模拟电子技术总结.
模拟电子技术知识点
模拟电子技术知识点1.PN 结反向偏置时,PN 结的内电场加宽。
PN具有单向导电特性。
2.硅二极管导通后,其管压降是恒定的,且不随电流而改变,典型值为0.7伏;其门坎电压V th约为0.5伏。
3.为了保证三极管工作在放大区,要求:发射结正向偏置,集电结反向偏置。
对于NPN 型三极管,应使V BC<0。
4.在双端输入,单端输出的差分放大电路中,发射极电阻RE对差模输入信号无影响,对共模输入信号具有抑制作用。
5.RC 桥式正弦波振荡电路中,振荡的条件是放大倍数大于约等于1和输出与输入同相。
6.若乙类互补对称功率放大电路(OCL)的VCC=15V,vi=10sin ωt (V),RL=10Ω,则PO=5 W。
7.在构成电压比较器时集成运放工作在开环或正反馈状态。
8.将交流电变换成脉动直流电的电路称为整流电路;半波整流电路输出的直流电压平均值等于输入的交流电压(即变压器副边电压)有效值的0.45倍;全波整流电路输出的直流电压平均值等于输入的交流电压(即变压器副边电压)有效值的0.9倍。
9.负反馈放大电路产生自激振荡的条件是1+AF=0。
10.为了使高内阻信号源与低阻负载能很好的配合,可以在信号源与低阻负载间接入共集电路。
11.在本征半导体中掺入3 价元素构成P 型半导体。
12.有两个放大倍数相同,输入电阻和输出电阻不同的放大电路A和B,对同一个具有内阻的信号源电压进行放大。
在负载开路的条件下,测得A放大器的输出电压小,这说明A的输入电阻小。
13.场效应管放大电路的输入电阻,主要由偏置电路决定。
14.集成运算放大器构成的反相比例运算电路的一个重要特点是反相输入端为虚地。
15.正弦波振荡电路利用正反馈产生振荡的相位平衡条件是(2n+1) π,n 为整数。
16.当用外加电压法测试放大器的输出电阻时,要求独立信号源短路,负载开路。
17.桥式整流电路若变压器二次电压为,则每个整流管所承受的最大反向电压为18.共模抑制比越大,表明电路抑制温漂能力越强。
模拟电子技能技术总结习题及答案
精心整理模拟电子技术第1章半导体二极管及其基本应用1.1填空题1.半导体中有空穴和自由电子两种载流子参与导电。
2.本征半导体中,若掺入微量的五价元素,则形成N型半导体,其多数载流子是电子;若掺入微量的三价元素,则形成P型半导体,其多数载流子是空穴。
3.PN结在正偏时导通反偏时截止,这种特性称为单向导电性。
456781.1A2.A3A4A5A1.12341.1值。
解:(a)二极管正向导通,所以输出电压U=(6—0.7)V=5.3V。
(b)令二极管断开,可得UP =6V、UN=10V,UP<UN,所以二极管反向偏压而截止,U=10V。
(c)令V1、V2均断开,UN1=0V、UN2=6V、UP=10V,UP—UN1>Up—UN2,故V1优先导通后,V2截止,所以输出电压U=0.7V。
2.电路如图T1.2所示,二极管具有理想特性,已知ui=(sinωt)V,试对应画出ui 、u、iD的波形。
解:输入电压ui 为正半周时,二极管正偏导通,所以二极管两端压降为零,即u=0,而流过二极管的电流iD =ui/R,为半波正弦波,其最大值IDm=10V/1kΩ=10mA;当ui为负半周时,二极管反偏截止,iD =0,u=ui为半波正弦波。
因此可画出电压u电流iD的波形如图(b)所示。
3.稳压二极管电路如图T1.3所示,已知UZ =5V,IZ=5mA,电压表中流过的电流忽略不计。
试求当开关s断开和闭合时,电压表和电流表、读数分别为多大?解:当开关S断开,R2支路不通,IA2=0,此时R1与稳压二极管V相串联,因此由图可得可见稳定二极管处于稳压状态,所以电压表的读数为5V。
当开关S闭合,令稳压二极管开路,可求得R2两端压降为故稳压二极管不能被反向击穿而处于反向截止状态,因此,R1、R2构成串联电路,电流表A1、A2的读数相同,即而电压表的读数,即R2两端压降为3.6V。
第2章半导体三极管及其基本应用2.1填空题12种载流子参与导电。
电子技术实训仿真总结报告
一、引言随着科技的发展,电子技术在现代社会中扮演着越来越重要的角色。
为了更好地掌握电子技术,提高动手能力和理论知识水平,我们进行了电子技术实训仿真。
本次实训仿真以Multisim软件为平台,通过模拟真实的电子电路,使我们对电子技术有了更深入的了解。
以下是本次实训仿真的总结报告。
二、实训目的与意义1. 培养动手能力:通过仿真软件的操作,使学员能够熟练掌握电子元器件的选用、电路连接、调试等基本技能。
2. 提高理论知识水平:通过仿真实验,加深对电子电路基本原理、分析方法、设计方法的理解。
3. 增强团队协作能力:在实训过程中,学员需要相互配合、沟通交流,提高团队协作能力。
4. 培养创新意识:通过仿真实验,激发学员的创新思维,提高解决实际问题的能力。
三、实训内容及方法1. 实训内容(1)基本电路仿真:包括电阻、电容、电感、二极管、三极管、运放等基本元器件的仿真实验。
(2)放大电路仿真:包括共射、共集、共基等放大电路的仿真实验。
(3)振荡电路仿真:包括正弦波振荡器、方波振荡器等振荡电路的仿真实验。
(4)滤波电路仿真:包括低通、高通、带通、带阻等滤波电路的仿真实验。
(5)功率放大电路仿真:包括OTL、OCL等功率放大电路的仿真实验。
2. 实训方法(1)理论学习:通过查阅资料、阅读教材,了解电子电路的基本原理、分析方法、设计方法。
(2)软件操作:学习Multisim软件的使用方法,掌握电路仿真操作技巧。
(3)实验操作:按照实验指导书的要求,进行电路搭建、调试、分析。
四、实训成果与分析1. 成果(1)掌握了基本电路的仿真方法,能够熟练运用Multisim软件进行电路仿真。
