复杂多环化合物芳香性的简单判定方法

合集下载

芳香性

芳香性

苯等一些化合物的结构及芳香性苯的结构一、凯库勒(Kekule)式1865年凯库勒从苯的分子式出发,根据苯的一元取代物只有一种,说明六个氢原子是等同的事实,提出了苯的环状构造式。

因为碳原子是四价的,故再把它写成简写为称为:这个式子虽然可以说明苯分子的组成以及原子间连接的次序,但这个式子仍存在着缺点,它不能说明下列问题第一、既然含有三个双键,为什么苯不起类似烯烃的加成反应?第二、根据上式,苯的邻二元取代物应当有两种,然而实际上只有一种。

凯库勒曾用两个式子来表示苯的结构,并且设想这两个式子之间的摆动代表着苯的真实结构:由此可见,凯库勒式并不能确切地反映苯的真实情况。

二、苯的稳定性氢化热是衡量分子内能大小尺度。

氢化热越大分子内能越高,越不稳定;氢化热越低,分子内能越低,分子越稳定。

1、的氢化热为119.6kj/mol2、如果苯的构造式用凯库勒式表示的话,苯的氢化热为环己烯氢化热的三倍。

119.6*3=358.8KJ/mol3、实际上苯的氢化热是208.4KJ/mol,比预计的数值低150.4KJ/mol.这是由于苯环中存在共轭体系,π电子高度离域的结果,这部分能量为苯的共轭能或离域能。

从上所述,我们可以认识到苯分子具有较低的内能,分子稳定,是一种具有特殊稳定性的物质。

三、苯分子结构的价键观点根据现代物理方法(如X射线法,光谱法等)证明了苯分子是一个平面正六边形构型,键角都是120o ,碳碳键的键长都是0.1397nm。

按照轨道杂化理论,苯分子中六个碳原子都以sp2杂化轨道互相沿对称轴的方向重叠形成六个C-C σ键,组成一个正六边形。

每个碳原子各以一个sp2杂化轨道分别与氢原子1s轨道沿对称轴方向重叠形成六个C-H σ键。

由于是sp2杂化,所以键角都是120o,所有碳原子和氢原子都在同一平面上。

每个碳原子还有一个垂直于σ键平面的p轨道,每个p轨道上有一个p电子,六个p轨道组成了大π键。

四、苯的分子轨道模型分子轨道法认为六个p 轨道线性组合成六个π分子轨道,其中三个成键轨ψ1ψ2ψ3 和三个反键轨道ψ4ψ5ψ6 。

芳香性判断技巧

芳香性判断技巧

芳香性判断技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合 4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位 2,2,6,6,符合 4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为 10 和 14,符合 Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用 Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用 Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合 Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,。

芳香性的判断

芳香性的判断
?画经典结构式时应使尽量多的双键处在轮烯上处在轮烯内外的双键写成其共振的正负电荷形式将出现在轮烯内外的单键忽略后再用hckelplatt规则判断芳香性
芳香性的判断
• 1931年德国化学家休克尔(Hückel)从分子轨道理论 的角度,对环状多烯烃(亦称轮烯)的芳香性提出了如 下规则,即Hückel规则。
14e
同芳香性
• 同芳香性是指共平面,π电子数为4n+2,共面的 原子均为sp2或sp杂化的轮烯上带有不与轮烯共 平面的取代基或桥。如:
H
R
10e 14e
反同芳香性
• 反同芳香性是指共平面,π电子数为4n,共面的 原子均为sp2或sp杂化的轮烯上带有不与轮烯共 平面的取代基或桥。如:
4e
8e
同芳结构的物质得到或失去电子成为4n体系是很 难的,因为要生成更不稳定的反同芳结构。
10e
6e
6e
14e
O
O
2e
6eΒιβλιοθήκη OO6e10e
6e
2e
• ②轮烯内部通过单键相连,且单键碳与轮 烯共用,单键忽略后,下列物质萘、蒽、 菲均有芳香性。
8e
10e
12e
14e
12e
14e
• ③轮烯外部通过单键相连,且单键碳与轮 烯共用,单键忽略后,分别计算单键所连 的轮烯的芳香性,下列物质均有芳香性。
• 其要点是:化合物是轮烯,共平面, • 它的π电子数为4n+2 (n为0,1,2,3…,n整数), • 共面的原子均为sp2或sp杂化。
1954年伯朗特(Platt)提出了周边修正法,认为可 以忽略中间的桥键而直接计算外围的电子数,对 Hückel规则进行了完善和补充。
Hückel理论的修正

