有机化合物波谱综合解析详解

合集下载

有机化合物波谱解析

有机化合物波谱解析

仪器分析:测定复杂结构的化合物 样品用量少
• 四谱同时用或联用技术 • 四谱比较: • 灵敏度:MS>UV>IR>1HNMR>13CNMR
MS: 微克级
UV: ppb级
IR:毫克级(可微克级,FTIR)
1HNMR:0.5mg }可回收
13CNMR: 0.5mg
四谱的信息量比较:
1HNMR及13CNMR
loge2
max1
max2
/nm
不论纵坐标选用什么单位,同一化合物的最大吸收对应 的波长(λmax)不变。
四、朗伯-比耳定律(Lambert—Beer定律)
样品的吸光度A与浓度之间的关系为:
A= lc=lgI0/I=lgT-1 式中T—透射率(或透射比);
I0——入射光强度, I——透过光强度; c——被测液浓度, l——被测液厚度,亦称样品槽厚度。 ——吸光系数 ε——摩尔吸光系数(L/mol·cm) E1%1cm ——百分吸光系数,亦称比吸光系数
液浓度为1g/100ml(1%),液层厚度为1cm时,溶液的吸光 度。
3.两种表示方法的换算关系
设吸光物质的摩尔质量为M g/mol ,则
1mol/L=M g/1000ml=M/10·1g/100ml
∴ ε=M/10·E1%1cm
通过紫外光谱测定获得吸收度或透光率,使用 Beer-Lambert定律便可计算ε值。
有机化合物波谱解析
• 概论
色谱分析:GC,HPLC,TLC 与裂解---色谱成分分析
波谱分析:UV,IR,NMR,MS(有机)----结构分析
• 色谱分析:具有高效分离能力可以把复杂有机混合物分离 成单一的纯组分
• 波谱分析:纯样品进行结构分析,特点是:微量化、测 量快、结果准确、重复性好。除MS之外,可回收样品

第一章_有机化合物的波谱综合解析-3

第一章_有机化合物的波谱综合解析-3

红外光谱(i nfra r ed spectroscopy 缩写为IR )由于分子吸收了红外线的能量并导致分子内振动能级的跃迁而产生的记录信号。

IR 谱主要提供分子中官能团的结构信息。

横坐标:波数(σ)400~4000cm -1;表示吸收峰的位臵。

纵坐标:透过率(T %),表示吸收强度。

T ↓,表明吸收的越好,故曲线低谷表示是一个好的吸收带。

%100%0⨯=I IT I :表示透过光的强度;I 0:表示入射光的强度。

红外光谱官能团区(4000-1500 cm -1)由分子的伸缩振动导致,用于鉴定各种不同官能团产生红外光谱的必要条件:1.红外辐射光的频率与分子振动的频率相当,才能满足分子振动能级跃迁所需的能量,而产生吸收光谱。

2.只有能引起分子偶极矩的变化的振动才能产生IR 光谱。

完全对称的分子H 2、O 2、N 2不会产生红外吸收光谱。

H―C≡C―H 、R―C ≡C―R ,其C≡C (三键)振动也不能引起红外吸收。

指纹区(1500-650 cm-1)分子弯曲及伸缩振动吸收峰,多用于鉴定基团的结合方式官能团区(高频区)1500-4000 cm-1Y -H 伸缩振动区2500~3700 cm-1,Y= O、N、C。

Y≡Z 三键和累积双键伸缩振动区2100~2400 cm-1,主要是:C≡C、C≡N 三键和C=C=C、C=N=O 等累积双键的伸缩振动吸收峰。

Y=Z双键伸缩振动区1600~1800 cm-1,主要是:C=O、C=N、C=C等双键。

指纹区(低频区)650-1500 cm-1主要是:C-C、C-N、C-O等单键和各种弯曲振动的吸收峰,其特点是谱带密集、难以辨认。

红外谱图各主要官能团红外光谱的特征吸收峰频率3600-3200NH, OH d, br, s3300C CHstrong3100-3010 =C-H middle2960-2850 -C-H strong2260-21002700-CHO doubleC Cvariable1850-1690 C=OAcids, esters Ketones Aldehydes very strong1680-1620 or 1600-1500 C=C variable 1470-1350 bend C-H1000-700 bend alkenes benzene substituted type4000cm-1650cm-11300-1030 bend C-O C-N几个明显的红外特征峰-OH(醇和酚):-OH吸收处于3200~3650cm-1,由于-OH可形成分子间或分子内氢键,而氢键所引起的缔合对红外吸收峰的位臵、形状和强度都有重要影响。

