高中数学选修2-3模块综合测试试卷(含答案)
高中数学选修2-3全册综合能力测试题含解析人教版
⾼中数学选修2-3全册综合能⼒测试题含解析⼈教版⾼中数学选修2-3全册综合能⼒测试题(含解析⼈教版)⾼中数学选修2-3全册综合能⼒测试题(含解析⼈教版)时间120分钟,满分150分。
⼀、选择题(本⼤题共12个⼩题,每⼩题5分,共60分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.)1.将标号为1,2,3,4,5,6的6张卡⽚放⼊3个不同的信封中,若每个信封放2张,其中标号为1,2的卡⽚放⼊同⼀信封,则不同的放法共有()A.12种B.18种C.36种D.54种[答案]B[解析]由题意,不同的放法共有C13C24=18种.2.(2014四川理,2)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10[答案]C[解析]x3的系数就是(1+x)6中的第三项的系数,即C26=15.3.某展览会⼀周(七天)内要接待三所学校学⽣参观,每天只安排⼀所学校,其中甲学校要连续参观两天,其余学校均参观⼀天,则不同的安排⽅法的种数是() A.210B.50C.60D.120[答案]D[解析]⾸先安排甲学校,有6种参观⽅案,其余两所学校有A25种参观⽅案,根据分步计数原理,安排⽅法共6A25=120(种).故选D.4.若随机变量ξ~N(-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率() A.(2,4]B.(0,2] C.[-2,0)D.(-4,4][答案]C[解析]此正态曲线关于直线x=-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.5.变量X与Y相对应的⼀组数据为(10,1)、(11.3,2)、(11.8,3)、(12.5,4)、(13,5);变量U与V相对应的⼀组数据为(10,5)、(11.3,4)、(11.8,3)、(12.5,2)、(13,1).r1表⽰变量Y与X之间的线性相关系数,r2表⽰变量V与U之间的线性相关系数,则()A.r2r10B.0r2r1C.r20r1D.r2=r1[答案]C[解析]画散点图,由散点图可知X与Y是正相关,则相关系数r10,U与V是负相关,相关系数r20,故选C. 6.现安排甲、⼄、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每⼈从事翻译、导游、礼仪、司机四项⼯作之⼀,每项⼯作⾄少有⼀⼈参加.甲、⼄不会开车但能从事其他三项⼯作,丙、丁、戊都能胜任四项⼯作,则不同安排⽅案的种数是()A.152B.126C.90D.54[答案]B[解析]先安排司机:若有⼀⼈为司机,则共有C13C24A33=108种⽅法,若司机有两⼈,此时共有C23A33=18种⽅法,故共有126种不同的安排⽅案.7.设a=0π(sinx+cosx)dx,则⼆项式(ax-1x)6展开式中含x2项的系数是()A.192B.-192C.96D.-96[答案]B[解析]由题意知a=2∴Tr+1=Cr6(2x)6-r(-1x)r=Cr626-r(-1)rx3-r ∴展开式中含x2项的系数是C1625(-1)=-192.故选B. 8.给出下列实际问题:①⼀种药物对某种病的治愈率;②两种药物冶疗同⼀种病是否有区别;③吸烟者得肺病的概率;④吸烟⼈群是否与性别有关系;⑤⽹吧与青少年的犯罪是否有关系.其中,⽤独⽴性检验可以解决的问题有()A.①②③B.②④⑤C.②③④⑤D.①②③④⑤[答案]B[解析]独⽴性检验主要是对事件A、B是否有关系进⾏检验,主要涉及两种变量对同⼀种事物的影响,或者是两种变量在同⼀问题上体现的区别等.9.在⼀次独⽴性检验中,得出列联表如下:AA合计B2008001000B180a180+a合计380800+a1180+a且最后发现,两个分类变量A和B没有任何关系,则a 的可能值是()A.200B.720C.100D.180[答案]B[解析]A和B没有任何关系,也就是说,对应的⽐例aa +b和cc+d基本相等,根据列联表可得2001000和180180+a基本相等,检验可知,B满⾜条件.故选B. 10.从装有3个⿊球和3个⽩球(⼤⼩、形状相同)的盒⼦中随机摸出3个球,⽤ξ表⽰摸出的⿊球个数,则P(ξ≥2)的值为()A.110B.15C.12D.25[答案]C[解析]根据条件,摸出2个⿊球的概率为C23C13C36,摸出3个⿊球的概率为C33C36,故P(ξ≥2)=C23C13C36+C33C36=12.故选C.11.甲、⼄、丙三位学⽣⽤计算机联⽹学习数学,每天上课后独⽴完成6道⾃我检测题,甲及格的概率为45,⼄及格的概率为35,丙极格的概率为710,三⼈各答⼀次,则三⼈中只有⼀⼈及格的概率为()A.320B.42135C.47250D.以上都不对[答案]C[解析]利⽤相互独⽴事件同时发⽣及互斥事件有⼀个发⽣的概率公式可得所求概率为:45×1-35×1-710+1-45×35×1-710+1-45×1-35×710=47250.故选 C. 12.(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4[答案]B[解析]解法1:(1-x)6(1+x)4的展开式中x的⼀次项为:C06C24(x)2+C26(-x)2C04+C16(-x)C14(x)=6x+15x -24x=-3x,所以(1-x)6(1+x)4的展开式中x的系数是-3.解法2:由于(1-x)6(1+x)4=(1-x)4(1-x)2的展开式中x的⼀次项为:C14(-x)C02+C04C22(-x)2=-4x+x=-3x,所以(1-x)6(1+x)4的展开式中x的系数是-3.⼆、填空题(本⼤题共4个⼩题,每⼩题4分,共16分,将正确答案填在题中横线上)13.设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=________.[答案]0[解析]本题主要考查⼆项展开式.a10=C1021(-1)11=-C1021,a11=C1121(-1)10=C1021,所以a10+a11=C1121-C1021=C1021-C1021=0.14.已知ξ的分布列为:ξ1234P14131614则D(ξ)等于____________.[答案]179144[解析]由已知可得E(ξ)=1×14+2×13+3×16+4×14=2912,代⼊⽅差公式可得D(ξ)=179144. 15.对于回归⽅程y=4.75x+2.57,当x=28时,y的估计值是____________.[答案]135.57[解析]只需把x=28代⼊⽅程即可,y=4.75×28+2.57=135.57.16.某艺校在⼀天的6节课中随机安排语⽂、数学、外语三门⽂化课和其它三门艺术课各1节,则在课表上的相邻两节⽂化课之间最多间隔1节艺术课的概率为________(⽤数字作答).[答案]35[解析]本题考查了排列组合知识与概率的求解.6节课共有A66种排法,按要求共有三类排法,⼀类是⽂化课与艺术课相间排列,有A33A34种排法;第⼆类,艺术课、⽂化课三节连排,有2A33A33种排法;第三类,2节艺术课排在第⼀、⼆节或最后两节,有C23C12A22C13A33种排法,则满⾜条件的概率为A33A34+2A33A33+C23C12A22C13A33A66=35.三、解答题(本⼤题共6个⼩题,共74分,解答应写出⽂字说明、证明过程或演算步骤)17.(本题满分12分)已知x+2xn的展开式中第五项的系数与第三项的系数⽐是101,求展开式中含x的项.[解析]T5=C4n(x)n -42x4=C4n24xn-122,T3=C2n(x)n-22x2=C2n22xn-62,所以C4n24C2n22=101,即C4n22=10C2n,化简得n2-5n-24=0,所以n=8或n=-3(舍去),所以Tr+1=Cr8(x)8-r2xr=Cr82rx8-3r2,由题意:令8-3r2=1,得r=2.所以展开式中含x的项为第3项,T3=C2822x=112x.18.(本题满分12分)某电脑公司有6名产品推销员,其中5名的⼯作年限与年推销⾦额数据如下表:推销员编号12345⼯作年限x/年35679推销⾦额Y/万元23345(1)求年推销⾦额Y关于⼯作年限x的线性回归⽅程;(2)若第6名推销员的⼯作年限为11年,试估计他的年推销⾦额.[解析](1)设所求的线性回归⽅程为y^=b^x+a^,则b^=i=15 xi-x yi-y i=15 xi-x 2=1020=0.5,a^=y-b^x=0.4.所以年推销⾦额Y关于⼯作年限x的线性回归⽅程为y^=0.5x+0.4.(2)当x=11时,y^=0.5x+0.4=0.5×11+0.4=5.9(万元).所以可以估计第6名推销员的年推销⾦额为5.9万元.19.(本题满分12分)在对⼈们的休闲⽅式的⼀次调查中,共调查了124⼈,其中⼥性70⼈,男性54⼈.⼥性中有43⼈主要的休闲⽅式是看电视,另外27⼈主要的休闲⽅式是运动;男性中有21⼈主要的休闲⽅式是看电视,另外33⼈主要的休闲⽅式是运动.(1)根据以上数据建⽴⼀个2×2的列联表;(2)试问休闲⽅式是否与性别有关?[解析](1)2×2列联表为性别看电视运动合计⼥432770男213354总计6460124(2)由χ2计算公式得其观测值χ2=124× 43×33-27×21 270×54×64×60≈6.201.因为6.201>3.841,所以有95%的把握认为休闲⽅式与性别有关.20.(本题满分12分)某研究机构举⾏⼀次数学新课程研讨会,共邀请50名⼀线教师参加,使⽤不同版本教材的教师⼈数如表所⽰:版本⼈教A版⼈教B版苏教版北师⼤版⼈数2015510(1)从这50名教师中随机选出2名,求2⼈所使⽤版本相同的概率;(2)若随机选出2名使⽤⼈教版的教师发⾔,设使⽤⼈教A版的教师⼈数为ξ,求随机变量ξ的分布列.[解析](1)从50名教师中随机选出2名的⽅法数为C250=1225.选出2⼈使⽤版本相同的⽅法数为C220+C215+C25+C210=350.故2⼈使⽤版本相同的概率为:P=3501225=27. (2)∵P(ξ=0)=C215C235=317,P(ξ=1)=C120C115C235=60119,P(ξ=2)=C220C235=38119,∴ξ的分布列为ξ012P317601193811921.(本题满分12分)(2014陕西理,19)在⼀块耕地上种植⼀种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概率0.50.5作物市场价格(元/kg)610概率0.40.6(1)设X表⽰在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中⾄少有2季的利润不少于2000元的概率.[解析](1)设A表⽰事件“作物产量为300kg”,B表⽰事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格-成本,∴X所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800,P(X=4000)=P(A-)P(B-)=(1-0.5)×(1-0.4)=0.3,P(X=2000)=P(A-)P(B)+P(A)P(B-)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为X40002000800P0.30.50.2(2)设Ci表⽰事件“第i季利润不少于2000元”(i=1,2,3),由题意知C1,C2,C3相互独⽴,由(1)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2000元的概率为P(C-1C2C3)+P(C1C-2C3)+P(C1C2C-3)=3×0.82×0.2=0.384,所以,这3季中⾄少有2季的利润不少于2000元的概率为0.512+0.384=0.896.22.(本题满分14分)学校校园活动有这样⼀个游戏项⽬:甲箱⼦⾥装有3个⽩球、2个⿊球,⼄箱⼦⾥装有1个⽩球、2个⿊球,这些球除颜⾊外完全相同,每次游戏从这两个箱⼦⾥各随机摸出2个球,若摸出的⽩球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中,①摸出3个⽩球的概率;②获奖的概率.(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).[解析](1)①设“在1次游戏中摸出i个⽩球”为事件Ai(i=0,1,2,3),则P(A3)=C23C25C12C23=15.②设“在1次游戏中获奖”为事件B,则B=A2∪A3.⼜P(A2)=C23C25C22C23+C13C12C25C12C23=12,且A2,A3互斥,所以P(B)=P(A2)+P(A3)=12+15=710.(2)由题意可知X的所有可能取值为0,1,2.P(X=0)=1-7102=9100,P(X=1)=C127101-710=2150,P(X=2)=7102=49100.所以X的分布列是X012P9100215049100X的数学期望E(X)=0×9100+1×2150+2×49100=75.。
人教版高中数学选修2-3 模块综合检测卷及答案
数学·选修2-3(人教A版)模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共8小题,每小题5分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.变量x,y的散点图如图所示,那么x,y之间的样本相关系数最接近的值是()A.1B.-0.5C.0D.0.5解析:因为r的绝对值越接近于1,表明两个变量的线性相关性越大;r的绝对值越接近于0,表明两个变量的线性相关性越小.由图知x、y之间没有相关关系,所以r的绝对值最接近于0.故选C.答案:C2.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法种数为()49 8 9 8 5191 5 E (ξ)=15,D (ξ)= 45,则 n 与 p 的值为(A .60,B .60,C .50,D .50, 解析:由 ξ~B (n ,p ),有E (ξ)=np =15,D (ξ)=np (1-p )= ,所以 p = ,n =60.故选 B.⎧⎛x -1⎫⎪6,x <0,⎩- x ,x ≥0,则当 x >0 时,解析:当 x >0 时,f [f (x )]= - x + - x ⎪6的展开式中,x ⎭ ⎝ xA .C 210A 8B .C 1A5 9C .C 1A 5D .C 1A 8解析:先排第 1 号瓶,从甲、乙以外的 8 种不同作物种子中选出1 种有 C 8种方法,再排其余各瓶,有 A 5种方法,故不同的放法共 C 8A 9有种.故选 C.答案:C3.(2013· 大庆模拟)设 ξ 是服从二项分布 B (n ,p )的随机变量,又4)3 13 14 44 445414答案:B4.(2013· 陕西卷)设函数f (x )=⎨⎝ x ⎭f [f (x )]表达式的展开式中常数项为()A .-20B .20C .-15D .15⎛ 1 ⎫ ⎛ 1 ⎫ ⎪6= ⎝ ⎭C 63 ⎝ x ⎭率都是 ,那么,4 个题中答对 2 个题的概率是 ()625 625 625 625常数项为 ⎛ 1 ⎫ ⎪3(- x )3=-20.故选 A.答案:A5.关于 x 的二项式(ax -2)n 的展开式中,二项式系数的和为 128,所有项系数的和为 1,则 a =()A .1B .-1C .3D .1 或 3解析:展开式的二项式系数为 2n =128,所以 n =7,设(ax -2)7=a 0+a 1x +a 2x 2+…+a 7x 7,令 x =1,得展开式的所有项系数为 a 0+a 1+a 2+…+a 7=(a -2)7=1,所以 a =3.故选 C.答案:C6.一份数学单元试卷中有 4 个填空题,某同学答对每个题的概45A. 16 96 192 256B.C.D.答案:B7.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:秃发不秃心脏病205无心脏病30045077- 根据表中数据得到 k =≈15.968,因为平考试中,取得 A 等级的概率分别为 、 、 ,且三门课程的成绩是A. B. C. D .1发[来源:]225×750×320×455K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为()A .0.1B .0.05C .0.01D .0.001答案:D8.(2013· 佛山一模 )某学生在参加政、史、地三门课程的学业水4 3 25 5 5否取得 A 等级相互独立.记 ξ 为该生取得 A 等级的课程数,其分布列如下表所示,则数学期望 E (ξ)的值为()ξP6 1251a 2b324 12539 5 9125 9 5答案:C二、填空题(本大题共 6 小题,每小题 5 分,共 30 分;把答案填在题中横线上)9.已知随机变量 ξ 的分布列如下:ξ 1 2 3 4 5P0.1 0.2 0.4 0.2 0.1⎪⎩r =3, 所以⎪ r 5 3 则至少取一白球的概率为 1- × = .5 3则 P (2≤ξ<4)____________.解析:P (2≤ξ<4)=P (ξ=2)+P (ξ=3)=0.2+0.4=0.6.答案:0.610. (2013· 四川卷)二项式(x +y )3 的展开式中,含 x 2y 3 的项的系数是________(用数字作答).[来源:]⎧5-r =2, 解析:T r +1=C 5x 5-r y r (r =0,1,2,3,4,5),由题意知⎨5×4×3含 x 2y3的系数为C 5=3×2×1=10.答案:1011.一袋中有 3 个红球,2 个白球,另一袋中有 2 个红球,1 个白球,从每袋中任取一球,则至少取一白球的概率为________________.解析:至少取一白球的对立事件为从每袋中都取得红球,从第一3 2袋中取一球为红球的概率为 ,从另一袋中取一球为红球的概率为 ,3 2 35 3 53答案:12. 已知随机变量 X 服从正态分布 N (0,σ2)且 P (-2≤X ≤0)=0.4,则 P (X >2)=____________.r r 32 =2×n -3 2答案:0.113. (2013· 江门二模 )(1+2x )n 的展开式中 x 3 的系数等于 x 2 的系数的 4 倍,则 n =____________.解析:设(1+2x )n 的展开式的通项公式为 T r +1,则 T r +1=C n (2x )r=2r ·C n · x r ,令 r =3,得展开式中 x 3 的系数为:8C n ,令 r =2 得展开 式中 x 2 的系数为 4C n .依题意, 8C n =4×4C n ,即n n - n -3×2×1n 2,解得 n =8.答案:814.将红、黄、蓝、白、黑 5 个小球分别放入红、黄、蓝、白、黑 5 个盒子里,每个盒子里放且只放 1 个小球,则红球不在红盒内且黄球不在黄盒内的概率是________.三、解答题(本大题共 6 小题,共 80 分;解答应写出文字说明、证明过程或演算步骤)答案:0.6515. (本小题满分 12 分)5 名男生、2 名女生站成一排照相:(1)两名女生都不站在两端,有多少不同的站法?(2)两名女生要相邻,有多少种不同的站法?(3)两名女生不相邻,有多少种不同的站法?(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?(1)若 y 与 x 之间具有线性相关关系,求线性回归方程.n^ ni解析:(1)中间的五个位置任选两个排女生,其余五个位置任意排男生:A25·A55=2 400(种);(2)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列:A66·A22=1 400(种);(3)把男生任意全排列,然后在六个空中 (包括两端)有顺序地插入两名女生:A55·A26=3 600(种);(4)采用排除法,在七个人的全排列中,去掉女生甲在左端的 A66个,再去掉女生乙在右端的 A66 个,但女生甲在左端同时女生乙在右 端的 A55 种排除了两次,要找回来一次.A77-2A66+A55=3 720(种).16.(本小题满分 12 分)为了对新产品进行合理定价,对该产品进行了试销试验,以观察需求量 y (单位:千件)对于价格 x (单位:千元)的反应,得数据如下:x 50 70 8040 30 90 95 97y100 80 60120 135 555048[来源:](2)若成本 x =y +500,试求:①在盈亏平衡条件下(利润为零)的价格;②在利润为最大的条件下的定价.∑x i y i -n x y解析:(1)b=i =1∑x2-n x 2i =1≈-1.286 6,解析:(1)记甲、乙两人同时到 A 社区为事件 E A ,那么 P (E A )= 2 3184^a = y -^b x ≈169.772,∴线性回归方程为^y =-1.286 6x +169.772 4.(2)①在盈亏平衡条件下,^y x =^y +500,即-1.286 6x 2+169.772 4x =-1.286 6x +169.772 4+500,1.286 6x 2-171.059x +669.772 4=0,解得 x 1=128.916 2,x 2=4.038 1(舍去) , ∴此时新产品的价格为 128.916 2 千元.②在利润最大的条件下,Q =^y x -x=-1.286 6x 2+169.772 4x +1.286 6x -169.772 4-500=-1.286 6x 2+171.059x -669.772 4.