2019-2020数学中考试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所用时间是 45 30 15分钟,
∴体育场出发到文具店的平均速度 1000 200 m min 15 3
故选:C. 【点睛】 本题运用函数图象解决问题,看懂图象是解决问题的关键.
4.C
解析:C 【解析】 【分析】 由 A、B、P 是半径为 2 的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继 而求得答案. 【详解】 解:连接 OA,OB.
吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________
元.(按每吨运费 20 元计算) 三、解答题
21.如图,在四边形 ABCD 中,∠ABC=90°,AC=AD,M,N 分别为 AC,CD 的中点, 连接 BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC 平分∠BAD,AC=2,求 BN 的长.
2.C
解析:C 【解析】 【分析】 分别计算出各项的结果,再进行判断即可. 【详解】
A. a2 a2 2a2 ,故原选项错误; B. x3 x2 y xy2 x2 y xy2 y3 ,故原选项错误;
C. (a3 )4 a12 ,计算正确;
D. (ab)2 a2b2 ,故原选项错误.
故选 D. 【点睛】 本题考查规律型:数字的变化类.
12.A
解析:A 【解析】 【分析】 已知 AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可. 【详解】 ∵AB∥CD∥EF,
∴ AD BC . DF CE
故选 A. 【点睛】 本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.

(3)如图,在平面直角坐标系中描点并画出此函数的图象;
(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A 解析:A 【解析】
试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几 何体是三棱柱,故选 A. 考点:由三视图判定几何体.
步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中 x 表示时 间, y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )
A.体育场离林茂家 2.5km B.体育场离文具店1km C.林茂从体育场出发到文具店的平均速度是 50m min D.林茂从文具店回家的平均速度是 60m min
(1)求 y 与 x 之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于 240 件,当销售单价为多少元时,每天获取的 利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定从每天的销售利润中捐出 150 元给希望工程,为了保 证捐款后每天剩余利润不低于 3600 元,试确定该漆器笔筒销售单价的范围.
7.C
解析:C 【解析】 【分析】 根据同底数幂的乘法运算可判断 A;根据同底数幂的除法运算可判断 B;根据合并同类项 可判断选项 C;根据分式的乘方可判断选项 D. 【详解】 A、原式=a3,不符合题意; B、原式=a4,不符合题意; C、原式=-a2b,符合题意;
D、原式=- 27 ,不符合题意, 8a
2019-2020 数学中考试题及答案
一、选择题
1.如图是某个几何体的三视图,该几何体是()
A.三棱柱
B.三棱锥
C.圆柱
D.圆锥
2.下列运算正确的是( )
A. a2 a2 a4
B. a3 a4 a12
C. (a3 )4 a12
D. (ab)2 ab2
3.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑
18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴 号”的速度比原来列车的速度每小时快 40 千米,提速后从北京到上海运行时间缩短了 30 分钟,已知从北京到上海全程约 1320 千米,求“复兴号”的速度.设“复兴号”的速度为 x 千米/时,依题意,可列方程为_____.
10.C
解析:C 【解析】
A、 6 不能化简;B、 12 =2 3 ,故错误;C、 18 =3 2 ,故正确;D、 36 =6,故错
误; 故选 C. 点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.
11.D
解析:D 【解析】 【分析】 根据已知中有限个数组成的序列 S0,将其中的每个数换成该数在 S0 中出现的次数,可得 到一个新序列 S1,可得 S1 中 2 的个数应为偶数个,由此可排除 A,B 答案,而 3 的个数 应为 3 个,由此可排除 C,进而得到答案. 【详解】 解:由已知中序列 S0,将其中的每个数换成该数在 S0 中出现的次数,可得到一个新序列 S1, A、2 有三个,即序列 S0:该位置的三个数相等,按照变换规则,应为三个 3,故 A 不满足 条件; B、2 有三个,即序列 S0:该位置的三个数相等,按照变换规则,应为三个 3,故 B 不满足 条件; C、3 有一个,即序列 S0:该位置的数出现了三次,按照变换规则,应为三个 3,故 C 不满 足条件; D、2 有两个,即序列 S0:该位置的两个数相等,1 有三个,即这三个位置的数互不相等, 满足条件,
22.解分式方程: 2x 3 2 x 1 x 1
23.将 A,B,C,D 四人随机分成甲、乙两组参加羽毛球比赛,每组两人. (1) A 在甲组的概率是多少? (2) A,B 都在甲组的概率是多少?
24.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为 30 元/件,每天
销售量 y (件)与销售单价 x (元)之间存在一次函数关系,如图所示.
15.如图,在 Rt△AOB 中,OA=OB= 3 2 ,⊙O 的半径为 1,点 P 是 AB 边上的动点,过点
P 作⊙O 的一条切线 PQ(点 Q 为切点),则切线 PQ 的最小值为