(2)了解了电子电路的基本原理、分析方法、设计方法,提高了理论知识水平。
(3)培养了动手能力,提高了解决实际问题的能力。
(4)增强了团队协作能力,学会了与他人沟通交流。
2. 分析(1)在仿真实验过程中,学员普遍掌握了基本电路的仿真方法,能够熟练运用Multisim软件进行电路仿真。
模电实训报告总结
模电实训报告总结本篇报告总结了模拟电子技术实训的过程、目标和成果。
通过实训的学习和实践,我们深入了解了模拟电子技术的基本原理和应用,提高了实际电路设计和故障排除的能力。
以下是对本次实训的总结和回顾。
一、实训目标及准备工作在开始实训之前,我们明确了本次实训的目标和任务,同时做好了充分的准备工作。
我们的目标是学会设计和调试模拟电子电路,并能用所学知识解决实际问题。
我们研究了相关资料和实验手册,并提前熟悉了实验仪器和软件,以确保能够顺利进行实验。
二、实训过程及内容在实训过程中,我们按照实验手册的指导,完成了一系列实验任务。
我们学习了模拟电路的基本理论和常用电路元件的特性,如二极管、三极管等,并通过实际搭建电路来验证和应用所学知识。
我们设计并调试了各种类型的放大电路、滤波电路和功率放大电路,加深了对电路原理和信号处理的理解。
实训过程中,我们还学会了使用专业的电路仿真软件进行电路设计和分析,提高了工程实践能力。
三、实训成果及收获在实训结束后,我们取得了以下成果和收获。
首先,我们掌握了模拟电子技术的基本原理和方法,具备了设计和调试模拟电路的能力。
其次,我们提高了实际电路设计和故障排除的技能,能够灵活应用所学知识解决实际问题。
最后,通过实训的过程,我们培养了团队协作和沟通能力,学会了与他人合作完成任务,并且养成了细心、严谨、耐心的工作态度。
四、实训心得及建议在实训的过程中,我们深切感受到了模拟电子技术的重要性和挑战性。
对于这门课程,我们认为需要更多的实际操作和实践,以巩固和应用所学知识。
此外,我们建议在实训过程中增加一些案例分析和实际电路设计的项目,让学生能够更好地理解和应用所学的知识。
总之,通过模拟电子技术实训,我们对模拟电子技术有了更深入的理解,并提高了实际应用能力。
我们相信,所学到的知识和经验将对我们今后的工作和学习产生积极的影响。
希望通过这次实训,我们能够为今后的职业生涯打下坚实的基础。
电子技术大一总结(原创5篇)
电子技术大一总结(原创5篇)电子技术大一总结(原创5篇)电子技术大一总结要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的电子技术大一总结样本能让你事半功倍,下面分享【电子技术大一总结(原创5篇)】相关方法经验,供你参考借鉴。
电子技术大一总结篇1电子技术大一:理论和实践的交融之旅引言作为一名电子技术专业的大一新生,我在过去的一年中体验到了理论知识和实践操作的交融。
电子技术是一门广泛应用于各个领域的学科,从智能家居到医疗设备,从通信技术到能源管理,它无处不在。
我对此充满好奇,并决定投入时间和精力去深入学习。
课程学习在学习过程中,我首先接触到了模拟电子技术、数字电子技术和电磁场与波等课程。
这些课程的学习让我对电子技术有了基础的理解。
我通过理论学习,掌握了电路分析方法、数字电路设计以及电磁波的传播原理。
同时,我也了解到电子技术在各个领域的应用和重要性。
实践项目实践是理论的检验石。
在这一年中,我参与了几个实践项目,如制作一个基于微控制器的温度控制系统,设计一个数字电子计数器,以及搭建一个基于射频的天线。
这些项目不仅提升了我的理论知识的理解,也锻炼了我的实际操作能力。
在这些项目中,我遇到了一些挑战,如电路设计中的稳定性问题,数字电路中的逻辑错误等。
但是,通过仔细分析,查阅资料,以及请教老师和同学,我最终成功解决了这些问题。
这些经历让我更加深入地理解了电子技术的实用性。
未来展望随着我对电子技术的学习的深入,我越来越感受到这门学科的魅力。
我计划在未来的学习中,继续深化理论知识,并努力提高自己的实践操作能力。
我希望能在电子技术领域找到自己的位置,为推动这个领域的发展做出贡献。
总结这一年的学习,让我从理论到实践,对电子技术有了更深入的理解。
我深深感受到,电子技术不仅是一门学科,也是一种生活态度。
我愿意继续学习,继续探索,希望能在未来的学习和工作中,将我对电子技术的热爱转化为实际的行动,为电子技术的发展贡献自己的一份力量。
(完整版)模拟电子技术(模电)部分概念和公式总结
1、半导体:导电性能介于导体和绝缘体之间的物质。
特性:热敏性、光敏性、掺杂性。
2、本征半导体:完全纯净的具有晶体结构完整的半导体。
3、在纯净半导体中掺入三价杂质元素,形成P型半导体,空穴为多子,电子为少子。
4、在纯净半导体中掺入五价杂质元素,形成N型半导体,电子为多子、空穴为少子。
5、二极管的正向电流是由多数载流子的扩散运动形成的,而反向电流则是由少子的漂移运动形成的。
6、硅管Uo n和Ube:0.5V和0.7V ;锗管约为0.1V和0.3V。
7、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
8、二极管主要用途:开关、整流、稳压、限幅、继流、检波、隔离(门电路)等。
9、三极管的三个区:放大区、截止区、饱和区。
三种状态:工作状态、截止状态、饱和状态,放大时在放大状态,开关时在截止、饱和状态。
三个极:基极B、发射极E和集电极C。
二个结:即发射结和集电结。
饱和时:两个结都正偏;截止时:两个结都反偏;放大时:发射结正偏,集电结反偏。
三极管具有电流电压放大作用.其电流放大倍数β=I C / I B (或I C=β I B)和开关作用.10、当输入信号I i很微弱时,三极管可用H参数模型代替(也叫微变电路等效电路)。
