人教版八年级数学下册 一次函数综合提高测试题
(人教版)八年级数学下册《一次函数》提高测试卷及答案
一次函数一、选择题(每小题4分,共12分)1.(2013·眉山中考)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是( )2.把函数y=-2x+3的图象向下平移4个单位后的函数图象的解析式为( )A.y=-2x+7B.y=-6x+3C.y=-2x-1D.y=-2x-53.(2013·福州中考)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是( )A.a>0B.a<0C.b=0D.ab<0二、填空题(每小题4分,共12分)4.(2013·永州中考)已知一次函数y=kx+b的图象经过点A(1,-1),B(-1,3)两点,则k 0(填“>”或“<”).5.(2013·鞍山中考)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.6.若一次函数y=(2m-1)x+3-2m的图象经过第一、二、四象限,则m的取值范围是.三、解答题(共26分)7.(8分)如图,一次函数y=(m-3)x-m+1的图象分别与x轴,y轴的负半轴相交于点A,B.(1)求m的取值范围.(2)若该一次函数向上平移2个单位就过原点,求m的值.8.(8分)已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=240.求△ABP的面积.【拓展延伸】9.(10分)已知一次函数y=(m-2)x-+1,问:(1)m为何值时,函数图象过原点?(2)m为何值时,函数图象过点(0,-3)?(3)m为何值时,函数图象平行于直线y=2x?。
人教版数学八年级下册一次函数综合大题练习参考答案
20232024学年人教版数学八年级下册一次函数综合大题练习参考答案1、解:(1)将B(﹣1,m)代入一次函数y=x+2,得m=﹣1+2=1∴B(﹣1,1)将B(﹣1,1)代入y=kx,得﹣k=1∴k=﹣1∴y=﹣x(2)令y=x+2=0,得x=﹣2∴C(﹣2,0)∴OC=2设D(x,y)==4则S△OCD∴|y|=4当y=4时,x=4﹣2=2∴D(2,4)当y=﹣4时,x=﹣4﹣2=﹣6∴D(﹣6,﹣4)综上所述,D为(2,4)或(﹣6,﹣4)(3)C(﹣2,0)关于y轴对称C′(2,0)设直线BC′解析式为y=k1x+b(k≠0)将B(﹣1,1)C′(2,0)代入上式,得解得∴y=﹣x对于,y=﹣x当x=0时,y=﹣x=∴P(0,)2、解:(1)当x=0时,y=﹣x+3=3∴B(0,3)令y=﹣x+3=0,得x=6∴A(6,0)(2)联立方程y=x,y=﹣x+3 解得x=2∴C(2,2)=OB•x C=×3×2=3∴S△COB(3)存在.∵点C(2,2)∴OC==2,∠AOC=45°设P(x,0),分三种情况:①如图,过C作CP垂直x轴∵∠AOC=45°∴CP=OP=2∴P(2,0)②当OC=OP=2时点P(2,0)或(﹣2,0)③当PC=OC=2时∵点C(2,2)∴22+(x﹣2)2=(2)2∴x=0或4∴P(4,0)综上,P为(2,0)或(﹣2,0)或(2,0)或(4,0)3、解:(1)∵x+y=8∴y=8﹣x∵点P(x,y)在第一象限∴x>0,y>0如图,AO=6 ,点P(x,y)∴S=×6×y=3y∴S=3(8﹣x)=24﹣3x∵S=﹣3x+24>0∴x<8∴0<x<8(2)当x=5时,S=﹣3×5+24=﹣15+24=9(3)不能若﹣3x+24>24,则x<0∵0<x<8∴△OP A的面积不能大于244、解:(1)将A(3,0)、B(0,4)代入y=kx+b得解得∴y=﹣x+4(2)由折叠性质,得AC=AB=5,BD=CD∴C(8,0)设D(0,m)∴=4﹣m解得m=﹣6∴D(0,﹣6)(2)设点P(0,a)由题意,得CO=6,OD=8,OA=3,BP=|4﹣a| =××6×8=6∴S△OCD∴S=|4﹣a|×3=6△ABP解得:a=8或0∴P(0,8)5、解:(1)令y=﹣2x=4,得x=﹣2∴C(﹣2,4)将(﹣2,4)代入y=x+b,得﹣2+b=4 解得b=6∴y=x+6当x=0时,y=x+6=6∴A(0,6)令y=x+6=0,得x=﹣6∴B(﹣6,0)(2)设P(t,t+6)∵A(0,6),B(﹣6,0),C(﹣2,4)∴OA=6,OB=6,y C=4∴S△OBC=×6×4=12∵S△OAP =S△OBC∴×6×|t|=×12解得t=﹣或∵P在射线CA上运动∴t≥﹣2∴P或(3)﹣4<m<﹣16、解:(1)∵点B的横坐标为3∴∴B(3,4)将点A(0,6)、B(3,4)代入y=kx+b,得解得,b=6∴(2)设Q(t,﹣t+6)∵A(0,6)∴OA=6=×OA×|x Q﹣x B|∴S△OBQ=×6×|t﹣3|=解得t=4.5或1.5,此时点Q(4.5,3)或(1.5,5)(3)P为或或或(0,2)理由如下:设点P(0,t)∵A(0,6)、B(3,4)∴AB2=13,AP2=(t﹣6)2,BP2=(t﹣4)2+9若AP=AB,则(t﹣6)2=13解得t=或若AP=BP,则(t﹣6)2=(t﹣4)2+9解得t=若AB=BP,则(t﹣4)2+9=13解得t=2综上,P为或或或(0,2)7、解:(1)当x=1时,y=3x=3∴C(1,3)当x=0时,得y=﹣x+=∴B(0,)令y=﹣x+=0,得x=3∴A(3,0)(2)存在.理由如下:如图1,过C作CF⊥x,则F(1,0)∴AF=3﹣1=2,CF=3∴AC==当AE=AC=时,OE=3+或﹣3∴E(3+,0)或(3﹣,0)当CA=CE时,则AF=EF=2∴OE=2﹣1=1∴E(﹣1,0)(3)如图,设M(t,﹣t+),则N(t,3t),D(t,0)∴MN=﹣t+﹣3t=2或3t﹣(﹣t+)=2解得t=或∴D(,0)或(,0)8、解:(1)当x=0,=4∴A(0,4)将A(0,4),B(﹣5,0)代入y=kx+b ,得解得∴直线AB的函数表达式为(2)设点P坐标为(t,t+4)令y=﹣x+4y=0得x=3∴C(3,0)又∵A(0,4),B(﹣5,0)∴OA=4,OB=5,BC=8当P在线段BA上时,S=×8×4﹣×8×(t+4)=×5×4△ACP解得t=﹣∴P(﹣,)当P'在线段BA延长线上时,S=×8×(t+4)﹣×8×4=×5×4△ACP解得p=∴P(,)综上,P为(﹣,)或(,)(3)存在Q(﹣2,﹣4),使四边形ABQC为平行四边形,理由如下:设Q(m,n)由中点坐标公式,得解得∴Q(﹣2,﹣4)。
精品 八年级数学下册 一次函数综合能力提高题
