合过程中,引发剂分解产生自由基,自由基与MMA分子反应生成聚合物。
随着反应的进行,体系粘度逐渐增大,散热困难,易产生局部过热。
实验中,观察到体系粘度增大、颜色加深、气泡增多等现象,说明反应过程中存在局部过热现象。
PMMA(有机玻璃板)本体聚合的实验报告及制作流程
有机玻璃板(PMMA)的制作一、实验目的1.了解本体聚合的特点与规律, 掌握本体聚合反应的操作方法。
2.制备出无气泡、平整透明的有机玻璃薄板。
二、实验原理甲基丙烯酸甲酯在ABIN引发剂存在下进行如下聚合反应:本体聚合: 单体本身在不加溶剂及其他分散介质的情况下由微量引发剂或光、热、辐射能等引发进行的聚合反应。
本体聚合的优点:(1) 与其它聚合方法如溶液聚合、乳液聚合等相比, 由于聚合体系中的其他添加物少(除引发剂外, 有时会加入少量必要的链转移剂、颜料、增塑剂、防老剂等), 因而所得聚合产物纯度高、分子量较高, 特别适合于制备对透明性和电性能要求高的产品, 而且对环境污染较低。
(2) 反应设备是最简单。
本体聚合的缺点:聚合反应却是最难控制的, 这是由于本体聚合不加分散介质, 聚合反应到一定阶段后, 体系粘度大, 易产生自动加速现象, 聚合反应热也难以导出, 因而反应温度难控制, 易局部过热, 导致反应不均匀, 使产物分子量分布变宽, 这在一定程度上限制了本体聚合在工业上的应用。
解决方法: 常采用分阶段聚合法, 即工业上常称的预聚合和后聚合。
三、实验仪器及药品甲基丙烯酸甲酯(MMA)30mL 偶氮二丁异腈(ABIN)0.267g锥形瓶(200mL)1个水浴加温装置1套铁架台1个电动搅动装置1套四、实验步骤1. 有机玻璃板模具的制作取三块50mm*50mm硅玻璃片洗净并干燥(其中两块可以选择涂一层硅油, 即邻笨二甲酸丁二脂, 也叫DPB)。
把三块玻璃片重叠、并将中间一块纵向抽出约30mm, 其余三断面用切割好的玻璃片用玻璃胶封牢, 然后将中间玻璃板抽出, 作灌浆用。
2. 预聚合在干净的(200mL)锥形瓶中加入30mLMMA及0.267g的AIBN, 混合均匀, 然后套上带有搅动棒的橡胶塞, 用试管夹夹住锥形瓶的瓶颈, 在70-75℃的水浴中加热, 同时开启电动搅动装置(注意搅动的速率不能过快, 特别是刚开始时), 进行预聚合约30min, 注意观察体系粘度变化, 当体系黏度变大, 但仍能顺利流动时(即预聚物的转化率约7%-10%,似甘油粘稠状时), 取出锥形瓶, 并将聚合液冷却至40-45℃, 注入模具中(浇铸时注意防止锥形瓶外的水珠滴入), 垂直放置5-10min赶出气泡。
第四章:自由基聚合方法
→ 2SO4·
B. 水溶性氧化 —还原引发剂
例 过硫酸盐 - 亚硫酸盐
_ 2 S2O8
+ SO3
_ 2
→
_ 2 SO4
+
SO4· +
_ ·SO3
过氧化氢 - 亚铁盐 H2O2 +Fe2+ → OH + HO· + Fe3+
_
(3)乳化剂
乳化剂在乳液聚合中的作用:
a. 降低体系的表面张力使单体形成细小液滴; b. 形成胶束,增溶单体
产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维纶的原料
丙烯腈 氧-还体系 醋酸乙烯酯 丙烯酸酯类 丁二烯 AIBN BPO 配位催化剂 BuLi BF3
涂料、粘合剂
顺丁橡胶 低顺式聚丁二烯
异丁烯
异丁烷
阳离子聚合
粘合剂、密封剂
聚醋酸乙烯酯(PVAc)和聚乙烯醇(PVA)
醋酸乙烯酯,甲醇(乙醇)溶液,BPO;65‐70 ℃,溶剂回 流带走聚合热;利用向溶剂的链转移控制分子 量,单体浓度
9
体积收缩:100%聚合时的体积收缩 1 1 ΔVmax w 0 ( ) dm dp
60oC: dm=0.89g/mL; dp=1.18g/ml, ∆Vmax =27mL,V0 =w/dm =112mL
体积收缩百分数= 27/112 =24%
20oC: dm=0.94g/mL; dp=1.208g/mL,∆Vmax =25.7mL 体积收缩百分数=25.7/102=25.2%
不足 反应热难导出、易局部过热、自动加速严重。 措施 降低反应温度,分段聚合,强化传热
8
3、应用实例 有机玻璃:PMMA
自由基聚合反应机理
自由基聚合反应机理1. 引言自由基聚合反应是一种重要的有机化学反应,广泛应用于聚合物的合成和有机合成领域。
自由基聚合反应的机理对于合理设计反应条件和控制反应过程具有重要意义。
本文将简要介绍自由基聚合反应的机理及相关的反应条件和控制方法。