有机波谱分析5 波谱综合解析

有机波谱分析5 波谱综合解析

四大或五大光谱
• 四大光谱 通常把在进行未知物综合光谱解析时 常用的紫外吸收光谱、红外吸收光谱、质子核磁 共振谱及质谱称为四大光谱。 近年来核磁共振碳谱得到迅速发展,成为确定化 合物结构的最重要手段之一。
• 五大光谱 把UV、IR、1H NMR、13C NMR及
MS称为五大光谱。
• 紫外吸收光谱法在综合光谱解析中,所起的作 用较小,而UV所得到的结构信息一般都可由IR 及NMR获得。
主要提供化合物中所含质子的信息:
1. 质子的类型:说明化合物具有哪些种类的含氢 官能团。
2. 氢分布:说明各种类型氢的数目。 3. 核间关系: 氢核间的偶合关系与氢核所处的化
学环境
核间关系可提供化合物的二级结构信息,如连结方式、 位置、距离;结构异构与立体异构(几何异构、光学异
构、构象)等)。
三方面的结构信息。
碳谱弥补了氢谱的不足,碳谱不但可给出各种含 碳官能团的信息,且光谱简单易辨认,对于含碳 较多的有机物,有很高的分辨率。当有机物的分 子量小于500时,几乎可分辨每一个碳核,能给出 丰富的碳骨架信息。
普通碳谱(全去偶碳谱)的峰高,常不与碳数成比 例是其缺点,而氢谱峰面积的积分高度与氢数成 比例,因此二者可互为补充。
碳谱与氢谱之间关系-互相补充
氢谱不足 碳谱补充
不能测定不含氢的 官能团
对于含碳较多的有机 物,烷氢的化学环境 类似,而无法区别
给出各种含碳官能团 的信息,几乎可分辨 每一个碳核,光谱简 单易辨认
碳谱与氢谱可互相补充
氢谱不能测定不含氢的官能团,如羰基、氰基等; 对于含碳较多的有机物,如甾体化合物等,常因 烷氢的化学环境类似,而无法区别,是氢谱的弱 点。
核磁共振碳(13C)谱在综合光谱解析中的作用

有机波谱综合解析

有机波谱综合解析
有机波谱综合解析
MS:确定化合物的分子量、分子式、含氮数、卤素等 ; UV:推测化合物有何种生色团,共轭体系类型和大小; IR:提供官能团的信息,特别是含氢基团、双键和三键基团;
1H-NMR:提供氢原子数目、含氢官能团类型及连接顺序; 13C-NMR:提供碳原子数目、类型。
在推导结构时以核磁共振谱图为基础,配合质 谱、红外、紫外等推出结构。因为核磁共振图谱规 律性强,可解析性高,信息量多,谱图多样。
波谱综合解析的一般步骤
(1)分子量和分子式的确定 分子量从质谱数据获得。 质谱图中确定分子离子峰,其质荷比 就是分子量。

分子式的确定方法
由质谱分子离子与同位素离子的丰度比计 算得到分子式 综合利用各谱学方法提供的信息确定分子 式 其他方法:质谱的精密分子量测定或元素 定量分析仪
综合利用各谱学方法提供的信息确定分子式
关,而与芳环上相连氢的个数有关)

1HNMR

化学位移6-8,烷基单取代一般产生一 个峰(宽),对位取代一般生成四个峰;其他 取代类型比较复杂; 13CNMR化学位移90-160; 质谱出现m/z=39,51,65,77系列峰; 紫外光谱出现B带。
(2)羰基的存在

红外 在双键区1700cm-1有强的υC=O 吸收峰。
(2)计算不饱和度
在解析过程及最终结果验证时,注意不饱和 度的一致性。
(3)找出结构单元
通过各种谱图中获得结构单元类型及数目的 信息。有的结构单元可能在各个图谱都有反映, 有些结构单元可能只在一种谱学方法中才有肯 定的结论。
4)计算剩余基团 分子式与已确定的所有结在