芳香性判定

芳香性判定

(个人感悟详细版)芳香性:环状闭合共轭体系,π电子高度离域,具有离域能,体系能量低,较稳定.在化学性质上表现为易进行亲电取代反应,不易进行加成反应和氧化反应,这种物理,化学性质称为芳香性. 一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位2,2,6,6,符合4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为10 和14,符合Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有10 个,相当于[10]轮烯,符合Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.(成环的四个碳原子和一个杂原子都是sp2杂化,所以你看的图中 N还要再连接一个H. N总共5个电子,连接了三个达到八电子饱和故其还有一对电子对未画出,所以是两个双键4个再加N的一对孤电子对2个总共六个)吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.(貌似是一个原子提供一个π电子既然已经双键提供过一次就只算一次跟三键有点类似)两个N都与双键相连,孤对电子也都不算,还是6个π电子(跟刚才上面解释差不多相当于3个双键)有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子(上面三个题的组合即没有双键的N提供电子对有双键的按提供一个所以是两个双键加一个电子对的2个π电子共六个)这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.(遇到这种没双键的但是有正负电子的我一般是先数双键然后数几个折角即连接处然后是正的话减去减去正的个数是负的话加上负的个数理论依据是正电荷的话使其sp杂化而负电荷的话使其sp2杂化)这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.(理由同上)图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.(遇到这种先拆开难理解的双键然后再分成若干小原子团)因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,(貌似是无机的知识三键算一个双键)。

芳香性和构型的判断依据

芳香性和构型的判断依据
完全共轭的、单环的、平面多烯来说,具有(4n+2)个π电子(这里n是大于或等于零的整数)的分子,可能具有特殊芳香稳定性。
从休克尔规则我们可以得知,具有芳香性的通常是具有如下四个特点的分子:
(1)它们是包括若干数目键的环状体系,具有(4n+2)个π电子(这里n是大于或等于零的整数),换句话说,不在环状体系中的双键不要算在里面;
2.费舍尔(Fischer)式中判断依据:
在费舍尔(Fischer)式中如何快速的判断R/S呢?当最小的基团处在横轴方向上时,其他基团从大到小按顺时针方向旋转,是S,按逆时针时,是R;当最小的基团处在竖轴的方向上时,其他基团从大到小按顺时针方向旋转,是R,按逆时针时,是S.(记忆方法,与立体状态下判断依据相比,竖同横不同。)
例如: ,所以是R构型。
2011年9月18日
例如: 中i双键不算在内,该化合物具有芳香性。
(2)它们具有平面结构,或至少非常接近平面(平面扭转不大于0.1nm);
例如: 不具有芳香性,因为1,2号碳上的氢的排斥力使两个苯环不在同一个平面上
(3)环上的每一个原子必须是sp2杂化(某些情况也可以是sp杂化);
例如: 不具有芳香性,1号碳是sp3杂化,变成 就具有芳香性了。
(4)环上的电子能够发生离域。
按照上面的几点判断,能够解决绝大多数考试题目了,但并不是所以的芳香性判断问题。
二.关于R/S构型的判断
1.立体状态下判断依据:将与手性碳相连的四个基团按顺序排列大小(关于大小次序一般的教材上有,自己查找),将最小的基团放在力离眼睛最远的地方,其他三个基团按由大到小的方向旋转,顺时针的为R,逆时针的为S.(可以这么记忆,顺时针就是箭头向右转,right的首字母是R,相对的,是S。)

芳香性判断

芳香性判断

芳香性:环状闭合共轭体系,π电子高度离域,具有离域能,体系能量低,较稳定.在化学性质上表现为易进行亲电取代反应,不易进行加成反应和氧化反应,这种物理,化学性质称为芳香性. 一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把 n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π电子数是否符合 4n+2.[18]轮烯环上碳原子基本上在一个平面内,π电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π电子数分别位 2,2,6,6,符合4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π电子数分别为 10 和 14,符合 Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用 Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π电子,也可用 Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π电子有 10 个,相当于[10]轮烯,符合 Hückel 规则(n=2),也具有芳香性.三.π电子数的计算也许你在做题目的时候对于π电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性. 两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,http://206.108.48.51/forumdisplay.php?fid=63。