2. 自由基聚合反应的基本概念自由基聚合反应是指通过自由基的聚合反应来合成聚合物的过程。
在自由基聚合反应中,自由基分子通过聚合反应连续添加到聚合物链上,从而实现聚合过程。
聚合物链的生长是以共轭双键或其他反应位点为基础的。
3. 自由基聚合反应的机理自由基聚合反应包括引发步骤、传递步骤和终止步骤。
下面将逐个介绍这些步骤的机理。
3.1 引发步骤在自由基聚合反应中,反应的开始需要引发剂作为引发步骤的催化剂。
引发剂会被激活形成自由基,通常是通过热量、光或化学剂的作用来实现。
引发剂能够引发起反应的原因在于它能够提供链建立反应起点所需的自由基。
3.2 传递步骤在自由基聚合反应的传递步骤中,自由基分子会逐一添加到聚合物链的末端,并延长聚合物链的长度。
这个过程中,自由基通过与单体分子反应,将自由基转变为共轭双键或其他反应位点,从而继续聚合的过程。
3.3 终止步骤自由基聚合反应的终止步骤是不可逆的,通过各种反应途径来消除自由基,结束聚合反应。
终止步骤可以分为自发性终止和人为控制的终止。
4. 自由基聚合反应的控制方法为了获得所需的聚合物特性,需要对自由基聚合反应进行控制。
下面介绍几种常用的控制方法。
4.1 温度控制温度是自由基聚合反应的主要控制因素之一。
通常情况下,聚合反应速率随温度的升高而加快。
通过控制反应温度,可以调节聚合反应的速率和产物分子量分布。
4.2 引发剂选择不同的引发剂会对自由基聚合反应的速率和选择性产生影响。
选择合适的引发剂可以实现更高的反应活性和选择性。
4.3 单体选择单体的选择性也是自由基聚合反应的重要控制因素之一。
通过选择不同的单体,可以合成出具有不同结构和性质的聚合物。
第二章自由基聚合
2.3.2 自由基聚合反应的特征
1、由链引发、增长、终止、转移等基元反应组成 特征为:慢引发、快增长、速终止。 引发速率最小,是控制总聚合速率的关键。
2、链增长反应使聚合度增加
反应混合物中仅由单体和聚合物组成 聚合度变化小。
自由基聚合过程中分子量 与时间的关系
3、对分子量的影响 凝胶效应将使分子量增大。
2
CH3 2C +N2 CN
AIBN一般在45~65℃ 下使用;它分解后形成的异丁腈自由 基是碳自由基,缺乏脱氢能力,故不能作接枝聚合的引发剂。
2、有机过氧类引发剂
代表物:过氧化二苯甲酰(BPO) BPO中O—O键部分的电子云密度大而相互排斥,容 易断裂,通常在60~80℃ 分解。
★ 均裂成苯甲酸基自由基,有单体存在时,即引发聚合; ★ 无单体存在时,进一步分解成苯基自由基,并析出CO2 但分解不完全。
弱键的离解能一般为100~170kJ/mol
常用的引发剂有:偶氮化合物、有机过氧化合物、无机盐 过氧化合物和氧化-还原引发体系等。
2.4.1.1 引发剂的种类
1、偶氮类引发剂
几乎全部为一级反应,只形成一种自由 基,无诱导分解; 比较稳定,能单独安全保存;
代表物:偶氮二异丁腈(AIBN)
CH3 2C N N C CH3 CN CN
自由基聚合过程中转化率与时间的关系
4、少量(0.01%~0.1%)阻聚剂足以使自由基聚合反应终止。
2.4 链引发反应
自由基聚合反应的首要条件是:在聚合体系中产生自由基, 常用方法是在聚合体系中引入引发剂,其次是采用热、光 和高能辐射等方法。
2.4.1 引发剂和引发作用
引发剂:分子结构上具有弱键,容易分解成自由基。
本体聚合生产工艺
3.2 本体聚合生产工艺
(1) 本体聚合(又称块状聚合):在不用其它反应介质情况下, 单体中加有少量或不加引发剂发生聚合的方法。
(2) 均相本体聚合指生成的聚合物溶于单体(如苯乙烯、甲基 丙烯酸甲酯)。非均相本体聚合指生成的聚合物不溶解在单 体中,沉淀出来成为新的一相(如氯乙烯)。
(3) 根据单体的相态还可分为气相、液相和固相本体聚合。采 用本体聚合生产聚合物:高压聚乙烯、聚苯乙烯、聚甲基丙 烯酸甲酯,以及一部分聚氯乙烯。
第三章 自由基聚合生产工艺
3.1 自由基聚合工艺基础
四种聚合方法的工艺特点
聚合方式的选择:产品用途所要求的产 品形态和产品成本。
.
27.05.2020
合成树脂:四种方式。 合成橡胶:一般用乳液聚合的方法。
1
第三章 自由基聚合生产工艺
本体聚合生产的合成树脂的主要品种
.
27.05.2020
2
第三章 自由基聚合生产工艺
凝胶效应是有机玻璃分子量分布宽、分子量甚至超过 100万的主要原因,也是聚合过程中必须严格控制升温速 度的理论根据。
.