一次函数一、选择题:1.下列关系中,符合正比例函数关系的是( )A.边长一定,三角形的面积与该边上的高B.质量一定时,体积与密度C.路程一定时,速度与时间D.长方形的面积一定时,它的长与宽2.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x 中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例3.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( )A .m=-3B .m=1C .m=3D .m>-34.已知正比例函数y=(2m -1)x 的图象上两点A(x 1,y 1)、B(x 2,y 2),当x 1<x 2时,有y 1>y 2,那么m 的取值范围是( ) A.m<12 B.m>12C.m<2D.m>0 5.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .以上都有可能6.若一次函数11b x k y +=和22b x k y +=的图像是两条平行直线,那么( )A.2121,b b k k ==B.2121,b b k k ≠=C.2121,b b k k ≠≠D.2121,b b k k =≠7.已知函数 y =2x -1与y =3x +2的图象交于点P ,则点P 在( )A 第一象限B 第二象限C 第三象限D 第四象限8.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380 千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有( )A 、1个B 、2个C 、3个D 、4个二、填空题:9.当a=________时,函数y=(a -3)x +a 2-9是正比例函数.10.正比例函数y=kx ,若自变量取值增加1,函数值相应减小4,则k=______11.关于x 的一次函数35-+=m x y ,若要使其成为正比例函数,则m= 12.函数(2)4y m x m =+++中y 随x 的增大而减小,且图象交y 轴于正半轴,则m 的取值范围是13.若m 是整数,且一次函数2)4(+++=m x m y 的图象不过第二象限,则m=14.将直线y =3x 向下平移2个单位,得到直线___________;将直线y =-x -5向上平移5个单位,得到直线_____________15.若直线b kx y +=平行于直线35+=x y ,且过点(2,-1),则k= ,b=16.如图,一次函数b kx y +=的图象经过A 、B 两点,则△AOC 的面积为三、综合题:17.已知y -5与3x -4成正比例,且当x=1时,y=2,求当y=11时,x 的值.18.如图所示,若正方形ABCD 的边长为2,P 为DC 上一动点,设DP=x ,求△APD 的面积y 与x 的函数关系式,并画出函数的图象.19.在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).20.已知4y+3m 与2x -5n 成正比例,证明y 是x 的一次函数.21.已知一次函数的图象经过点(2,5)和(-1,-1)两点.(1)求这个一次函数的解析式;(2)设该一次函数的图象向上平移2个单位后,与x 轴、y 轴的交点分别是点A 、点B ,试求AOB ∆的面积.22.在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).23.直线y= -x+m 与直线y=33-x+2相交于y 轴上的点C ,与x 轴分别交于点A 、B 。
人教版八年级下册数学 第十九章 一次函数 单元能力提升练习
人教版八年级下册数学第十九章 一次函数 单元能力提升练习人教一.单选题 1.已知点()14,y -,()22,y 都在直线32y x =-+上,则1y ,2y 的大小关系是( ).A .12y y >B .12y y =C .12y y <D .不能比较 2.函数23x y x -=-的自变量x 的取值范围是( ) A .x ≥2 B .x ≥3 C .x ≠3 D .x ≥2且x ≠33.周日早晨,乐乐从家匀速跑到公园,在公园某处停留了一段时间,再沿原路匀速步行回家,乐乐离公园的路程y 与时间x 的关系的大致图象是( )A .B .C .D .4.甲、乙两人在一次赛跑中,路程s (米)与时间t (秒)的关系如下图所示,则下列结论错误的是( )A .甲的速度为8米/秒B .甲比乙先到达终点C .乙跑完全程需12.5秒D .这是一次100米赛跑5.函数123y x x =-+-中自变量x 的取值范围是( ) A .x ≤2 B .x =3 C .x <2且x ≠3 D .x ≤2且x ≠36.图中的折线表示一骑车人离家的距离y 与时间x 的关系.骑车人9:00离家,15:00回家,下列说法错误的是:( )A .他离家最远是45km ;B .他开始第一次休息离家30km ;C .他在10:30~12:30的平均速度是7.5km/hD .他返家时的平均速度是25km/h .7.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系如图所示.下列四种说法:其中正确的个数是( )①每分钟的进水量为5升.②每分钟的出水量为3.75升.③从计时开始8分钟时,容器内的水量为25升.④容器从进水开始到水全部放完的时间是20分钟.A .1个B .2个C .3个D .4个8.自行车骑行爱好者东东和乐乐两人相约沿着同一条线路从家出发前往博物馆.东东和乐乐分别以不同的速度匀速骑行,乐乐比东东早出发10分钟,乐乐出发15分钟之后,东东以原速度的三倍继续骑行,经过一段时间后,东东先到博物馆,乐乐一直保持原速前往博物馆.在此过程中,东东和乐乐两人相距的路程y (单位:米)与乐乐骑行的时间x (单位:分钟)之间的关系如图所示,则以下结论正确的有几个( )①东东原来的速度为100米每分钟;②两人相遇的时候乐乐一共骑行了40分钟;③整个过程中两人相距最远3000米;④乐乐比东东晚到18分钟.A .1个B .2个C .3个D .4个二.填空题 9.如下图,已知一次函数4y ax =-和y kx =的图象交于点P ,则根据图象可得,二元一次方程组4y ax y kx =-⎧⎨=⎩的解是 .10.一次函数112y x =-+的图像不经过第 象限. 11.已知直线()0y kx b k =+≠与直线2y x =-平行,且经过点(1,1,),则直线()0y kx b k =+≠解析式为 .12.已知变量x ,y 的关系如下表格:则x ,y 之间用关系式表示为 .13.在平面直角坐标系中,x 轴一动点P 到定点A(1,1)、B(7,5)的距离分别为AP 和BP ,那么当BP+AP 最小时,P 点坐标为 .14.已知函数y=mx+n 和y=的图象交于点P (a ,﹣2),则二元一次方程组的解是 .15.在平面直角坐标系中,已知()1,3Q -,()0,4A ,点P 为x 轴上一动点,以QP 为腰作等腰Rt QPH △,当OH AH +最小时,点H 的坐标为 .16.如图,在平面直角坐标系中,一次函数y=kx+b 与反比例函数m y x=的图象相交于点(2,3)A 和点(,1)B n -,则关于x 的不等式m kx b x+>的解集是 .三.解答题 x … 3- 2- 1- 1 2 3 …y … 1 1.5 3 3- 1.5- 1- …17.如图,有两只大小不等的圆柱形无盖空水杯(壁厚忽略不计),将小水杯放在大水杯中.现沿着大水杯杯壁匀速向杯中注水,直至将大水杯注满.大水杯中水的高度y (厘米)与注水时间x (秒)之间的函数关系如图所示.根据图象,解答下列问题:(1)图中字母a 的值为;(2)若小水杯的底面积为30平方厘米,求大水杯的底面积.18.某零售店销售甲、乙两种蔬菜,甲种蔬菜每千克获利1.1元,乙种蔬菜每千克获利1.5元,该店计划一次购进这两种蔬菜共56千克,并能全部售出.设该店购进甲种蔬菜x 千克,销售这56千克蔬菜获得的总利润为y 元.(1)求y 与x 的关系式;(2)若乙种蔬菜的进货量不超过甲种蔬菜的52,则该店购进甲、乙两种蔬菜各多少千克时,获得的总利润最大?最大总利润是多少?19.如图,平面直角坐标系xOy 中,直线11:2l y x =与直线22:l y x a =-+交于点(1,)P m .(1)求m ,a 的值;(2)直接写出关于x 的二元一次方程组2y x y x a =⎧⎨=-+⎩的解; (3)当12y y <时,x 的取值范围是 .20.一个有进水管与出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,12min 后只出水不进水。
精品 八年级数学下册 一次函数综合提高题56题
(4)小明家 8 月份的电费是 328.5 元,这个月他家用电多少千瓦时?