芳香性判断技巧

芳香性判断技巧

之迟辟智美创作一,芳香性判据——Hückel规则 Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等. 二,一些非苯芳烃 1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转酿成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不单组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转酿成了平面正八边形,且有10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位2,2,6,6,符合4n+2(n 分别位0,0,1,1). 具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为10 和14,符合Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用Hückel 规则来判断其芳香性. 与萘,蒽,等稠环芳烃相似,对非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用 Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合 Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有毛病还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N 都与双键相连,孤对电子也都不算,还是6个π电子有一个N 与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有到达共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去失落再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个ππ电子,上面的三元环有2π三键中两π键互相垂直,孤只有一个能与其他双键共轭,。

芳香性判断——精选推荐

芳香性判断——精选推荐

芳香性判断13144233周楠乳品2班摘要 :探讨了几类环状化合物“芳香性”的判断方法 ,阐述了解决这类问题的基本思路.关键词:环状化合物 ;芳香性 ;判断方法。

正文:关于“芳香性”的早期定义是考虑动力学稳定性 ,即化合物的取代反应比加成反应更容易发生. 后来定义则依靠化学的稳定性 ,以共振能的大小来量度. 最近的定义提供用光谱及核磁的标准 ,磁有向性在平面π电子体系中能受感应 ,并可用质子磁共振 (Pmr)光谱中位移到较低的场来检定或借反磁性的灵敏度上升的测定 ,π电子流也产生电子光谱 ,和简单的共轭烯类所显示的光谱有重大的不同.关于“芳香性”的另一种物理标准 ,为整个芳香体系具有相同键长和共平面的特性 ,这种分析需要 X光结晶学、微波光谱或电子衍射技术。

一.关于芳香性概念芳香性是化学中使用频率最高且最重要的概念之一。

“芳香性”研究真正始于1825年,因为当年Michael Faraday 成功分离出具有特殊芳香气味的苯。

此后人们把具有类似气味的化合物统称为芳香化合物。

最初芳香性内涵特指像苯及其衍生物之类的有机分子的化学反应性质的总称,认为芳香分子,如苯、萘、蒽,是平面环状的、共轭的、含有4n+2个π电子,并且具有容易进行亲电取代反应,但不易发生加成、氧化等特殊的化学性质。

然而环丁二烯和环辛四烯化学性质活泼,分别具有4、8个π电子,则具有反芳香性。

容易看出,早期芳香性定义实际上是一个特别强调化学反应性能的“化学定义”。

随着研究的深入,当前芳香化合物已经先后扩展到杂原子分子、有机金属、全金属化合物。

在范畴上,已经成功地实现了从有机物到无机物、由非金属化合物到全金属化合物的过渡;在几何结构上,也从最初的二维平面分子延展到准平面分子,甚至三维封闭式笼状分子;类型上,由早期单纯的π型芳香性扩展到σ芳香性甚至δ芳香性。

二.常见芳香性判据及讨论芳香性的判据和定义是密切相关的。

所谓判据就是判断是否具有芳香性的依据或标准。

芳香性的判断

芳香性的判断
烯上,处在轮烯内外的双键写成其共振的正 负电荷形式,将出现在轮烯内外的单键忽略 后,再用Hückel-Platt规则判断芳香性。
14e
A
B
C
12e
D
E
F
14e
G
H
①双键与轮烯直接相连,计算电子数时,将双键写成 其共振的电荷结构,负电荷按2个电子计,正电荷按0 计,内部不计。如下面物质均有芳香性:
14e
同芳香性
• 同芳香性是指共平面,π电子数为4n+2,共面的 原子均为sp2或sp杂化的轮烯上带有不与轮烯共 平面的取代基或桥。如:
H
R
10e 14e
反同芳香性
• 反同芳香性是指共平面,π电子数为4n,共面的 原子均为sp2或sp杂化的轮烯上带有不与轮烯共 平面的取代基或桥。如:
4e
8e
同芳结构的物质得到或失去电子成为4n体系是很 难的,因为要生成更不稳定的反同芳结构。
结束语
谢谢大家聆听!!!
15
• 其要点是:化合物是轮烯,共平面, • 它的π电子数为4n+2 (n为0,1,2,3…,n整数), • 共面的原子均为sp2或sp杂化。
1954年伯朗特(Platt)提出了周边修正法,认为可 以忽略中间的桥键而直接计算外围的电子数,对 Hückel规则进行了完善和补充。
Hückel理论的修正
• 周边修正法 • 一些稠环烃可将之看成轮烯。 • 画经典结构式时,应使尽量多的双键处在轮
hckel画经典结构式时应使尽量多的双键处在轮烯上处在轮烯内外的双键写成其共振的正负电荷形式将出现在轮烯内外的单键忽略后再用hckelplatt规则判断芳香性
芳香性的判断
• 1931年德国化学家休克尔(Hückel)从分子轨道理论 的角度,对环状多烯烃(亦称轮烯)的芳香性提出了如 下规则,即Hückel规则。