11、失真有三种情况:⑴截止失真原因I B、I C太小,Q点过低,使输出波形正半周失真。
调小R B,以增大I B、I C,使Q点上移。
⑵饱和失真原因I B、I C太大,Q点过高,使输出波形负半周失真。
调大R B,以减小I B、I C,使Q点下移。
⑶信号源U S过大而引起输出的正负波形都失真,消除办法是调小信号源。
1、放大电路有共射、共集、共基三种基本组态。
(固定偏置电路、分压式偏置电路的输入输出公共端是发射极,故称共发射极电路)。
共射电路的输出电压U0与输入电压U I反相,所以又称反相器。
完整版)模拟电子技术基础-知识点总结
完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
电子技术基础实训总结报告范文(精选7篇)
电子技术基础实训总结报告范文(精选7篇)实训:实训, 即"实习(践)"加"培训";根源自于IT业的管理实践和技术实践;目前引入到"营销管理"和"商务管理"专业。
是通过模拟实际工作环境, 教学采纳来自真实工作工程的实际案例, 教学过程理论结合实践, 更强调学生的参加式学习, 能够在最短的时间内使学生在专业技能、实践经历、工作方法、团队合作等方面提高。
以下是我整理的电子技术根底实训总结报告范文(精选7篇), 欢送阅读与保藏。
电子技术根底实训总结报告1毕业实习是每个学生走向社会、走上工作岗位必不行少的一个重要环节, 透过实习在实践报告中了解社会, 让我学到了许多在课堂上根本就学不到的学问, 受益匪浅, 也翻开了视野, 增长了见识, 为我以后进一步走向工作岗位打下坚实的根底。
作为学生的我, 起先了我的第一份煤矿实习工作, 如今, 半年的实习生活已经完毕了, 回忆实习生活, 感受很深, 收获颇多。
第一天去上班的时候, 刚起先我还觉得蛮惊慌的, 再和他们的沟通之后, 我慢慢的放松了自己。
我每一天都坚持提前上班, 能够在其他人到来之前, 把每个办公桌整理整齐, 这样办公室的人一到来就能够马上投入工作。
其实, 我一向认为每个人都有他自己的优点, 而且都有发挥它的地方, 而我的实习经验正应了我的想法。
当然, 由于刚到矿办公室, 对工作惯例不熟识, 有些事情我也处理得不是很恰当, 但我勤于向他们请教, 渐渐地也熟识了单位的办公。
我明白第一次出错并不行怕, 可怕的是一错再错。
在平常, 我细致地视察办公室人员的办公方式, 期望能够精益求精, 更好地完成。
在办公室, 闲的时候就会看看网上的一些好的文学作品, 练习打打字, 因为在矿办公室我主要从事打字工作、文件的分法、报纸的分法, 经常要以打文件为主, 我明白, 这不仅仅要打字速度快还要对电脑熟识, 尤其是没有其他工作人员帮助的状况下, 我能够完成接待任务。
模拟电子技术基础知识点总结
模拟电子技术复习资料总结第一章半导体二极管一.半导体的根底知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯洁的具有单晶体构造的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
表达的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素〔多子是空穴,少子是电子〕。
*N型半导体: 在本征半导体中掺入微量的五价元素〔多子是电子,少子是空穴〕。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。
1〕图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模拟电子技术实训心得(5篇)
模拟电子技术实训心得(5篇)模拟电路这门课程的学习已经走近尾声,回忆一学期以来所做的努力,从开头的满心奇怪,到后来的畏难心情,再到后来的不懈努力,感觉自己在模电这门课程的学习中收获很大。
还记得刚开学拿到这本厚厚的模电书开头,我心里就开头发悚,感觉这本书好像有着无法述说的重量。
大一的时候就教师学长们就和我们沟通过关于模电这门课的学习难度,而且他们几乎都认为模电的学习较有难度,所以刚开头时就没敢怠慢这门课程。
每次我总会满怀激情的在课外去复习和预习这门课的内容,但是好景不长,渐渐到后来,其它繁杂的事情越来越多,课程的学习难度也渐渐加大,所以有些章节学习起来感觉很吃力并且的确有好多问题放在那没有得到准时的解决,积存起来就比拟多了!虽然教师在课堂上讲的非常认真,但留意力稍不集中也很简单漏点重要的学问点。
再者由于课时的限制,教师讲课的速度也很快。
所以课后假如不花有效的`时间和手段进展稳固学习,是很难把握扎实的。
说说我对这本书的学习吧,在学习其次章运算放大器和第三章二极管及其根本电路时感觉还比拟简洁,也比拟好把握。
在第四章我们学习了三极管及其的放大电路的学问,刚学完这一章时我总不能正确的推断共极输入的类型,尽管看了许多例题,也没能总结出一个完全正确的方法。
再次课问教师时才想起教师总结过的一句话:“Ui连接一个电极,Uo引出一个电极,那么剩下的电极则为公共极,即为共某极电路”,这样一来,头脑中立即清楚了许多,信任许多同学也有与我一样的感受吧。
对此,我觉得主要还是要靠教师的帮忙,上课肯定要仔细听讲,仔细做笔记。
一方面听讲可以知道内容的重点,这样下课自己看书的时候就比拟有针对性,效率很高,学问点齐全,考试自然轻松;另一方面教师在课上会讲到课本上没有但又非常重要的学问和思路,而这些事自己看书根本不能得到的。
还有课外有效地预习与复习是必不行少的,它能很高效的帮忙我们理解和稳固学问点。