第 5 页 共 21 页
八年级数学
26.某生物小组观察一植物生长,得到植物高度 y(单位:厘米)与观察时间 x(单位:天)的关系,并 画出如图所示的图象(AC 是线段,直线 CD 平行 x 轴) . (1)该植物从观察时起,多少天以后停止长高? (2)求直线 AC 的解析式,并求该植物最高长多少厘米?
A.3km/h 和 4km/h
9.已知整数 x 满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个 x,m 都取 y1,y2 中的较小值,则 m 的最 大值是( A.1 ) B.2 C.24 D.-9
10.已知关于 x 的不等式 kx-2>0(k≠0)的解集是 x>-3,则直线 y=-kx+2 与 x轴的交点是________ 11.已知一次函数 y1=-2x+a,y2=3x-5a,当 x=3 时,y1>y2,则 a 的取值范围为 12.已知直线 y 2 x 4 ,解下列各题: (1)若 x>0,则 y 的取值范围为 (2)若 y>0,则 x 的取值范围为 (3)若 3 x 4 ,则 y 的取值范围为 (4)若 3 y 4 ,则 x 的取值范围为 ; ; ; ; .
C.1ቤተ መጻሕፍቲ ባይዱ 分钟
5.一家电信公司给顾客提供两种上网收费方式: 方式 A 以每分 0.1 元的价格按上网所用时间计算;方式 B 除收月基费 20 元外.再以每分 0.05 元的价格按上网所用时间计费。若上网所用时问为 x 分.计费为 y 元,如图.是在同一直角坐标系中.分别描述两种计费方式的函救的图象,有下列结论: ①图象甲描述的是方式 A;②图象乙描述的是方式 B;③当上网所用时间为 500 分时,选择方式 B 省钱. 其中,正确结论的个数是( A.3 ) B.2 C.1 D.0
八年级数学下册《第十九章 一次函数综合题》练习题与答案(人教版)
八年级数学下册《第十九章 一次函数综合题》练习题与答案(人教版)1.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴、y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a ,3)在直线y =-x +b(b 为常数)上,求点a ,b 的值.2.阅读以下材料:对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=-1+2+33=43;min{-1,2,3}=-1;min{-1,2,a}=⎩⎪⎨⎪⎧a (a ≤-1),-1(a>-1). 解决下列问题:(1)填空:如果min{2,2x +2,4-2x}=2,则x 的取值范围为_______________;(2)如果M{2,x +1,2x}=min{2,x +1,2x},求x.3.小慧根据学习函数的经验,对函数y =|x -1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y =|x -1|的自变量x 的取值范围是____________;(2)列表,找出y与x的几组对应值.x …-1 0 1 2 3 …y … b 1 0 1 2 …其中,b=________;(3)在如图所示的平面直角坐标系xOy中,描出上表中以各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:____________________.4.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.5.对于长方形OABC,O为平面直角坐标系的原点,A点在x轴的负半轴上,C点在y轴的正半轴上,点B(m,n)在第二象限.且m,n满足.(1)求点B的坐标;并在图上画出长方形OABC;(2)在画出的图形中,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:4两部分,求点P的坐标.6.如图,正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在x 轴的正半轴上,且A 点的坐标是(1,0).(1)直线y=43x -83经过点C,且与x 轴交与点E ,求四边形AECD 的面积;(2)若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分,求直线l 的解析式;(3)若直线l 1经过点F(-32,0)且与直线y=3x 平行,将(2)中直线l 沿着y 轴向上平移23个单位后,交x 轴于点M ,交直线l 1于点N ,求△FMN 的面积.7.正方形OABC 的边长为2,其中OA 、OC 分别在x 轴和y 轴上,如图1所示,直线l 经过A 、C 两点.(1)若点P 是直线l 上的一点,当△OPA 的面积是3时,请求出点P 的坐标;(2)如图2,直角坐标系内有一点D(﹣1,2),点E 是直线l 上的一个动点,请求出|BE +DE|的最小值和此时点E 的坐标.(3)若点D 关于x 轴对称,对称到x 轴下方,直接写出|BE ﹣DE|的最大值,并写出此时点E 的坐标.8.已知一次函数y=kx+b 的图象经过点A(-1,-5),且与正比例函数y=12x 的图象相交于点B(2,a). ⑴求一次函数y=kx+b 的表达式;⑵在同一坐标系中,画出这两个函数的图象,并求这两条直线与y 轴围成的三角形的面积.(3)设一次函数y=kx+b 的图象与y 轴的交点是C ,若点D 与点 O 、B 、C 能构成平行四边形,请直接写出点D 的坐标.9.如图1,△ABC 中,∠ACB=90°,AC=BC=6,M 点在边AC 上,且CM=2,过M 点作AC 的垂线交AB 边于E 点,动点P 从点A 出发沿AC 边向M 点运动,速度为1个单位/秒,当动点P 到达M 点时,运动停止.连接EP 、EC ,设运动时间为t.在此过程中(1)当t=1时,求EP 的长度;(2)设△EPC 的面积为s ,试求s 与t 的函数关系式并写出自变量的取值范围;(3)当t 为何值时,△EPC 是等腰三角形?(4)如图2,若点N 是线段ME 上一点,且MN=3,点Q 是线段AE 上一动点,连接PQ 、PN 、NQ 得到△PQN ,请直接写出△PQN 周长的最小值.10.如图1,在长方形ABCD 中,AB=12cm ,BC=10cm ,点P 从A 出发,沿A →B →C →D 的路线运动,到D 停止;点Q 从D 点出发,沿D →C →B →A 路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm(P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是△APD 的面积s(cm 2)和运动时间x(秒)的图象.(1)求出a 值;(2)设点P 已行的路程为y 1(cm),点Q 还剩的路程为y 2(cm),请分别求出改变速度后,y 1、y 2和运动时间x(秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P 、Q 两点相距3cm ?11.如图,在平面直角坐标系中,已知点A(0,2),△AOB 为等边三角形,P 是x 轴上一个动点(不与原O 重合),以线段AP 为一边在其右侧作等边三角形△APQ.(1)求点B 的坐标;(2)在点P 的运动过程中,∠ABQ 的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.(3)连接OQ ,当OQ ∥AB 时,求P 点的坐标.12.如图1,在平面直角坐标系中,直线y=x+6与x轴交于A,与y轴交于B,BC⊥AB交x轴于C.(1)求△ABC的面积.(2)如图2,②D为OA延长线上一动点,以BD为直角边做等腰直角三角形BDE,连结EA.求直线EA的解析式.(3)点E是y轴正半轴上一点,且∠OAE=30°,OF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,是判断是否存在这样的点M、N,使得OM+NM的值最小,若存在,请写出其最小值,并加以说明.13.如图1,在平面直角坐标系中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)求∠OBC的度数;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,已知△PQB是直角三角形,求t的值;②若点P,Q的运动路程分别是a,b,已知△PQB是等腰三角形时,求a与b满足的数量关系.14.