多环化合物的芳香性

多环化合物的芳香性

多环化合物的芳香性摘要介绍了简单判断多环化合物的芳香性、非芳香性、反芳香性、同芳香性及反同芳香性的方法及其在有机化学中的应用。

关键词多环化合物芳香性反芳香性同芳香性1芳香性、非芳香性、反芳香性、同芳香性及反同芳香性的判断芳烃一般具有苯环结构,它们是环状闭合共轭体系,π电子高度离域,体系能量低,较稳定。

在化学性质上表现为易进行亲电取代反应,不易进行加成和氧化反应,即具有不同程度的芳香性。

是不是具有芳香性的化合物一定具有苯环?1931年德国化学家休克尔(Hückel)从分子轨道理论的角度,对环状多烯烃(亦称轮烯)的芳香性提出了如下规则,即Hückel规则。

其要点是:化合物是轮烯,共平面,它的π电子数为4n+2(n为0,1,2,3…,n整数),共面的原子均为sp2或sp杂化。

1954年伯朗特(Platt)提出了周边修正法,认为可以忽略中间的桥键而直接计算外围的电子数,对Hückel规则进行了完善和补充。

(1)芳香性(轮烯,共平面,π电子数为4n+2,共面的原子均为sp2或sp 杂化),一些稠环烃也可将之看成轮烯。

画经典结构式时,应使尽量多的双键处在轮烯上,处在轮烯内外的双键写成其共振的正负电荷形式,将出现在轮烯内外的单键忽略后,再用Hückel-Platt规则判断。

下面的化合物A和D周边分别有双键6个和5个,此时直接判断他们的芳香性就会造成错误。

所以首先应将他们改写成尽量多的双键处在轮烯上的B和E 式,B和E分别有双键7个和6个,将内部的双键写成其共振的正负电荷形式C 和F后,将出现在轮烯内外的单键忽略,用Hückel-Platt规则判断得A,G为芳香性物质,D不是芳香性物质。

①双键与轮烯直接相连,计算电子数时,将双键写成其共振的电荷结构,负电荷按2个电子计,正电荷按0计,内部不计。

如下面物质均有芳香性。

②轮烯内部通过单键相连,且单键碳与轮烯共用,单键忽略后,下列物质萘、蒽、菲均有芳香性。

芳香性判断技巧

芳香性判断技巧

芳香性判断技巧The final revision was on November 23, 2020一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn?)又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合 4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位 2,2,6,6,符合4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为 10 和 14,符合 Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用 Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用 Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合 Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,。