16.若关于 x 的一元二次方程 kx2+2(k+1)x+k-1=0 有两个实数根,则 k 的取值范围是 17.如图,在△ABC 中,BC 边上的垂直平分线 DE 交边 BC 于点 D,交边 AB 于点 E.若 △EDC 的周长为 24,△ABC 与四边形 AEDC 的周长之差为 12,则线段 DE 的长为_____.
4.如图,A,B,P 是半径为 2 的⊙O 上的三点,∠APB=45°,则弦 AB 的长为( )
A.2
B.4
C. 2 2
D. 2
5.一个正多边形的内角和为 540°,则这个正多边形的每一个外角等于( )
A.108°
B.90°
C.72°
D.60°
6.如图,长宽高分别为 2,1,1 的长方体木块上有一只小虫从顶点 A 出发沿着长方体的外
故选 C 【点睛】 本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法 则是解题的关键.
3.C
解析:C 【解析】 【分析】 从图中可得信息:体育场离文具店 1000m,所用时间是(45﹣30)分钟,可算出速度. 【详解】
解:从图中可知:体育场离文具店的距离是: 2.5 1.5 1km 1000m ,
第三象限内 OB 上一点,∠BMO=120°,则⊙C 的半径长为( )
A.6
B.5
C.3
D. 3 2
10.下列各式化简后的结果为 3 2 的是( )
A. 6
B. 12
C. 18
D. 36
11.现定义一种变换:对于一个由有限个数组成的序列 S0,将其中的每个数换成该数在 S0 中出现的次数,可得到一个新序列 S1,例如序列 S0:(4,2,3,4,2),通过变换可生 成新序列 S1:(2,2,1,2,2),若 S0 可以为任意序列,则下面的序列可作为 S1 的是 ()
表面爬到顶点 B,则它爬行的最短路程是( )
A. 10
B. 5
C. 2 2
D.3
7.下列计算正确的是( )
A.a2•a=a2
B.a6÷a2=a3
C.a2b﹣2ba2=﹣a2b
D.(﹣
3 2a
)3=﹣
9 8a 3
8.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )
A.
B.
C.
D.
9.如图,⊙C 过原点,且与两坐标轴分别交于点 A、点 B,点 A 的坐标为(0,3),M 是
19.如图,将矩形 ABCD 沿 CE 折叠,点 B 恰好落在边 AD 的 F 处,如果 AB 2 ,那么 BC 3
tan∠DCF 的值是__源自文库_.
20.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运
货量不变,且甲、乙两车单独运完这批货物分别用 2a, a 次;甲、丙两车合运相同次数, 运完这批货物,甲车共运180 吨;乙、丙两车合运相同次数,运完这批货物乙车共运 270
A.(1,2,1,2,2)
B.(2,2,2,3,3) C.(1,1,2,2,
3)
D.(1,2,1,1,2)
12.如图,已知 AB // CD // EF ,那么下列结论正确的是( )
A. AD BC DF CE
二、填空题
B. BC DF CE AD
C. CD BC EF BE
D. CD AD EF AF
∠ABO 的度数,根据直角三角形的性质即可得出 AB 的长,进而得出结论. 【详解】 解:∵四边形 ABMO 是圆内接四边形,∠BMO=120°, ∴∠BAO=60°, ∵∠AOB=90°, ∴AB 是⊙C 的直径, ∴∠ABO=90°-∠BAO=90°-60°=30°, ∵点 A 的坐标为(0,3), ∴OA=3, ∴AB=2OA=6, ∴⊙C 的半径长=3,故选:C 【点睛】 本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形 对角互补的性质是解答此题的关键.
故选 C. 【点睛】 此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解 本题的关键.
8.A
解析:A 【解析】 【分析】 【详解】 从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方 形. 故选 A.
9.C
解析:C 【解析】 【分析】 先根据圆内接四边形的性质求出∠OAB 的度数,由圆周角定理可知∠AOB=90°,故可得出
25.问题:探究函数 y=x+ 的图象和性质.
小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完 整: (1)函数的自变量 x 的取值范围是:____; (2)如表是 y 与 x 的几组对应值,请将表格补充完整:
x … ﹣3
﹣2 ﹣
﹣1
1
2
3

y … ﹣3
﹣3
﹣3 ﹣4
4
3
∴这个正多边形的每一个外角等于: 360 =72°. 5
故选 C. 【点睛】 此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2) •180°,外角和等于 360°.
6.C
解析:C 【解析】 【分析】 蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求 其对角线,比较大小即可求得最短路程. 【详解】
∵∠APB=45°, ∴∠AOB=2∠APB=90°. ∵OA=OB=2,
∴AB= OA2 OB2 =2 2 .
故选 C.
5.C
解析:C 【解析】 【分析】 首先设此多边形为 n 边形,根据题意得:180(n-2)=540,即可求得 n=5,再由多边形的 外角和等于 360°,即可求得答案. 【详解】 解:设此多边形为 n 边形, 根据题意得:180(n-2)=540, 解得:n=5,
13.已知扇形的圆心角为 120°,半径等于 6,则用该扇形围成的圆锥的底面半径为 _________. 14.如图是两块完全一样的含 30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块 三角尺重叠在一起,设较长直角边的中点为 M,绕中点 M 转动上面的三角尺 ABC,使其 直角顶点 C 恰好落在三角尺 A′B′C′的斜边 A′B′上.当∠A=30°,AC=10 时,两直角顶点 C,C′间的距离是_____.
如图所示,路径一:AB 22 (11)2 2 2 ; 路径二:AB (2 1)2 12 10 . ∵ 2 2< 10 ,∴蚂蚁爬行的最短路程为 2 2 .
故选 C.
【点睛】 本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面 几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.
相关文档
最新文档