红外:游离OH伸缩振动υO-H3600cm-1 尖峰; 缔合OH伸缩振动υO-H 3300cm-1 又宽又强吸收峰; 氢谱:羟基化学位移无定值,可以通过重水交换 法证实; 碳谱 羟基在碳谱上不能直接反映,但与羟基相连 的碳原子化学位移移向低场; 质谱 醇类化合物一般不出现分子离子峰,常出现 M-H2O,M-H2O-C2H4碎片离子峰;断裂类型以α 断裂为主。

有机化学-第七章有机化合物的波谱分析

有机化学-第七章有机化合物的波谱分析
课件
分子化学键的振动和红外光谱
1.振动方程式
式中:μ为折合质量;ml和m2分别为化学键所连的两个原子的质量,单位为g, 是为化学键的力常数,单位为N·cm-1(牛顿·厘米-1),其含义是两个原子由平衡位置伸长0.1 nm后的恢复力。
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的简谐振动。根据Hooke定律可得其振动频率为:
本章讨论的红外光谱和核磁共振谱为吸收光谱。质谱是化合物分子经电子流轰击形成正电荷离子,在电场、磁场的作用下按质量大小排列而成的图谱,不是吸收光谱。
7.2红外吸收光谱
用红外光照射试样分子,引起分子中化学键振动能级的跃迁所测得的吸收光谱为红外吸收光谱,简称红外光谱(Infrared Spectroscopy,缩写为IR)。红外光谱是以波长λ或波数σ为横坐标,表示吸收峰的峰位;以透射比T(以百分数表示)为纵坐标,表示吸收强度。
1H的自旋量子数I为1/2,它在磁场中有两种取向,与磁场方向相同的,用+1/2表示,为低能级;与磁场方向相反的,用-1/2表示,为高能级。两个能级之差为△E,见图7–4。
有机化学经常研究的是1H和13C的核磁共振谱,下面主要介绍1H核磁共振谱(质子核磁共振谱)。
式中:γ 称为磁旋比,是物质的特征常数,对于质子其量值为2.675×108A·m2·J-1·s-1; h为Plank常量; ν为无线电波的频率。
测量核磁共振谱时,可以固定磁场改变频率,也可以固定频率改变磁场,一般常用后者。 若以通过电流所表现的吸收能量为纵坐标,磁场强度为横坐标,则可得到如图7–6所示的NMR谱。
一张核磁共振谱图,通常可以给出四种重要的结构信息:化学位移、自旋裂分、偶合常数和峰面积(积分线)。如图7–7所示。
峰面积大小与质子数成正比,可由阶梯式积分曲线求出。峰面积(积分线高度)之比为质子个数之比,图中积分线高度比为1:2:3,等于质子个数之比(OH:CH2:CH3)。

有机化合物的波谱分析

有机化合物的波谱分析

(4)已知物的鉴定:若被测物的IR与已知物的谱 峰位置和相对强度完全一致,则可确认为一种物 质(注意仪器的灵敏度及H2O的干扰)。 (5)未知物的鉴定:可推断简单化合物的结构。 对复杂的化合物,需要UV、NMR、MS的数据。
B.红外谱图解析实例
(1) (2) (3) (4) (5) (6) (7) (8) (9) 烷烃---正辛烷 2-甲基庚烷 2,2-二甲基己烷 烯烃---(E)-2-己烯 1-己烯 (Z)-3-己烯 2-甲基-1-丙烯 炔烃--- 1-己炔 2-己炔 卤代烷---1-氯丁烷 2-甲基-2-溴丙烷 醇---1-己醇 2-丁醇 2-甲基-2-丙醇 醚--- 丙醚 甲基叔丁基醚 醛---丁醛 酮---丁酮 丙酸 丁酰氯 丁酸酐 羧酸及衍生物--- 乙酰胺 N-甲基丙酰胺
2.分子振动与红外光谱
振动方程式:
1 v振 2
m1 m2 k m1m2
k:力常数,与化学键的强度有关(键长越短,键能 越高,k越大) m1和m2分别为化学键所连的两个原子的质量,单 位为克
即:化学键的振动频率(红外吸收峰的频 率)与键强度成正比,与成键原子质量成 反比。
亚甲基的振动模式:
试样 TMS 106 0
ν试样 试样共振频率频率 νTMS 四甲基硅烷的共振频率 ν0 操作仪器选用频率
影响化学位移的因素:
A.电负性影响:取代基的电负性越大,相应碳上 质子的化学位移越大。 B.磁各向异性效应:
自旋偶合和自旋裂分
1.定义:
自旋偶合:指自旋核受邻近自旋核所产生的感应磁场影响 的现象。 自旋裂分:指自旋偶合引起的谱线增多的现象。
1.常见有机波谱
常 见 有 机 波 谱
2、有机四大谱及其特点