我认为模电是一门规律性极强的课程,而且有些电路图相当简单,离开教师的讲解,学习难度不言而喻。
模电 知识点总结
模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。
其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。
2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。
常见的信号形式有直流信号、交流信号、脉冲信号等。
3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。
常见的放大器有运放放大器、晶体管放大器等。
4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。
5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。
调制解调技术是模拟电子技术中的重要应用之一。
二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。
常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。
2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。
常见的电容电路包括RC电路、LC电路、多级滤波器等。
3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。
常见的电感电路包括RLC电路、振荡电路、滤波器等。
4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。
5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。
常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。
6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。
常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。
7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。
模拟电子技术基础总结
模拟电子技术基础总结模拟电子技术是电子工程中的一个重要分支,它主要研究电子信号的模拟处理和传输。
在现代电子设备中,模拟电子技术的应用非常广泛,涉及到通信、电力、医疗、汽车等各个领域。
因此,掌握模拟电子技术的基础知识对于电子工程师来说至关重要。
本文将对模拟电子技术的基础知识进行总结,希望能够帮助读者更好地理解和应用这一领域的知识。
首先,模拟电子技术涉及到的基本概念包括电压、电流、电阻、电感和电容等。
电压是电子技术中最基本的概念之一,它代表了电路中的电势差,通常用符号V表示。
电流则是电荷在单位时间内通过导体的数量,通常用符号I表示。
电阻是指电路中阻碍电流通过的元件,通常用符号R表示。
电感和电容分别表示了电路中的感应和储能特性,它们分别用符号L和C表示。
掌握这些基本概念是理解模拟电子技术的重要基础。
其次,模拟电子技术中常用的电路元件包括电阻、电容和电感。
电阻是电路中最常见的元件之一,它的作用是阻碍电流通过。
电容则是一种储能元件,它可以储存电荷并释放电荷。
电感是一种感应元件,它可以产生感应电动势。
这些元件在模拟电子技术中起着至关重要的作用,掌握它们的特性和应用是理解模拟电子技术的关键。
另外,模拟电子技术中常用的电路包括放大电路、滤波电路和振荡电路等。
放大电路是模拟电子技术中最基本的电路之一,它的作用是放大电路输入信号的幅度。
滤波电路则是用来滤除输入信号中的某些频率成分,常用于通信和音频设备中。
振荡电路可以产生稳定的信号,常用于时钟和调频等应用中。
掌握这些电路的特性和设计方法对于模拟电子技术的应用至关重要。
最后,模拟电子技术还涉及到信号处理和传输技术。
信号处理是指对输入信号进行处理和分析的技术,它包括滤波、放大、调制和解调等过程。
信号传输则是指将处理后的信号传输到目标地点的技术,它包括传输介质的选择、传输距离的考虑以及信号衰减和失真的补偿等问题。
掌握这些技术是模拟电子技术工程师必备的能力。
总之,模拟电子技术是电子工程中的重要领域,它涉及到电路基础、电路元件、电路设计和信号处理等多个方面。
模电总结复习资料 模拟电子技术基础
第一章半导体二极管一。
半导体的基础知识1。
半导体—--导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性———光敏、热敏和掺杂特性。
3。
本征半导体-—--纯净的具有单晶体结构的半导体。
4. 两种载流子—--—带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体————在本征半导体中掺入微量杂质形成的半导体.体现的是半导体的掺杂特性.*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体:在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度--—多子浓度决定于杂质浓度,少子浓度与温度有关.*体电阻-——通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体.7。