试论环状化合物_芳香性_的判断方法

试论环状化合物_芳香性_的判断方法

第25卷 第4期高师理科学刊Vol .25 No .42005年 11月Journal of Science of Teachers ′College and University Nov . 2005 收稿日期:2005-06-12 作者简介:夏新泉(1965-),男,湖北浠水人,高级讲师. 文章编号:1007-9831(2005)04-0041-03试论环状化合物“芳香性”的判断方法夏新泉(湖北师范学院化学与环境工程系,湖北黄石435002)摘要:探讨了几类环状化合物“芳香性”的判断方法,阐述了解决这类问题的基本思路.关键词:环状化合物;芳香性;判断方法中图分类号:O625 文献标识码:A 学习有机化学,我们经常会碰到“芳香性”这一概念,如何确定一个化合物是否有“芳香性”呢?关于“芳香性”的早期定义是考虑动力学稳定性,即化合物的取代反应比加成反应更容易发生.后来定义则依靠化学的稳定性,以共振能的大小来量度.最近的定义提供用光谱及核磁的标准,磁有向性在平面π电子体系中能受感应,并可用质子磁共振(P m r )光谱中位移到较低的场来检定或借反磁性的灵敏度上升的测定,π电子流也产生电子光谱,和简单的共轭烯类所显示的光谱有重大的不同.关于“芳香性”的另一种物理标准,为整个芳香体系具有相同键长和共平面的特性,这种分析需要X 光结晶学、微波光谱或电子衍射技术[1].1 “芳香性”及休克耳规则分子轨道计算提出了关于“芳香性”的另一标准,轨道的占据比非定域能的大小具有更为基础的意义.关于芳香化合物的π能量的能级图解显示成键轨道完全充满,非键轨道或全空或完全充满,形成了一个“封闭壳”或“充满壳”体系(因为在平面单环体系中,只有1个能量最低轨道,而有1对或几对能量较高的轨道).由s p 2杂化原子组成的平面单环体系的分子轨道通常是有一个能量最低的成键轨道,然后是能量较高的2个能量相等的轨道(即简并轨道),一直到能量最高的轨道.如:环丁二烯、苯的π能量的能级图解如下[2]. 图1 环丁二烯π能量的能级图解 图2 苯的π能量的能级图解 所以,若要充满一定能级的轨道,在这种π体系中就要有2,2+4,2+4+4,2+4+4+4.即2,6,10,14,…个电子.Huckel 认为,分子若要显示芳香性,则在π体系中其电子数必须符合4n +2这个数字,这里的n 是整数,可以是0,1,2,3,…,换言之,凡是含有4n +2个π电子的平面单环化合物应具有芳香性.这就是Huckel 规则.2 π电子的计算利用“4n +2”规则判断单环共平面化合物的“芳香性”简洁明了,现在的问题是如何计算共平面环状 化合物的π电子数,这方面内容在一般教材中是一笔带过,或直接给出结果,如何推导?学生无从知晓,面对课后的习题也感到无从下手.所以,笔者认为教师在讲述这部分内容时,既要简要讲明Hukcel 规则的由来,更重要的是教会学生如何求算环状化合物的π电子数.2.1 碳原子组成的平面单环化合物π电子的计算及芳香性判断平面碳环化合物中,碳原子一般以s p 2杂化形式出现,其轨道表示式为: 2p ↑ s p 2 ↑↑↑其中3个s p 2轨道依次与2个碳原子和1个氢原子形成如下三角形平面结构:C 3原子以3个s p 2电子分别与2个碳原子1个氢原子,形成3个共价键,余下1个电子居2p轨道,2p 轨道与左边三角形平面垂直,所以每一个以s p 2杂化的碳原子必有一个垂直该杂化碳原子所在的三角形平面的p 轨道,p 轨道中占据1个电子,而形成环π键的正是由多个垂直环平面的p 轨道侧面重叠而形成,即形成π键的电子数等于s p 2杂化的碳原子数.如:C 4H 4环丁二烯有4个s p 2杂化碳原子,所以π电子数为“4”,C 6H 6苯有6个s p 2杂化碳原子,π电子数为“6”.若环状化合物带电荷时,则π电子数等于环中s p 2杂化碳原子数减去环所带正电荷数或加上环所带数负电荷数.如:环丙烯基正碳离子,π电子数=3(3个s p 2杂化碳原子)-1(带1个正电荷)=2.环戊二烯负离子:π电子数=5+1=6.如碳环环外含有较强吸电子基团时,例:2,4,6———环庚三烯酮,由于C =O 键的吸电子作用,C =O 中碳的电子云偏向氧,呈正电性,即该碳原子2p 轨道上的电子数为零,则构成碳环大π键的电子个数为3个双键π电子数之和,等于6,说明以上碳环化合物有芳香性.2.2 稠环碳环化合物π电子数的计算及芳香性判断[3]若把Hukcel 规则用于稠环化合物,则主要考虑稠环化合物外围(及周边)的π电子数.