有机化合物波谱分析 综合解析

有机化合物波谱分析 综合解析

24
2015/4/29
2.计算分子的不饱和度
U =(2+2*n4+n3-n1)/2 =(2+2*5+0-10)/2=1
分子中有一个双键或环
3.确定结构单元
1720cm-1 附 近 强 吸 收 峰 可 知 含 羰 基 。 靠 近 3000cm-1强吸收峰 ;含-CH2-或-CH3;
1720cm-1
25
光谱?非光谱?
• 质谱虽非光谱,因其与光谱的密切关系,
且确定未知物的分子量与分子式是进行综
合光谱解析时,首先要知道的问题。加之 质谱仪的质量色散与光谱仪的复光色散有 某些类似之处,因此习惯上也把它视为一 种光谱。
2
2015/4/29
一、各种光谱的在综合光谱解 析中的作用
质 谱 (MS)
主要用于确定化合物的分子量、分子式。 质谱图上的碎片峰可以提供一级结构信息。 对于一些特征性很强的碎片离子,如烷基取代苯的m/z 91 的苯甲离子及含 γ 氢的酮、酸、酯的麦氏重排离子 等,由质谱即可认定某些结构的存在。 质谱的另一个主要功能是作为综合光谱解析后,验证 所推测的未知物结构的正确性。
四大光谱综合波谱解析
• 一般情况,由 IR 、 1H-NMR 及 MS 三种光谱提供的数 据,即可确定未知物的化学结构。特殊情况,还可以 辅助以其它光谱
• 在进行综合光谱解析时,不可以一种光谱“包打天 下”,各有所长,取长补短,相互配合、相互补充。
5
2015/4/29
二、综合光谱解析的顺序与重点
1.了解样品 来源: 天然品、合成品、三废样品等、 物理化学性质与物品理化学参数: 物态、熔点、沸点、旋光性、折射率、溶解度、极
7
2015/4/29
5.红外吸收光谱 用未知物的红外吸收光谱主要推测其 类别及可能具有的官能团等。 解析重点: 羰基峰是红外吸收光谱上最重要的吸收峰(在1700cm-1左 右的强吸收峰),易辨认。其重要性在于含羰基的化合 物较多,其次是羰基在1H-NMR上无其信号。 氰基(2240cm-l左右)等不含氢的官能团,在1H-NMR上也 无信号; 此时IR是1H-NMR的补充。

有机波谱第7章综合解析

有机波谱第7章综合解析
(2)确定分子组成: (M+1)/M =1/13 = 7.7 % (M+2)/M =0.06/13 = 0.46%
7.7%/ 1.1% = 7,所以该化合物含C数不或会超过7。 又由0.46%可知该化合物中不含Cl、Br、S。
(3)UV: λmax= 275nm,弱峰,说明为n→π*跃迁引起的吸收带,
推断出取代基 出取代类型。
的系统、取代 方式。
MS (m/z) 烯丙基开裂 产生41、55、 69
26
有苯环时, 出现77、65、 51、39,
结构 C=O
13C-NMR (ppm)
155~225
1H-NMR (ppm)
IR
(cm-1)
没有直接信息 1950~1650
MS (m/z)
羧基 酯
160~180(s) 160~180(s)
④ 用UV核对分子中共轭体系和一些官能团的取代位置, 或用经验规则计算λmax值。 ⑤ 最后确定一种可能性最大的结构,并用质谱断裂方式 证明结构式推断无误。
8.已知化合物,可用标准图谱对照,来确定。
7.3 化学方法与其它经典分析方法的应用
在实际工作中,可将光谱方法和化学方法、经典的分 析方法及物理常数测定配合使用,有助取得正确的结果。
第7章 波谱综合解析
各种波谱法各有特点和长处,没有万能的方法。彼此 补充,进行综合解析。综合解析是用于化合物的结构解 析。
对于比较复杂的有机化合物的结构鉴定,需要综合各 种波谱数据,并将必要的物理,化学性质结合起来,
7.1 各种谱图解析时的要点:
1.1H-NMR法: (1)确定质子总数和每一类质子数。
用化学方法配合进行光谱分析的例子,如制备衍生物、 同位素标识、重氢交换、成盐反应等都可用在结构解析中。