PN结* PN结的接触电位差---硅材料约为0。
6~0.8V,锗材料约为0。
2~0。
3V。
* PN结的单向导电性——-正偏导通,反偏截止。
8. PN结的伏安特性二。
半导体二极管*单向导电性--——-—正向导通,反向截止.*二极管伏安特性-———同PN结。
*正向导通压降---——-硅管0.6~0。
7V,锗管0。
2~0。
3V.*死区电压——--—-硅管0.5V,锗管0。
1V。
3.分析方法-——-——将二极管断开,分析二极管两端电位的高低:若 V阳〉V阴(正偏),二极管导通(短路);若 V阳〈V阴(反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2)等效电路法➢直流等效电路法*总的解题手段————将二极管断开,分析二极管两端电位的高低:若 V阳〉V阴( 正偏),二极管导通(短路);若 V阳〈V阴(反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性-—-正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
电子技术模拟电路知识点总结
电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。
在模拟电路中,电压和电流可以在一定范围内取任意值。
这是理解模拟电路的关键起点。
二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。
当正向偏置时,电流容易通过;反向偏置时,电流极小。
二极管常用于整流电路,将交流转换为直流。
2、三极管三极管分为 NPN 型和 PNP 型。
它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。
三极管在放大电路中应用广泛。
3、场效应管场效应管分为结型和绝缘栅型。
它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。
三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。
2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。
3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。
四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
1、理想运算放大器特性具有“虚短”和“虚断”的特点。
“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。
2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。
五、反馈电路反馈可以改善放大器的性能。
1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。
负反馈能稳定放大倍数、改善频率特性等。
2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。
六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。
1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。
模拟电子技术心得800字(9篇)
模拟电子技术心得800字(9篇) 关于模拟电子技术心得,精选6篇范文,字数为800字。
通过一个月的学习,使我们对电子技术有了初步的理解。
模拟电子技术心得(范文):1一、通过一个月的学习,使我们对电子技术有了初步的理解。
二、通过实训使我们对电路的各种构造,元器件的应用有了一定的认识。
三、通过实训让我们对电路板的各个功能及其组成及电子元件的作用有了一定的了解,对我们的电子技术及电子设计方面的知识有了一定的感性认识。
四、通过实训让我们对电子技术及其自动化有了更深入的了解。
通过实训,使我们对电子技术和电子设计有了更进一步的理解。
总结一个月的实训,使我对这个职业有了更深层次的理解,我的职业生涯将从电子技术的学习中迈步,从课程设计、课程设计、课程设计及其他各种工种的技术工作实践来到工作中,从电子技术与电子技术相结合的角度对我的学习和工作产生很大影响,我的工作态度、专业知识和技术水平也得到了提高。
总结二:在校学习的时间里,我们不仅在专业知识上有了一个质的飞跃,对技术知识的认识也更进一步的深化,更加理解了实践的内涵。
实训期间通过学习和培养自己专业能力,使自己在专业知识方面有了很大的进步,但是在工作的过程中不断地总结经验,吸取教训。
总结三:通过这次课程设计,使我们对电子技术有了更深入的理解与认识,对我们今后的学习、工作有很大的帮助。
在实习过程中,通过实训,我们可以更好的掌握电路、电路的制作、安装、调试与维护等基本技能;在设计过程中,可以更好的把所学到的知识和实践相结合,在实践过程当中发现自己知识上的不足,再有针对性的进行修补充。
通过这次课程设计,让我们对我们的专业有了更好的认识,也更能帮助我们更好的完成学习、完成任务。
总结四:在实习过程中,我们不仅对专业知识有了更进一步的掌握,也对专业技能有了更深入的了解;在实习过程当中,让我们对以前所学专业知识有了更深一步的了解,也对我们今后的学习和工作有了更加明确的动力。
这次的课程设计是通过设计一个小型的电路、一条电路,一条电路,一条电路,一条电路。
模拟电子技术概念总结