如图,直线y=﹣x+2分别交x 轴、y 轴于A 、B 两点,经过点A 的直线m ⊥x 轴,直线l 经过原点O 交线段AB 于点C ,过点C 作OC 的垂线,与直线m 相交于点P ,现将直线l 绕O 点旋转,使交点C 在线段AB 上由点B 向点A 方向运动.(1)填空:A( , )、B( , )(2)直线DE 过点C 平行于x 轴分别交y 轴与直线m 于D 、E 两点,求证:△ODC ≌△CEP ;(3)若点C 的运动速度为每秒2单位,运动时间是t 秒,设点P 的坐标为(2,a)①试写出a 关于t 的函数关系式和变量t 的取值范围;②当t 为何值时,△PAC 为等腰三角形并求出点P 的坐标.15.如图,直线l :y=34x+6交x 、y 轴分别为A 、B 两点,C 点与A 点关于y 轴对称.动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ=∠BAO.(1)点A 坐标是 , BC= .(2)当点P 在什么位置时,△APQ ≌△CBP ,说明理由.(3)当△PQB 为等腰三角形时,求点P 的坐标.16.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足a2-2ab+b2=0.(1)判断△AOB的形状.(2)如图②,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.(3)如图③,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连结PD、PO,试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明.参考答案1.解:(1)∵1×2≠2×(1+2),4×4=2×(4+4)∴点M不是和谐点,点N是和谐点.(2)由题意,得当a>0时,(a+3)×2=3a∴a=6.∵点P(6,3)在直线y=-x+b上,代入,得b=9;当a<0时,(-a+3)×2=-3a∴a =-6.∵点P(-6,3)在直线y =-x +b 上,代入,得b =-3.∴a =6,b =9或a =-6,b =-3.2.解:(1)0≤x ≤1;(2)x =1.3.解:(1)任意实数(2)2.(3)如图所示.(4)函数的最小值为0(答案不唯一).4.解:(1)解:由y=2x ﹣4易得A(2,0),B(0,﹣4)因为P 是线段AB 的中点,则P(1,﹣2)所以d 1=2,d 2=1,则d 1+d 2=3.(2)解:d 1+d 2≥2.设P(m ,2m ﹣4),则d 1=|2m ﹣4|,d 2=|m|∴|2m ﹣4|+|m|=3当m <0时,4﹣2m ﹣m=3,解得m=13(舍); 当0≤m <2时,4﹣2m +m=3,解得m =1,则2m ﹣4=﹣2;)当m ≥2时,2m ﹣4+m=3,解得m=73,则2m ﹣4=23. ∴点P 的坐标为(1,﹣2)或(73,23). (3)解:设P(m ,2m ﹣4),则d 1=|2m ﹣4|,d 2=|m|∵点P 在线段AB 上∴0≤m ≤2,则d 1=4﹣2m ,d 2=m∴4﹣2m +am=4,即m(a ﹣2)=0∵在线段AB 上存在无数个P 点∴关于m 的方程m(a ﹣2)=0有无数个解,则a ﹣2=0∴a=2.5.解:(1)B(﹣5,3)画出图形.(2)当点P 在OA 上时,设P(x ,0)(x <0)∵S △ABP :S 四边形BCOP =1:4∴S △ABP =0.2S 矩形OABC∴P(﹣3,0);当点P 在OC 上时,设P(0,y)(y>0)∵S △CBP :S 四边形BPOA =1:4∴S △CBP =0.2S 矩形OABC∴P(0,1.4)6.解:(1)10;(2)y=2x -4;(3)30112.7.解:(1)如图1中,由题意知点A 、点C 的坐标分别为(﹣2,0)和(0,2)设直线l 的函数表达式y =kx +b(k ≠0),经过点A(﹣2,0)和点C(0,2) 得解得∴直线l 的解析式为y =x +2.设点P 的坐标为(m ,m +2)由题意得12×2×|m +2|=3∴m =1或m =﹣5.∴P(1,3),P ′(﹣5,﹣3).(2)如图2中,连接OD 交直线l 于点E ,则点E 为所求,此时|BE +DE|=|OE +DE|=OD ,OD 即为最大值.设OD 所在直线为y =k 1x(k 1≠0),经过点D(﹣1,2)∴2=﹣k 1∴k 1=﹣2∴直线OD 为y =﹣2x由 解得∴点E 的坐标为(﹣23,43)又∵点D 的坐标为(﹣1,2)∴由勾股定理可得OD =5.即|BE +DE|的最小值为5.(3)如图3中, ∵O 与B 关于直线l 对称∴BE =OE∴|BE ﹣DE|=|OE ﹣DE|.由两边之差小于第三边知,当点O ,D ,E 三点共线时,|OE ﹣DE|的值最大,最大值为OD .∵D(﹣1,﹣2)∴直线OD 的解析式为y =2x ,OD = 5由,解得∴点E(2,4)∴|BE ﹣D ′E|的最大值为5此时点E 的坐标为(2,4).8.解:(1)由题知,把(2,a)代入y=12x ,解得a=1; 把点(﹣1,﹣5)及点(2,a)代入一次函数解析式得:-k+b=﹣5,2k+b=a解方程组得到:k=2,b=﹣3;一次函数解析式为:y=2x ﹣3;(2)由(2)知 y=2x ﹣3与x 轴交点坐标为(32,0) ∴所求三角形面积S=12×1×32=34; (3)C(0,-3),D 坐标为:(1,-1)、(3,3)、(-3,-9);9.解:(1)当t=1秒时,EP=5;(2)s=-2x+12(6分),0≤x ≤4;(3)当t=1或2或(6-25)时,△PEC 是等腰三角形.(4)△PQN 周长的最小值是5 2.10.解:(1)由图象可知,当点P 在BC 上运动时,△APD 的面积保持不变,则a 秒时点P 在AB 上.,∴AP=6,则a=6(2)由(1)6秒后点P 变速,则点P 已行的路程为y 1=6+2(x ﹣6)=2x ﹣6∵Q 点路程总长为34cm ,第6秒时已经走12cm点Q 还剩的路程为y 2=34﹣12﹣= (3)当P 、Q 两点相遇前相距3cm 时﹣(2x ﹣6)=3,解得x=10当P 、Q 两点相遇后相距3cm 时(2x ﹣6)﹣()=3,解得x= ∴当t=10或时,P 、Q 两点相距3cm11.解:(1)如图1,过点B 作BC ⊥x 轴于点C∵△AOB 为等边三角形,且OA=2∴∠AOB=60°,OB=OA=2∴∠BOC=30°,而∠OCB=90°∴BC=12OB=1,OC= 3∴点B 的坐标为B(3,1);(2)∠ABQ=90°,始终不变.理由如下:∵△APQ 、△AOB 均为等边三角形∴AP=AQ 、AO=AB 、∠PAQ=∠OAB ,∴∠PAO=∠QAB在△APO 与△AQB 中∴△APO ≌△AQB(SAS)∴∠ABQ=∠AOP=90°;(3)当点P 在x 轴负半轴上时,点Q 在点B 的下方∵AB ∥OQ ,∠BQO=90°,∠BOQ=∠ABO=60°.又OB=OA=2,可求得BQ= 3由(2)可知,△APO ≌△AQB∴OP=BQ= 3∴此时P 的坐标为(﹣3,0).12.解:①求△ABC 的面积=36;②过E作EF⊥x轴于F,延长EA交y轴于H.易证:△OBD≌△FDE;得:DF=BO=AO,EF=OD;∴AF=EF∴∠EAF=45°∴△AOH为等腰直角三角形.∴OA=OH∴H(0,-6)∴直线EA的解析式为:y=-x-6;③在线段OA上任取一点N,易知使OM+NM的值最小的是点O到点N关于直线AF对称点N’之间线段的长. 当点N运动时,ON’最短为点O到直线AE的距离,即点O到直线AE的垂线段的长.∠OAE=30°,OA=6所以OM+NM的值为3.13.解:(1)如图1:在OA上取一点D,使得OD=OB,连接CD,则BD=2OB=4∵CO⊥BD∴CD=CB=4∴CD=CB=BD∴△DBC是等边三角形∴∠OBC=60°;(2)①由题意,得AP=2t,BQ=t∵A(﹣3,0),B(2,0)∴AB=5∴PB=5﹣2t∵∠OBC=60°≠90°∴下面分两种情况进行讨论Ⅰ)如图2:当∠PQB=90°时,∵∠OBC=60°∴∠BPQ=30°∴BQ=12PB ∴t=12(5-2t),解得:t=54.Ⅱ)当∠QPB=90°时,如图3:∵∠OBC=60°,∴∠BQP=30°,∴PB=12BQ ,∴5-2t=12t ,解得:t=2; ②如图4:当a <5时,∵AP=a ,BQ=b ,∴BP=5﹣a∵△PQB 是等腰三角形,∠OBC=60°∴△PQB 是等边三角形,∴b=5﹣a ,即a+b=5如图5:当a >5时∵AP=a ,BQ=b ,∴BP=a ﹣5∵△PQB 是等腰三角形,∠QBP=120°∴BP=BQ,∴a﹣5=b,即a﹣b=5.14.