有机波谱第七章谱图综合解析

有机波谱第七章谱图综合解析

复习题
1.在质谱分析中,试以分子中由双电子构成的σ键断裂过程说明均裂、异 裂和半异裂的含义。 2.在红外光谱分析中,习惯上把红外光谱图按波数范围分为四大峰区,每 个峰区都对应于某些特征的振动吸收。请简述各峰区的波数范围及对应的 特征振动吸收,并在每一峰区列举至少三种属于该类特征振动吸收的具体 化学键。 3.有机分子电子跃迁类型主要有哪些?请简要回答并画出简图进行说明。 4. 影响化学位移的因素有哪些?
7.1 谱图综合解析的一般程序
• 1. 推导分子式,计算不饱和度 (1) 由高分辨质谱仪测得精确分子量并给出分子式, 或利用精确分子量计算分子式。 (2) 由质谱的分子离子峰及其同位素峰的相对强 度推导分子式(分子离子峰需有一定的强度)。 (3) 由质谱的分子离子峰确定化合物的分子量, 结合元素分析求得的最简式,或结合1H NMR及 13C NMR谱推导的氢原子数目及碳原子数目之简 比,确定化合物的分子式。
CH CH COOCH3
C H 3C H 2O C H 2C H 2O C O C H C H
OCH3
C H 3C H 2O C H 2C H 2O C O
CH CH OCH3
结构若为A或B,质谱图中均应出现M-31(-OCH3)峰, 此处未观测到,故否定之。 苯 环 上 的 季 碳 的 δ 为 161.5 , 表 明 该 碳 与 氧 相 连 , 1H NMR 谱中δ约为6.9的AA'质子的共振吸收也表明邻位 碳与氧直接相连,而已烯碳的δ值表明其不与氧直接 相连,因而排除结构D,故化合物的结构为C。
由图2可知,图中的基峰为 m/z 43,其它离子的丰度都很低, 这是2-戊酮进行 α-裂解和 i -裂解所产生的两种离子质量相同的 结果。
Δm = 4-14, 21-24, 37-38·····通常认为是不合理丢失

有机波谱第七章谱图综合解析

有机波谱第七章谱图综合解析

注意:分子式中Cl, Br, F, I, N, O, S等元素的存
在,可由质谱或元素分析判断,氧元素的存在
还可由红外光谱(υO-H, υC-O)或1H, 13C核的化学
位移判断。 分子式确定后,计算不饱和度(UN), UN≥4时, 分子中可能有苯环存在。
• 2. 不饱和基的判断 • UN﹥0的化合物,分子中含有不饱和基或苯环系。 不饱和基的存在在不同谱图中有不同的特征。 • IR谱:1870~1650cm-1 (s)为υC=O。3100 ~ 3000cm-1 (w或m)的υ=C-H,结合1670~1630cm-1 (m) υC=C或1600~1450cm-1 (m,2 ~3条谱带) 的苯 环骨架伸缩振动,可判断烯基或苯基结构的存在。 在2250cm-1 附近(m) 可能为υC≡N;在2220cm-1 附近 (w) 可能为υC≡C; 1300~1000cm-1 (m,2 ~3条谱带) 为υC-O-C;在1560cm-1 附近(s) 和1360cm-1 附近(s) 为υNO2 ; 1900 ~2300cm-1 (w ~ m)为υx=y=z等。 这些不饱和基都具有其特征吸收带。
裂和半异裂的含义。
2.在红外光谱分析中,习惯上把红外光谱图按波数范围分为四大峰区,每
个峰区都对应于某些特征的振动吸收。请简述各峰区的波数范围及对应的 特征振动吸收,并在每一峰区列举至少三种属于该类特征振动吸收的具体 化学键。 3.有机分子电子跃迁类型主要有哪些?请简要回答并画出简图进行说明。 4. 影响化学位移的因素有哪些?
CH3CH2OCH2OCH CH
COOCH3
CH3CH2OCH2O
CH CH COOCH3
CH3CH2OCH2CH2OCOCH CH
OCH3