要使 Q 取得最大值,x =66.477 1,即此时新产品应定价为 66.4771 千元.17.(本小题满分 14 分)甲、乙、丙、丁 4 名同学被随机地分到 A ,B ,C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到 A 社区的概率;(2)求甲、乙两人不在同一个社区的概率;(3)设随机变量 ξ 为四名同学中到 A 社区的人数,求 ξ 的分布列和E (ξ)的值.A 22 C 4A 31= ,即甲、乙两人同时到 A 社区的概率是 .A 33 C 4A 3 6所以,甲、乙两人不在同一社区的概率是 P ( E )=1-P (E )= .C 24A 22 1 2C 4A 3 3 3E (ξ)=1× +2× = . x x1181(2) 记甲、乙两人在同一社区为事件 E ,那么 P (E )= 2 3= .56(3)随机变量 ξ 可能取的值为 1,2.事件“ξ=i (i =1,2)”是指有 i 个同学到 A 社区,则 P (ξ=2)= 2 3= ,所以 P (ξ=1)=1-P (ξ=2)= .ξ 的分布列是:ξP[来源:]12 3 21 32 1 43 3 318.(本小题满分 14 分)为备战 2016 年奥运会,甲、乙两位射击选手进行了强化训练.现分别从他们的强化训练期间的若干次平均成绩中随机抽取 8 次,记录如下:甲:.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3乙:.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5(1)现要从中选派一人参加奥运会封闭集训,从统计学角度,你认为派哪位选手参加合理?简单说明理由;(2)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于 8.5 分的次数为 ξ,求 ξ 的分布列及均值E (ξ).解析:(1)因为- =- =8.5,又 s 2 =0.27,s 2 =0.405,得 s 2 <s 2 ,甲乙甲乙甲乙(2)依题意得,乙不低于 8.5 分的频率为 ,ξ 的可能取值为 0,1,2,3, 则 ξ~B 3,2⎪. 所以,P (ξ=k )=C k 32⎪3-k 1-2⎪k =C k 3 2⎪3,k =0,1,2,3. 所以 E (ξ)=0× +1× +2× +3× = .相对来讲,甲的成绩更加稳定,所以选派甲合适.12⎛ 1⎫⎝⎭⎛1⎫ ⎛ 1⎫ ⎛1⎫ ⎝ ⎭⎝ ⎭ ⎝ ⎭所以 ξ 的分布列为ξP1 8 13 8 23 8 31 81 3 3 1 38 8 8 8 219.(本小题满分 14 分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为 0.6,0.4,0.5,0.2 . 已知各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;[来源:](2)求该选手在选拔中至少回答了 2 个问题被淘汰的概率.解析: (1) 记 “该选手能正确回答第i 轮的问题 ”为事件 A i (i =1,2,3,4),则 P (A 1)=0.6,P (A 2)=0.4,P (A 3)=0.5,P (A 4)=0.2.法一 该选手被淘汰的概率:P =P ( A 1 +A 1 A 2 +A 1 A 2A 3 +A 1 A 2 A 3A 4 )= P ( A 1 ) + P (A 1)P ( A 2 ) + P (A 1)P (A 2)P (A 3) +P (A 1)P (A 2)P (A 3)P (A 4 )=0.4+0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.976.法二 P =1-P (A 1 A 2 A 3A 4 ) =1-P (A 1)P (A 2) P (A 3)P (A 4 )=1-0.6×0.4×0.5×0.2=1-0.024=0.976.(2)法一 P =P (A 1 A 2 +A 1 A 2A 3 +A 1 A 2 A 3A 4 )=P (A 1)P ( A 2 )+P (A 1)P (A 2)P (A 3 ) +P (A 1)· P (A 2)P (A 3)P (A 4 )=0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.576.法二P = 1 - P ( A 1 ) - P (A 1 A 2 A 3A 4 ) = 1 - (1 - 0.6) -0.6×0.4×0.5×0.2=0.576.20.(2013· 陕西卷)(本小题满分 14 分)在一场娱乐晚会上, 有 5位民间歌手(1 至 5 号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选 3 名歌手,其中观众甲是1 号歌手的歌迷, 他必选 1 号, 不选2 号, 另在3 至 5 号中随机选2 名. 观众乙和丙对 5 位歌手的演唱没有偏爱, 因此在 1 至 5 号中随机选 3 名歌手.(1)求观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率;(2)X 表示 3 号歌手得到观众甲、乙、丙的票数之和, 求 X 的分布列和数学期望.号歌手. 观众甲选中 3 号歌手的概率为 ,观众乙未选中 3 号歌手的概率为 1- .所以 P (A )= × 1-5⎪= 因此,观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率为 .观众甲选中 3 号歌手的概率为 ,观众乙选中 3 号歌手的概率为 .⎛ 2⎫ ⎛ 3⎫ 43⎭ ⎝ 5⎭ 75 2 ⎛ 3⎫ ⎛ 2⎫ 3 ⎛ 3⎫ ⎛ 2⎫ ⎛ 3⎫ 3 8+6+6 205⎭ ⎝ 3⎭ 5 ⎝ 5⎭ ⎝ 3⎭ ⎝ 5⎭ 5 3 ⎝ 75 75=2)= × × 1-5⎪+ 1-3⎪× × + × 1-5⎪× =2 3 ⎛ 3⎫ ⎛ 2⎫ 3 3 2 ⎛ 3⎫ 3 12+9+12 33 3 5 ⎝ ⎭ ⎝ ⎭ 5 5 3 ⎝ ⎭ 5= . 当观众甲、乙、丙均选中 3 号歌手时,这时 X =3,P (X =3)= ×5⎪2= .解析:(1)设事件 A 表示:观众甲选中 3 号歌手且观众乙未选中 3233 2 ⎛ 3⎫45 3 ⎝ ⎭ 15.415(2)X 表示 3 号歌手得到观众甲、乙、丙的票数之和,则 X 可取0,1,2,3.2 33 5当观众甲、乙、丙均未选中 3 号歌手时,这时 X =0,P (X =0)=1- ⎪× 1- ⎪2= ⎝.当观众甲、乙、丙中只有 1 人选中 3 号歌手时,这时 X =1,P (X=1)= × 1- ⎪2+ 1- ⎪× × 1- ⎪+ 1- ⎪× 1- ⎪× = = .当观众甲、乙、丙中只有 2 人选中 3 号歌手时,这时 X =2,P (X75 752 ⎛3⎫3 ⎝ ⎭18 75X 的分布列如下表:XP4 75120 75233 75318 75所以数学期望 E (X )=0× +1× +2× +3× = =4 20 33 18 20+66+5475 75 75 75 752815.。
最新人教A版高中数学选修2-3综合测试题(含答案解析)
高中新课标数学选修(2-3)综合测试题(1)一、选择题1.已知{}{}{},,,,,,,,,则方程222∈-∈∈123013412a b Rx a y b R-++=所表示()()地不同地圆地个数有()A.3×4×2=24 B.3×4+2=14C.(3+4)×2=14 D.3+4+2=9答案:A2.神六航天员由翟志刚、聂海胜等六人组成,每两人为一组,若指定翟志刚、聂海胜两人一定同在一个小组,则这六人地不同分组方法有()A.48种B.36种C.6种D.3种答案:D3.41nx ⎛⎫ ⎪⎝⎭地展开式中,第3项地二项式系数比第2项地二项式系数大44,则展开式中地常数项是( )A.第3项 B.第4项 C.第7项 D.第8项 答案:B4.从标有1,2,3,…,9地9张纸片中任取2张,数字之积为偶数地概率为( )A.12 B.718 C.1318 D.1118 答案:C5.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球地条件下,第2次也摸到红球地概率为( )A.35 B.25 C.110 D.59 答案:D6.正态总体地概率密度函数为2()8()x x f x -∈=R ,则总体地平均数和标准差分别为( )A.0,8 B .0,4 C.0,2 D.0,2 答案:D7.在一次试验中,测得()x y ,地四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间地回归直线方程为( )A.$1y x =+ B.$2y x =+ C.$21y x =+ D.$1y x =- 答案:A8.用0,1,2,3,4这五个数字组成无重复数字地五位数,其中恰有一个偶数数字夹在两个奇数数字之间地五位数地个数是()A.48 B.36 C.28 D.20答案:C9.若随机变量η地分布列如下:则当()0.8η<=时,实数地取值范围是()P xA.x≤2 B.1≤x≤2 C.1<x≤2 D.1<x<2答案:C10.春节期间,国人发短信拜年已成为一种时尚,若小李地40名同事中,给其发短信拜年地概率为1,0.8,0.5,0地人数分别为8,15,14,3(人),则通常情况下,小李应收到同事地拜年短信数为( )A.27 B.37 C.38 D.8 答案:A11.在4次独立重复试验中事件A 出现地概率相同,若事件A 至少发生1次地概率为6581,则事件A 在1次试验中出现地概率为( )A.13B.25 C.56 D.23 答案:A12.已知随机变量1~95B ξ⎛⎫ ⎪⎝⎭,则使()P k ξ=取得最大值地k 值为( )A.2 B.3 C.4 D.5答案:A二、填空题13.某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三个孔,但相邻地两孔不能同时显示,则这显示屏可以显示地不同信号地种数有种.答案:8014.已知平面上有20个不同地点,除去七个点在一条直线上以外,没有三个点共线,过这20个点中地每两个点可以连条直线.答案:17015.某射手射击1次,击中目标地概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标地概率是0.9;②他恰好击中目标3次地概率是0.93×0.1;③他至少击中目标1次地概率是4.1(0.1)其中正确结论地序号是(写出所有正确结论地序号).答案:①③16.口袋内装有10个相同地球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出地5个球所标数字之和小于2或大于3地概率是(以数值作答).答案:1363三、解答题17.有4个不同地球,四个不同地盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)恰有两个盒不放球,有多少种放法?解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立地放法,由分步乘法计数原理,放法共有:44256种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1地三组,有2C种分法;然后再从三个盒子中选一个放两4个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:12124432144C C C A=···种.(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法. (4)先从四个盒子中任意拿走两个有24C 种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定地一个盒子中即可,有3142C C ·种放法;第二类:有24C 种放法.因此共有31342414C C C+=·种.由分步乘法计数原理得“恰有两个盒子不放球”地放法有:241484C =·种. 18.求25(1)(1)x x +-地展开式中3x 地系数.解:解法一:先变形,再部分展开,确定系数.252232423(1)(1)(1)(1)(12)(133)x x x x x x x x x +-=--=-+-+-.所以3x 是由第一个括号内地1与第二括号内地3x -地相乘和第一个括号内地22x -与第二个括号内地3x -相乘后再相加而得到,故3x 地系数为1(1)(2)(3)5⨯-+-⨯-=.解法二:利用通项公式,因2(1)x +地通项公式为12r rr TC x +=·,5(1)x -地通项公式为15(1)k k kk TC x +=-·,其中{}{}012012345r k ∈∈,,,,,,,,,令3k r +=, 则12k r =⎧⎨=⎩,,或21k r =⎧⎨=⎩,,或30k r =⎧⎨=⎩,. 故3x 地系数为112352555C C CC -+-=·.19.为了调查胃病是否与生活规律有关,某地540名40岁以上地人地调查结果如下:根据以上数据比较这两种情况,40岁以上地人患胃病与生活规律有关吗? 解:由公式得2540(6020026020)32022080460k ⨯⨯-⨯=⨯⨯⨯2540(120005200)24969609.6382590720000259072⨯-==≈.9.6387.879>∵,∴我们有99.5%地把握认为40岁以上地人患胃病与生活是否有规律有关,即生活不规律地人易患胃病. 20.一个医生已知某种病患者地痊愈率为25%,为实验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有4个被治好,则认为这种药有效;反之,则认为无效,试求:(1)虽新药有效,且把痊愈率提高到35%,但通过实验被否认地概率;(2)新药完全无效,但通过实验被认为有效地概率. 解:记一个病人服用该药痊愈率为事件A ,且其概率为p ,那么10个病人服用该药相当于10次独立重复实验.(1) 因新药有效且p =0.35,故由n 次独立重复试验中事件A 发生k 次地概率公式知,实验被否定(即新药无效)地概率为:0010119223371010101010101010(0)(1)(2)(3)(1)(1)(1)(1)0.514x P P P P C p p C p p C p p C p p +++=-+-+-+-≈.(2)因新药无效,故p =0.25,实验被认为有效地概率为:10101010101010(4)(5)(10)1((0)(1)(2)(3))0.224P P P P P P P +++=-+++≈L .即新药有效,但被否定地概率约为0.514; 新药无效,但被认为有效地概率约为0.224. 21.A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛地统计,对阵队员之间地胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为ξη,.(1)求ξη,地概率分布列;(2)求Eξ,Eη.解:(1)ξη,地可能取值分别为3,2,1,0.2228(3)35575P ξ==⨯⨯=;22312223228(2)35535535575P ξ==⨯⨯+⨯⨯+⨯⨯=; 2331231322(1)3553553555P ξ==⨯⨯+⨯⨯+⨯⨯=;1333(0)35525P ξ==⨯⨯=.由题意知3ξη+=,所以8(0)(3)75P P ηξ====;28(1)(2)75P P ηξ====;2(2)(1)5P P ηξ====; 3(3)(0)25P P ηξ====.ξ地分布列为η地分布列为(2)82823223210757552515E ξ=⨯+⨯+⨯+⨯=, 因为3ξη+=,所以23315E E ηξ=-=.22.某工业部门进行一项研究,分析该部门地产量与生产费用之间地关系,从这个工业部门内随机抽选了10个企业作样本,有如下资料:产量(千件) x生产费用 (千元)y 79162 88 185 100 165 120 190 140 185完成下列要求:(1)计算x 与y 地相关系数;(2)对这两个变量之间是否线性相关进行相关性检验;千元)y40150 42140 48160 551765150(3)设回归直线方程为$$$y bx a=+,求系数$a,$b.解:利用回归分析检验地步骤,先求相关系数,再确定0.05r.(1)制表i i x i y2i x2i y i ix y141501600225006000242140176419600588034816023042560076804 513028935 70 25 900 5056515042252250097506791626241262441279878818577443422516280810016510000272251650091201901440036100228001111934250.808r=≈.即x与Y地相关关系0.808r≈.(2)因为0.75r>.所以x与Y之间具有很强地线性相关关系.(3)1329381077.7165.70.398709031077.7b-⨯⨯=≈-⨯,165.70.39877.7134.9a=-⨯=.高中新课标数学选修(2-3)综合测试题(2)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角地蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻地右方蜂房中去,若从最初位置爬到4号蜂房中,则不同地爬法有( ) A.4种 B.6种 C.8种 D.10种 答案:C2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A ·答案:D3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素地集合T ,则这样地集合T 共有( )A.126个 B.120个 C.90个 D.26个 答案:C 4.342(1)(1)(1)n x x x +++++++L 地展开式中2x 地系数是( )A.33n C + B.32n C + C.321n C+- D.331n C+-答案:D 5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.1 答案:B6.市场上供应地灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品地合格率是95%,乙厂产品地合格率是80%,则从市场上买到一个是甲厂生产地合格灯泡地概率是()A.0.665 B.0.56 C.0.24 D.0.285 答案:A7.抛掷甲、乙两颗骰子,若事件A:“甲骰子地点数大于4”;事件B:“甲、乙两骰子地点数之和等于7”,则(|)P B A地值等于()A.13B.118C.16D.19答案:C8.在一次智力竞赛地“风险选答”环节中,一共为选手准备了A,B,C三类不同地题目,选手每答对一个A类、B类、C类地题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A类、B类、C类题目地概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分地期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 答案:B9.已知ξ地分布列如下:并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.22772答案:A10.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4答案:A11.已知x ,y 之间地一组数据:则y 与x 地回归方程必经过( )A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 答案:C12.对于2()P K k ≥,当 2.706k 时,就约有地把握认为“x与y 有关系”( )A.99% B.99.5% C.95% D.90% 答案:D 二、填空题13.92x x ⎛- ⎪⎝⎭地展开式中,常数项为 (用数字作答). 答案:67214.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家地概率为 (结果用分数表示). 答案:11919015.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分地概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分地概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大地是 . 答案:乙16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中地四点为顶点共可作出个四面体,经过其中每两点地直线中,有对异面直线.答案:15,45三、解答题17.某人手中有5张扑克牌,其中2张为不同花色地2,3张为不同花色地A,他有5次出牌机会,每次只能出一种点数地牌,但张数不限,则有多少种不同地出牌方法?解:由于张数不限,2张2,3张A可以一起出,亦可分几次出,故考虑按此分类.