27.05.2020
13
3.2 本体聚合生产工艺
● 聚合工艺
预聚合(制浆):釜式反应器间歇操作,引发剂用量与板 材厚薄有关(0.02-0.1%),80℃反应,需移去反应热。
加入硬脂酸便于脱模,加入少量增塑剂,如邻苯二甲 酸二丁酯或二辛酯,可增加有机玻璃的柔性。
● 工艺特点 1)甲基丙烯酸甲酯在聚合过程中体积收缩率在25℃时
为21%,因此模具设计中应当充分考虑此问题: 生产板材时,作为模板的硅酸盐玻璃板之间的间隙应
当可以随聚合反应的进行而收缩;生产棒材时,应当设法 使单体不断补充于收缩造成的间隙之中。
(完整)苯乙烯的本体聚合
实验一:苯乙烯的本体聚合一、实验目的:1.通过实验,了解自由基聚合反应特点;2.掌握苯乙烯的本体聚合的试验方法。
二、实验原理:聚苯乙烯(PS)是一种无色透明的热塑性塑料,是以苯乙烯为单体通过加聚反应得到的线性高分子化合物,具有高于100℃的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。
苯乙烯的聚合有三种方式:自由基聚合、阴离子聚合和阳离子聚合。
本实验采用自由基聚合。
引发剂:偶氮二异丁睛自由基聚合的机理反应条件要求无氧,避免引发剂分解三、实验仪器与药品:四、实验步骤1.苯乙烯精制:去除里面的阻聚剂,酚类物质—部分同学做在500ml的分液漏斗中装入250ml的苯乙烯,每次用50ml的5%NaOH水溶液洗涤数次,至无色后再用蒸馏水洗至呈中性,然后加入适量的无水Na2SO4放置干燥。
干燥后的苯乙烯在进行减压蒸馏,收集60度/5.33Kpa 的馏分.实验室减压蒸馏装置主要由蒸馏、抽气(减压)、安全保护和测压四部分组成。
蒸馏部分由蒸馏瓶、克氏蒸馏头、毛细管、温度计及冷凝管、接受器等组成。
克氏蒸馏头可减少由于液体暴沸而溅入冷凝管的可能性;毛细管是作为气化中心,使蒸馏平稳,避免液体过热而产生暴沸冲出现象。
蒸出液接受通常用多尾接液管连接两个或三个梨形或圆形烧瓶,在接受不同馏分时,只需转动接液管,在减压蒸馏系统中切勿使用有裂缝或薄壁的玻璃仪器.尤其不能用不耐压的平底瓶(如锥形瓶等),以防止内向爆炸结合前段时间做的实验总结了下面几条:1。
蒸馏瓶内液体不可超过其体积的一半,因为减压下蒸汽的体积比常压下大得多。
2.正式蒸馏前的关键步骤:空试。
以保证真空度能达标.装好仪器后首先检查气密性。
3.加料后,先向空试操作一样,是真空泵稳定在所需数值上,在开始加热.因为减压下物质熔沸点会降低,加热的过程中抽真空的话可能会引起液体暴沸。
4.加热过程中,避免蒸汽过热,仪器不能有裂缝,不能使用薄壁及不耐压的仪器。
聚合物合成工艺-第3章
引发剂的分解速率,应与反应时间(停留时间)匹配
根据引发剂分解速率常数kd
在相同介质和温度下,不同引发剂的kd不同,kd 大者,分解速率快,活性高。
根据引发剂分解活化能Ed
Ed大者,分解的温度范围窄 如要求引发剂在某一温度范围内集中分解,则选
用Ed大者 反之,可选用Ed小者。
化率,是LDPE合成工艺研究的重点。
工艺概况
LDPE的合成工艺均由ICI公司的技术衍生而来,除反应 器、配方、工艺控制有所不同外,流程均大致相同。
生产流程示意图
兰化集团引进Basell公司20万t/aLDPE 装置工艺流程
流程简述
乙烯与分子量调节剂混合后,经一次压缩(25~30MPa) 后与循环乙烯混合,进入二级压缩机,出口压力110~ 400MPa(不同工艺,要求的压力不同)。
变宽 可通过控制反应过程中[S]/[M]值,控制分子量分布 比较常用的方法是分批次补加链转移剂。
链转移剂的选择
一般根据50%转化率-U1/2进行选择。 U1/2-链转移剂消耗50%时单体的转化率。
U1/2=100(1-0.51/Cs) 一般情况下,CS提高,U1/2下降。 根据反应的单体转化率要求,选择合适的链转移剂。 链转移剂的U1/2可查阅有关手册。
物理机械性能产生重要影响。
聚乙烯的主要分类
a. 低密度(高压)聚乙烯(LDPE)
密度为0.915~0.930 g/cm3的均聚物
自由基 共聚合
含少量极性基团的乙烯-醋酸乙烯酯共聚物-EVA
乙烯-丙烯酸乙酯共聚物-EAA
b.线性低密度和中等密度聚乙烯(LLDPE、MDPE)
乙烯、α-烯烃(1-丁烯、1-己烯或1-辛烯)的共聚物
第三章自由基聚合工艺
3.1 自由基聚合工艺基础 3.2 本体聚合生产工艺 3.3 悬浮聚合生产工艺 3.4 溶液聚合生产工艺 3.5 乳液聚合生产工艺
3.1 自由基聚合工艺基础
◆自由基聚合反应是当前高分子合成工业中应用最广泛 的化学反应之一
◆自由基聚合反应适用单体:乙烯基单体、二烯烃类单 体
影响聚合物平均分子量的主要因素:反应温度、引发 剂浓度和单体浓度、链转移剂的种类和用量
(1)聚合反应温度升高,所得聚合物的平均分子量降低 (2)引发剂用量对聚合物平均分子量发生显著的影响。
(动力学链长V=K[M]/[I]0.5
(3)链转移反应导致所得聚合物的分子量显著降低,对 获得高分子量聚合物不利,但可用来控制产品的平均 分子量,甚至还可用来控制产品的分子量。
混炼后用于成型 注塑成型用 假牙齿、牙托等
聚合物溶液 直接用于纺丝或溶解后
或颗粒
纺丝
聚合物溶液 直接用来转化为聚乙烯 醇
表2 四种聚合方法的工艺特点
聚合方法
聚合 主要操作方式 过程 反应温度控制
单体转换率 分离 工序复杂程度 回收 及后 动力消耗 处理 过程 产品纯度
废水废气
本体聚 乳液聚合 合
连续 连续
7.氯乙烯自由聚合时,聚合速率用 引发剂用量 调 节,而聚合物的相对分子质量用 聚合温度 控制。