解:(1)把x=0,y=0代入y=﹣x+2,可得:点A(2,0),B(0,2);(2)∵DE∥x轴,m⊥x轴∴m⊥DE,DE⊥y轴∴∠ODE=∠CEP=90°∵OC⊥CP∴∠OCP=90°∴∠DCO+∠ECP=180°﹣∠OCP=90°∴∠DCO+∠DOC=90°∴∠ECP=∠DOC∵OA=OB= 2∴∠ABO=∠BAO∵DE∥x轴∴∠BCD=∠BAO∴∠ABO=∠BCD∴BD=CD,AE∥y轴,由平移性质得:OA=DE∴OB=DE,OB﹣BD=DE﹣CD∴OD=CE在△ODC与△CEP中∴△ODC≌△CEP(ASA);(3)①∵BC=2t,BD=CD在Rt△BDC中,BD2+CD2=BC2∴BD=CD=t,OA=OB=2,DO=BO﹣BD=2﹣t,EA=DO=2﹣tOA=OB=2﹣t,EP=CD=t,AP=EA﹣EP=2-2t在Rt△AOB中,AO2+BO2=AB2∴OA=2a=2-2t(0≤t≤2)②当t=0时,△PAC是等腰直角三角形PA=PB= 2.∴即点坐标是:P(2,2),PA=AC,则|2-2t|=2-2t解得t=1或t=﹣1(舍去)∴当t=1时,△PAC是等腰三角形,即点坐标是:P(2,2﹣2)∴当t=0或1时,△PAC为等腰三角形点P 的坐标为:P(2,2)或P(2,2﹣2).15.解:(1)A(-8,0),BC=10;(2)OP=2,P(2,0)(3)①当PB=PQ 时,P(2,0);②当BQ=BP 时,不成立;③当QB=QP 时,(-74,0).16.解:⑴等腰直角三角形∵a 2-2ab+b 2=0, ∴a=b∵∠AOB=90°∴△AOB 为等腰直角三角形⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90°∴∠MAO=∠MOB ;∵AM ⊥OQ ,BN ⊥OQ∴∠AMO=∠BNO=90°在△MAO 和△BON 中;∴△MAO ≌△NOB ;∴OM=BN,AM=ON,OM=BN∴MN=ON -OM=AM -BN=5 ;⑶PO=PD 且PO ⊥PD ;如上图3,延长DP 到点C ,使DP=PC,连结OP 、OD 、OC 、BC 在△DEP 和△CBP;∴△DEP ≌△CBP∴CB=DE=DA,∠DEP=∠CBP=135°在△OAD 和△OBC∴△OAD ≌△OBC ;∴OD=OC,∠AOD=∠COB∴△DOC为等腰直角三角形;∴PO=PD,且PO⊥PD.。
人教八年级数学下册一次函数综合复习题
一次函数综合复习题一、选择题:1、若2y +1与x -5成正比例,则( )A .y 是x 的一次函数B .y 与x 没有函数关系C .y 是x 的函数,但不是一次函数D .y 是x 的正比例函数 2、变量x,y 有如下关系:①x+y=10②y=x5③y=|x-3④y 2=8x.其中y 是x 的函数的是 A. ①②②③④ B. ①②③ C. ①② D. ①3、点A (a ,y 1)、B (a+1,y 2)都在一次函数y=﹣2x+3的图象上,则y 1、y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不确定4、下列各曲线中不能表示y 是x 的函数是( ).A .B .C .D .5、直线向上平移m 个单位后,与直线的交点在第一象限,则m 的取值范围( ). A .B .C .D .m<16、如果通过平移直线得到的图象,那么直线必须( ).A .向上平移5个单位B .向下平移5个单位C .向上平移个单位D .向下平移个单位7、若点A (﹣3,y 1),B (2,y 2),C (3,y 3)是函数y=﹣x+2图象上的点,则( ) A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 1<y 3<y 2 D .y 2<y 3<y 1 8、一个有进水管与出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示.则8min 时容器内的水量为( )。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
知识点详解人教版八年级数学下册第十九章-一次函数综合训练试题(含详细解析)
人教版八年级数学下册第十九章-一次函数综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关系式中,y 是x 的一次函数的是( )A .2y xB .21y x =-+C .2y x =D .221y x =+2、在某火车站托运物品时,不超过3kg 的物品需付1.5元,以后每增加1kg (不足1kg 按1kg 计)需增加托运费0.5元,则下列图象能表示出托运费y 与物品重量x 之间的函数关系式的是( )A .B .C .D .3、在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是( )A.11xy=⎧⎨=⎩B.12xy=⎧⎨=⎩C.21xy=⎧⎨=⎩D.22xy==⎧⎨⎩4、已知两个一次函数y1=ax+b与y2=bx+a,它们在同一平面直角坐标系中的图象可能是下列选项中的()A.B.C.D.5、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣126、若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b ﹣1<0的解集为()A.x<0 B.x>0 C.x>1 D.x<17、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是().A.-2 B.2C.4 D.﹣48、如果函数y=(2﹣k)x+5是关于x的一次函数,且y随x的值增大而减小,那么k的取值范围是()A.k≠0B.k<2 C.k>2 D.k≠29、如图,一次函数y =kx +b (k ,b 为常数,k ≠0)经过点A (-3,2),则关于x 的不等式中k (x -1)+b <2的解集为( )A .x >-2B .x <-2C .x >-3D .x <-310、已知一次函数y =kx +1的图象经过点A (1,3)和B (a ,-1),则a 的值为( )A .1B .2C .1-D .2-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一次函数32y x =--在y 轴上的截距为__2、如果用总长为60m 的篱笆围成一个长方形场地,设长方形的面积为S (m 2),周长为p (m ),一边长为a (m ),那么在S ,p ,a 中是变量的是______.3、函数y =_____.4、点()11,y -、()22,y 是直线y =-2x +b 上的两点,则1y _____________2y (填“>”或“=”或“<”).5、直线y =2x-3与x 轴的交点坐标是______,与y 轴的交点坐标是______.三、解答题(5小题,每小题10分,共计50分)1、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y 1(km )与行驶的时间x (h )之间的函数关系,如图1中线段AB 所示.慢车离甲地的路程y 2(km )与行驶的时间x (h )之间的函数关系,如图1中线段AC 所示.根据图象解答下列问题.(1)甲、乙两地之间的距离为_____km,线段AB的解析式为_____.两车在慢车出发_____小时后相遇;(2)设慢车行驶时间x(0≤x≤6,单位:h),快、慢车之间的距离为S(km).①当两车之间距离S=300km时,求x的值;②图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据).2、一次函数的图像过A(1,2),A(3,−2)两点.(1)求函数的关系式;(2)画出该函数的图像;(3)由图像观察:当x时,y>0;当x时,y<0;当0≤A≤3时,y的取值范围是.3、已知一次函数y=-2x+4.求:(1)求图象与x轴、y轴的交点A、B的坐标.(2)画出函数的图象.(3)求△AOB的面积.4、利用函数图象解方程组{3A +2A =−12A −A =−3. 5、已知直线A =A +2和直线A =−A +4相交于点A ,且分别与x 轴相交于点B 和点C .