如果电子数符合4n +2数目,该化合物就有芳香性.萘、薁、蒽、菲都是平面型分子,其外围π电子数分别是10,10,14和14,在芘这种平面型分子中,虽然有16个π电子,但外围只有14个π电子,因而芘也有芳香性.2.3 环化合物π电子数计算及“芳香性”的判断常见的单杂环有呋喃、噻吩、吡咯、吡啶等.其结构如下:若要化合物中几个原子共平面,则每个成环原子均须采用s p 2杂化,其中每个杂化碳原子可提供1个p 电子形成大π键,故呋喃中4个碳原子均给出1个π电子,氧原子s p 2杂化轨道表示式为: 2p ↑↓ s p 2 ↑↓↑↑ 或许有人要问,为什么氧原子的s p 2杂化轨道只有1个轨道充满?原因在于氧原子还需与另外2个碳原子分别形成C -O 单键,所以氧原子s p 2杂化轨道须有2个s p 2孤电子与相临2个碳原子形成C -O 键.那么与环平面垂直的2p 轨道上就有2个p 电子,氧原子可给出2个π电子,故呋喃的π电子由4个碳原子提供4个p 电子和氧原子提供的2个p 电子构成,一共有6个π电子,符合Huckel 规则,有芳香性.噻吩与呋喃结构类似,故一样有芳香性.吡咯分子中,4个碳原子如前例,可推得它们共提供4个电子,氮原子因与2个碳原子和一个氢原子成单键,即2C -N ,1N -H 键,24高师理科学刊第25卷  因此氮原子的s p 2杂化轨道表示式应写为: 2p ↑↓ s p2 ↑↑↑则吡咯分子中氮原子给出2个π电子,那么吡咯环的π电子数为4个碳原子给出的4个p 电子和氮原子提供的2个p 电子构成,共计6个π电子,符合4n +2规则,有芳香性.实验证明,吡咯无碱性却有一定弱酸性,这也从一个方面说明氮原子2p 轨道上的2个电子(即孤电子对)参与了大π键.而吡啶环中5个碳原子共提供5个π电子,氮原子因只与2个碳原子成键,所以氮原子须与2个碳原子形成2个σ键,氮原子的s p 2杂化轨道表示式可写为: 2p ↑ s p2 ↑↓↑↑ 即氮原子只提供1个2p 电子参与形成π键,其π电子数为5个碳原子给出的5个π电子和氮原子给出的1个π电子组成,符合4n +2规则,有芳香性.吡啶的化学性质表明它有弱碱性,这说明吡啶分子中氮原子的孤电子对未参与形成大π键,与理论推导的结果相吻合.同理,稠杂环化合物π电子的计算也可参照以上方法依次类推.总之,有杂原子参与构环时,判断它提供几个π电子,可先看该杂原子与几个相临原子键合,从而确定杂原子的s p 2杂化轨道表示式,从中可求出余下的p 电子数,即为该原子提供的π电子数.综上所述,化合物的“芳香性”判断,首先要从解剖该化合物的结构入手,对每一个构环原子的成键方式要仔细分析,抓住有芳香性的化合物其结构一定是平面的特点,既然是平面结构,那么构环原子一定采用s p 2杂化,再由该原子与相临原子的结合方式,即可写出该原子杂化状态下的价电子轨道表示式,从没有参与杂化的p 轨道电子数就可以求出该原子给出的π电子数,将成环原子给出的π电子数加在一起,若总数符合Huckel 规则,则所分析对象有芳香性.参考文献:[1]杜诗初,斯久敏,李长轩.高等有机化学选论[M ].郑州:河南大学出版社,1990.[2]邢其毅,徐瑞秋,周正.基础有机化学(上)[M ].北京:高等教育出版社,1980.[3]钱旭红.有机化学[M ].北京:化学工业出版社,2000.[4]胡宏纹.有机化学[M ].北京:高等教育出版社,1991.[5]徐积功.有机化学基础[M ].北京:高等教育出版社,1988.[6]恽宏魁.有机化学[M ].北京:高等教育出版社,1990.On the exp l orati on of esti m ating ar omaticity in cyclic compoundX I A Xin -quan(School of Che m istry and Envir onment Engineering,Hubei Nor mal College,Huangshi 435002,China )Abstract:The methods about identifing ar o maticity of s o me kinds of cyclic compounds was exp l orated,and have found out the way of res olving this p r oblem.Keywords:cyclic compound;ar omaticity;judge method34 第4期夏新泉:试论环状化合物“芳香性”的判断方法。