第3章 自由基聚合生产工艺
3.1 自由基聚合工艺基础 3.2 本体聚合生产工艺 3.3 悬浮聚合生产工艺 3.4 溶液聚合生产工艺 3.5 乳液聚合生产工艺
3.2 本体聚合生产工艺
本体聚合:单体中加有少量引发剂或不加引发剂依赖热 引发,而无其他反应介质存在的聚合实施方法。
① 过氧化物类
通式:R-O-O-H 或 R-O-O-R (R可为烷基、芳基、酰基、碳酸酯基、磺酰基等)
自由基本体聚合原理及生产工艺
环保与可持续发展
绿色生产
自由基本体聚合过程中应尽量采 用环保的原材料和助剂,减少生 产过程中的废弃物排放,实现绿 色生产。
资源循环利用
聚合物的再生利用和循环利用是 实现可持续发展的重要手段。通 过合理的再生利用和循环利用, 可以减少对自然资源的消耗,降 低环境污染。
节能减排
通过采用先进的生产技术和设备, 可以提高生产效率,降低能耗和 减少污染物排放,实现节能减排。
新技术的开发
1 2 3
新型催化剂
随着对聚合反应机理的深入了解,新型催化剂不 断被开发出来,可以更有效地控制聚合反应过程, 提高聚合物的性能。
新型加工技术
新型加工技术的应用,可以更有效地实现聚合物 的加工成型,提高加工效率,降低能耗和减少环 境污染。
新型检测技术
新型检测技术的应用,可以更准确地检测聚合物 的性能和质量,为聚合物的生产和应用提供更好 的保障。
在自由基本体聚合中,单体分子在聚合过程中不与任何其他物质 接触,因此也被称为“本体聚合”。
自由基本体聚合的特点
自由基本体聚合具有简单、方便、高效等优点,适 用于大规模生产。
由于没有溶剂或稀释剂的存在,因此聚合产物具有 较高的纯度和较少的杂质。
聚合反应可以在较低的温度下进行,有利于节能和 环保。
自由基本体聚合的分类
02
01
03
根据引发方式的不同,自由基本体聚合可以分为热引 发聚合和引发剂引发聚合两类。
热引发聚合是指通过加热的方式引发聚合反应,通常 需要在较高的温度下进行。
引发剂引发聚合是指通过加入引发剂来引发聚合反应 ,通常在较低的温度下进行,且聚合速率较快。
02
自由基本体聚合生产工艺
生产工艺流程
自由基聚合生产工艺
自由基聚合生产工艺本章主要内容:3.1自由基聚合工艺基础和本体聚合生产工艺3.2悬浮聚合生产工艺3.3溶液聚合生产工艺3.4乳液聚合生产工艺重点:自由基聚合工艺基础难点:无3.1自由基聚合工艺基础和本体聚合生产工艺3.1.1自由基聚合工艺基础自由基聚合反应定义单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性自由基,再与单体连锁聚合形成高聚物的化学反应。
单体类型:主要是乙烯基单体、二烯烃类单体聚合物特点:碳-碳为主链的线形高聚物、无定形聚合物;Tg低于室温的常温为弹性体用作橡胶;Tg高于室温的常温为塑性体(合成树脂)用作塑料、合成纤维、涂料。
①整个聚合过程分为链引发、链增长、链终止,各步反应速率和活化能相差很大;②高分子瞬间形成,而产品的相对分子质量不随时间变化;③体系内始终由单体和高聚物组成,产物不能分离;④反应连锁进行,转化率随时间的延长而增加;⑤反应是不可逆的。
按参加反应的单体种类分为:自由基均聚合:只有一种单体参加的自由基聚合反应。
常见的有:LDPE、PMMA、PVC、PVAC、PS等自由基共聚合:两种以上单体同时参加的自由聚合反应。
常见的有:乙丙橡胶、丁苯橡胶、丁腈橡胶、SBS、ABS等最典型;最常见;最成熟;经自由基聚合获得的高聚物产量占总产量的60%以上,占热塑性树脂的80%本体聚合、乳液聚合、悬浮聚合、溶液聚合;聚合方法的选择主要取决于根据产品用途所要求的产品形态和产品成本。
除了苯乙烯本体聚合是热引发聚合,其他单体在工业上都是在引发剂引发聚合。
引发剂种类主要有三大类:过氧化物类、偶氮化合物类、氧化还原引发体系过氧化物类:通式R-O-O-H或R-O-O-R,R——为烷基、芳基、酰基、碳酸酯基、磺酰基。
分子中含有—O—O—键,受热后断裂成相应的两个自由基,初级自由基主要用来引发单体,成为单体自由基,此外,还发生副反应。
偶氮类:偶氮二异丁腈(AIBN)、偶氮二异庚腈(AVBN)氧化还原引发体系:特点:氧化-还原体系产生自由基的过程是单电子转移过程,即一个电子由一个2离子或由一个分子转移到另一个离子或分子上去,因而生成自由基。
自由基悬浮聚合原理及生产工艺课件
第一节 自由基悬浮聚合原理 第二节 氯乙烯悬浮聚合生产工艺
第一节 自由基悬浮聚合原理 一、悬浮聚合及其分类
1、定义:溶有引起剂旳单体,借助悬浮剂旳悬浮作用和机械搅 拌,使单体分散成小液滴旳形式分散在介质水中旳聚合过程。
一种单体小液滴相当一种本体聚合单元,所以也称小本体 聚合。
(2)加速和凝胶作用:苯乙烯中含对二乙烯苯会加速反应,还会 使聚苯乙烯支化,甚至凝胶。
(3)杂质旳链转移作用:苯乙烯中旳甲苯、乙苯;氯乙烯中旳乙 醛、氯乙烷;如氯乙烯中旳二氯乙烷旳质量分数从 0 增至 11*10-6 时,可使聚氯乙烯旳平均聚合度从 935.4 下降至 546.8 。
2、去离子水 作用:
粒度分布宽; 聚合度高,溶液粘度大,传热困难。
数均聚合度为 1700-2023 很好
温度旳影响: 温度高于 100℃ ,PVA 会分解而失去分散和保护能力。
PVA 旳耐温性低,不能作为高温反应旳悬浮剂。
合适旳悬浮聚合温度范围:40 ℃ -90 ℃
PVA 作为悬浮剂旳用量: 水量旳 0.02% - 1% 。
转化率在70%后来,反应速度开始下降,单体浓度开始减 小,液滴内大分子链愈来愈多,大分子链活动愈受到限制,粘 性逐渐降低而弹性相对增长。