有机化合物波谱分析

有机化合物波谱分析

CH3
第三十三页,课件共76页
第三十四页,课件共76页
作业一:p.315~316,习题(二)、(三)
第三十五页,课件共76页
第三十六页,课件共76页
1945年,以F. Bloch和E. M. Purcell为首的两个研究小组分别观测 到水、石蜡中质子的核磁共振信号(nuclear magnetic resonance,NMR), 为此他们二人荣获1952年Nobel物理奖。
射射线线引引起原子核的裂变紫外光可可见光红外光光引引起分子振动和转动状态变化微波波引引起单电子自旋改变无线电波波引引起磁性核的自旋改变高能辐射区光学光谱区波谱区引起原子和分子外层价电子跃迁x射射线线使使内层电子逸出轨道波长长短文档仅供参考如有不当之处请联系本人改正
有机化合物波谱分析
第一页,课件共76页
(2) 苯环骨架呼吸振动(vC=C(Ar)):1600、1580、1500、1450cm-1
附近经常出现2~4个吸收谱带,这组谱带与vC–H(Ar)一起作为判断化合物有 无芳环的主要依据。
(3) =C–H面外变形振动吸收(γC–H(Ar)):900~690cm-1(s),依此区域吸收 峰的数目可判断苯环上取代的情况。
变形振动δ :包括对称变形振动和不对称变形振动。 对称的变形振动δs
不对称的变形振动δas
第十五页,课件共76页
8.1.2 烃类化合物的IR谱图解析
8.1.2.1 烷烃
烷烃的IR谱应关注三个吸收段的情况: (1) C–H伸缩振动(vC–H):3000~2800cm-1;
不对称(as):~2960cm-1(s)
δC–H
CH2剪切(δ):~1460cm-1(s)
(3) CH2平面摇摆(ρ):780~720cm-1(m) 。 (CH2)n,n≥4时,~720cm-1

有机波谱分析 综合图谱解析

有机波谱分析 综合图谱解析

1.某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构
1 :
2 : 9
2.某一未知化合物,其分子式为C 13H 16O 4。

已测定它的红外光谱、核磁共振谱以及紫外吸收光谱.如图,试确该未知化合物的结构。

730
750122017401030
5
λmax 260nm(ε215)
6
4
1
3、某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在210nm以上没有吸收,确定此未知物。

3
6 22
4、某未知物 C11H16 的 UV、IR、1H NMR及MS谱图数据如下,推导未知物结构。

t

1
H NMR
MS:主要的离子峰可由以下反应得到:
各谱数据与结构均相符,可以确定未知物是正戊基苯。

波谱分析综合解析

波谱分析综合解析

CH3
例3、某化合物分子式是C9H11NO(M=149),根据下列图谱解析化合物的结构, 并说明依据。
NH2
O NH C
M/Z=93
CH2 CH3
M/Z=149
M/Z=77
O
C
CH2 CH3
M/Z=57
CH2 CH3
M/Z=29
1、 一个末知物的元素分析,MS、IR、NMR、UV如图所示,是推断其结构式。
的种类
200
150
100
50
0 RANGE
Saturated carbon - sp3 no electronegativity effects
R-CH3 R-CH2-R R3CH / R4C
Saturated carbon - sp3 electronegativity effects
C-O C-Cl
一般情况下应以一种分析方法中获得的信息反馈到其他分析 方法中,各种谱学方法所获得的信息相互交换,相互印证,不断增 加信息量,这样才能快捷地获得正确结论
化合物结构推导的重点是应掌握各结构片断之间的相互关系, 推断出相互关联的结构片断。
例1 根据下列图谱确定化合物(M=72)结构,并说明依据。
解:
OO
C
C
3:根据下列图谱确定化合物(M=132)的结构,并说明依据。
O
O
H3C O
C
CH2 C
O
CH3
4:根据下列图谱确定化合物(M=86)的结构,并说明依据。
O
H3C
H2C
CH
C
H
CH3
5:某化合物C9H12O2 (M=152),根据下列图谱确定化合物的结构,并说明依据。