出牌地方法可分为以下几类:(1)5张牌全部分开出,有5A种方法;5(2)2张2一起出,3张A 一起出,有25A 种方法;(3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法;(5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法;因此共有不同地出牌方法5242332455535535860A A A C A A C A+++++=种. 18.已知数列{}na 地通项na 是二项式(1)nx +与2(1)nx +地展开式中所有x 地次数相同地各项地系数之和,求数列地通项及前n 项和nS .解:按(1)nx +及2(1)nx +两个展开式地升幂表示形式,写出地各整数次幂,可知只有当2(1)nx x 地偶数次幂时,才能与(1)nx +地x 地次数相比较. 由0122(1)nn n n n n n x C C x C x C x+=++++L ,132120242213212222222222(1()()n nn nn n n nnnnnC C x C x C x C x C x Cx--=++++++++L L可得00122422222()()()()n nnn n n n n n n n aC C C C C C C C =++++++++L01202422222()()n nn n n n n n n n C C C C C C C C =+++++++++L L2122n n -=+, 2122n n n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·,2111(2328)3n n n S ++=-∴·.19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元地消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6地6只均匀小球地抽奖箱中,有放回地抽两次球,抽得地两球标号之和为12,则获一等奖价值a 元地礼品,标号之和为11或10,获二等奖价值100元地礼品,标号之和小于10不得奖. (1)求各会员获奖地概率;(2)设场馆收益为ξ元,求ξ地分布列;假如场馆打算不赔钱,a 最多可设为多少元?解:(1)抽两次得标号之和为12地概率为11116636P =+=; 抽两次得标号之和为11或10地概率为2536P =,故各会员获奖地概率为1215136366P P P =+=+=. (2)ξ30a-30100- 30 P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥,得580a≤元.所以a最多可设为580元.20.在研究某种新药对猪白痢地防治效果时到如下数据:存活数死亡数合计未用新药10138139用新药12920149合2358 2试分析新药对防治猪白痢是否有效? 解:由公式计算得2288(1012038129)8.658139********k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%地把握认为新药对防治猪白痢是有效地.21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出地3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球地个数,才能使自己获胜地概率最大?(2)在(1)地条件下,求取出地3个球中红球个数地期望.解:(1)要想使取出地3个球颜色全不相同,则乙必须取出黄球,甲取出地两个球为一个红球一个白球,乙取出黄球地概率是14,甲取出地两个球为一个红球一个白球地概率是11246x yC C xy C =·,所以取出地3个球颜色全不相同地概率是14624xy xyP ==·,即甲获胜地概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫=⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜地概率最大.(2)设取出地3个球中红球地个数为ξ,则ξ地取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··, 2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出地3个球中红球个数地期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=.22.规定(1)(1)mxAx x x m =--+L ,其中x ∈R ,m 为正整数,且01xA =,这是排列数mnA (n ,m 是正整数,且m ≤n )地一种推广.(1)求315A -地值;(2)排列数地两个性质:①11m m n n AnA --=,②11m m mn n n AmA A -++= (其中m ,n 是正整数).是否都能推广到mxA (x ∈R ,m 是正整数)地情形?若能推广,写出推广地形式并给予证明;若不能,则说明理由; (3)确定函数3xA 地单调区间.解:(1)315(15)(16)(17)4080A-=-⨯-⨯-=-;(2)性质①、②均可推广,推广地形式分别是 ①11m m xx AxA --=,②11()m m m x x x AmA A x m -*++=∈∈R N ,.事实上,在①中,当1m =时,左边1xA x ==, 右边01x xAx-==,等式成立;在②中,当1m =时,左边10111xxx A Ax A +=+=+==右边,等式成立;当2m ≥时,左边(1)(2)(1)(1)(2)(2)x x x x m mx x x x m =---++---+L L=(1)(2)(2)[(1)]x x x x m x m m ---+-++L 1(1)(1)(2)[(1)1]mx x x x x x m A +=+--+-+==L 右边, 因此②11()mm m x x x AmA A x m -*++=∈∈R N ,成立.(3)先求导数,得32()362xA xx '=-+.令23620xx -+>,解得x 或x >因此,当x ⎛∈- ⎝⎭∞时,函数为增函数, 当x ⎫∈+⎪⎪⎝⎭∞时,函数也为增函数,令23620xx -+≤x ,因此,当x ∈⎣⎦时,函数为减函数,∴函数3xA 地增区间为⎛- ⎝⎭∞,⎫+⎪⎪⎝⎭∞;减区间为⎣⎦.。
2021-2022学年人教版高中数学选修2-3教材用书:模块综合检测(一) Word版含答案
模块综合检测(一)(时间120分钟,满分150分)一、选择题(共12小题,每小题5分,共60分) 1.方程C x 14=C 2x -414的解集为( )A .{4}B .{14}C .{4,6}D .{14,2}解析:选C 由C x 14=C 2x -414得x =2x -4或x +2x -4=14,解得x =4或x =6.经检验知x =4或x =6符合题意.2.设X 是一个离散型随机变量,则下列不能成为X 的概率分布列的一组数据是( ) A .0,12,0,0,12 B .0.1,0.2,0.3,0.4C .p,1-p (0≤p ≤1) D.11×2,12×3,…,17×8解析:选D 利用分布列的性质推断,任一离散型随机变量X 的分布列都具有下述两共性质:①p i ≥0,i =1,2,3,…,n ;②p 1+p 2+p 3+…+p n =1.选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36. 3.已知随机变量X ~N (2,σ2),若P (X <a )=0.32,则P (a ≤X <4-a )等于( ) A .0.32 B .0.68 C .0.36 D .0.64解析:选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36.4.已知x ,y 取值如下表:x 0 1 4 5 6 8 y1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且y ^=0.95x +a ,则a 等于( ) A .1.30 B .1.45 C .1.65 D .1.80解析:选B 依题意得,x -=16×(0+1+4+5+6+8)=4,y -=16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y ^=0.95x +a 必过样本中心点(x -,y -), 即点(4,5.25),于是有5.25=0.95×4+a , 由此解得a =1.45.5.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75 解析:选D 目标被击中P 1=1-0.4×0.5=0.8, ∴P =0.60.8=0.75. 6.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法有( ) A .36种 B .30种 C .42种 D .60种解析:选A 直接法:选出3名志愿者中含有1名女生和2名男生或2名女生和1名男生,故共有C 12C 26+C 22C 16=2×15+6=36种选法;间接法:从8名同学中选出3名,减去全部是男生的状况,故共有C 38-C 36=56-20=36种选法.7.⎝ ⎛⎭⎪⎫x +2x 2n 的开放式中只有第6项二项式系数最大,则开放式中的常数项是( )A .180B .90C .45D .360 解析:选A 由已知得,n =10,T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =2r ·C r 10x 5-52r ,令5-52r =0,得r =2,T 3=4C 210=180.8.(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种解析:选B 当最左端排甲时,不同的排法共有A 55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C 14A 44种.故不同的排法共有A 55+C 14A 44=9×24=216种.9.箱子里有5个黑球和4个白球,每次随机取出一个球.若取出黑球,则放回箱中,重新取球,若取出白球,则停止取球.那么在第4次取球之后停止的概率为( )A.C 35C 14C 45 B .⎝ ⎛⎭⎪⎫593×49C.35×14D .C 14⎝ ⎛⎭⎪⎫593×49解析:选B 记“从箱子里取出一球是黑球”为大事A ,“从箱子里取出一个球是白球”为大事B ,则P (A )=59,P (B )=49,在第4次取球后停止,说明前3次取到的都是黑球,第4次取到的是白球,又每次取球是相互独立的,由独立大事同时发生的概率公式,在第4次取球后停止的概率为59×59×59×49=⎝ ⎛⎭⎪⎫593×49.10.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归直线y ^=b ^x +a ^必过(x -,y -); ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得k =13.079.则其两个变量间有关系的可能性是90%. 其中错误的个数是( ) A .1 B .2 C .3D .4解析:选C 由方差的定义知①正确,由线性回归直线的特点知③正确,②④⑤都错误. 11.对两个变量y 和x 进行线性相关检验,已知n 是观看值组数,r 是相关系数,且已知: ①n =10,r =0.953 3;②n =15,r =0.301 2;③n =17,r =0.999 1;④n =3,r =0.995 0. 则变量y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④解析:选B 相关系数r 的确定值越接近1,变量x ,y 的线性相关性越强.②中的r 太小,④中观看值组数太小.12.某市政府调查市民收入与旅游欲望时,接受独立性检验法抽取3 000人,计算发觉k =6.023,则依据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )P (K 2≥k )… 0.25 0.15 0.10 0.025 0.010 0.005 … k…1.3232.0722.7065.0246.6357.879…A.90% B .95% C .97.5%D .99.5%解析:选C ∵k =6.023>5.024,∴可断言市民收入增减与旅游欲望有关的把握为97.5%. 二、填空题(共4小题,每小题5分,共20分)13.有5名男生和3名女生,从中选出5人分别担当语文、数学、英语、物理、化学学科的科代表,若某女生必需担当语文科代表,则不同的选法共有________种.(用数字作答)解析:由题意知,从剩余7人中选出4人担当4个学科的科代表,共有A 47=840(种)选法. 答案:84014.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的均值是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,P (ξ=0)=0.4×0.4×0.4=0.064,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.37615.抽样调查表明,某校高三同学成果(总分750分)X 近似听从正态分布,平均成果为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.316.某高校“统计初步”课程的老师随机调查了选该课的一些同学状况,具体数据如下表:专业性别非统计专业统计专业 男 13 10 女720为了推断主修统计专业是否与性别有关系,依据表中的数据,计算得到K 2=________(保留三位小数),所以判定________(填“能”或“不能”)在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系.解析:依据供应的表格得 K 2=50×13×20-7×10223×27×20×30≈4.844>3.841.所以可以在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系. 答案:4.844 能三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)若⎝⎛⎭⎪⎪⎫6x +16x n开放式中第2,3,4项的二项式系数成等差数列.(1)求n 的值.(2)此开放式中是否有常数项?为什么?解:(1)T k +1=C k n·⎝⎛⎭⎫6x n -k·⎝ ⎛⎭⎪⎪⎫16x k =C kn ·x n -2k 6,由题意可知C 1n +C 3n =2C 2n ,即n 2-9n +14=0, 解得n =2(舍)或n =7.∴n =7. (2)由(1)知T k +1=C k7·x 7-2k6. 当7-2k 6=0时,k =72,由于k ∉N *, 所以此开放式中无常数项.18.(本小题满分12分)某篮球队与其他6支篮球队依次进行6场竞赛,每场均决出胜败,设这支篮球队与其他篮球队竞赛胜场的大事是独立的,并且胜场的概率是13.(1)求这支篮球队首次胜场前已经负了2场的概率; (2)求这支篮球队在6场竞赛中恰好胜了3场的概率; (3)求这支篮球队在6场竞赛中胜场数的均值和方差.解:(1)这支篮球队首次胜场前已负2场的概率为P =⎝ ⎛⎭⎪⎫1-132×13=427.(2)这支篮球队在6场竞赛中恰好胜3场的概率为P =C 36×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫1-133=20×127×827=160729.(3)由于X 听从二项分布,即X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝⎛⎭⎪⎫1-13=43.故在6场竞赛中这支篮球队胜场的均值为2,方差为43.19.(本小题满分12分)某商场经销某商品,依据以往资料统计,顾客接受的付款期数X 的分布列为商场经销一件该商品,接受250元;分4期或5期付款,其利润为300元.Y 表示经销一件该商品的利润.(1)求大事:“购买该商品的3位顾客中,至少有1位接受1期付款”的概率P (A ); (2)求Y 的分布列及E (Y ).解:(1)由A 表示大事“购买该商品的3位顾客中至少有1位接受1期付款”知,A 表示大事“购买该商品的3位顾客中无人接受1期付款”.P (A )=(1-0.4)3=0.216, P (A )=1-P (A )=1-0.216=0.784.(2)Y 的可能取值为200元,250元,300元.P (Y =200)=P (X =1)=0.4,P (Y =250)=P (X =2)+P (X =3)=0.2+0.2=0.4,P (Y =300)=1-P (Y =200)-P (Y =250)=1-0.4-0.4=0.2, Y 的分布列为E (Y )20.(本小题满分12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=⎝ ⎛⎭⎪⎫1-14-12×1-16-23=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512. (2)由题意得,ξ全部可能的取值为0,40,80,120,160.P (ξ=0)=14×16=124, P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124, ξ的分布列为E (ξ)=0×124+40×14+80×12+120×4+160×24=80.21.(本小题满分12分)甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,接受分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量.(2)当产品中的微量元素x ,y 满足x ≥175,且y ≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值. 解:(1)乙厂生产的产品总数为5÷1498=35. (2)样品中优等品的频率为25,乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i )=C i 2C 2-i3C 25(i =0,1,2),ξ的分布列为ξ 0 1 2 P31035110均值E (ξ)=1×35+2×110=45.22.(本小题满分12分)某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L 1,L 2两条巷道通往作业区(如下图),L 1巷道有A 1,A 2,A 3三个易堵塞点,各点被堵塞的概率都是12;L 2巷道有B 1,B 2两个易堵塞点,被堵塞的概率分别为34,35.(1)求L 1巷道中,三个易堵塞点最多有一个被堵塞的概率;(2)若L 2巷道中堵塞点个数为X ,求X 的分布列及均值E (X ),并依据“平均堵塞点少的巷道是较好的抢险路线”的标准,请你挂念救援队选择一条抢险路线,并说明理由.解:(1)设“L 1巷道中,三个易堵塞点最多有一个被堵塞”为大事A ,则P (A )=C 03×⎝ ⎛⎭⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎫122=12.(2)依题意,X 的可能取值为0,1,2,P (X =0)=⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-35=110, P (X =1)=34×⎝⎛⎭⎪⎫1-35+⎝⎛⎭⎪⎫1-34×35=920,P (X =2)=34×35=920,所以随机变量X 的分布列为X 0 1 2 P110920920E (X )=0×110+1×920+2×920=2720.法一:设L 1巷道中堵塞点个数为Y ,则Y 的可能取值为0,1,2,3,P (Y =0)=C 03×⎝ ⎛⎭⎪⎫123=18,P (Y =1)=C 13×12×⎝ ⎛⎭⎪⎫122=38,P (Y =2)=C 23×⎝ ⎛⎭⎪⎫122×12=38, P (Y =3)=C 33×⎝ ⎛⎭⎪⎫123=18, 所以,随机变量Y 的分布列为Y0 1 2 3 P18383818E (Y )=0×18+1×38+2×38+3×18=2,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.法二:设L 1巷道中堵塞点个数为Y ,则随机变量Y ~B ⎝ ⎛⎭⎪⎫3,12, 所以,E (Y )=3×12=32,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.。
人教版高中数学选修2-3期末(模块)综合检测试题 答案解析版
=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游愿望有关系的可信程
度是( )
P(K2≥k)
… 0.25
0.15
0.10 0.025 0.010 0.005
k
… 1.323 2.072 2.706 5.024 6.635 7.879 …
A.90%
B.95%
C.97.5%
D.99.5%
假设这两道工序出废品是彼此无关的,那么产品的合格率为( )
A.ab-a-b+1
B.1-a-b
C.1-ab
D.1-2ab
【解析】要使产品合格,则第一道工序合格,第二道工序也合格,故产品的合格率为(1
-a)(1-b)=ab-a-b+1.