当转化率达80%时,单体明显降低,聚合物大分子链因体积 收缩被紧紧粘结在一起,残余单体在这些纠缠得很紧密旳大分 子链间进行反应并形成新旳聚合物分子链,使聚合物粒子内大 分子链间愈来愈充实,弹性逐渐消失,聚合物颗粒变得比较坚 硬。这时液滴粘结汇集旳危险期渡过。
釜旳传热系数。
2、搅拌旳影响 搅拌作用:釜内物料混合均匀,温度均一;单体分散成液滴。 搅拌与粒径:剪切力越大,形成旳液滴越小,聚合物粒子旳规
自由基聚合方法
新材料开发
高性能聚合物
通过自由基聚合方法,开发出具有优异性能(如高强度、高耐磨、 高耐温等)的新型聚合物材料。
功能化聚合物
通过自由基聚合方法,制备出具有特定功能(如导电、发光、磁性 等)的聚合物材料,拓展聚合物材料的应用领域。
生物相容性聚合物
利用自由基聚合方法,制备出具有良好生物相容性的聚合物材料, 为生物医学领域的发展提供支持。
悬浮聚合
总结词
单体以固体颗粒形式悬浮于液相中进行聚合的方法。
详细描述
悬浮聚合是将单体、引发剂、水和其他添加剂加入到反应器中,通过搅拌使单体以固体颗粒形式悬浮 于液相中进行聚合的方法。该方法具有操作简便、生产安全、成本低等优点,但产品分子量分布较宽 。
本体聚合
总结词
单体在无其他介质或少量引发剂存在下进行的聚合反应。
乙烯等。这些塑料具有质轻、耐腐蚀、绝缘性好等特点,被广泛应用于
包装、建筑材料、家电等领域。
02
合成纤维
自由基聚合也是合成纤维的重要方法之一,如聚酯纤维、聚酰胺纤维等。
这些纤维具有强度高、耐磨、耐热等特点,被广泛应用于纺织服装、家
居用品等领域。
03
合成橡胶
自由基聚合合成的橡胶具有良好的弹性、耐油、耐高温等特点,如丁苯
聚合物结构缺陷
由于自由基聚合过程中链转移等副反 应的存在,聚合物链中可能存在不规 整结构、支链等缺陷,影响聚合物的 性能。
适用范围有限
虽然自由基聚合适用于多种单体,但 对于某些特殊单体(如氯乙烯等)和 特殊结构(如环状单体),自由基聚 合可能不适用或难以实现。
05 自由基聚合的发展趋势和 未来展望
环境友好型聚合方法的探索
绿色溶剂
探索使用环境友好的绿色溶剂代 替传统有机溶剂,降低自由基聚 合过程中的环境污染。
第二章 自由基聚合及其应用
产品分子量 的控制因素
PS
PS在生物医药中的应用
培养皿、试剂盒等
1.2.3. HIPS的合成工艺和聚合 物结构特点
(溶液)本体法
橡胶 苯乙烯
溶
解
本体预聚
本体聚合
挤条造粒
产品
本体-悬浮法
橡胶 溶 解 苯乙烯 引发剂 水、分散剂 悬浮聚合 干燥造粒
本体预聚
产品
粘度-转化率图和在HIPS胶粒形态制造中其构造改变的现象
橡胶相状态
在HIPS中有大量包裹着PS的橡胶颗粒,这样 可使橡胶相体积增加10%-40%。 橡胶中包藏物的存在对橡胶起到增强作用, 而这种被增强的橡胶颗粒又对PS基体起更有 效的增韧作用,一般来说,在橡胶含量相同 的情况下,橡胶相体积越大对HIPS增韧效果 越好,但包藏量为橡胶量两倍左右较为适宜。
熟化处理:
目的是加速单体的反应并驱除残余单体,使 聚合物中残余单体的量降至1%以下。
今后发展方向
残余单体含量高 改进办法:采用负离子聚合方法。 分子量控制
资 料
美国诺瓦公司开发出水发泡聚苯乙烯新工艺 据海外媒体报道,美国诺瓦(Nova)化学 品公司和塑料加工设备企业TeubertMa schineubau公司日前共同开发了利用 水生产发泡聚苯乙烯(EPS)的新工艺。这种 工艺是将淀粉混配到EPS颗粒内,通过吸收水 使EPS发泡以制取成品,解决常规EPS的戊 烷逸散污染 问题。
橡胶颗粒的大小
HIPS中橡胶的粒径通常为1-5m。 橡胶的粒径不能小于裂缝的宽度,否则橡胶颗粒嵌 入裂缝中而起不到增韧作用。 橡胶粒径过大,则颗粒数减少,与裂缝相遇到几率 减少,同样也难于发挥良好的增韧作用。 大粒径橡胶颗粒对终止开裂有良好效果,而小粒径 橡胶颗粒能够有效地诱发和终止银纹。 因此,扩大橡胶颗粒粒径分布有利于提高HIPS的冲 击强度。 橡胶粒径大小及分布主要取决于聚合时的搅拌强度 以及橡胶浓度。
本体聚合生产工艺-(1)
气烘房或热水中进行聚合。在热空气烘房中进行聚合的优点 是,模具尺寸不受限制,温度最后可提高到100℃以上;缺 点是空气的导热系数和比热远低于热水,因此聚合时间比 热水箱长。
19.10.2020
15
3.2 本体聚合生产工艺
2)降温,热空气和热水不仅作为加热介质,而且当 MMA由于自加速反应而温度上升时,又作为冷却介质。因 此热空气和热水应当强制循环,以增加其传热效率,不使模 具温度局部过热。
(3) 反应器有效反应容积大,生产能力大,易于连续化, 生产成本比较低。
19.10.2020
5
3.2 本体聚合生产工艺
缺点:
(1)放热反应,传热系数小,散 热困难,温度控制较难,造成聚合 物分子量分布宽。
采取的措施:合理设计反应器的形 状、大小,增大传热面积;单体中 加入聚合物;分段聚合(预聚合)
物料在塔式反应器中呈柱塞状流动,进入反应器的物 料是转化率已达50%左右的预聚液。反应塔自上而下分数 层加热区,逐渐提高温度,易增加物料的流动性并提高单 体转化率。塔底出料口与挤出切粒机相连直接进行造粒。
缺点:聚合物中仍含有微量单体及低聚物。
● 多个釜式反应器串联:操作条件稳定
19.10.2020
10
3.2 本体聚合生产工艺
(1) 本体聚合(又称块状聚合):在不用其它反应介质情况下, 单体中加有少量或不加引发剂发生聚合的方法。