芳香性判断技巧

芳香性判断技巧

芳香性判断技巧芳香性判断技巧The final revision was on November 23, 2020 一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn?)又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位 2,2,6,6,符合4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为 10 和 14,符合Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有10 个,相当于[10]轮烯,符合Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N 上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,。

芳香性判断技巧

芳香性判断技巧

一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环xx,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环xx的碳原子是否均处于一个平面内,其次看π 电子数是否符合 4n+2.[18]轮烯环xx碳原子基本xx在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环xx碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面xx,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环xx两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π电子数分别位 2,2,6,6,符合 4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面xx,且π 电子数分别为 10 和14,符合Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环xx,可看成是单环共轭多烯,故可用Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子xx的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键xx的4个电子,共有6电子,有芳香性.吡啶xxN原子xx连有双键,Nxx孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以xx的思路,与双键相连的Nxx的孤对电子不算进去,而右边的N原子xx的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键xx间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和xx面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图xx有2个碳负离子,还有3个双键,有10个π电子.图xx左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,xx面的三元环有2π电子.都有芳香性.因为三键xx两π键互相垂直,孤只有一个能与其他双键共轭,。

综述:芳香性

综述:芳香性

综述:芳香性概述“芳香性”是用于描述一些环状化合物特殊稳定性的概念。

在有机化学中, 尤其是针对不饱和环体系、多环体系研究中居重要地位。

自1825年Michael Faraday从煤焦油中分离出苯开始, 芳香化学至今已有近200年的历史。

为了深入了解“芳香性”及其在自然学科中产生的深远影响, 本文简述了其发展历史与本质, 并对芳香性的判断方法进行归类总结。

除了列举实例, 进一步对芳香化合物进行分类以外, 还基于本课题组近年的研究成果, 提出一些新观点。

芳香性的含义“芳香性”一词自使用以来, 科学家们不断发现具备该性质的化合物的各种特征, 并进行了总结与归纳。

这些特征, 一部分是规律的总结, 例如[4n+2]规则; 另一部分则是对化合物本身特征的描述, 例如平面性、键长平均化等。

随着科学研究的不断推进, 其中一些观点被修正甚至推翻, 但仍有一些经典的描述被保留并沿用至今。

仔细考察芳香性的历史, 我们发现“芳香性”事实上是用于描述化合物的特殊稳定性的概念。

换句话说,“芳香性”是一个描述行为特征, 而非表达理论规律的术语。

因此, “芳香性”应该由此类化合物的本质属性决定, 而“芳香性”规律则是对芳香化合物普遍性质的总结。

本文就“传统芳香化合物”的行为特征进行了总结(指Hückel 平面芳香性), 并列于下表中。

另外, 对近年发展的一些芳香性的独特类型, 本文也将结合实例逐一介绍。

通常, 芳香环由于其特殊的稳定性, 化学反应性相对其他非芳香环系要弱得多。

早在1866 年, Erlenmeyer就已经提出了芳香性的反应性判据。

在一般不饱和体系极易发生的反应, 如加成、开环反应中, 在芳香体系均较难实现。

通常芳香环更容易发生取代反应。

核磁共振化学位移(NMR Chemical Shift)芳香化合物产生的独特抗磁环电流, 会导致周围的磁场环境发生变化。

例如苯分子的6个H 原子均处于抗磁环电流的去屏蔽区域,因此其1H NMR 的化学位移值会向低场移动(δ=7。

最新7章芳香性全解教学讲义ppt

最新7章芳香性全解教学讲义ppt

2 (porphine)
9
1
10
20
11
N
NH
12
19 18
13
14 15
16
17
8
7
10
5
1
15
20
17 18
3
5
4
2
21
22
1
NH
N
20
24 N
HN 23
β - Positions (2, 3, 7, 8, 12, 13, 17, 18)
α - Positions (1, 4, 6, 9, 11, 14, 16, 19)
H2C
R
R
N N
I
II
NIVBiblioteka III VVIIIA
VIIIB
对于上列化合物VIIIA, 可以发现它周围的电子数为10, 满足4n+2 规则,但实际上这个化合物并不具备芳香性。 当将其改写成VIIIB时,虽然仍是此化合物,但这时的电 子数为12个,不符合4n+2规则,所以不是芳香性化合物。
因此,可以得出结论,当稠环的中间双键不对体系的离域 共轭电子体系有影响时,即其只为保持整个化合物的平面构 型时,这样的双键才可以被忽略,这时才可以正确使用 周边修正法
几种典型的芳香性反芳香性非芳香性质体化合物电子数化合物电子数芳香性质体1010环丙烯负离子非芳香性质体化合物电子数反芳香性质体环戊二烯正离子为4n环庚三烯负离子同芳香性是用来描述一个稳定的环状共轭体系是越过一个或者两个饱和c原子而形成的环状体系电子数符合4n2由于它具有芳香性分子的结构和性质特点称这类质体为同芳香性质体如环辛三烯正离子135环辛三烯正离子越过一个饱和c原子后形成一个闭合的共轭体系电子数为6符合4n74同芳香性