【答案】A
4.现有甲、乙、丙三个盒子,其中每个盒子中都装有标号分别为 1,2,3,4,5,6 的六张卡
C32
3 5
3
2 5
.
【答案】B
11.如果
x2
1 2x
n
的展开式中只有第
4
项的二项式系数最大,那么展开式中的所有项
的系数和是( )
A.0
B.256
C.64
D. 1
64
【解析】因为展开式中只有第 4 项的二项式系数最大,所以 n=6.令 x=1,则展开式中
(完整版)高中数学选修(2-3)综合测试题(3)附答案
高中数学选修(2-3)综合测试题(3)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A · 3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( )A.126个 B.120个 C.90个 D.26个 4.342(1)(1)(1)n x x x +++++++L 的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.16.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285 7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.198.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 9.已知ξ的分布列如下:ξ 1 2 3 4P1413 16 14并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.2277210.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4 11.已知x ,y 之间的一组数据:x 0 1 2 3 y1 3 5 7则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90% 二、填空题13.912x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为 (用数字作答). 14.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 (结果用分数表示).15.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 .16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有 对异面直线. 三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖. (1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元? 20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数 死亡数 合计 未用新药 101 38 139 用新药 129 20 149 合计23058288试分析新药对防治猪白痢是否有效?21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.高中数学选修(2-3)综合测试题(3)CDCDB ACBAA CD 13.672 14.11919015.乙 16. 15,45 17.解:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A 种方法;(2)2张2一起出,3张A 一起出,有25A 种方法; (3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法; (5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法; 因此共有不同的出牌方法5242332455535535860A A A C A A C A +++++=种. 18.解:按(1)nx +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)nx +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nnn n n x C C x C x C x +=++++L , 132120242213212222222222(1)()()n nn nn n n nnnnnx C C x C x C x C x C x Cx--+=++++++++L L可得0122422222()()()()nnn n n n n n n n n a C C C C C C C C =++++++++L01202422222()()n n n n n n n n n n C C C C C C C C =+++++++++L L 2122n n -=+, 2122nn n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·, 2111(2328)3n n n S ++=-∴·.19.解:(1)抽两次得标号之和为12的概率为11116636P =+=;抽两次得标号之和为11或10的概率为2536P =,故各会员获奖的概率为1215136366P P P =+=+=. (2)ξ 30a -30100-30P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元. 20.解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是11246x y C C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. (2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=。
人教A版高中数学选修2-3 模块综合评价(一)(含答案解析)
模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的)1.某一随机变量ξ的概率分布如下表,且m +2n =1.2,则m -n2的值为( )A .-0.2B .0.2C .0.1D .-0.1解析:由离散型随机变量分布列的性质,可得m +n +0.2=1, 又m +2n =1.2,所以m =0.4,n =0.4, 所以m -n2=0.2.答案:B2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:由于销售量y 与销售价格x 负相关,故排除B ,D.又当x =10时,A 中的y =100,而C 中y =-300,故C 不符合题意.3.从A,B,C,D,E5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为()A.24 B.48 C.72 D.120解析:A参加时参赛方案有C34A12A33=48(种),A不参加时参赛方案有A44=24(种),所以不同的参赛方案共72种,故选C.答案:C4.两个分类变量X和Y,值域分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35,若X与Y有关系的可信程度为90%,则c=()A.4 B.5 C.6 D.7解析:列2×2列联表可知:当c=5时,K2=66×(10×30-5×21)215×51×31×35≈3.024>2.706,所以c=5时,X与Y有关系的可信程度为90%,而其余的值c=4,c=6,c=7皆不满足.5.⎝⎛⎭⎪⎫x +12x 8的展开式中常数项为( ) A.3516 B.358 C.354D .105 解析:二项展开式的通项为T k +1=C k 8(x )8-k ⎝ ⎛⎭⎪⎫12x k =⎝ ⎛⎭⎪⎫12k C k 8x 4-k,令4-k =0,解得k =4,所以T 5=⎝ ⎛⎭⎪⎫124C 48=358.答案:B6.ξ,η为随机变量,且η=aξ+b ,若E (ξ)=1.6,E (η)=3.4,则a ,b 可能的值为( )A .2,0.2B .1,4C .0.5,1.4D .1.6,3.4解析:由E (η)=E (aξ+b )=aE (ξ)+b =1.6a +b =3.4,把选项代入验证,只有A 满足.答案:A7.已知随机变量ξ的分布列为ξ=-1,0,1,对应P =12,16,13,且设η=2ξ+1,则η的期望为( )A .-16 B.23 C.2936D .1解析:E (ξ)=-1×12+0×16+1×13=-16,所以E (μ)=E (2ξ+1)=2E (ξ)+1=23.8.若随机变量ξ~N (-2,4),ξ在下列区间上取值的概率与ξ在区间(-4,-2]上取值的概率相等的是( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4]解析:此正态曲线关于直线x =-2对称,所以ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.答案:C9.设随机变量X 服从二项分布B ⎝⎛⎭⎪⎫5,12,则函数f (x )=x 2+4x +X 存在零点的概率是( )A.56B.45C.2021D.3132解析:函数f (x )=x 2+4x +X 存在零点, 所以Δ=16-4X ≥0,所以X ≤4,因为随机变量X 服从二项分布B ⎝⎛⎭⎪⎫5,12, 所以P (X ≤4)=1-P (X =5)=1-125=3132.答案:D10.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:) A.99%的可能性B.99.75%的可能性C.99.5%的可能性D.97.5%的可能性解析:由题意可知a=16,b=28,c=20,d=8,a+b=44,c +d=28,a+c=36,b+d=36,n=a+b+c+d=72.代入公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),得K2=72×(16×8-28×20)244×28×36×36≈8.42.由于K2≈8.42>7.879,我们就有99.5%的把握认为性别和读营养说明之间有关系,即性别和读营养说明之间有99.5%的可能是有关系的.答案:C11.某日A,B两个沿海城市受台风袭击的概率相同,已知A市或B市至少有一个受台风袭击的概率为0.36,若用X表示这一天受台风袭击的城市个数,则E(X)=()A.0.1 B.0.2 C.0.3 D.0.4解析:设A,B两市受台风袭击的概率均为p,则A市或B市都不受台风袭击的概率为(1-p)2=1-0.36,解得p=0.2或p=1.8(舍去).法一 P (X =0)=1-0.36=0.64.P (X =1)=2×0.8×0.2=0.32, P (X =2)=0.2×0.2=0.04,所以E (X )=0×0.64+1×0.32+2×0.04=0.4.法二 X ~B (2,0.2),E (X )=np =2×0.2=0.4. 答案:D12.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f (f (x ))表达式的展开式中常数项为( )A .-20B .20C .-15D .15解析:当x >0时,f (f (x ))=⎝ ⎛⎭⎪⎫-x +1x 6=⎝ ⎛⎭⎪⎫1x -x 6,则展开式中常数项为C 36⎝⎛⎭⎪⎫1x 3(-x )3=-20. 答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.314.已知随机变量ξ~B (36,p ),且E (ξ)=12,则D (ξ)=________. 解析:由E (ξ)=36p =12,得p =13,所以D (ξ)=36×13×23=8.答案:815.欧阳修《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.”可见“行行出状元”,卖油翁的技艺让人叹为观止,如图铜钱是直径为4 cm 的圆形,正中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴是直径为0.2 cm 的球),记“油滴不出边界”为事件A ,“油滴整体正好落入孔中”为事件B .则P (B |A )________(不作近似值计算).解析:因为铜钱的有效面积S =π·(2-0.1)2,能够滴入油的图形为边长为1-2×110=45的正方形,面积为1625, 所以P (B |A )=64361π.答案:64361π16.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的数学期望是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.376三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f (x )=(1+x )m +(1+x )n (m ,n ∈N *)展开式中x 的系数为19,求f (x )的展开式中x 2的系数的最小值.解:f (x )=1+C 1m x +C 2m x 2+…+C m m x m +1+C 1n x +C 2n x 2+…+C nnx n ,由题意知m +n =19,m ,n ∈N *, 所以x2项的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=⎝ ⎛⎭⎪⎫m -1922+19×174.因为m ,n ∈N *,所以当m =9或m =10时,上式有最小值. 所以当m =9,n =10或m =10,n =9时,x 2项的系数取得最小值,最小值为81.18.(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元,否则月工资定为2 100元,令X 表示此人选对A 饮料的杯数,假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列; (2)求此员工月工资的期望.解:(1)X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i 4C 48(i =0,1,2,3,4),故X 的分布列为:(2)令Y 表示新录用员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500,则P (Y =3 500)=P (X =4)=170,P (Y =2 800)=P (X =3)=835,P (Y =2 100)=P (X ≤2)=5370, E (Y )=3 500×170+2 800×835+2 100×5370=2 280.所以新录用员工月工资的期望为2 280元.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3, 又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3,又P (X =1)=16,P (X=2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.20.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1 x i =80,∑10i =1 y i =20,∑10i =1 x i y i =184,∑10i =1 x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b =∑ni =1 x i y i -n x y∑n i =1 x 2i -nx 2,a ^=y -b ^x ,其中x ,y 为样本平均值. 解:(1)由题意知n =10,x =1n ∑n i =1 x i =8010=8,y=1n∑ni=1y i=2010=2,又l xx=∑ni=1x2i-nx2=720-10×82=80,l xy=∑ni=1x i y i-nxy=184-10×8×2=24,由此得b^=l xyl xx=2480=0.3,a^=y-b^x=2-0.3×8=-0.4.故所求线性回归方程为y=0.3x-0.4.(2)由于变量y的值随x值的增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7(千元).21.(本小题满分12分)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.⎝⎭⎪参考公式:K 2=(a +b )(c +d )(a +c )(b +d )解:(1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C 25=10(个),“抽到至少有一个87分的同学”所组成的基本事件有C 13C 12+C 22=(7个),所以P =710. (2)2×2列联表如下:K 2=40×(6×6-14×14)220×20×20×20=6.4>5.024.因此,我们有97.5%的把握认为成绩优秀与教学方式有关. 22.(本小题满分12分)在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的.假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的.(1)求蜜蜂落入第二实验区的概率.(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率.(3)记X 为落入第一实验区的蜜蜂数,求随机变量X 的数学期望E (X ).解:(1)记“蜜蜂落入第一实验区”为事件A ,“蜜蜂落入第二实验区”为事件B ,依题意得:P (A )=V 小锥体V 圆锥体=13·14·S 圆锥底面·12h 圆锥13·S 圆锥底面·h 圆锥=18,所以P (B )=1-P (A )=78,所以蜜蜂落入第二实验区的概率为78.(2)记“蜜蜂被染上红色”为事件C ,则事件B ,C 为相互独立事件,又P (C )=1040=14,P (B )=78.则P (BC )=P (B )P (C )=14×78=732,所以恰有一只红色蜜蜂落入第二实验区的概率为732.(3)因为蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的,所以变量X 服从二项分布,即X ~B ⎝⎛⎭⎪⎫40,18,所以随机变量X 的数学期望E (X )=40×18=5.。
[精品]新人教A版选修2-3高中数学模块综合测评1和答案