(2) 均相本体聚合指生成的聚合物溶于单体(如苯乙烯、甲基 丙烯酸甲酯)。非均相本体聚合指生成的聚合物不溶解在单 体中,沉淀出来成为新的一相(如氯乙烯)。
(3) 根据单体的相态还可分为气相、液相和固相本体聚合。采 用本体聚合生产聚合物:高压聚乙烯、聚苯乙烯、聚甲基丙 烯酸甲酯,以及一部分聚氯乙烯。
自由基聚合工艺
• 例如在高压法生产低密度聚乙烯过程中用 丙烷、丙烯或H2作为链转移剂,以控制聚 乙烯平均分子量。生产丁苯橡胶时加入硫 醇作为链转移剂以控制丁苯橡胶的平均分 子量。这时链转移剂起了控制分子量的作 用,或调节分子量大小的作用。因此习惯 上称为分子量调节剂、分子量控制剂或改 性剂。
自由基聚合生产工艺
• 过氧化碳酸酯如过氧化碳酸二异丙酯等对热、摩 擦、碰击都很敏感,不能进行蒸馏。甚至在室温 条件下,本身产生诱导分解反应而引起爆炸,所 以要求在低温下(10℃以下)贮存。最好加有稳定 剂如多元酚、多元硝基化合物以降低其分解倾向。 胺类化合物和某些金属则可使过氧化碳酸酯催比 分解。金属对于其分解速度影响顺序为: • Pt≈Cu>Hg>A1≈Fe>Ni≈Ag • 因此要尽量除去引发体系中的金属含量。 • 异丙基基团改换为叔丁环己基基团时,稳定性提 高。可常温贮存。
自由基聚合生产工艺
分子结构 过氧化氢—亚 铁盐
过硫酸盐—亚 硫酸盐 过硫酸盐— Fe2+
CH3 H 5C 6 N CH3 O O
+
CH3
H 5C 6 C O O C C 6H 5
CH2 O C C 6H 5
过氧化二苯甲 酰—二甲苯胺
H 5C 6
N
+
C 5H 6C O O
-
CH3
自由基聚合生产工艺
上式式经自由基聚合反应所得聚合物的动力学链长(υ)与 单体浓度和引发剂浓度的关系。 链转移反应与所得聚合物平均聚合度(或平均分子量)的关 系可用下式表示
③链转移反应导致所得聚合物的分子量显著降低。
自由基聚合生产工艺
• 分子量调节剂 • 链转移反应对于我们需要获得高分子量聚合物的 时候是不利因素。如果能够把不利因素转化为有 利因素,就为我们提供了控制产品一定分子量范 围的条件。自由基聚合反应中可能发生向单体、 溶剂、杂质以及聚合物分子进行链转移的反应, 除氯乙烯聚合过程是向单体进行链转移以外,多 数情况下是在高纯度单体条件下,加入适当数量 的易发生链转移反应的物质。利用链转移反应来 控制产品的平均分子量,甚至还可用来控制产品 的分子构型,消除那些不希望产生的支链和交联 结构,从而得到便于成型加工的聚合物。
自由基聚合
笼蔽效应伴随副反应。
例如:AIBN 和 BPO 的分解。
引发剂效率与单体、溶剂、引发剂、温度、体 系粘度等因素有关。
11
5. 引发剂的选择
其它引发作用
一、热引发聚合
热聚合:指不加引发剂,有些烯类单体在热的作 用下,活化产生游离基并进行的聚合反应。
例如:苯乙烯的三分子机理如下:
(苯乙烯的热引发聚合已工业化,多在120 ℃以上进行。)
4
二、聚合热(焓)和自由能 大部分烯类单体的都有可能聚合。
聚合熵: − 100 ~ −120 J ⋅ mol −1 ⋅ K −1 聚合焓: − ΔH > 40 kJ ⋅ mol −1 聚合温度:T = 50 ~ 100℃
聚合热的影响因素:
( ( ) )
①位阻效应:取代基的位阻效应将使聚合热降低 ②共振能和共轭效应:共振使内能降低,从而使聚 合热降低 ③强电负性取代基的影响:F、Cl、NO2等强电负 性基团将使聚合热增加 ④氢键和溶剂化的影响:氢键会使聚合热降低
如丙烯酸甲酯:
2. 光引发剂引发:光引发剂吸收光后,分 解成自由基,而后引发烯类单体聚合。
例如:AIBN、BPO
3. 光敏剂间接引发:光敏剂吸收光能后, 将光能传递给单体或引发剂,而后引发
能直接受光照发生聚合的单体一般是一些含有光敏基团 的单体,如丙烯酰胺、丙烯腈、丙烯酸(酯)、苯乙 烯等。
聚合。
12
链增长存在微结构问题:
一个增长链自由基对单取代(或1,1–取代)单体的进 攻,有两种可能:
3. 链终止(双基终止):
偶合终止:
歧化终止:
结构单元的键接方式受电子效应和位阻效应的影响, 以“头-尾”键接为主,间有“头-头”( 或“尾-尾” ) 键接。 由于链增长自由基可绕单键自由旋转,因此,自由基聚 合的聚合物多呈无规立构。 终止方式与单体的种类和聚合条件有关。终止方式 不同,大分子链的末端结构也不同。
第3章 自由基聚合生产工艺-1
常用的链转移剂有丙烷、氢、丙烯等。
丙烷是较好的调节剂,若反应温度>150℃,它能平 稳地控制聚合物的分子量。
氢的链转移能力较强,反应温度高于170℃,反应很不 稳定。
(5)单体纯度的影响 乙烯单体中杂质越多,会造成聚合物分子量降低,且 会影响产品各种性能,工业上,对乙烯的纯度要求超过 99.95%。
乙烯高压聚合生产流程
压缩机 二次 压缩机 150--250MPa 釜 式 反 应 器
引发剂 25MPa
管 式 反 应 器
0.1MPa
低压分离器
乙烯 分子量调节剂 减 压 阀 一次 压缩机 25MPa 高压分离器 减压阀
挤出 造粒机
新鲜乙烯
流程说明:
裂解厂的新鲜乙烯(压力为1.5MPa)与闪蒸气体升压器来的 乙烯混合,经过第一级压缩机,压力升到20-30MPa,冷却后, 在二级压缩机第一段入口与中压分离器分离出来的未反应乙烯 会合,进入压缩机使压力升到120-200MPa,冷却后进入聚合反 应器,在150-300度过氧化物和有机过酸酯引发下,乙烯聚合成
非均相本体聚合——聚氯乙烯本体聚合生产
本体浇铸聚合——有机玻璃生产
气相本体聚合——高压聚乙烯生产
法国本体法(PSG法)制聚氯乙烯