(1)求点A 的坐标;(2)求△AAA 的面积.---------参考答案-----------一、单选题1、B【解析】【分析】根据一次函数的定义:形如:(0)y kx b k =+≠的式子,据此判断即可.解:A 、2y x ,自变量次数为二次,不属于一次函数,不符合题意;B 、21y x =-+,属于一次函数,符合题意;C 、2y x=,等号右边为分式,不属于一次函数,不符合题意; D 、221y x =+,自变量次数为二次,不属于一次函数,不符合题意;故选:B .【点睛】本题考查了一次函数的识别,熟练掌握一次函数的定义是解本题的关键.2、D【解析】【分析】根据题意分析出 托运费y 与物品重量x 之间的函数关系,画出图像即可.【详解】解:由题意可得,当0<3x ≤时, 1.5y =,∵物品重量每增加1kg (不足1kg 按1kg 计)需增加托运费0.5元,∴托运费y 与物品重量x 之间的函数图像为:【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y 与物品重量x 之间的函数关系.3、C【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y ⎧⎨⎩==. 故选:C .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.4、B【解析】【分析】先由一次函数y 1=ax +b 图象得到字母系数的符号,再与一次函数y 2=bx +a 的图象相比较看是否一致.【详解】解:A 、∵一次函数y 1=ax +b 的图象经过一二四象限,∴a >0,b >0;由一次函数y 2=bx +a 图象可知,b <0,a >0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;C、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a>0,b>0,两结论矛盾,故错误;D、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a<0,b=0,两结论相矛盾,故错误.故选:B.【点睛】本题主要考查了一次函数图象与系数的关系,一次函数y kx b=+的图象有四种情况:①当k>0,b>0时,函数y kx b=+经过一、三、四象限;③当=+经过一、二、三象限;②当k>0,b<0时,函数y kx bk<0,b>0时,函数y kx b=+经过二、三、四象=+经过一、二、四象限;④当k<0,b<0时,函数y kx b限,解题的关键是掌握一次函数图像与系数的关系.5、B【解析】【分析】由一次函数的图象的走势结合一次函数与y轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在x轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;k b故B符合题意;一次函数y=kx+b, y随x的增大而减小,与y轴交于正半轴,所以0,0,由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.6、D【解析】【分析】利用函数的增减性和x =1时的函数图像上点的位置来判断即可.【详解】解:如图所示:k >0,函数y = kx +b 随x 的增大而增大,直线过点B (1,1),∵当x =1时,kx +b =1,即kx +b -1=0,∴不等式kx +b ﹣1<0的解集为:x <1.故选择:D .【点睛】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.7、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.8、C【分析】由题意()25y x k =-+,y 随x 的增大而减小,可得自变量系数小于0,进而可得k 的范围.【详解】解:∵关于x 的一次函数()25y x k =-+的函数值y 随着x 的增大而减小,20k ∴-<,2k ∴>.故选C .【点睛】本题主要考查了一次函数的增减性问题,解题的关键是:掌握在y kx b =+中,0k >,y 随x 的增大而增大,0k <,y 随x 的增大而减小.9、A【解析】【分析】根据一次函数图象平移规律可得函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,即可得出点A 平移后的对应点,根据图象找出一次函数y=k (x -1)+b 的值小于2的自变量x 的取值范围,据此即可得答案.【详解】解:∵函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,∴A (−3,2)向右平移1个单位得到对应点为(−2,2),由图象可知,y 随x 的增大而减小,∴关于x 的不等式(1)2k x b 的解集为2x >-,故选:A .本题考查一次函数的性质、一次函数图象的平移及一次函数与不等式,正确理解函数的性质、会观察图象,熟练掌握平移规律是解题的关键.10、C【解析】【分析】代入A 点坐标求一次函数解析式,再根据B 点纵坐标代入解析式即可求解.【详解】解:∵一次函数y =kx +1的图象经过点A (1,3),∴311k =⨯+,解得k =2,∴一次函数解析式为:21y x =+,∵B (a ,-1)在一次函数上,∴121a -=+,解得1a =-,故选:C .【点睛】本题主要考查了一次函数的基本概念以及基本性质,解本题的要点在于求出直线的解析式,从而得到答案.二、填空题1、-2【解析】【分析】根据一次函数的表达式,即可得到答案.【详解】解:∵一次函数32y x =--,∴在y 轴上的截距为2-;故答案为:2-.【点睛】本题考查一次函数定义及y 轴上的截距,掌握截距及一次函数定义是解题的关键.2、S 和a【解析】【分析】由题意根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.【详解】 解:篱笆的总长为60米,∴周长p 是定值,而面积S 和一边长a 是变量,故答案为:S 和a .【点睛】本题考查常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量. 3、2x ≥-【解析】【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得:3x+6≥0,解得x≥﹣2.故答案为:x≥﹣2.【点睛】本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4、>【解析】【分析】根据题意直接利用一次函数的增减性进行判断即可得出答案.【详解】解:在一次函数y=-2x+b中,∵k=-2<0,∴y随x的增大而减小,∵-1<2,∴y1>y2,故答案为:>.【点睛】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时y随x的而增大,当k<0时,y随x的增大而减小.5、 (32,0)##(1.5,0) (0,﹣3)【解析】【分析】分别根据x 、y 轴上点的坐标特点进行解答即可.【详解】令y =0,则2x ﹣3=0,解得:x 32 ,故直线与x 轴的交点坐标为:(32,0);令x =0,则y =﹣3,故直线与y 轴的交点坐标为:(0,﹣3). 故答案为(32,0),(0,﹣3).【点睛】本题考查了x 、y 轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.三、解答题1、(1)450;y 1=﹣150x +450,2;(2)①23或4;②见解析.【解析】【分析】(1)由一次函数的图象可得甲、乙两地之间的距离为450km ,设线段AB 的解析式为y 1=k 1x +b 1,利用待定系数法可得出AB 的解析式,根据路程、时间和速度的关系即可得答案; (2)根据题意得出函数解析式为S ={450−225A (0≤A <2)225A −450(2≤A <3)75A (3≤A ≤6),①把S =300代入解析式分别求出x的值即可;②根据题意得出函数解析式,画出函数的图象即可.【详解】解:(1)由图象可得:甲、乙两地之间的距离为450km ;设线段AB 的解析式为y 1=k 1x +b 1,∵A (0,450),B (3,0),∴{A 1=4503A 1+A 1=0, 解得:{A 1=−150A 1=450 , ∴线段AB 的解析式为y 1=450﹣150x (0≤x ≤3);设两车在慢车出发x 小时后相遇,(4503+4506)x =450, 解得:x =2,答:两车在慢车出发2小时后相遇.