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·山西大学附中月考)某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )A.510种B.105种C.50种 D.3 024种【解析】每位乘客都有5种不同的下车方式,根据分步乘法计数原理,共有510种可能的下车方式,故选A.【答案】 A2.(1-x)6展开式中x的奇次项系数和为( )A.32 B.-32 C.0 D.-64【解析】(1-x)6=1-C16x+C26x2-C36x3+C46x4-C56x5+C66x6,所以x的奇次项系数和为-C16-C36-C56=-32,故选B.【答案】 B3.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程y^=7.19x+73.93,用此方程预测儿子10岁的身高,有关叙述正确的是( )A.身高一定为145.83 cmB.身高大于145.83 cmC.身高小于145.83 cmD.身高在145.83 cm左右【解析】将x=10代入y^=7.19x+73.93,得y^=145.83,但这种预测不一定准确.实际身高应该在145.83 cm 左右.故选D.【答案】 D4.随机变量X的分布列如下表,则E(5X+4)等于( )A.16 B.11 C.【解析】由表格可求E(X)=0×0.3+2×0.2+4×0.5=2.4,故E(5X+4)=5E(X)+4=5×2.4+4=16.故选A.【答案】 A5.正态分布密度函数为f(x)=12 2πe-x-1 28,x∈R,则其标准差为( )A.1 B.2 C.4 D.8【解析】根据f(x)=1σ2πe-x-μ 22σ2,对比f(x)=12 2πe-x-1 28知σ=2.【答案】 B6.独立性检验中,假设H0:变量X与变量Y没有关系,则在H0成立的情况下,P(K2≥6.635)=0.010表示的意义是( ) A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99.9%C.变量X与变量Y没有关系的概率为99%D.变量X与变量Y有关系的概率为99%【解析】由题意知变量X与Y没有关系的概率为0.01,即认为变量X与Y有关系的概率为99%.【答案】 D7.三名教师教六个班的数学,则每人教两个班,分配方案共有( )A .18种B .24种C .45种D .90种【解析】 不妨设三名教师为甲、乙、丙.先从6个班中任取两个班分配甲,再从剩余4个班中,任取2个班分配给乙,最后两个班分给丙.由乘法计数原理得分配方案共C 26·C 24·C 22=90(种).【答案】 D8.已知⎝ ⎛⎭⎪⎫1x-x n的展开式中只有第四项的二项式系数最大,则展开式中的常数项等于( )A .15B .-15C .20D .-20【解析】 由题意知n =6,T r +1=C r6⎝ ⎛⎭⎪⎫1x 6-r·(-x )r=(-1)r C r6x 32r -6,由32r -6=0,得r =4,故T 5=(-1)4C 46=15,故选A. 【答案】 A9.设随机变量ξ~B (n ,p ),若E (ξ)=2.4,D (ξ)=1.44,则参数n ,p 的值为( ) 【导学号:97270066】A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.1 【解析】 由二项分布的均值与方差性质得⎩⎪⎨⎪⎧np =2.4,np 1-p =1.44,解得⎩⎪⎨⎪⎧n =6,p =0.4,故选B.【答案】 B10.小明同学在网易上申请了一个电子信箱,密码由4位数字组成,现在小明只记得密码是由2个6,1个3,1个9组成,但忘记了它们的顺序.那么小明试着输入由这样4个数组成的一个密码,则他恰好能输入正确进入邮箱的概率是( )A.16B.18C.112D.124【解析】 由2个6,1个3,1个9这4个数字一共可以组成A 44A 22=12种不同的密码顺序,因此小明试着输入由这样4个数组成的一个密码,他恰好能输入正确进入邮箱的概率是P =112.【答案】 C 11.有下列数据:) A .y =3×2x -1 B .y =log 2x C .y =3x D .y =x 2【解析】 当x =1,2,3时,代入检验y =3×2x -1适合.故选A. 【答案】 A 12.图1(2016·孝感高级中学期中)在如图1所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,若各保险匣之间互不影响,则当开关合上时,电路畅通的概率是( )A.551720B.29144C.2972D.2936【解析】 “左边并联电路畅通”记为事件A ,“右边并联电路畅通”记为事件B .P (A )=1-⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×14=56.P (B )=1-15×16=2930.“开关合上时电路畅通”记为事件C . P (C )=P (A )·P (B )=56×2930=2936,故选D.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.(2016·石家庄二模)利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程x 2-x +a =0无实根的概率为________.【解析】 ∵方程无实根,∴Δ=1-4a <0,∴a >14,∴所求概率为34.【答案】 3414.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.【解析】 由下图可以看出P (550<X <600)=P (400<X <450)=0.3.【答案】 0.315.(2015·重庆高考)⎝⎛⎭⎪⎪⎫x 3+12x 5的展开式中x 8的系数是________(用数字作答).【解析】 ∵T r +1=C r5·(x 3)5-r·⎝ ⎛⎭⎪⎪⎫12x r =C r 5·x 15-3r ·⎝ ⎛⎭⎪⎫12r ·x -r 2=⎝ ⎛⎭⎪⎫12r ·C r5·x 30-7r 2(r =0,1,2,3,4,5), 由30-7r 2=8,得r =2,∴⎝ ⎛⎭⎪⎫122·C 25=52.【答案】 5216.图2将一个半径适当的小球放入如图2所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________. 【导学号:97270067】【解析】 记“小球落入A 袋中”为事件A ,“小球落入B 袋中”为事件B ,则事件A 的对立事件为B ,若小球落入B 袋中,则小球必须一直向左落下或一直向右落下,故P (B )=⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫123=14,从而P (A )=1-P (B )=1-14=34.【答案】 34三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)6男4女站成一排,求满足下列条件的排法:(1)任何2名女生都不相邻有多少种排法? (2)男甲不在首位,男乙不在末位,有多少种排法? (3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法? 【解】 (1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47=604 800(种)不同排法.(2)法一:甲不在首位,按甲的排法分类,若甲在末位,则有A 99种排法,若甲不在末位,则甲有A 18种排法,乙有A 18种排法,其余有A 88种排法,综上共有(A 99+A 18A 18A 88)=2 943 360(种)排法.法二:无条件排列总数A 1010-⎩⎪⎨⎪⎧甲在首,乙在末A 88,甲在首,乙不在末A 99-A 88,甲不在首,乙在末A 99-A 88,甲不在首,乙不在末,共有A 1010-2A 99+A 88=2 943 360(种)排法.(3)10人的所有排列方法有A 1010种,其中甲、乙、丙的排序有A 33种,又对应甲、乙、丙只有一种排序,所以甲、乙、丙排序一定的排法有A1010A33=604 800(种).(4)男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10人排列数恰好是这二者之和,因此满足条件的有1 2A1010=1 814 400(种)排法.18.(本小题满分12分)某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分为不及格,求:(1)成绩不及格的学生人数占总人数的比例;(2)成绩在80~90分内的学生人数占总人数的比例.【解】(1)设学生的得分为随机变量X,X~N(70,102),则μ=70,σ=10.分数在60~80之间的学生的比例为P(70-10<X≤70+10)=0.683,所以不及格的学生的比例为12×(1-0.683)=0.158 5,即成绩不及格的学生人数占总人数的15.85%.(2)成绩在80~90分内的学生的比例为12[P(70-2×10<X≤70+2×10)]-12[P(70-10<X≤70+10)]=12(0.954-0.683)=0.135 5.即成绩在80~90分内的学生人数占总人数的13.55%.19.(本小题满分12分)口袋中有2个白球和4个红球,现从中随机地不放回连续抽取两次,每次抽取1个,则(1)第一次取出的是红球的概率是多少?(2)第一次和第二次取出的都是红球的概率是多少?(3)在第一次取出红球的条件下,第二次取出的也是红球的概率是多少?【解】 记事件A :第一次取出的是红球; 事件B :第二次取出的是红球. (1)第一次取出红球的概率 P (A )=4×56×5=23.(2)第一次和第二次取出的都是红球的概率P (A ∩B )=4×36×5=25.(3)在第一次取出红球的条件下,第二次取出的也是红球的概率为P (B |A )=P A ∩B P A =2523=35.20.(本小题满分12分)已知⎝⎛⎭⎪⎫x -2x n的展开式中,第4项和第9项的二项式系数相等.(1)求n ;(2)求展开式中x 的一次项的系数.【解】 (1)由第4项和第9项的二项式系数相等可得C 3n =C 8n ,解得n =11.(2)由(1)知,展开式的第k +1项为T k +1=C k 11(x )11-k⎝ ⎛⎭⎪⎫-2x k =(-2)k C k 11x 11-3k2.令11-3k 2=1,得k =3.此时T 3+1=(-2)3C 311x =-1 320x , 所以展开式中x 的一次项的系数为-1 320. 21.(本小题满分12分)对于表中的数据:(1)(2)求线性回归方程.【解】 (1)如图,x ,y 具有很好的线性相关性. (2)因为x =2.5,y =5,∑4i =1x i y i =60,∑4i =1x 2i =30,∑4i =1y 2i =120.04. 故b ^=60-4×2.5×530-4×2.52=2,a ^=y -b ^ x =5-2×2.5=0, 故所求的回归直线方程为 y ^=2x .22.(本小题满分12分)(2016·丰台高二检测)“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:已知在这30人中随机抽取1人抽到爱好运动的员工的概率是815.(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为X,求X的分布列、数学期望.【解】(1)k=30× 10×8-6×6 216×14×16×14≈1.158<3.841,所以没有把握认为爱好运动与性别有关.(2)X的取值可能为0,1,2.P(X=0)=C28C214=413,P(X=1)=C16C18C214=4891,P(X=2)=C26C214=1591.所以X的分布列为:X的数学期望为E(X)=0×413+1×4891+2×1591=67.。
高中数学选修2-3综合测试题及答案(优选.)
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改高中数学选修2-3综合测试题一、选择题(本题共12小题,每题5分,共60分.只有一项是符合题目要求) 1、在一次试验中,测得(x ,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则y 与x 间的线性回归方程为( )A. y ^=x +1 B. y ^=x +2 C. y ^=2x +1 D. y ^=x -12、某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( ) A .36种B .42种C .48种D .54种3、从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为 ( ) A .24B .18C .12D .64、两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( ) A .10种 B .15种 C .20种D .30种5、现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一.每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是 ( ) A .152 B .126 C .90D .546、在⎝ ⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( ) A .10B .-10C .40D .-407、(x +a x )(2x -1x )5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .408、若随机变量X 的分布列如下表,则E(X)等于( )A.118 B.9 C.9D.209、随机变量ξ服从正态分布N(0,1),如果P(ξ<1)=0.841 3,则P(-1<ξ<0)=( )A. 0.341 3B. 0.3412C. 0.342 3D. 0.441 310、五一节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( )A.5960B.35C.12D.16011、 如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为( ). A. 31B.18C.14D.1212、已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=bx +a ,则“(x 0,y 0)满足线性回归方程y ^=bx +a”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本题共4小题,每题5分,共20分)13、 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法种数是________. 14、已知X 的分布列为:设Y =2X +1,则Y .15、1()n x x+的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为______.16、若将函数f(x)=x 5表示为f(x)=0a +1a ()1x ++…+()551a x +,其中012,,a a a ,…,5a 为实数,则0a =________。
最新北师大版高中数学选修2-3综合测试题及答案2套
最新北师大版高中数学选修2-3综合测试题及答案2套模块综合检测(A)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某校教学大楼共有5层,每层均有2个楼梯,则由一楼至五楼的不同走法共有( ) A .24种 B .52种 C .10种D .7种解析: 每层楼均有2种走法,故共有2×2×2×2=24种不同的走法. 答案: A2.在⎝⎛⎭⎫x - 12x 10的展开式中,x 4的系数为( ) A .-120 B .120 C .-15D .15解析: 在⎝⎛⎭⎫x - 12x 10的展开式中,x 4项是C 310x 7·⎝⎛⎭⎫- 12x 3=-15x 4. 答案: C3.已知随机变量X 的分布列为P (X =k )= 12k ,k =1,2,…,n ,则P (2<X ≤4)为( ) A . 316 B . 14C .116D .516解析: P (2<X ≤4)=P (X =3)+P (X =4) =123+ 124= 316. 答案: A4.某产品40件,其中有次品数3件,现从中任取2件,则其中至少有一件次品的概率约是( ) A .0.146 2 B .0.153 8 C .0.996 2D .0.853 8解析: P =1-C 237C 240≈0.1 46 2.答案: A5.已知离散型随机变量ξ的概率分布如下:则其数学期望Eξ等于()A.1 B.0.6C.2+3m D.2.4解析:∵0.5+m+0.2=1,∴m=0.3.∴Eξ=1×0.5+3×0.3+5×0.2=2.4.答案:D6.若X~N(-1,62),且P(-3≤X≤-1)=0.4,则P(X≥1)等于() A.0.1 B.0.2C.0.3 D.0.4解析:P(-3≤X≤1)=2P(-3≤X≤-1)=0.8,2P(X≥1)=1-0.8=0.2,∴P(X≥1)=0.1.答案:A7.设(1-x)7=a0+a1x+a2x2+…+a7x7,则a1+a3+a5+a7为() A.27B.-27C.26D.-26解析:令x=1,有a0+a1+a2+…+a7=0,令x=-1,有a0-a1+a2-a3+…-a7=27,两式相减得2(a1+a3+a5+a7)=-27,∴a1+a3+a5+a7=-26.答案:D8.在一次独立性检验中,得出列联表如下:且最后发现,两个分类变量A和B没有任何关系,则a的可能值是() A.200 B.720C.100 D.180解析:A和B没有任何关系,也就是说,对应的比例aa+b和cc+d基本相等,根据列联表可得2001 000和180180+a基本相等,检验可知,B满足条件.答案:B9. 如图,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则栽种方案最多有()A.180种B.240种C.360种D.420种解析:本题中区域2,3,4,5地位相同(都与其他四个区域中的3个区域相邻),故应先种区域1,有5种种法,再种区域2,有4种种法,接着种区域3,有3种种法,种区域4时注意:区域2与4同色时区域4有1种种法,此时区域5有3种种法,区域2与4不同色时区域4有2种种法,此时区域5有2种种法,故共有5×4×3×(3+2×2)=420种栽种方案,故选D.答案:D10.某单位为了了解电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y=bx+a中b≈-2,预测当气温为-4 ℃时,用电量的度数约为() A.58 B.66C.68 D.70解析:x=18+13+10-14=10,y=24+34+38+644=40,所以a=y-b x=40-(-2)×10=60.所以,当x=-4时,y=bx+a=-2×(-4)+60=68.答案:C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.安排3名支教教师去6所学校任教,每校至多2人,则不同的分配方案共有____________种(用数字作答).解析:每人去一所学校有A36种;两人去一所有C23·A26,共有分配方案A36+C23A26=210(种).答案:21012.设(1+x)+(1+x)2+(1+x)3+…+(1+x)10=a0+a1x+a2x2+…+a10x10,则a2的值是______________.解析:a2即所有x2项的系数和,∴a2=C22+C23+C24+…+C210=165.答案: 16513.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分,已知P (400<X <450)=0.3,则P (550<X <600)=______________.解析: 由μ=500得学生成绩的正态曲线如右图: ∴P (550<X <600) =P (400<X <450) =0.3. 答案: 0.314.给出下列四个命题:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②样本方差反映了样本数据与样本平均值的偏离程度;③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;④在回归直线方程y ∧=0.1x +10中,当解释变量x 每增加一个单位时,预报变量y ∧增加0.1个单位. 其中正确命题的个数是____________个.解析: ①是系统抽样;②③④全对,故共有3个正确命题. 答案: 3三、解答题(本大题共4小题,共50分,解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)为了考察某种新药的副作用,给50位患者服用此新药,另外50位患者服用安慰剂(一种和新药外形完全相同,但无任何药效的东西),得到如下观测数据.副作用药物有 无 合计 新药 15 35 50 安慰剂 6 44 50 合计2179100由以上数据,你认为服用新药会产生副作用吗? 解析: 由公式得 χ2=100×(15×44-35×6)250×50×21×79≈4.882.∵4.882>3.841∴可以有95%的把握认为新药会产生副作用.16.(本小题满分12分)已知(1+2x )n 的展开式中,某一项的系数恰好是它的前一项系数的2倍,而且是它的后一项系数的56,试求展开式中二项式系数最大的项.解析: 由题意知展开式中第k +1项系数是第k 项系数的2倍,是第k +2项系数的56,∴⎩⎪⎨⎪⎧C k n 2k=2C k -1n ·2k -1C k n 2k =56C k +1n ·2k +1, 解得n =7,∴展开式中二项式系数最大两项是: T 4=C 37(2x )3=280x 32与 T 5=C 47(2x )4 =560x 2.17.(本小题满分12分)一个盒子里装有标号为1,2,3,…,n 的n (n >3且n ∈N +)张标签,现随机地从盒子里无放回地抽取两张标签,记ξ为这两张标签上的数字之和,若ξ=3的概率为110.(1)求n 的值; (2)求ξ的分布列; (3)求ξ的数学期望.解析: (1)P (ξ=3)=2⎝⎛⎭⎫1n ×1n -1=2n (n -1), ∴2n (n -1)=110(n ∈N *)∴n =5.(2)ξ的值可以是3,4,5,6,7,8,9. P (ξ=3)=110,P (ξ=4)=2×15×14=110,P (ξ=5)=2×2×15×14=15,P (ξ=6)=2×2×15×14=15,P (ξ=7)=2×2×15×14=15,P (ξ=8)=2×15×14=110,P (ξ=9)=2×15×14=110,ξ的分布列为P110 110 15 15 15 110 110Eξ=3×110+4×110+5×15+6×15+7×15+8×110+9×110=6.18.(本小题满分14分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日昼夜温差x (℃) 10 11 13 12 8 6 就诊人数y (个)222529261612该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ∧=b ∧x +a ∧;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:b ∧=ni =1x i y i -n x yni =1x 2i -n x2=n i =1(x i -x )(y i -y )ni =1(x i -x )2,a ∧=y -b ∧x 解析: (1)设抽到相邻两个月的数据为事件A .因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的.其中,抽到相邻两个月的数据的情况有5种,所以P (A )=515=13.(2)由数据求得x =11,y =24,由公式求得b ∧=187. 再由a ∧=y -b ∧x =-307.所以y 关于x 的线性回归方程为y ∧=187x -307.