氯乙烯两段本体聚合生产聚氯乙烯是法国圣戈班公司 (PSG)首先工业化。 一、主要原料及规格 沸点 纯度 -13.9 >99.99%
法国本体法(PSG法)制聚氯乙烯
二、制法 聚氯乙烯可用悬浮聚合、乳液聚合、本体聚合实施方法 生产,目前仍以悬浮聚合法为主,而本体聚合法生产的聚 氯乙烯约占10%。
(2)温度的影响 操作温度:130℃~280℃ 温度升高将使聚合物的分子量相应降低,聚乙烯分子链
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热,使聚合过程平稳进行。
第二节 甲基丙烯酸甲酯自由基本体聚合生产工艺 一、甲基丙烯酸甲酯浇铸(铸塑)本体聚合 1、浇铸(铸塑)本体聚合
在模具中进行的聚合,聚合和成型一次完成。随模具不 同有板材、棒材、管材等型材。 2、平板有机玻璃的制备总体工序
单体精制 → 染料处理→ 配料→灌模和排气→封边 →聚 合 →脱模 → 截切毛边和包装 →入库 →模具清洗 →制模
3、添加剂
• 防老剂:2,6- 二叔丁基对苯酚(抗氧剂264) ; • 紫外线吸收剂:邻羟基二苯甲酮; • 润滑剂:硬脂酸铵或油酸铵或亚麻仁油酸铵或三者混合物; • 开口剂:提高薄膜开口性、滑爽性和自动包装性能,高分散
的二氧化硅和氧化铝混合物; • 抗静电剂:聚环氧乙烷。
4、引发剂
• 氧气:适用管式反应器; • 过氧化物:过氧化二叔丁基、过氧化苯甲酸叔丁酯,适宜釜
第三章 自由基本体聚合原理及生产工艺
第一节 自由基本体聚合原理 第二节 甲基丙烯酸甲酯自由基本体聚合生产工艺 第三节 乙烯高压气相自由基本体聚合-----LDPE 的生产
课堂讨论内容
1、统计国内外聚合物生产过程中的爆炸、燃烧事故案例,并从 聚合物合成原理的角度分析事故原因,提出防范措施。
2、举例说明以可再生动植物资源为主要原材料生产的聚合物品 种,生产原理,产品特点,产品用途,前景分析。
提高反应系统压力,促使分子间碰撞,加速聚合反应,提 高聚合物的产率和分子量,同时使聚乙烯分子链中的支链度及 乙烯基含量降低,如图所示:
3、单程转化率的影响 一般选定在 15%-30%,聚合物在釜中停留时间 15s -1
20s。因为乙烯聚合热较高(95 kJ/mol),乙烯聚合时转化率 每升高 1% 反应物料的温度要升高 12 ℃ -13 ℃ ,因此为避 免反应器局部过热、保证产品质量、防止发生爆炸事故,单程 转化率不能超过 30% 。此外,乙烯的转化率越高和聚乙烯的停 留时间越长、则长链支化越多。
3、举例说明以回收聚合物材料为主要原材料生产的聚合物品种 ,生产原理,产品特点,产品用途,前景分析。
4、介绍目前有机玻璃的品种、特性及主要用途,合成原理及生 产工艺过程,国内外主要生产厂家简介。
5、介绍目前低密度聚乙烯的品种、特性及主要用途,合成原理 及生产工艺过程,国内外主要生产厂家简介。
6、介绍目前本体法生产聚苯乙烯的品种、特性及主要用途,合 成原理及生产工艺过程,国内外主要生产厂家简介。
反应器 外套管
设计压力 Mpa
300
3
试验压力 Mpa
260
4.5
设计温度 ℃
350
250
温度差℃ 120
120
使用介质
乙烯+聚 乙烯
第一节 自由基本体聚合原理 一、自由基本体聚合概述
1、定义:单体在有少量引发剂(甚至不加引发剂而是在光、热、 辐射能)的作用下聚合为聚合物的过程。 2、 均相与非均相本体聚合
均相本体聚合指生成的聚合物溶于单体(如苯乙烯、甲基 丙烯酸甲酯)。非均相本体聚合指生成的聚合物不溶解在单体 中,沉淀出来成为新的一相(如氯乙烯)。
3、根据单体的相态还可分为气相、液相和固相本体聚合。
4、采用本体聚合生产聚合物:高压聚乙烯、聚苯乙烯、聚甲基 丙烯酸甲酯,及一部分聚氯乙烯。
二、自由基本体聚合的特点 1、优点
组分简单; 工艺过程较简单(转化率高时,可免去分离工序, 得到粒状树脂); 设备利用率高; 产品纯度高。 2、缺点 体系粘度大,聚合热不易排出; 自动加速现象严重,工艺难控,易爆聚。
主要缺点是高压釜结构较复杂,尤其是搅拌器的设计与安 装均较困难,在生产中搅拌器会发生机械损坏,聚合物易于沉 积在桨上,因而造成动平衡破坏,甚至有时会出现金属碎屑堵 塞釜后的减压阀现象,使釜内温度急剧上升,导致爆炸的危险。
管式反应器: 管式反应器是细长的高压管。管式反应器的物料在管内呈活
塞式流动,反应温度沿管程有变化,因而反应温度有最高峰,因 此所合成聚乙烯分子量分布较宽。管式法早期的单程转化率较 低.大约10%左右,生产能力为3000t/a,近期单程转化率与釜 式法相近,即为24%,单线生产能力已达到 60000—80000t/a。 管式反应器的结构颇为简单和传热面积相当大。整根细长的高压 管都布置有夹套。
三、自由基本体聚合工艺 两段聚合工艺:预聚合、聚合
1、预聚合工艺的优点 聚合初期,转化率不高; 体系粘度不大,反应釜内设置搅拌,聚合热易排出; 反应温度相对较高,总聚合时间缩短,提高生产效率; 体积部分收缩、聚合热部分排除,利于后期聚合。
2、聚合阶段的特性及措施 (1)特性:聚合中期,反应速率快,放热明显。 (2)措施:降低反应温度低、延长聚合时间,有效利用反应
却至40 ℃的
20
1.5
100
速度冷却
8~10
40
40
12~16
36
38
18~20
32
32
ቤተ መጻሕፍቲ ባይዱ
36
1.5
100
40
2~3
100 先冷至80 ℃
再按上述速
70
2~3
100
度冷却。
讨论:板材厚度与聚合温度/聚合时间的关系? 聚合后期为什么要高温聚合? 聚合结束为什么要有一定的冷却速度?