有机化合物波谱全面分析

有机化合物波谱全面分析

6. 溶液pH值对光谱的影响
(a) 苯酚的UV光谱图
(b) 苯胺的UV光谱图
为什么?
OHOH
H+ NH2
O NH3+
紫外光谱吸收强度的 主要影响因素
➢ 紫外光谱中,通常用摩尔吸光系数ε表示紫外光谱 的强度,根据ε的大小,通常将峰强分为以下几类
➢ ε>10000(lgε>4) 很强吸收
➢ ε= 5000~10000 强吸收
➢ K带
共轭双键的π→π*跃迁所产生的吸收带,吸收强 度大,ε>10000 (lgε>4),吸收峰在210~250 nm
吸收带的种类
➢ B带
苯环的π→π*跃迁所产生的吸收带,一般出现在 230~270 nm之间,吸收强度中等,在非极性溶 剂中呈现精细结构 (图1-9)
➢ E带
苯环烯键电子π→π*跃迁所产生的吸收带,为芳 香化合物的特征吸收,分为E1和E2两个吸收带, 为强吸收带(图1-9)
原子A的s轨道和原子B的p轨道相互作用得到σsp和σsp*两 种分子轨道
在分子轨道中,未与另一原子相互作用的原子轨道称 为n轨道
分子轨道电子跃迁能级图
分子轨道有 σ、σ*、π、π*、n 能量高低 σ<π< n <π*< σ* 跃迁所需能量的大小次序为:
σ→σ*>n→σ*≧π→π*>n→π* 其中σ→σ*及n→σ*的跃迁能量大, E 吸收的光的波长落在远紫外区域, 而n→π*和π→π*>跃迁能量较小, 落在紫外可见光的范围内
原子种类基本无关 有关
强吸收 104~105 弱吸收 <102
向长波方向移动 向短波方向移动
练习
例 判断下列化合物中电子的跃迁类型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机化合物波谱综合解析
波谱综合解析的含义:利用各种波谱分
析方法获得尽可能多的结构信息,通过 对各种波谱分析信息之间的相互对比、 印证,从而获得被分析化合物准确结构 的定性分析方法。 不同波谱分析方法在功能上既有重叠部 分,也有互补部分,在综合解吸时应该 充分发挥各自优势。 在条件允许的情况下,要充分关注 1HNMR和13CNMR,因为NMR提供数据 最丰富,可靠性最高。
MS裂解机理
例题2:UV(甲醇):λmax=236 nm,(ε=8200), 300 nm(ε=3500), 1NMR, 13CNMR, IR, MS如下,推测结构:
主要依靠NMR,特别关注偶合常数关系,
积分关系,充分利用二维NMR,以及其 他特殊NMR技术,如DEPT, 结合IR, MS, UV-Vis等数据,将可能的碎 片合理连接。 最后充分利用所有波谱分析数据对可能 结构进行确证,排除所有不合理结构。
1.
例题1:根据提 供的IR, HNMR, 13CNMR和MS 推测结构
解:设MS中m/z250为M+峰,因该峰与相邻碎片离子峰 m/z 206(M-44).m/z 178(M-72)之间关系合理,故m /z 250为分子离子峰。分子量250为偶数,说明化合 物不含氮或偶数个氮。MS中无明显含S、F、C1、Br、I 的特征碎片离子峰存在。
13C
NMR谱中有12种化学环境不同的碳,由峰的相对强 度判断,分子中应含有14个碳。1H NMR谱中积分简比 (由低场至高场)为3:2:1:2:3:4:3,简比数字之 和为18.表明分子中至少含有18个H。由以上分析可知, 当N=0时,O=4,可能分子式为C14H18O14,当N=2 时.O=2.5.不合理应舍去,故该化合物的分子式为 C14H18O14,因UN=6,所以分子中可能有苯基存在。
官能团的确定: IR: > 3100 cm-1: -NH2, -OH等活性氢的确定, <3000 cm-1>: 饱和与不饱和氢的确定,~2100 cm-1: 三键和累积双键的确定,1900~1600 cm-1 羰基的确定等。 UV-Vis: 共轭体系的确定(母核基本吸收波长+ 取代基波长变化)。 MS:不同烃类特征,苯环特征,羟基特征等。 13CNMR和HNMR:不同官能团的特征吸收。