(3)当x =10时,y ∧=1507,⎪⎪⎪⎪1507-22<2; 同样,当x =6时,y ∧=787,⎪⎪⎪⎪7812-12<2, 由题意可知,该小组建立的回归方程是理想的.模块综合检测(B)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知x ∈{2,3,7},y ∈{-31,-24,4},则xy 可表示的不同值的个数是( ) A .1+1=2 B .1+1+1=3 C .2×3=6D .3×3=9解析: 两个集合各有三个元素,且任何两个xy 都不相同,故由分步乘法计数原理得3×3=9 答案: D2.如果随机变量X 表示抛掷一个各面分别为1,2,3,4,5,6的均匀的正方体向上面的数字,那么随机变量X 的均值为( )A .2.5B .3C .3.5D .4解析: P (X =k )= 16(k =1,2,3,4,5,6),∴EX =1× 16+2× 16+…+6× 16= 16×(1+2+…+6)=3.5.答案: C3.由数字1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有( ) A .60个 B .48个 C .36个D .24个解析: 个位数有A 12种排法,万位数有A 13种,其余三位数有A 33种,共有A 12A 13A 33=36(个).答案: C 4.已知⎝⎛⎭⎫x 2-i x n 的展开式中第三项与第五项的系数之比为- 314,其中i 2=-1,则展开式中系数为实数且最大的项为( )A .第三项B .第四项C .第五项D .第五项或第六项 解析: T 3=-C 2n x 2n -5,T 5=C 4n x 2n-10.由-C 2n :C 4n =-314,得n 2-5n -50=0, ∴n =10,又T r +1=C r 10(-i)rx 20-52r , 据此可知当r =0,2,4,6,8,10时其系数为实数,且当r =4时,C 410=210最大. 答案: C5.设随机变量X ~N (μ,σ2),且P (X ≤c )=P (X >c ),则P (X ≤c )等于( ) A .0B .1C .12D .与μ和σ的取值有关解析: ∵P (X >c )=1-P (X ≤c ) 又P (X ≤c )=P (X >c ) ∴P (X ≤c )=12.答案: C6.将三颗骰子各掷一次,设事件A “三个点数都不相同”,B “至少出现一个6点”,则概率P (A |B )等于( )A .6091B .12C .518D .91216解析: P (B )=1-P (B )=1-⎝⎛⎭⎫563,P (A ∩B )=C 25A 3363=518,所以P (A |B )=P (A ∩B )P (B )=6091. 答案: A7.设掷一枚骰子的点数为ξ,则( ) A .Eξ=3.5,Dξ=3.52 B .Eξ=3.5,Dξ=3512C .Eξ=3.5,Dξ=3.5D .Eξ=3.5,Dξ=3516解析: Eξ=1×16+2×16+3×16+4×16+5×16+6×16=3.5.Dξ=(1-3.5)2×16+(2-3.5)2×16+(3-3.5)2×16+(4-3.5)2×16+(5-3.5)2×16+(6-3.5)2×16=3512.答案: B8.下表提供了某厂节能降耗技术改造后生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据.根据下表提供的数据,求出y 关于x 的线性回归方程为y ∧=0.7x +0.35,那么表中t 的值为( )A .3B .3.15C .3.5D .4.5解析: 因a =y -b x 由回归方程知0.35=y -0.7x =2.5+t +4+4.54-0.7×3+4+5+64,解得t=3.答案: A9.甲、乙、丙3人射击命中目标的概率分别为12,13,14,现在3人同时射击同一目标,目标被击中的概率是( )A .14B .34C .12D .45解析: P =1-⎝⎛⎭⎫1-12⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=1-12×23×34=1-14=34. 答案: B10.某校1 000名学生的某次数学考试成绩X 服从正态分布,其密度函数曲线如图,则成绩X 位于区间(52,68]的人数大约是( )A .997B .954C .682D .341解析: 由题图知X ~N (μ,σ2). 其中μ=60,σ=8, ∴P (μ-σ<X ≤μ+σ) =P (52<X ≤68)=0.682 6. ∴人数为0.682 6×1 000≈682. 答案: C二、填空题(每小题5分,共4小题,共20分,请把正确答案填在题中横线上)11.2011年国际劳动节正是星期日,某劳动就业服务中心的7名志愿者准备安排6人在周六、周日两天,在街头做劳动就业指导,若每天安排3人,则不同的安排方案共有____________种(用数字作答).解析: 先从7人中选取3人排在周六,共有C 37种排法.再从剩余4人中选取3人排在周日,共有C 34种排法,∴共有C 37×C 34=140(种). 答案: 14012.已知(1+x )6(1-2x )5=a 0+a 1x +a 2x 2+…+a 11x 11,那么a 1+a 2+a 3+…+a 11=____________. 解析: 令x =0,得a 0=1;令x =1,得a 0+a 1+a 2+…+a 11=-64; ∴a 1+a 2+…+a 11=-65. 答案: -6513.(2014·九江高二检测)某校要从5名男生和2名女生中选出2人作为世博会志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则数学期望EX =____________(结果用最简分数表示).解析: X 可取0,1,2,则P (X =0)= C 25C 27= 1021,P (X =1)= C 15C 12C 27= 1021,P (X =2)= C 22C 27= 121,∴EX =0×1021+1× 1021+2× 121= 47. 答案: 4714.为考虑广告费用与销售额之间的关系,抽取了5家餐厅,得到如下数据:现要使销售额达到6万元,则需广告费约为____________千元. 解析: x =7,y =41.6,∑i =15x i y i =1 697,∑i =15x 2i =349,b =1 697-5×7×41.6349-5×49≈2.3,a =41.6-2.3×7=25.5. 当y =6万元=60千元时, 60=2.3x +25.5,解得x =15千元. 答案: 15三、解答题(本大题共4小题,共50分,解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)6个女同志(其中有一个领唱)和2个男同志,分成两排表演. (1)每排4人,问共有多少种不同的排法?(2)领唱站在前排,男同志站在后排,还是每排4人,问有多少种不同的排法? 解析: (1)要完成这件事,必须分三步:第一步:先从8人中选4人站在前面,另4人站在后面,这共有C 48C 44=C 48种不同的选法.第二步:前面4人进行排列,有A 44种排法.第三步:后面4人也进行排列,有A 44种排法.三步依次完成,才算这件事完成,故由分步乘法计数原理有N =C 48A 44A 44=40320种不同的排法.(2)除去领唱,在其余5个女同志中选2人有C 25种选法;这2人与2个男同志在后排全排列,有A 44种排法;领唱与其余3个女同志在前排全排列,有A 44种排法;故共有N =C 25A 44A 44=5760种不同的排法.16.(本小题满分12分)市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,若用事件A 、A 分别表示甲、乙两厂的产品,用B 表示产品为合格品.(1)试写出有关事件的概率;(2)求从市场上买到一个灯泡是甲厂生产的合格灯泡的概率. 解析: (1)依题意,P (A )=70%,P (A )=30%, P (B |A )=95%,P (B |A )=80%.进一步可得P (B |A )=5%,P (B |A )=20%.(2)要计算从市场上买到的灯泡既是甲厂生产的(事件A 发生),又是合格的(事件B 发生)的概率,也就是求A 与B 同时发生的概率,有P (AB )=P (A )·P (B |A )=0.7×0.95=0.665.17.(本小题满分12分)为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查.结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人.(1)调查结果制成2×2列联表; (2)根据数据作出统计分析推断. 解析: (1)由已知可列2×2列联表得:(2)根据列联表中的数据,由计算公式得: χ2=540×(20×260-200×60)280×460×220×320≈9.638.∵9.638>6.635.因此,我们有99%的把握说40岁以上的人患胃病与否和生活规律有关.18.(本小题满分14分)袋中有同样的球5个,其中3个红色,2个黄色,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数.(1)求随机变量ξ的概率分布列;(2)求随机变量ξ的数学期望与方差. 解析: (1)随机变量ξ可取的值为2,3,4.P (ξ=2)= C 12C 13C 12C 15C 14= 35,P (ξ=3)= A 22C 13+A 23C 12C 15C 14C 13= 310,P (ξ=4)= A 33C 12C 15C 14C 13C 12= 110. 故随机变量ξ的概率分布列为(2)随机变量ξ的数学期望为Eξ=2× 35+3× 310+4× 110= 52;随机变量ξ的方差为Dξ=⎝⎛⎭⎫2- 522× 35+⎝⎛⎭⎫3- 522× 310+⎝⎛⎭⎫4- 522× 110= 920.。
高中数学人教A版选修2-3:模块综合检测 Word版含解析
模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的有()①回归方程适用于一切样本和总体.②回归方程一般都有时间性.③样本取值的范围会影响回归方程的适用范围.④回归方程得到的预报值是预报变量的精确值.A.①②B.②③C.③④D.①③解析:选B回归方程只适用于所研究样本的总体,所以①不正确;而“回归方程一般都有时间性”正确,③也正确;而回归方程得到的预报值是预报变量的近似值,故选B.2.某校教学大楼共有5层,每层均有2个楼梯,则由一楼至五楼的不同走法共有() A.24种B.52种C.10种D.7种解析:选A因为每层均有2个楼梯,所以每层有两种不同的走法,由分步计数原理可知:从一楼至五楼共有24种不同走法.3.设随机变量X服从二项分布X~B(n,p),则(D(X))2(E(X))2等于()A.p2B.(1-p)2 C.1-p D.以上都不对解析:选B因为X~B(n,p),(D(X))2=[np(1-p)]2,(E(X))2=(np)2,所以(D(X))2 (E(X))2=[np(1-p)]2(np)2=(1-p)2.故选B.4.若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值是() A.1 B.-1C.0 D.2解析:选A令x=1,得a0+a1+…+a4=(2+3)4,令x=-1,a0-a1+a2-a3+a4=(-2+3)4.所以(a0+a2+a4)2-(a1+a3)2=(2+3)4(-2+3)4=1.5.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;③设随机变量ξ服从正态分布N (4,22),则P (ξ>4)=12;④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则判断“X 与Y 有关系”的犯错误的概率越小.其中正确的说法是( ) A .①④ B .②③ C .①③D .②④解析:选B ①中各小长方形的面积等于相应各组的频率;②正确,相关指数R 2越大,拟合效果越好,R 2越小,拟合效果越差;③随机变量ξ服从正态分布N (4,22),正态曲线对称轴为x =4,所以P (ξ>4)=12;④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则说明“X 与Y 有关系”的犯错误的概率越大.6.若随机变量ξ~N (-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4]解析:选C 此正态曲线关于直线x =-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.7.如图所示,A ,B ,C 表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为( )A .0.504B .0.994C .0.496D .0.06解析:选B A 、B 、C 三个开关相互独立,三个中只要至少有一个正常工作即可,由间接法知P =1-(1-0.9)×(1-0.8)(1-0.7)=1-0.1×0.2×0.3=0.994.8.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则D (ξ)等于( )A .0.2B .0.8C .0.196D .0.804解析:选C 因为由题意知该病的发病率为0.02,且每次试验结果都是相互独立的,所以ξ~B (10,0.02),所以由二项分布的方差公式得到D (ξ)=10×0.02×0.98=0.196.故选C . 9.学校小卖部为了研究气温对饮料销售的影响,经过统计,得到一个卖出饮料数与当天气温的对比表:根据上表可得回归方程y ^=b ^x +a ^中的b ^为6,据此模型预测气温为30 ℃时销售饮料瓶数为( )A .141B .191C .211D .241解析:选B 由题意,x =-1+3+8+12+175=7.8,y =3+40+52+72+1225=57.8,因为回归方程y ^=b ^x +a ^中的b ^为6,所以57.8=6×7.8+a ^,所以a ^=11,所以y ^=6x +11,所以x =30时,y ^=6×30+11=191,故选B . 10.如图,用4种不同颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有( )A .72B .96C .108D .120解析:选B 颜色都用上时,必定有两块同色,在图中,同色的可能是1,3或1,5或2,5或3,5.对每种情况涂色有A 44=24种,所以一共有96种.11.假设每一架飞机的引擎在飞行中出现故障的概率为1-p ,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2个引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4个引擎飞机更安全,则p 的取值范围是( )A .⎝⎛⎭⎫23,1 B .⎝⎛⎭⎫13,1 C .⎝⎛⎭⎫0,23 D .⎝⎛⎭⎫0, 13 解析:选B 4个引擎飞机成功飞行的概率为C 34p 3(1-p )+p 4,2个引擎飞机成功飞行的概率为p 2,要使C 34p 3(1-p )+p 4>p 2,必有13<p <1. 12.(全国丙卷)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个解析:选C 由题意知:当m =4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a 1=0,a 8=1.不考虑限制条件“对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数”,则中间6个数的情况共有C 36=20(种),其中存在k ≤2m ,a 1,a 2,…,a k 中0的个数少于1的个数的情况有:①若a 2=a 3=1,则有C 14=4(种);②若a 2=1,a 3=0,则a 4=1,a 5=1,只有1种;③若a 2=0,则a 3=a 4=a 5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C .二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.(四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是__________.解析:法一:由题意可知每次试验不成功的概率为14,成功的概率为34,在2次试验中成功次数X 的可能取值为0,1,2,则P (X =0)=116,P (X =1)=C 12×14×34=38,P (X =2)=⎝⎛⎭⎫342=916. 所以在2次试验中成功次数X 的分布列为则在2次试验中成功次数E (X )=0×116+1×38+2×916=32.法二:此试验满足二项分布,其中p =34,所以在2次试验中成功次数X 的均值为E (X )=np =2×34=32.答案:3214.为了调查患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如表根据列联表数据,求得K 2≈__________.解析:由计算公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得K 2≈7.469. 答案:7.46915.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.解析:十个数中任取七个不同的数共有C 710种情况,七个数的中位数为6,那么6只有处在中间位置,有C 36种情况,于是所求概率P =C 36C 710=16.答案:1616.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是________(写出所有正确结论的序号).解析:①因为各次射击是否击中目标相互之间没有影响,所以第3次击中目标的概率是0.9,正确;②恰好击中目标3次的概率应为C 34×0.93×0.1;③4次射击都未击中的概率为0.14; 所以至少击中目标1次的概率为1-0.14. 答案:①③三、简答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知(a 2+1)n 展开式中的各项系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的系数最大的项等于54,求a 的值.解:⎝⎛⎭⎫165x 2+1x 5的展开式的通项为T r +1=C r 5⎝⎛⎭⎫165x 25-r ⎝⎛⎭⎫1x r =⎝⎛⎭⎫1655-r C r 5x 20-5r2, 令20-5r =0,得r =4, 故常数项T 5=C 45×165=16. 又(a 2+1)n 展开式的各项系数之和等于2n ,由题意知2n=16,得n=4.由二项式系数的性质知,(a2+1)n展开式中系数最大的项是中间项T3,故有C24a4=54,解得a=±3.18.(本小题满分12分)(全国甲卷)某险种的基本保费为a(单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=1-(0.30+0.15)=0.55.(2)设B表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为3 11.(3)记续保人本年度的保费为X,则X的分布列为EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.19.(本小题满分12分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,按1%的比例从年龄在20~80岁(含20岁和80岁)之间的市民中随机抽取600人进行调查,并将年龄按[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]进行分组,绘制成频率分布直方图,如图所示.规定年龄在[20,40)岁的人为“青年人”,[40,60)岁的人为“中年人”,[60,80]岁的人为“老年人”.(1)根据频率分布直方图估计该城市60岁以上(含60岁)的人数,若每一组中的数据用该组区间的中点值来代表,试估算所调查的600人的平均年龄;(2)将上述人口分布的频率视为该城市年龄在20~80岁的人口分布的概率,从该城市年龄在20~80岁的市民中随机抽取3人,记抽到“老年人”的人数为X ,求随机变量X 的分布列和数学期望.解:(1)由频率分布直方图可知60岁以上(含60岁)的频率为(0.01+0.01)×10=0.2, 故样本中60岁以上(含60岁)的人数为600×0.2=120,故该城市60岁以上(含60岁)的人数为120÷1%=12 000.所调查的600人的平均年龄为25×0.1+35×0.2+45×0.3+55×0.2+65×0.1+75×0.1=48(岁). (2)由频率分布直方图知,“老年人”所占的频率为15,所以从该城市年龄在20~80岁的市民中随机抽取1人,抽到“老年人”的概率为15,分析可知X 的所有可能取值为0,1,2,3,P (X =0)=C 03⎝⎛⎭⎫150⎝⎛⎭⎫453=64125, P (X =1)=C 13⎝⎛⎭⎫151⎝⎛⎭⎫452=48125, P (X =2)=C 23⎝⎛⎭⎫152⎝⎛⎭⎫451=12125, P (X =3)=C 33⎝⎛⎭⎫153⎝⎛⎭⎫450=1125. 所以X 的分布列为EX =0×64125+1×48125+2×12125+3×1125=35.