故答案为:450;y 1=﹣150x +450;2;(2)4503+4506=225,根据题意得出S 与慢车行驶时间x (h )的函数关系式如下:S ={450−225A (0≤A <2)225A −450(2≤A <3)75A (3≤A ≤6),①当0≤x <2时,S =450−225x =300,解得:x =23,当2≤x <3时,S =225x −450=300,解得:x =103(舍去),当3≤x ≤6时,S =75x =300,解得:x =4,综上所述:x 的值为23或4.②其图象为折线图如下:【点睛】本题考查一次函数的应用及待定系数法求一次函数解析式,从函数图象中正确得出所需信息是解题关键.2、(1)A =−2A +4;(2)见解析;(3)A <2;A >2;−2≤A ≤4【解析】【分析】(1)运用待定系数法求出函数关系式即可;(2)根据“两点确定一条直线”画出直线即可;(3)根据函数图象解答即可.【详解】解:(1)设经过A ,B 两点的直线解析式为y =kx +b ,把A (1,2),A (3,−2)两点坐标代入,得{A +A =23A +A =−2解得,{A =−2A =4 ∴直线的解析式为A =−2A +4;(2)当x =0时,y =4,当y =0时,x =2,∴直线经过(0,4),(2,0),画图象如图所示,(3)根据图象可得:当A<2时,A>0;当A>2时,A<0;当0≤A≤3时,−2≤A≤4故答案为:A<2;A>2;−2≤A≤4【点睛】本题主要考查了运用待定系数法求一次函数解析式,画一次函数图象以及一次函数图象与性质,熟练掌握一次函数的图象与性质是解答本题的关键.3、(1)A(2,0)B(0,4);(2)见解析;(3)S△AOB=4【解析】【分析】(1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;(3)直接利用三角形的面积公式求解.【详解】解:(1)让y=0时,∴0=-2x+4解得:x=2;让x =0时,∴y =-2×0+4=4,∴一次函数y =-2x +4的图象与x 轴、y 轴的交点坐标是A (2,0),B (0,4);(2)如下图是一次函数y =-2x +4的图象;(3)S △AOB =12×AA ×AA =12×2×4=4【点睛】本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A 、B 的坐标.4、{A =−1A =1. 【解析】【分析】直接利用两函数图象的交点横纵坐标即为x ,y 的值进而得出答案.【详解】解:方程组对应的两个一次函数为:A =−32A −12与A =2A +3,画出这两条直线,如图所示:由图像知两直线交点坐标为(-1,1).所以原方程组的解为{A =−1A =1 . 【点睛】此题主要考查了一次函数与二元一次方程组的解,正确利用数形结合分析是解题关键.5、(1)A (1,3);(2)9【解析】【分析】(1)根据题意联立两直线解析式解二元一次方程组即可求得点A 的坐标;(2)分别令A =0,即可求得点A ,A 的坐标,进而求得A △AAA【详解】解:(1)由题意得{A =A +2A =−A +4解得,{A =1A =3∴A (1,3).(2)过A作AD⊥x轴于点D.∵y=x+2与x轴交点B(-2,0),y=-x+4与x轴交点C(4,0).∴BC=6. ∵A(1,3),∴AD=3.∴S△ABC=12AA×AA=12×6×3=9【点睛】本题考查了两直线交点问题,两直线与坐标轴围成的三角形的面积,数形结合是解题的关键.。
精品 八年级数学下册 一次函数综合能力提高题2
一次函数综合提高练习题例1.如图,△ABC是等腰直角三角形,∠ACB=90°,直角顶点C在x轴上,一锐角顶点B在y 轴上.(1)如图①,若点C的坐标是(x,0),点A的坐标是(-x,-x),设B点的坐标为(0,y),求y与x之间的函数关系式﹙不用写自变量的取值范围﹚;(2)如图②,在(1)的条件下,在坐标轴上是否存在点P,使B、C、P三点所组成的三角形为等腰三角形,若存在,存在几个?并在图中用尺规作图的方法标出来(只保留作图痕迹,不写作法);若不存在请说明理由.(3)如图③,若y轴恰好平分∠ABC,AC与y轴交与点D,过点A作AE⊥y轴于E,求当BD=4.5时AE的长度.例2.如图,在平面直角坐标系中,点P(x ,y)是第一象限直线y=-x+6上的点,点A(5,0),O 是坐标原点,△PAO 的面积为S 。
(1)求S 与x 的函数关系式,并写出x 的取值范围; (2)探究:当P 点运动什么位置时,△PAO 的面积为10.例3.已知二次三项式2x 2+3x -k 有一个因式是(2x -5),求另一个因式以及k 的值。
课堂练习:1.有一个数值转换器,原来如下:当输入的x 为64时,输出的y 是( ) A.8 B.22 C.32 D.232.满足57-<<x 的整数的个数是( )A.6B.5C.4D.3 3.若22=+m ,则(m+2)2的平方根为( )A.16B.16±C.4±D.2±4.已知224M a b =+,4N ab = (a ,b 为任意有理数)则M 与N 的大小关系是( )A.M>NB.M<NC.M ≥ND.M ≤N 5.将一盛有部分水...的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h (cm )与注水时间t (min )的函数图象大致为( )6.如图1,长方形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A .3B .4C .5D .67.如图,在长方形ABCD 中,AB=4,BC=34,点E 是折线段A-D-C 上的动点(点E 与A 不重合),点P 是点A 关于BE 的对称点,在点E 运动的过程中,能使△PCB 的等腰三角形的点E 的位置共有( )A.2个B.3个C.4个D.5个8.若A(x 1,y 1),B (x 2,y 2)为一次函数y=3x-1的图象上的两个不同的点,且x1x2≠0,设111x y M +=,222x y N +=,那么M 与N 的大小关系是( ) A.M=N B.M<N C.M>N D.无法确定 9.若21mx =+,34m y =+,用x 的代数式表示y ,则y=10.已知x 、y 满足0242422=+-++y x y x ,则22165y x +=11.若518,53x y ==,则25x y-的算术平方根是12.已知:M=2008×2009×2010,N=2007×2009×2011,则M 、N 的大小关系是 13.如果直线y ax b =+经过一、二、三象限,那么ab 0 (“<”“>”或“=”) 14.如图所示,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线DE 交BC 于点D ,垂足为E ,BD=10cm ,求AC 的长15.若等腰三角形的一角为800,则它腰上的高与底边的夹角是16.若y+b 与x+a (a ,b 是常数)成正比例,且当x=3时,y=5;当x=2时,y=2,则y 与x 的函数关系式为17.直线1y x =+与x 轴、y 轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有 个.18.已知:y x +=+310,其中x 是整数,且10<<y ,求y x -的相反数.19.已知13的整数部分是a ,小数部分为b ,试求)13(41a b +的值。
人教版数学八年级下册一次函数综合大题练习