复杂多环化合物芳香性的简单判定方法_袁履冰

复杂多环化合物芳香性的简单判定方法_袁履冰
第 19 卷
第4期
大学化学
2004 年 8 月
师生笔谈
复杂多环化合物芳香性的简单判定方法
袁履冰 郝明
大连 116012) ( 大连理工大学化工学院
摘要
阐述有机化学中芳香性判断问题 , 用 简单方法说明判断复杂多环化合物的芳香性。
自上世纪 30 年代以来, 芳香性问题一直是理论有机化学领域研究的热点和难点, 至今尚 缺乏一个覆盖面广的芳香性判据。本文从 H ckel 提出的 4 n + 2 规则出发, 具体阐述对于复杂 多环化合物用 H ckel 理论修正的一些简单判定方法。 1 芳香性的历史发展 一般地, 芳香性化合物具有几个重要特征 : 碳碳键平均化, 键长小于碳碳单键, 但大于碳碳 双键 ; 具有平面或者接近平面的环状结构, 并且具有全封闭的离域电子层; 性质比较稳定 , 不易 发生氧化或还原反应 ; 具有较高的共振能等等。但是就某一个特征来说都可以找到例外 , 所以 说芳香性的判定并没有一个完备的定义来概括[ 1] 。 1931 年, H ckel 提出了著名的 4 n + 2 规则, 这个理论一直沿用至今 , 现在仍然是判定芳香 性的主要依据。但是 , H ckel 理论只适用于 n 物并不适用, 例如( 修正方法。
因此, 可以得出结论 , 当稠环的中间双键不对体系的离域共轭
电子系有影响时, 即其只
为保持整个化合物的平面结构时, 这样的双键才可以被忽略 , 这时才可以正确地应用周边修正 法。 2. 2 双键修正法 这是 H ckel 理论的另一修正方法, 这种修正法就是忽略某些双键在芳环体系中的影响 , 即可以忽略其中间的双键 , 直接考虑其芳香性问题。 这种方法的实际应用并不如周边修正法的应用那样广泛 , 但是同样可以应用其解决复杂 稠环芳烃的芳香性判定问题。 例如化合物 ( ) , 既无法应用周边修正法来说明其是否具有芳香性, 其 电子数目也不符 合 4 n + 2 规则, 但此化合物却具有芳香性。用什么方法能作为其芳香性的判据呢? 这里可以 使用双键修正法。

复杂多环化合物芳香性的简单判定方法

复杂多环化合物芳香性的简单判定方法

复杂多环化合物芳香性的简单判定方法判断复杂多环化合物的另一个简单方法就是单键修正法。

当一个或者多个芳香环之间通过一个单键相连,这时可以将单键忽略,直接考虑化合物的芳香性问题。

扩展资料:
判断复杂多环化合物的另一个简单方法就是单键修正法。

当一个或者多个芳香环之间通,过一个单键相连,这时可以将单键忽略,直接考虑化合物的芳香性问题。

这就是所谓的单键修正法。

芳香性是指在化学性质上表现为易进行亲电取代反应,不易进行加成反应和氧化反应。

芳香性的特征是环状闭合共轭体系,π电子高度离域,具有离域能,体系能量低,较稳定。

多环化合物的芳香性

多环化合物的芳香性

多环化合物的芳香性摘要介绍了简单判断多环化合物的芳香性、非芳香性、反芳香性、同芳香性及反同芳香性的方法及其在有机化学中的应用。

关键词多环化合物芳香性反芳香性同芳香性1芳香性、非芳香性、反芳香性、同芳香性及反同芳香性的判断芳烃一般具有苯环结构,它们是环状闭合共轭体系,π电子高度离域,体系能量低,较稳定。

在化学性质上表现为易进行亲电取代反应,不易进行加成和氧化反应,即具有不同程度的芳香性。

是不是具有芳香性的化合物一定具有苯环?1931年德国化学家休克尔(Hückel)从分子轨道理论的角度,对环状多烯烃(亦称轮烯)的芳香性提出了如下规则,即Hückel规则。

其要点是:化合物是轮烯,共平面,它的π电子数为4n+2(n为0,1,2,3…,n整数),共面的原子均为sp2或sp杂化。

1954年伯朗特(Platt)提出了周边修正法,认为可以忽略中间的桥键而直接计算外围的电子数,对Hückel规则进行了完善和补充。

(1)芳香性(轮烯,共平面,π电子数为4n+2,共面的原子均为sp2或sp 杂化),一些稠环烃也可将之看成轮烯。

画经典结构式时,应使尽量多的双键处在轮烯上,处在轮烯内外的双键写成其共振的正负电荷形式,将出现在轮烯内外的单键忽略后,再用Hückel-Platt规则判断。

下面的化合物A和D周边分别有双键6个和5个,此时直接判断他们的芳香性就会造成错误。

所以首先应将他们改写成尽量多的双键处在轮烯上的B和E 式,B和E分别有双键7个和6个,将内部的双键写成其共振的正负电荷形式C 和F后,将出现在轮烯内外的单键忽略,用Hückel-Platt规则判断得A,G为芳香性物质,D不是芳香性物质。

①双键与轮烯直接相连,计算电子数时,将双键写成其共振的电荷结构,负电荷按2个电子计,正电荷按0计,内部不计。

如下面物质均有芳香性。

②轮烯内部通过单键相连,且单键碳与轮烯共用,单键忽略后,下列物质萘、蒽、菲均有芳香性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档