⎝⎛⎭⎫或EX =3×15=3520.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑i =18w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程.(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i -u )(v i -v )∑i =1n(u i -u )2,α^=v -β^u .解:(1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i -w )(y i -y )∑i =18(w i -w )2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6, 所以y 关于w 的线性回归方程y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.21.(本小题满分12分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某试点城市环保局从该市市区2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)(1)从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率.(2)从这15天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及数学期望.(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.解:(1)记“从15天的PM2.5日均监测数据中,随机抽出三天,恰有一天空气质量达到一级”为事件A ,P (A )=C 15C 210C 315=4591.(2)依据条件,ξ服从超几何分布:ξ的可能值为0,1,2,3, 其分布列为:P (ξ=k )=C k 5C 3-k10C 315(k =0,1,2,3).则E (X )=0×2491+1×4591+2×2091+3×291=1,(3)依题意可知,一年中每天空气质量达到一级或二级的概率为P =1015=23, 一年中空气质量达到一级或二级的天数为η, 则η~B ⎝⎛⎭⎫360,23, 所以E (η)=360×23=240,所以一年中平均有240天的空气质量达到一级或二级.22.(本小题满分12分)某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断在犯错误的概率不超过0.05的前提下认为“该校学生的每周平均体育运动时间与性别有关”.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)解:(1)由分层抽样得收集的女生样本数据为300×4 50015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得2×(0.150+0.125+0.075+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300名学生中有300×0.75=225人的每周平均体育运动时间超过4个小时.75人的每周平均体育运动时间不超过4个小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别的列联表如下:平均体育运动时间与性别列联表结合列联表可算得K2的观测值k=300×(-2 250)275×225×210×90≈4.762>3.841.在犯错误的概率不超过0.05的前提下认为“该校学生的每周平均体育运动时间与性别有关”.第11页共11页。
数学选修2-3模块测试题及参考答案
数学选修2-3模块测试题浙江 王启东一、选择题:(本大题共12小题,每小题5分,共60分,.)1.(1-2x)8展开式中二项式系数最大的项数为 ( )A .第4项B .第5项C .第7项D .第8项 2.设随机变量ξ服从分布B(n,p),且E ξ=1.6,V ξ=1.28则( )A .n=8,p=0.2B .n=4,p=0.4C .n=5,p=0.32D .n=7,p=0.45A .甲的产品质量比乙的产品质量好一些B .乙的产品质量比甲的产品质量好一些C .两人的产品质量一样好D .无法判断谁的质量好一些 4. 4×5×6×……×(n -1)×n = ( )(A)4n C (B)n !-3! (C)3-n n A (D)3-n n C 5.某商场经营的一种袋装的大米的质量服从正态分布N 10(,)1.02(单位kg ).任选一袋这种大米,其质量在9.8~10.2kg 的概率为( )(A)0.9544 (B)0.9566 (C)0.9455 (D)0.90466.为了考察甲、乙两种小麦的长势,分别从中抽取了10株苗,测得苗高如下(单位:cm ):甲:12,13,14,15,10,16,13,11,5,11;乙:8,16,15,14,13,11,10,11,10,12;则下列说法正确的是( )(A)甲的平均苗高比乙高 (B)乙的平均苗高比甲高(C)平均苗高一样,甲长势整齐 (D)平均苗高一样,乙长势整齐7.某科研机构为了研究中年人秃发与心脏病的是否有关,随机调查了一些中年人情况,具体数据如下表:根据表中数据得到45532075025)300545020(7752⨯⨯⨯⨯-⨯⨯=k ≈15.968因为K 2≥10.828,则断定秃发与心脏病有关系,(A)0.1(B)0.05(D)0.0018.甲、乙、丙三个人负责一个计算机房周一至周六的值班工作,每天1人,每人值班2天,如果甲同学不值周一,乙同学不值周六,则可以排出不同的值班表有() A .36种B .42种C .50种D .72种9.在一个盒子中有大小一样的20个球,其中10个红球,10个白球,则在第一个人摸出1110.如图所示,在一个边长为1的正方形AOBC 内,曲线y x =和曲线y =(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )(A )12(B )13(C )14(D )1611.如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外围是由四个不同形状的色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有( )(A)8种 (B)12种 (C)16种 (D)20种12.某人射击5枪,命中3枪,3枪中恰有2枪连中的概率为( )A .52B .53C .101D .201二、填空题(:本大题共4小题,每小题4分,共16分)13.设ξ是一个离散型随机变量,其分布列如下: 则q= 14. 已知随机变量X 服从正态分布2(0)N σ,且(20)P X -≤≤0.4=,则(2)P X >= .15. n y x )234(+-(∈n N *)展开式中不含y 的项的系数和为 .16.设N n x f x f x f x f x f x f x x f n n ∈'='='==+).()(),......()(),()(,sin )(112010,则=)(2005x f .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)5名男生、2名女生站成一排照像:⑴两名女生都不站在两端,有多少不同的站法?⑵两名女生要相邻,有多少种不同的站法?⑶两名女生不相邻,有多少种不同的站法?⑷女生甲不在左端,女生乙不在右端,有多少种不同的站法?18. (本小题满分12分)假设关于某设备使用年限x (年)和所支出的维修费用y (万元)有如下统计资料:若由资料知,y 对x 呈线性相关关系,试求:(1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?19. (本小题满分12分)袋子里有大小相同但标有不同号码的3个红球和4个黑球,从袋子里随机取出4个球.⑴求取出的红球数ξ的概率分布列;⑵若取到每个红球得2分,取到每个黑球得1分,求得分不超过5分的概率. 20.(本小题满分12分)NBA 总决赛采用7场4胜制,即若某队先取胜4场则比赛结束.由于NBA 有特殊的政策和规则能进入决赛的球队实力都较强,因此可以认为,两个队在每一场比赛中取胜的概率相等.根据不完全统计,主办一场决赛,组织者有望通过出售电视转播权、门票及零售商品、停车费、广告费等收入获取收益2000万美元. (1) 求所需比赛场数的分布列;(2)组织者收益的数学期望.21. (本小题满分12分)设)(x f 是定义在R 上的一个给定的函数,函数=)(x g n n x n f C )1)(0(0-+++-- 111)1()1(n n x x n f C ++-- k n k kn x x nk f C )1()(0()(1)n n n n C f x x n-(1,0≠x ).⑴当)(x f 1=时,求)(x g ;⑵当)(x f x =时,求)(x g .22.(本小题满分14分)下面玩掷骰子放球游戏,若掷出1点,甲盒中放一球,若掷出2点或3 点,乙盒中放一球,若掷出4点、5点或6点,丙盒中放一球,设掷n次后,甲、乙、丙各盒内的球数分别为z,.x,y⑴n=3时,求zx,,成等比数列的概率.y,成等差数列的概率;⑵当n=6时,求zx,y答案及评分标准一、选择1.提示:展开即可所以选B2.提示ξ服从二项分布代入公式即可选A 3.提示分别算出E.ξ和D.ξ 即可选B 4.C5.提示代入公式即可A 6.D 7.D8.提示讨论分甲值周六14c C 24+甲不值周六C 24C 23=42选B 9.A 10.B 11.C 12.B二、填空13.1214. 0.1 15. 1 16. cosx 三、解答题17.解:(1)中间的五个位置任选两个排女生,其余五个位置任意排男生;24005525=⋅A A (种);(文字占说明1分)3分(2)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列;14002266=⋅A A (种); 6分(3)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生;36002655=⋅A A (种); 9分(4)采用排除法,在七个人的全排列中,去掉女生甲在左端的66A 个,再去掉女生乙在右端的66A 个,但女生甲在左端同时女生乙在右端的55A 种排除了两次,要找回来一次.37202556677=+-A A A (种).12分18.解:(1)依题列表如下:521522215112.354512.31.239054105ii i i xxyb x x==--⨯⨯====-⨯-∑∑.5 1.2340.08a y bx =-=-⨯=.∴回归直线方程为1.230.08y x =+.(2)当10x =时, 1.23100.0812.38y =⨯+=万元.即估计用10年时,维修费约为12.38万元.19.解:⑴∵ξ的可能取值为0,1,2,3,且ξ的分布列是一个超几何分布列. ∴ξ的分布列为(2)∵得分25ηξξξξ=+4-=+4∴1≤≤,∵(1)(0)(1)p p p ξξξ==+==≤3513 ∴得分不超过5分的概率为3513 20所需比赛场数ξ是随机变量,其取值为4,5,6,7,}{k =ξ,k=4,5,6,7,表示比赛最终获胜队在第k 场获胜后结束比赛,显然在前面k-1场中获胜3场,从而)(k p =ξ=131)21(--k k C ,k=4,5,6,7,(1)分布列为(2) 所需比赛场数的数学期望是6169316571656415814)(≈=⨯+⨯+⨯+⨯=ξE ,组织者收益的数学期望为⨯16932000=11625万美元.21.解:⑴=)(x g n nx C )1(0-+111)1(--n n x x C +…+k n k k n x x C --)1(+…+0)1(x x C nn n-=n x x ])1[(+-=1.(6分) ⑵利用11--=k n k n nC kC ,通项可化为k n k knx x nk C --)1(=k n k k n x x C ----)1(11=x x xC k n k k n ])1([)1()1(111-------, x x g =)([1001)1(---n n x x C +2111)1(---n n x x C +3221)1(---n n x x C +…+0111)1(x xC n n n ----] =x 1])1[(-+-n x x =x .(14分)22.解:⑴∵z x y z y x +==++2,3 ①⎪⎩⎪⎨⎧===210z y x ②⎪⎩⎪⎨⎧===111z y x ③⎪⎩⎪⎨⎧===012z y x ①表示:掷3次,1次出现2点或3点,2次出现4点,5点或6点,共13C 种情况,故2,1,0===z y x 的概率为41)21(·)31()61(3210= ②1===z y x 的概率为6121·31·61·6=③0,1,2===z y x 的概率为 361)21()31()61(3012=故n =3时,x 、y 、z 成等差数列,概率为943616141=++ ⑵n=6时,x 、y 、z 成等比数列。
人教版高中数学选修2-3期末(模块)综合检测试题 附详细答案解析
高中数学选修2-3模块综合检测试题(满分:150分,时间:120分钟,附详细答案解析)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从字母a ,b ,c ,d ,e ,f 中选出4个数排成一列,其中一定要选出a 和b ,并且必须相邻(a 在b 的前面),共有排列方法( )A .36种B .72种C .90种D .144种 2.设随机变量ξ~N (μ,σ2)且P (ξ<1)=12,P (ξ>2)=p ,则P (0<ξ<1)的值为( )A.12p B .1-p C .1-2p D.12-p 3.某机械零件由2道工序组成,第一道工序的废品率为a ,第二道工序的废品率为b ,假设这两道工序出废品是彼此无关的,那么产品的合格率为( )A .ab -a -b +1B .1-a -bC .1-abD .1-2ab 4.现有甲、乙、丙三个盒子,其中每个盒子中都装有标号分别为1,2,3,4,5,6的六张卡片.现从甲、乙、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为( )A .14种B .16种C .18种D .20种 5.已知X 的分布列为:设Y =6X +1,则Y A .-16 B .0 C .1 D.29366.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11D .127.小明家1~4月份用电量的一组数据如下:由散点图可知,其线性回归直线方程是y ∧=-7x +a ∧,则a ∧等于( ) A .105 B .51.5 C .52D .52.58.已知随机变量ξ的分布列为:则D (ξ)等于( )A.1727B.59C.12D.259.某市政府调查市民收入与旅游欲望时,采用独立检验法抽取3 000人,计算发现K 2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游愿望有关系的可信程度是( )C .97.5%D .99.5%10.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3∶2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )A .2233255C ⎛⎫⋅ ⎪⎝⎭ B .3233255C ⎛⎫⋅ ⎪⎝⎭ C .3343255C ⎛⎫⋅ ⎪⎝⎭ D .3342133C ⎛⎫⋅ ⎪⎝⎭11.如果212nx x ⎛⎫- ⎪⎝⎭的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数和是( )A .0B .256C .64 D.16412.0.9910的小数点后第1位数字为n 1,第2位数字为n 2,第3位数字为n 3,则n 1,n 2,n 3分别为( )A .9,0,4B .9,4,0C .9,0,2D .9,2,0二、填空题(本大题共4小题,每小题4分,共16分.请把正确的答案填在题中的横线上)13.设随机变量ξ~N (2,2)则12D ξ⎛⎫⎪⎝⎭的值为________.14.乒乓球队的10名队员中有3名主力队员,要派5名队员参加比赛,其中3名主力队员安排在第一、第三、第五位置,其余7名队员选2名安排在第二、第四位置,那么不同的出场安排共有________种.(用数字作答)15.(a +x )4的展开式中x 3的系数等于8,则实数a =________. 16.某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过 1 000小时的概率为________.三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)中央电视台“星光大道”节目的现场观众来自4所学校,分别在图中的四个区域Ⅰ,Ⅱ,Ⅲ,Ⅳ坐定.有4种不同颜色的服装,同一学校的观众必须穿上同种颜色的服装,且相邻两个区域的颜色不同,不相邻区域颜色相同与否不受限制,那么不同着装方法有多少种?18.(本小题满分12分)设(x +1)4(x +4)8=a 0(x +3)12+a 1(x +3)11+…+a 11(x +3)+a 12,求:(1)a 0+a 1+a 2+…+a 12的值; (2)a 0+a 2+a 4+…+a 12的值.19.(本小题满分12分)为了考察某种新药的副作用,给50位患者服用此新药,另外50位患者服用安慰剂(一种和新药外形完全相同,但无任何药效的东西),得到如下观测数据20.(本小题满分12分)若n的展开式中前三项系数成等差数列.求 (1)展开式中含x 的一次幂的项; (2)展开式中所有x 的有理项; (3)展开式中系数最大的项.21.(本小题满分13分)某单位招聘面试,每次从试题库中随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类型试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n +m 道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类型试题的数量.(1)求X =n +2的概率;(2)设m =n ,求X 的分布列和均值.(数学期望)22.(本小题满分13分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日到3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料n 均不小于25”的概率;(2)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程y ∧=b ∧x +a ∧;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?详细参考答案一、1.【解析】从c ,d ,e ,f 中选2个,有C 24,把a ,b 看成一个整体,则3个元素全排列为A 33,共计C 24A 33=36.【答案】A2.【解析】由正态曲线的对称性和P (ξ<1)=12知μ=1,即正态曲线关于直线x =1对称,于是P (ξ<0)=P (ξ>2), 所以P (0<ξ<1)=P (ξ<1)-P (ξ<0)=P (ξ<1)-p (ξ>2)=12-p .【答案】D3.【解析】要使产品合格,则第一道工序合格,第二道工序也合格,故产品的合格率为(1-a )(1-b )=ab -a -b +1.【答案】A4.【解析】由等差数列的性质知x +y =2z ,则x ,y 必同奇同偶,所以不同的取法有2C 13C 13=18种.【答案】C5.【解析】E (Y )=6E (X )+1,由已知得a =13,所以E (X )=-12+13=-16,所以E (Y )=0.【答案】B6.【解析】化51为52-1,用二项式定理展开.512 012+a =(52-1)2 012+a=C 02 012522 012-C 12 012522 011+…+C 2 0112 012×52×(-1)2 011+C 2 0122 012×(-1)2 012+a . 因为52能被13整除,所以只需C 2 0122 012×(-1)2 012+a 能被13整除, 即a +1能被13整除,所以a =12. 【答案】D7.【解析】x =1+2+3+44=52,y =45+40+30+254=35.∵点5,352⎛⎫⎪⎝⎭在直线y ∧=-7x +a ∧上,∴35=-7×52+a ∧,∴a ∧=52.5.【答案】D8.【解析】由分布列的性质得12+13+a =1,故a =16,所以E (ξ)=(-1)×12+0×13+1×16=-13,所以()22211111151013233369D ξ⎛⎫⎛⎫⎛⎫=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】B9.【解析】∵K 2=6.023>5.024,∴可断言市民收入增减与旅游愿望有关系的可信程度为97.5%.【答案】C10.【解析】由甲队与乙队实力之比为3∶2可知:甲队胜的概率为35,乙队胜的概率为25.于是甲打完4局才胜说明最后一局是甲队胜,在前3局中甲队胜两局,即甲打完4局才胜的概率为3233255C ⎛⎫⋅ ⎪⎝⎭.【答案】B11.【解析】因为展开式中只有第4项的二项式系数最大,所以n =6.