分子碎片的确定:
主要依靠MS的裂解机理,特别注意分子
离子峰,同位素峰,脱小分子峰,重排 机理,α断裂机理,ζ断裂机理等。注意N 规则,同位素规则等确定碎片可能元素 组成。 根据质谱、分子组成信息提供所有可能 碎片。 结合其他分析方法提供的信息,排除不 合理部分。
分子骨架的确定:
第一节 波谱解析的一般程序
一、分子式(元素组成)确定:
a.由高分辨质谱测定的精确分子量计算(试误法)得到。 分子量尾数=(0.078y+0.0031z+0.0051),结合N规则进行判 断。 b.由同位素相对丰度计算: (M+1)/Mx100%=1.1x+0.37z, (M+2)/Mx100%=[(1.1x)2/200]+0.2w c.元素分析+分子量。 C数目=M*C%/12, H数目=M*H%, O数目=M*O%/16, N数目=M*N%/14
C14H5cm-1(s) νC=O,1630cm1(s),νC=C, 1600cm-1、1580cm-1、1510cm-1’为苯环 骨架振动。820cm-1(s)为苯环上两个相邻氢的面外弯曲 振动,表明为对位取代苯。 13C NMR δ114-167范围的 共振吸收峰为sp3杂化碳的共振吸.其中有苯,碳碳双 键和羰基。
活泼氢的确定:IR谱3000cm-1以上无O—H、N—H特征 吸收峰,偏共振13C NMR提供的信息表明所有的氢都 与碳直接相连.且无CHO基存在,故分子中无活泼氢 存在。
13C
NMR信息(ppm):sp3C:15.2(q)CH3-C,55.2(q)CH3O,63.6(t)CH2-O,66.5(t) CH2-O, 68.5CH2—O。 sp2C;114.4(d) 2CH=,129.8(d) 2CH=,127.2(s)的 季碳及161.5(s)的C—O表明分子中含有对位取代苯基, 且其中一个季碳与氧原子相连-ph-O-。115.4(d)与 144.6(d)为双取代烯碳[-CH=CH-)。167.0(s)为酯基碳 (-COOR),IR 11001300cm-1的强、宽谱带也证明了酯 基的存在。 1HNMR信息:1.25(3H,t)为CH3CH2-:3.6(2H,q) CH3CH2-O。3.9(3H,s)为CH3O-,且表明与不饱和基 相连。3.8(2H,t)与4.4(2H,t)相关,且与电负性取代 基氧相连,故存在-OCH2CH2O-,低场位移较大,可 能与不饱和基相连。6-8范围为6H的多重峰,由氢原 子数目、裂距、峰形的对称性分析:6.4(1H,d)与 7.65(1H,d)相关,J=16Hz,为反式双取代烯的共振吸 收峰。66.8—7.5范围的4个氢为是对位取代苯氢的共 振吸收峰。
综合以上分析,推导出该化合物的可能结构如下〔烯碳 氢互为反式):
结构若为A或B,质谱图中均应出现M-31(-OCH3)峰,此 处未观测到.故否定之。苯环上季碳的δ为161.5,表明 该碳与氧相连,1H NMR谱中δ约为6.9也表明邻位碳与氧 直接相连.而乙烯碳的δ值表明其不与氧直接相连.因向 排除结D:故化合物的结构为C:
二、不饱和度计算 Ω=C+1- H/2 – X/2 + N/2。 Ω>0, 有不饱和键结构或者环状结构。 Ω>4,有苯环结构可能。 HNMR,δ>5, 双键氢存在, δ>7,芳香氢存在, δ>9,醛氢存在 13CNMR,δ>100, 可能有不饱和碳。 IR,1600-1900cm-1之间有强峰,可能含有羰基, 3000~3100cm-1有吸收,含不饱和氢。 UV-Vis: 在200nm以上有吸收,可能有不饱和 结构。
相关文档
最新文档