模拟电子技术概念总结篇一:模拟电子技术基础_知识点总结第一章半导体二极管1.本征半导体?单质半导体材料是具有4价共价键晶体结构的硅Si和锗Ge。
?导电能力介于导体和绝缘体之间。
?特性:光敏、热敏和掺杂特性。
?本征半导体:纯净的、具有完整晶体结构的半导体。
在一定的温度下,本征半导体内的最重要的物理现象是本征激发(又称热激发),产生两种带电性质相反的载流子(空穴和自由电子对),温度越高,本征激发越强。
?空穴是半导体中的一种等效+q的载流子。
空穴导电的本质是价电子依次填补本征晶体中空位,使局部显示+q电荷的空位宏观定向运动。
?在一定的温度下,自由电子和空穴在热运动中相遇,使一对自由电子和空穴消失的现象称为复合。
当热激发和复合相等时,称为载流子处于动态平衡状态。
2.杂质半导体?在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
?P型半导体:在本征半导体中掺入微量的3价元素(多子是空穴,少子是电子)。
?n型半导体:在本征半导体中掺入微量的5价元素(多子是电子,少子是空穴)。
?杂质半导体的特性?载流子的浓度:多子浓度决定于杂质浓度,几乎与温度无关;少子浓度是温度的敏感函数。
?体电阻:通常把杂质半导体自身的电阻称为体电阻。
?在半导体中,存在因电场作用产生的载流子漂移电流(与金属导电一致),还才能在因载流子浓度差而产生的扩散电流。
3.Pn结?在具有完整晶格的P型和n型半导体的物理界面附近,形成一个特殊的薄层(Pn结)。
?Pn结中存在由n区指向P区的内建电场,阻止结外两区的多子的扩散,有利于少子的漂移。
?Pn结具有单向导电性:正偏导通,反偏截止,是构成半导体器件的核心元件。
?正偏Pn结(P+,n-):具有随电压指数增大的电流,硅材料约为0.6-0.8V,锗材料约为0.2-0.3V。
?反偏Pn结(P-,n+):在击穿前,只有很小的反向饱和电流is。
?Pn结的伏安(曲线)方程:4.半导体二极管?普通的二极管内芯片就是一个Pn结,P区引出正电极,n区引出负电极。
万能模电实训报告总结
一、引言随着科技的发展,模拟电子技术(以下简称“模电”)在电子工程领域扮演着至关重要的角色。
为了使学生在理论联系实际中提高自己的实践能力,我校组织了本次万能模电实训。
以下是我在实训过程中的总结和体会。
二、实训目的1. 巩固和深化模拟电子技术的基本理论;2. 掌握模拟电子电路的搭建、调试和分析方法;3. 培养学生的动手能力、创新能力和团队协作精神;4. 了解模拟电子技术在实际工程中的应用。
三、实训内容本次实训主要分为以下几个部分:1. 基本元件识别与检测:学习认识各种模拟电子元件,掌握元件的检测方法。
2. 基本电路搭建与调试:学习搭建简单的模拟电子电路,并进行调试,确保电路正常工作。
3. 电路分析方法:学习电路分析方法,如节点分析法、回路分析法等。
4. 实际应用案例:分析模拟电子技术在实际工程中的应用,如音频信号处理、通信系统等。
5. 团队协作:分组完成实训任务,培养团队协作精神。
四、实训过程及心得1. 基本元件识别与检测在实训过程中,我学会了识别和检测各种模拟电子元件,如电阻、电容、二极管、三极管等。
通过实际操作,我深刻理解了元件的物理特性和电路中的作用。
2. 基本电路搭建与调试在搭建电路时,我遵循了以下步骤:(1)根据电路图,确定元件参数和电路连接方式;(2)将元件按照电路图连接到电路板上;(3)检查电路连接是否正确;(4)通电调试,观察电路输出是否符合预期。
通过这个过程,我掌握了电路搭建和调试的基本方法,提高了自己的动手能力。
3. 电路分析方法在实训过程中,我学习了节点分析法和回路分析法,这些方法有助于我们分析复杂电路的工作原理。
4. 实际应用案例通过分析实际应用案例,我了解了模拟电子技术在音频信号处理、通信系统等领域的应用,为今后的学习和工作打下了基础。
5. 团队协作在实训过程中,我与团队成员密切配合,共同完成实训任务。
在这个过程中,我学会了如何与他人沟通、协作,提高了自己的团队协作能力。
模拟电子技术重要知识点整理
模拟电子技术重要知识点整理目录模拟电子技术重要知识点整理 (1)第一章绪论 (2)第二章运算放大器 (2)第三章二极管及其基本电路 (2)第四章双极结型三极管及放大电路基础 (3)第五章场效应管放大电路 (5)第六章模拟集成电路 (5)第七章反馈放大电路 (5)第八章功率放大电路 (6)第九章信号处理与信号产生电路 (6)第一章绪论1.掌握放大电路的主要性能指标都包括哪些。
2.根据增益,放大电路有哪些分类。
并且会根据输出输入关系判断是哪类放大电路,会求增益。
第二章运算放大器1.集成运放适用于放大何种信号?2.会判断理想集成运放两个输入端的虚短、虚断关系。
如:在运算电路中,集成运放的反相输入端是否均为虚地。
3.运放组成的运算电路一般均引入负反馈。
4.当集成运放工作在非线性区时,输出电压不是高电平,就是低电平。
5.在运算电路中,集成运放的反相输入端不是均为虚地。
6.理解同相放大电路、反相放大电路、求和放大电路等,会根据一个输出输入关系表达式判断何种电路能够实现这一功能。
7.会根据虚短、虚断分析含有理想运放的放大电路。
第三章二极管及其基本电路1.按导电性能的优劣可将物质分为导体、半导体、绝缘体三类,导电性能良好的一类物质称为导体,几乎不导电的物质称为绝缘体,导电性能介于中间的称为半导体。
2.在纯净的单晶硅或单晶锗中,掺入微量的五价或三价元素所得的掺杂半导体是什么,其多数载流子和少数载流子是是什么,又称为什么半导体。
3.半导体二极管由一个PN结做成,管心两侧各接上电极引线,并以管壳封装加固而成。
4.半导体二极管可分为哪两种类型,其适用范围是什么。