讨论: 1、温度、引发剂对聚合及聚合物分子量的影响。
烃密度( 0.5g/cm3 ),为近似不能被压缩的液体,属气密相状 态。分子间距减小,利于反应,但限于设备的气密性和耐压能 力,压力不能无限制升高。
以氧为引发剂时,存在着一个压力和氧浓度的临界值关系, 即在此界限下乙烯几乎不发生聚合,超过此界限,即使氧含量 低于 2ppm 时,也会急剧反应。在此情况下,乙烯的聚合速率 取决于乙烯中氧的含量。
三、乙烯高压聚合生产工艺流程 主要生产过程分为压缩、聚合、分离和掺合四个工段。
压缩、聚合: 来自于总管的压力为 1.18MPa 的聚合级乙烯进入接收器,
与来自辅助压缩机的循环乙烯气混合。经一次压缩机加压到29. 43MPa,再与来自于低聚物分离器的返回乙烯一起进入混合器, 由泵注入调节剂丙烯或丙烷。气体物料经二次压缩机加压到 1 13~196.20MPa(具体压力根据聚乙烯牌号确定),然后进 入聚合釜,同时,由泵连续向反应器内注入微量配制好的引发 剂溶液,使乙烯进行高压聚合。
式反应器,使用时与白油(脂肪族烷烃混合物)配制成溶液 ,注入聚合釜。
问题:为什么选用上述低活性引发剂?
二、聚合工艺条件分析
1、温度的影响
一般温度选定在 130℃ - 280℃,引发剂的半衰期为 1min 左右。因为,130℃ 以上是因为乙烯结构简单对称,偶极矩为 0 ,反应活性低,同时使生成的聚乙烯呈熔融态,便于出料; 280℃ 以下是因为乙烯在超过 350℃的更高温度下发生爆炸式 分解,产生生产事故。
3、单体纯度对聚合及产物性能的影响 若单体纯度不够.如含有甲醇、水、阻聚剂等,将影响聚
合反应速率,易造成有机玻璃局部密度不均或带微小气泡和皱 纹等.甚至严重影响有机玻璃的光学性能,热性能及力学性能。 所以单体的纯度应达 99% 以上。聚合前,可用洗涤法、蒸馏 法或离子交换去除单体中的阻聚剂。
琳琅满目的有机玻璃制品
讨论:(a)如何解决聚合收缩引起的板材表面凹痕等缺陷? (b)灌模后,在封口前为什么要排气?
4、水浴聚合及高温聚合工段
板材 厚度 /mm
1~1.5
2~3
4~6
保温温度/℃
无色 透明板
有色板
52
54
48
50
46
48
保温时间
高温聚合
/h
时间/ h 温度/℃
冷却速度
10
1.5
100
12
1.5
100 以2h~2.5h冷
厚度 8~20mm 的板材, 为防止料液过重使模板挠曲 破裂,而把模具放在可以倾 斜的卧车上,灌浆后立即垂 直排气封口。如图所示。
厚度 20~50mm 的板材,采用水 压灌浆法,先将模具放入水箱中,在模 具被水淹没一半左右时开始灌浆,随浆 料的进入模具逐渐下沉,待料液充满模 具后迅速密封,在操作过程中要避免水 进入模具内。如图所示。
平板有机玻璃生产工艺方框流程图
二、平板有机玻璃的生产过程简介 1、配料工段 (1)配方
讨论: (a)ABIN、邻苯二甲酸二丁酯、硬脂酸的作用,及其用量 与板材厚度的关系? (b)配方中加入少量甲基丙烯酸的作用?
(2)对染料的要求和处理 对染料的要求: 在单体中溶解性好; 耐光、耐热、不褪色。 染料的处理工序: 染料溶于少量单体 → 水浴加热 10 min ,搅匀 → 过滤→ 备用; 若是醇溶性染料,则先溶于单体总量 2% 的丁醇 → 加等 量单体,混合均匀 → 水浴加热 10 min → 过滤 → 备用。
注意:染料与颜料表述上的差异!!
2、预聚合(制浆)工段工艺流程
高位 槽
预热
预聚
器
釜
预
热
至
5
冷
0 -
却
6
釜
0
℃
转子流量计
预配制的原 料液
流量500L /hr-600 L、hr
90-95℃,1 5-20min,1 0-20%
冷却至 30℃,似 甘油粘度,1Pa s
讨论:铸塑本体聚合法生产有机玻璃为什么要预聚合?
缩短生产周期,使自动加速现象提前到来; 预聚物有一定粘度,灌模容易,不易漏模; 体积已经部分收缩,聚合热已经部分排除,利于后期聚合。