令x =1,则展开式中所有项的系数和是6611112264⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭.【答案】D12.【解析】0.9910=(1-0.01)10=1-C 110·0.01+C 210·0.012-C 310·0.013+C 410·0.014-… =1-0.1+0.004 5-0.000 12+…=0.904 38+….【答案】A二、13.【解析】因为ξ~N (2,2),所以D (ξ)=2,所以12D ξ⎛⎫ ⎪⎝⎭=122D (ξ)=14×2=12.【答案】1214.【解析】3名主力队员安排在第一、第三、第五位置,有A 33种排法,其余7名队员选2名安排在第二、第四位置,有A 27种排法.那么不同的排法共有A 33A 27=252种.【答案】25215.【解析】写出展开式的通项T r +1=C r 4·a 4-r x r ,令r =3,可求出a 的值. (a +x )4的展开式中的通项T r +1=C r 4a4-r x r , 当r =3时,有C 34·a =8,所以a =2. 【答案】216.【解析】利用独立事件和对立事件的概率公式求解.设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C , 显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000小时的事件为()AB AB AB C ++, ∴该部件的使用寿命超过1 000小时的概率1111111322222228P ⎛⎫=⨯+⨯+⨯⨯= ⎪⎝⎭.【答案】38三、解答题17.【解析】分三种情况:①四所学校的观众着装颜色各不相同时,有A 44=24种方法;②四所学校的观众着装颜色有三种时,即有两所相同时,只能是Ⅰ与Ⅲ,或Ⅱ与Ⅳ,故有2C 34A 33=48种方法;③四所学校的观众着装颜色有两种时,则Ⅰ与Ⅲ相同,同时Ⅱ与Ⅳ相同, 故有A 24=12种方法.根据分类加法计数原理知共有24+48+12=84种方法. 18.【解析】(1)令x =-2得(-1)4×28=a 0+a 1+a 2+…+a 12,即a 0+a 1+a 2+…+a 12=28=256.(2)令x =-4得(-3)4×08=a 0-a 1+a 2-…+a 12,即a 0-a 1+a 2-…+a 12=0. 故a 0+a 2+a 4+…+a 12=12[(a 0+a 1+a 2+…+a 12)+(a 0-a 1+a 2-…+a 12)] =12(256+0)=128. 19.【解析】由表中数据得K 2的观测值k =100×(15×46-35×4)250×50×19×81≈7.862.因为7.862>6.635,所以在犯错的概率不超过0.01的前提下认为新药会产生副作用. 20.【解析】由题知C 0n +122·C 2n =2·12C 1n,可得n =8或n =1(舍去). (1)T r +1=C r 8(x )8-r r=C r 8·2-r ·344r x -. 令4-34r =1,得r =4,所以x 的一次幂的项为T 5=C 482-4x =358x . (2)令4-34r ∈Z (r =0,1,2,…,8)所以只有当r =0,4,8时,对应的项才为有理项.有理项为T 1=x 4,T 5=358x ,T 9=1256x 2.(3)记第r 项系数为T r ,记第k 项系数最大,则有T k ≥T k +1,且T k ≥T k -1.又T r =C r -182-r +1,于是有11881122882222k k k k k k k k C C C C --+---+--+⎧≥⎪⎨≥⎪⎩,解得3≤k ≤4. 所以系数最大项为第3项T 3=7x 52和第4项T 4=7x 74.21.【解析】以A i 表示第i 次调题调用到A 类型试题,i =1,2. (1)P (X =n +2)=P (A 1A 2) =nm +n ·n +1m +n +2=n (n +1)(m +n )(m +n +2). (2)X 的可能取值为n ,n +1,n +2. P (X =n )=P (A 1A 2)=n n +n ·n n +n =14, P (X =n +1)=P (A 1A 2)+P (A 1 A 2) =n n +n ·n +1n +n +2+n n +n ·n n +n =12, P (X =n +2)=P (A 1A 2)=n n +n ·n +1n +n +2=14, 从而X 的分布列为:EX =n ×14+(n +1)×12+(n +2)×14=n +1.22.【解析】(1)m ,n 的所有取值情况有:(23,25),(23,30),(23,26),(23,16),(25,30), (25,26),(25,16),(30,26),(30,16),(26,16),即基本事件总数为10.设“m ,n 均不小于25”为事件A ,则事件A 包含的基本事件为(25,30),(25,26), (30,26).所以P (A )=310,故事件A 的概率为310.(2)由数据可得x =13(11+13+12)=12,y =13(25+30+26)=27, 3x y =972.31112513*********i i i x y ==⨯+⨯+⨯=∑, 322221111213434i i x ==++=∑,23432x =.由此可得3132213977972543443223i i i i i x y x y b x x==-⋅-===--∑∑,a ∧=y -b ∧x =27-52×12=-3.所以y 关于x 的线性回归方程为y =52x -3.(3)当x =10时,y =52×10-3=22,|22-23|<2;同样,当x =8时,y =52×8-3=17,|17-16|<2.所以该研究所得到的线性回归方程是可靠的.。
新课标A版高中数学选修2-3模块综合测试题 Word版含答案
模块综合测试题一、选择题(本大题共小题,每小题分,共分.每小题中只有一项符合题目要求).知识竞赛中给一个代表队的人出了道必答题和道选答题,要求人各答一题,共答题,此代表队可选择的答题方案的种类为( ) ....答案解析从道选答题中选道的选法为,道必答题和道选答题让人各答一题的方法为,故选..从名男生和名女生中,选出名分别担任语文、数学、英语的课代表,要求至少有名女生,则选派方案共有( ).种.种.种.种答案解析-=-=..若(-)的展开式中各项系数之和为,则展开式的常数项为( ) .-.-..答案解析由题意,不妨令=,则(-)=,解得=.展开式中第+项为+=·()-·(-)=(-)··-·-,当=时,=(-)··= ..已知随机变量ξ只能取三个值,,,其概率依次成等差数列,则该等差数列公差的范围为( ).[,] .[-,].[-] .[]答案解析不妨设,,发生的概率分别为,+,+,则+(+)+(+)=.可得+=,即=-.∵∈[],∴-∈[-,].∴-≤≤.①又∵(\\(+≥,+≥,))∴(\\(()≥,+()≥.))∴≥-.②由①②可得:-≤≤..已知随机变量ξ的分布列为ξ=-,对应=,,,且设η=ξ+,则η的期望为( ).-.答案解析(ξ)=-×+×+×=-,∴(η)=(ξ+)=(ξ)+=-×+=..(+)(∈)展开式中的系数为,则实数等于( ).-..答案解析展开式中第+项为+=·-·()=··-,当-=时,=,所以的系数为=,解得=..某校名学生的某次数学考试成绩服从正态分布,其密度函数曲线如图所示,则成绩位于区间(]的人数大约是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《选修2-3》综合测试卷时间:90分钟满分:120分一、选择题(本大题共10小题,每小题5分,共50分)1.设X是一个离散型随机变量,则下列不能成为X的概率分布列的一组数据是( )A.0,12,0,0,12B.0.1,0.2,0.3,0.4C.p,1-p(0≤p≤1) D.11×2,12×3,…,17×82.若x,y∈N*,且1≤x≤3,x+y<7,则满足条件的不同的有序数对(x,y)的个数是( )A.15 B.12C.5 D.43.若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是( )A.2×0.44B.2×0.45C.3×0.44D.3×0.644.在一次独立性检验中,得出列联表如下:A A合计B 200800 1 000B180 a 180+a合计380800+a 1 180+a且最后发现,两个分类变量A和B没有任何关系,则a的可能值是( ) A.200 B.720C.100 D.1805.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为( )A .0.504B .0.994C .0.496D .0.066.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归直线y ^=b ^x +a ^必过(x ,y ); ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得k =13.079,则其两个变量间有关系的可能性是90%.其中错误的个数是( )A .1B .2C .3D .47.设a 为函数y =sin x +3cos x (x ∈R)的最大值,则二项式⎝⎛⎭⎪⎫a x -1x 6的展开式中含x 2项的系数是( )A .192B .182C .-192D .-1828.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .1689.将三颗骰子各掷一次,设事件A =“三个点数都不相同”,B =“至少出现一个6点”,则概率P (A |B )等于( )A.6091 B.12 C.518D.9121610.某校1 000名学生的某次数学考试成绩X 服从正态分布,正态分布密度曲线如下图所示,则成绩X 位于区间(51,69]的人数大约是( )A .997B .954C .682D .341二、填空题(本大题共4小题,每小题5分,共20分)11.一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3和0.1,则这台机器每生产一件产品平均预期可获利________元.12.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.13.二项式⎝⎛⎭⎪⎪⎫2x +14x n (n ∈N *)的展开式中,前三项的系数依次成等差数列,则此展开式中有理项有________项.14.在某项测量中,测量结果服从正态分布N (1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.三、解答题(本大题共4小题,第15~17小题各12分,第18小题14分,共50分)15.已知⎝ ⎛⎭⎪⎫x -2x n 展开式中第三项的系数比第二项的系数大162,求:(1)n 的值;(2)展开式中含x 3的项.16.在研究某种新药对小白兔的治疗效果时,得到如下数据:17.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛. 假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).18.某5名学生的总成绩与数学成绩如下表:(1)(2)求数学成绩对总成绩的回归方程;(3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩(参考数据:4822+3832+4212+3642+3622=819 794,482×78+383×65+421×71+364×64+362×61=137 760).高中数学《选修2-3》综合测试卷时间:90分钟满分:120分一、选择题(本大题共10小题,每小题5分,共50分)1.设X是一个离散型随机变量,则下列不能成为X的概率分布列的一组数据是( )A.0,12,0,0,12B.0.1,0.2,0.3,0.4C.p,1-p(0≤p≤1) D.11×2,12×3,…,17×8解析:利用分布列的性质判断,任一离散型随机变量X的分布列具有下述两个性质:(1)p i≥0,i=1,2,3,…,n;(2)p1+p2+p3+…+p n=1.答案:D2.若x,y∈N*,且1≤x≤3,x+y<7,则满足条件的不同的有序数对(x,y)的个数是( )A.15 B.12C.5 D.4解析:当x=1时,y=1,2,3,4,5,有5种;当x=2时,y=1,2,3,4,有4种;当x=3时,y=1,2,3,有3种.根据分类加法计算原理,得5+4+3=12.答案:B3.若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是( )A.2×0.44B.2×0.45C.3×0.44D.3×0.64解析:∵X~B(n,0.6),∴E(X)=np=0.6n=3,∴n=5,∴P(X=1)=C15×0.61×0.44=3×0.44,故选C.答案:C4.在一次独立性检验中,得出列联表如下:A A合计B 200800 1 000B180 a 180+a合计380800+a 1 180+a且最后发现,两个分类变量A和B没有任何关系,则a的可能值是( ) A.200 B.720C.100 D.180解析:A和B没有任何关系,也就是说,对应的比例aa+b和cc+d基本相等,根据列联表可得2001 000和180180+a基本相等,检验可知,B选项满足条件.答案:B5.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为( )A.0.504 B.0.994C.0.496 D.0.06解析:A、B、C三个开关相互独立,三个中只要至少有一个正常工作即可,由间接法知P=1-(1-0.9)×(1-0.8)(1-0.7)=1-0.1×0.2×0.3=0.994.故选B.答案:B6.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y^=3-5x,变量x增加一个单位时,y平均增加5个单位;③线性回归直线y^=b^x+a^必过(x,y);④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得k =13.079,则其两个变量间有关系的可能性是90%.其中错误的个数是( )A .1B .2C .3D .4解析:由方差的定义知①正确,由线性回归直线的特点知③正确,②④⑤都错误.答案:C7.设a 为函数y =sin x +3cos x (x ∈R )的最大值,则二项式⎝⎛⎭⎪⎫a x -1x 6的展开式中含x 2项的系数是( )A .192B .182C .-192D .-182解析:由已知a =2,则T k +1=C k6(a x )6-k·⎝⎛⎭⎪⎫-1x k=(-1)k C k 6a6-k·x 3-k . 令3-k =2,则k =1,含x 2项的系数为-C 16×25=-192.答案:C8.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .168解析:依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A 33A 34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A 22A 22A 33=24,因此满足题意的排法种数为144-24=120,选B.答案:B9.将三颗骰子各掷一次,设事件A =“三个点数都不相同”,B =“至少出现一个6点”,则概率P (A |B )等于( )A.6091 B.12 C.518D.91216解析:P(B)=1-P(B)=1-5×5×56×6×6=91216,P(AB)=C13×5×46×6×6=60216,∴P(A|B)=P ABP B=6091.答案:A10.某校1 000名学生的某次数学考试成绩X服从正态分布,正态分布密度曲线如下图所示,则成绩X位于区间(51,69]的人数大约是( )A.997 B.954C.682 D.341解析:由题图知X~N(μ,σ2),其中μ=60,σ=9,∴P(μ-σ<X≤μ+σ)=P(51<X≤69)=0.682 6.∴人数大约为0.682 6×1 000≈682.答案:C二、填空题(本大题共4小题,每小题5分,共20分)11.一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3和0.1,则这台机器每生产一件产品平均预期可获利________元.解析:50×0.6+30×0.3-20×0.1=37(元).答案:3712.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.解析:十个数中任取七个不同的数共有C710种情况,七个数的中位数为6,那么6只有处在中间位置,有C36种情况,于是所求概率P=C36C710=16.答案:1 613.二项式⎝⎛⎭⎪⎪⎫2x +14x n (n ∈N *)的展开式中,前三项的系数依次成等差数列,则此展开式中有理项有________项.解析:二项式⎝⎛⎭⎪⎪⎫2x +14x n 的展开式中的前三项系数是C 0n 2n ,C 1n 2n -1,C 2n2n -2,由题意知:2C 1n 2n -1=C 0n 2n +C 2n 2n -2,即n ·2n =2n+n n -12·2n -2,得:n =1+n 2-n 8,解得n =8(n =1不符合题意舍去).设第(r +1)项是有理项,则有T r +1=C r 828-rx x-r4=C r 828-r ·x (0≤r ≤8),令4-34r ∈Z ,所以r =0,4,8,共3项.答案:314.在某项测量中,测量结果服从正态分布N (1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.解析:由题意得μ=1, 故P (0<ξ<1)=P (1<ξ<2), 所以P (0<ξ<2)=2P (0<ξ<1)=0.8. 答案:0.8三、解答题(本大题共4小题,第15~17小题各12分,第18小题14分,共50分)15.已知⎝ ⎛⎭⎪⎫x -2x n 展开式中第三项的系数比第二项的系数大162,求:(1)n 的值;(2)展开式中含x 3的项. 解:(1)∵T 3=C 2n (x )n -2⎝ ⎛⎭⎪⎫-2x 2=4C 2n xT 2=C 1n (x )n -1·⎝ ⎛⎭⎪⎫-2x =-2C 1n x依题意得4C 2n +2C 1n =162, ∴2C 2n +C 1n =81,∴n 2=81,n =9.(2)设第r +1项含x 3项, 则T r +1=C r 9(x )9-r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 9x∴9-3r2=3,r =1, ∴第二项为含x 3的项:T 2=-2C 19x 3=-18x 3.16.在研究某种新药对小白兔的治疗效果时,得到如下数据:存活数 死亡数 合计 未用新药 101 38 139 用新药 129 20 149 合计23058288试分析新药对治疗小白兔是否有效? 解:由公式计算得,随机变量K 2的观测值 k =288×101×20-38×1292139×149×230×58≈8.658,由于8.658>6.635,故有99%的把握可以判断新药对治疗小白兔是有效的.17.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛. 假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望). 解:用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (A 3)P (A 4) =⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=P(A1)P(A2)+P(B1)P(B2)=59,P(X=3)=P(B1A2A3)+P(A1B2B3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=29,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)P(B4)=10 81,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=8 81 .故X的分布列为X 234 5P 59291081881E(X)=2×59+3×29+4×1081+5×881=22481.18.某5名学生的总成绩与数学成绩如下表:学生 A B C D E总成绩(x)482383421364362数学成绩(y)7865716461(1)画出散点图;(2)求数学成绩对总成绩的回归方程;(3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩(参考数据:4822+3832+4212+3642+3622=819 794,482×78+383×65+421×71+364×64+362×61=137 760).解:(1)散点图如图所示:(2)设回归方程为y^=b^x+a^,b^=∑i=15xiyi-5x y∑i=15x2i-5x2=137 760-5×3395×2 0125819 794-5×⎝⎛⎭⎪⎫2 01252≈0.132,a^=y-b^x≈3395-0.132×2 0125=14.683 2,所以回归方程为y^=14.683 2+0.132 x.(3)当x=450时,y^=14.683 2+0.132×450=74.083 2≈74,即数学成绩大约为74分.。