5.二极管最主要的特性是什么。
6.PN结加电压时,空间电荷区的变化情况。
7.杂质半导体中少数载流子浓度只与温度有关。
8.掺杂半导体中多数载流子主要来源于掺杂。
9.结构完整完全纯净的半导体晶体称为本征半导体。
10.当掺入三价元素的密度大于五价元素的密度时,可将N型转型为P型;当掺入五价元素的密度大于三价元素的密度时,可将P型转型为N型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章、半导体三极管的输入电阻Rbe其中IE = (1+β)IBRb’e = UT/IB (常温下UT=26mV ) 三极管的混合π模型等效为三极管工作状态放大状态(发射结正偏,集电结反偏)饱和状态(发射结正偏,集电结正偏)截止状态(发射结反偏/0偏)小结:BJT 由两个PN结组成,电流控制是它的主要特征。
BJT 具有放大作用的内部结构条件是:i.e区掺杂浓度要远大于b区掺杂浓度;ii.基区必须很薄。
外部条件是:e结正偏,c结反偏。
BJT 中三个电极电流关系以i E为自变量时以i B为自变量时三极管特征曲线表示其各级电流与各级间电压之间的定量关系输入特征曲线玉二极管正向特征曲线相似。
C结电压对输入特征曲线有一定影响,但C结为反向偏置时,这种影响很小,通常用一条曲线表示。
输出特征曲线可划分为三个区:饱和区;截至区;放大区。
放大电路中的三极管应工作在放大区。
三极管参数β说明放大能力;I CBO、I CEO大小反映了其温度稳定性;f T、f B表示三极管的高频放大能力;I CM、BV CEO、P CM规定了管子工作时不允许超出的极限范围。
第二章、基本放大电路放大器实质上是能量转换器,以较小的输入信号能量通过放大器件控制直流电源的能量,使之转换成较大的输出信号能量,为负载所获得。
1.对放大电路的要求能放大:输出信号应大于输入信号(u,或i,或p)不失真:输出应与输入呈线性关系,为使器件工作在线性放大区,必须加上合适的直流偏置。
2.放大电路中的至流量和交流量3.两种器件对应两种放大电路(BJT 和FET 放大电路)BJT 在放大电路中有共射、共集和共基三种组态FET 在放大电路中有共源、共漏和共栅三种组态4.放大电路的分析方法(图解法、微变等效电路法)5.放大电路的性能指标直流:静态工作点Q ;CCQ CC CEQ BQCQ bBEQ BB BQ R I -V =U βI =I R U -V =I输入电阻ii i I U =R ; 输出电阻L O O o R 1-U 'U =R ; 交流:r be 、A u 、R i 、R o ;26mV)=UT 常温下( I U βr ≈r CQT bb'be U i =I b (R b +r be ) U o =-I c R c =-βI b R cA u =U o /U i =-βR c /(R b +r be )6.放大电路应具有稳定的工作点,常用的稳定工作点的电路为分压式偏置电路,以克服温度对电路参数的影响。
第三章、多级放大电路多级放大电路耦合方式有三种:阻容耦合(分立原件),变压器耦合(分立原件)直接耦合(集成原件)多级放大电路 Au = A u1A u2…A unR i =R i1,R o =R o 末0点漂移~(输入级采用差动放大电路,下章...)第四章、集成运算放大电路集成电路的特点:1.采用直接耦合方式2.输入级电路采用差动放大电路以抑制零点漂移3.各级偏置电路采用电流源(恒流源)4.用有源负载代替无源器件5.采用复合结构的电路集成运放的特点及组成框图具有高增益;高输入电阻;低输出电阻的特点;组成:输入级:采用差动放大电路(抑制零点漂移)中间级:直接耦合多级放大电路(提供高增益)输出级:互补对称推挽电路(低输出电阻)偏置电路:恒流源一、差动放大输入级(抑制零点漂移)直接耦合放大电路最主要的问题是零点漂移,而且以第一级的零点漂移影响最大,为此IC在输入级采用差动(分)放大电路以抑制零点漂移。
抑制原理:利用电路结构及原件参数的对称性及发射极电阻的负反馈作用来抑制零点漂移。
2.长尾式差动放大电路单端输入:从一个输入端地之间输入。
双端输入:从两个输入端浮地输入。
输出方式:单端输出:从一个输出端与地之间输出。
双端输出:从两个输出端浮地输出。
所以一共有四种组个方式:双入双出图a 双入单出图b单入双出图 c 单入单出图 d差模信号与共模信号定义差模信号:一对大小相等、极性相反的输入信号用u id表示差模输入电压定义共模信号:一对大小相等、极性相同的输入信号用u ic表示共模输入电压任意两输入信号u s1、u s2(u s1≠u s2)可认为他们是某差模信号分量和某共模信号分量的组合:u s1 = u ic+1/2u id,u s2 = u ic-1/2u idu id = u s1-u s2 u ic=u s1+u s2差动放大电路的分析方法和工作特点1.静态Q工作点求解(u s1=u s2=0)由I E→U CE(或U C)由于电路对称,元器件对称,故两管对应的电流、电压对称I.画出直流通路,标出各管电流、电压;II.对电路列电路方程求解。
2.动态特性分析I.对差模信号的放大特性输入差模信号时的放大倍数称为差模放大倍数beb Lc IdOdd be b 1B Id Lc 1B Od r +R )2R // β(R -=u Δu =A )r +R (i 2u )2R // β(R i 2Δu ∆∆=∆∆-=共模放大倍数(理想运放共模放大倍数为0)IcOcc Δu Δu =A输入输出电阻:co be b i R 2R )r R (2R =+=共模抑制比 cdCMRA A =K二、中间级:直接耦合多级放大电路(提供高增益)电路图交流通路小信号等效模型2be L 2e 2be 2b L 2e 2b 2i o 2u 2be 2b 2i be2i 1e be 1b 2i 1e 1b i 1o 1u 2u 1u 2i oi 1o i o u r )R //R (r i )R //R (i u u A ))r //R (R (r )R //R (r i )R //R (i u u A A A u u u u u u A ββββ-=-===-=-==⋅=⋅==2c o 2b i i o 1be 1b iiR R 00I 0U 0U R r //R i u Ri =∴=→====当开路)(受控电流源电流为β时求得,当是在求三、输出级:互补对称推挽电路(低输出电阻)第五章、放大电路的频率响应(非重点)幅频失真:放大电路对不同频率分量因放大倍数不同而引起输入信号的畸变;相频失真:放大电路对不同频率分量的时延不同而引起输入信号的畸变。
频率失真的特点:输出信号中没有产生新的频率分量。
故又称线性失真。
削波失真(饱和失真,截止失真):静态工作点过高(低),管子工作在饱和(截止)区,即非线性区,故又称非线性失真。
非线性失真的特点:输出信号中产生新的频率分量。
第六章、放大电路的反馈6-1反馈的概念1.将输出量的(U o,I o)的一部分或全部通过一定方式送回到放大电路的输入回路中。
放大电路组成框图X i:源输入信号(反馈放大电路的输入信号)X f:反馈信号;X i’:净输入信号(基本放大电路的输入信号)2.正反馈、负反馈:由加入反馈后使净输入信号X i’↑或↓来定义。
3.直流反馈(如图(a)电路)、交流反馈(如图(b)电路)直流反馈不考虑串/并电压/电流4.四种组态的交流负反馈1)A和F在输入端以求和(比较)方式连接两种求和方式电压求和——串联连接(串联反馈)电流求和——并联连接(并联反馈)2)A和F在输出端以取样方式相连两种取样方式:取输出电压U O:并联连接(电压反馈)取输出电流I O:串联连接(串联反馈)6-2 反馈的判别输入串联(分压)并联(分流)输出电压电流电压负反馈与电流负反馈的判断:令负反馈放大电路的输出电压u o为0,若反馈量也随之消失,则说明电路引入了电压负反馈;若反馈量依然存在,则说明电路中引入了电流负反馈。
串联反馈与并联反馈的判断:反馈信号为电压量,与输入电压求差而获得净输入电压,则为串联反馈;若反馈信号是电流量,与输入电流求差获得净输入电流,则为并联反馈。
对于分立元件放大电路,第一级是共射放大电路时:反馈引到输入级的b级,为并联反馈:X i=I i’=I b反馈引到输入级的e级,为串联反馈:X i=U i’=U be第一级是差动放大电路时:反馈引入到连接信号的b级,为并联反馈;反馈引入到不接信号的b级,为串联反馈;对于集成运放电路:输入信号和反馈信号从运放的同一个输入端输入,则是并联反馈;输入信号和反馈信号从运放的不同输入端输入,则是串联反馈;归纳:1.为稳定放大电路的静态工作点,应引入直流负反馈;2.为改善放大器的动态性能,应引入交流负反馈;3.当负载变化时,为稳定输入电压、降低输出电阻,应引入电压负反馈,为稳定输出电流、增大输出电阻,应引入电流负反馈;4.为提高输入电阻,应引入串联负反馈,为降低输入电阻,应引入并联负反馈;5.为提高反馈效果,在信号源内阻R S小时应引入串联反馈,在R S大时应引入并联反馈;6-3四种反馈组态的比较基本放大电路的放大倍数为 'ioX X A =反馈系数o fX X F =负反馈放大电路的放大倍数(也称闭环放大倍数)为AF A AFX X AX X X X X X A i i i f i o i o f +=+=+==1''''AF 称为电路的环路放大倍数'i f X X AF =反馈组态X i X f X i ’X oA(放大倍数)F (反馈系数)A f (闭环放大倍数)功能电压串联 U i U f U i ’ U o'i ouu U U A = o f uu U U F = io uuf U U A =U i 控制U o 电压放大 电压并联 U i U f U i ’ I o'i oiu U I A = of ui I U F =ioiuf U I A =U i 控制I o 电压转换成电流 电流串联 I i I f I i ’ U o'i oui I U A = of iu U I F =iouif I U A =I i 控制U o 电流转换成电压电流并联 I i I f I i ’ I o'i o ii I I A =o f ii I I F =IiI A o iif =I i 控制I o 电流放大6-4深度负反馈的计算(视频41) 一、特点 1)F1A 1AF A =A 1,>>1+AF f f ≈∴+2)fi f of f o f i o f X X X X A F A X X F X X A ≈∴=∴≈==1,,3)当电路引入深度串联负反馈时,U i ≈U f ,认为净输入电压U i ’可忽略不计。
当电路引入深度并联负反馈时,I i ≈I f ,认为净输入电流I i ’可忽略不计。
二、一般步骤1)正确判断反馈组态; 2)求解反馈系数;3)利用F 求解A f ,A uf (A usf )F1A f ≈o f X X F =0X X 'X f i i =-=6-5基于理想运放的放大倍数分析 一、理想运放线性工作区特点 1.开环差模增益(放大倍数)A od =∞ 2.差模输入电阻r id =∞ 3.输出电阻r o =0 4.共模抑制比K CMR = ∞ 5.上限截止频率f H =∞6.失调电压U IO 、失调电流I IO 和它们的温漂dU IO /dT (℃)、d IO /dT (℃)均为零,且无任何内部噪声。