20232024学年人教版数学八年级下册一次函数综合大题练习1、如图,一次函数y=x+2的图象分别与x轴和y轴交于C,A两点,且与正比例函数y=kx的图象交于点B(﹣1,m).(1)求正比例函数的表达式;(2)点D是一次函数图象上的一点,且△OCD的面积是4,求点D的坐标;(3)点P是y轴上一点,当BP+CP的值最小时,求点P的坐标2、如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y =﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在x轴上是否存在一点P,使得△POC为等腰三角形?若存在,请直接写出点P坐标,若不存在,请说明理由.3、点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OP A的面积为S.(1)求S关于x的函数表达式及自变量x的取值范围;(2)当点P的横坐标为5时,试求△OP A的面积;(3)试判断△OP A的面积能否大于24,并说明理由.4、如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(3,0)、B(0,4),点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求直线AB的表达式;(2)求点C和点D的坐标;(3)y轴的正半轴上是否存在一点P,使得S△P AB =S△OCD?若存在,求出点P的坐标;若不存在,请说明理由.5、如图,在平面直角坐标系中,一次函数y=x+b的图象与x轴,y轴分别交于A,B两点,与正比例函数y=﹣2x的图象交于点C,点C的纵坐标为4.(1)求A,B,C三点的坐标;(2)若动点在射线CA上运动,当△OAP的面积是△OBC的面积的时,求点P的坐标;(3)若点Q(m,2)在△OBC的内部(不包括边界),请直接写出m的取值范围.6、如图一次函数y=kx+b的图象经过点A(0,6),并与直线相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求一次函数y=kx+b的表达式;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时,△OBQ的面积等于?请求出点Q的坐标;(3)在y轴上是否存在点P,使△P AB是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.7、如图1,在平面直角坐标系中,直线l1:y=﹣x+交x轴于点A,交y轴于点B,直线l2:y=3x与直线l1相交于点C,点C的横坐标为1.(1)求点A,B,C的坐标(2)在x轴上是否存在一点E,使得△ACE是以AC为腰的等腰三角形?若存在,求出符合条件的点E的坐标;若不存在,说明理由;(3)如图2,点D是x轴上一动点,过点D作x轴的垂线,分别交l1、l2于点M、N,当MN=2时,求点D的坐标.8、如图,在平面直角坐标系中,直线y=kx+b与x轴交于点B(﹣5,0),与y轴交于点A,直线过点A,与x轴交于点C,点P是x轴上方一个动点.(1)求直线AB的函数表达式;(2)若点P在射线BA上,且S△APC =S△AOB,求点P的坐标;(3)在平面内是否存在一点Q,使四边形ABQC为平行四边形?若存在,直接写出点Q的坐标;如不存在,请说明理由.。
人教版数学八年级下册 第十九章 一次函数 能力提优测试卷(含解析)
人教版数学八年级下册 第十九章能力提优测试卷一、选择题 1.函数中的自变量x 的取值范围是( )A .B .x≥1C .D .2.若正比例函数的图象经过点(2,4),则这个图象也必经过点( ) A.(2,1) B.(-1,-2) C.(1,-2) D.(4,2)3.已知y -1与x 成正比,当x=2时,y=9;那么当y=-15时,x 的值为( ) A .4 B .-4 C .6 D .-64.已知一次函数y=(k+1)x+b 的图象如图所示,则k 的取值范围是( ) A.k<0 B.k<-1 C.k<1 D.k>-15.某航空公司规定,旅客乘机所携带行李的质量x (单位:kg )与其运费)y (单位:元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )A.20 kgB.25 kgC.28 kgD.30 kg6.已知一次函数和的图象都过点A (-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是( )A .2B .C .D .37.若一次函数y=ax+b (a 、b 为常数且a≠0)满足下表,则方程ax+b=0的解是( )A.x=1B.x=-1C.x=2D.x=38.已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx -3m+6将四边形ABCD 分成面积相等的两部分,则m 的值为( )A .B .-1C .2D .9.如图所示,直线与直线交于点P (-2,3),不等式的解集是( )12y -=x 21x ≠21x >21x≥m x +=32y n x +-=21y 37273121A.x>-2 B.x≥-2 C.x<-2 D.x≤-210.在某电视节目中,甲和乙进行无人驾驶汽车运送货物表演,甲操控的快车和乙操控的慢车分别从A、B两地同时出发,相向而行.快车到达B地后,停留3秒卸货,然后原路返回A地,慢车到达A地即停运休息,如图是两车之间的距离y(米)与行驶时间x(秒)的函数图象,根据图象信息,计算a,b的值分别为( )A. 39,26B. 39,26.4C. 38,26D. 38,26.4二、填空题1.函数y=(k+1)x+k²-1中,当后满足_______时,它是一次函数.2.将一次函数y= 3x的图象向上平移2个单位,所得图象的函数表达式为_________________.3.若点(-1,y₁)与(2,y₂)在一次函数y=- 2x+1的图象上,则y₁____y₂.(填>、<或=).4.如图,已知一次函数y= 3x-1和y= -x+3的图象交于点P,则二元一次方程组的解是_____________.5.某商店今年6月初销售纯净水的数量如下表所示:观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量为________瓶.6.如果一次函数y=kx+b(k≠0)的图象与x轴的交点坐标为(-2,0),如图所示,则下列说法:①y随x的增大而减小;②关于x的方程kx+b=0的解为x= -2;③kx+b >0的解集是x>-2;④b<0.其中正确的说法有_____.(只填你认为正确说法的序号)7.如图所示,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l’的函数解析式为_________.8.已知动点P以2 cm/s的速度沿图①所示的边框按B→C→D→E→F→A的路径运动(点P异于A、B两点),记△ABP的面积为y(单位:cm²),y与运动时间t(单位:s)的关系如图②所示,若AB=6 cm,则m=__________.三、解答题1.如图所示,已知点A的坐标为(1,3),点B的坐标为(3,1).(1)写出经过A、B两点的直线的函数表达式;(2)指出该函数的两个性质.2.如图所示,在边长为20 cm的正方形跑道ABCD的一边BC上,有一个微型电动玩具P从B点开始以每秒1cm的速度匀速向C点运动,连接AP,设电动玩具运动的时间为xs,四边形APCD的面积为y cm².(1)写出y与x之间的关系式,你能求出x的范围吗?(2)当x为何值时,四边形APCD的面积为350cm²?(3)当电动玩具P由B向C运动时,四边形APCD的面积越来越大,还是越来越小?3.某汽车租赁公司对某款汽车的租赁方式按时段计费,该公司要求租赁方必须在9天内(包括9天)将所租汽车归还,租赁费用y(单位:元)随时间x(单位:天)的变化图象为折线OA-AB-BC.如图所示.(1)当租赁时间不超过3天时,每日租金为__________元;(2)当6≤x≤9时,求y与x的函数解析式;(3)甲、乙两人租赁该款汽车各一辆,两人租赁时间一共为9天,甲租的天数少于3天,乙比甲多支付费用720元,请问乙租这款汽车多长时间?4.某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C;乙先乘景区观光车到景点B,在B处停留一段时间后,再步行到景点C;甲、乙两人同时到达景点C.甲、乙两人距景点C的路程y(单位:米)与甲出发的时间x(单位:分)之间的函数图象如图所示:(1)甲步行的速度为_______米/分,乙步行的速度为_____米/分;(2)求乙乘景区观光车时y与x之间的函数关系式;(3)问甲出发多长时间与乙在途中相遇,请直接写出结果.5.为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A、B城往C、D两乡运肥料的平均费用如下表,现C乡需要肥料240吨.D乡需要肥料260吨.(1)求A城和B城各有多少吨肥料;(2)设从B城运往D乡肥料x吨,总运费为y元,求y与x之间的函数关系,并写出自变量x 的取值范围;(3)由于更换车型,使B 城运往D 乡的运费每吨减少a 元(a>0),其余路线运费不变,若总运费最小值不少于10 040元,求a 的最大整数值.第十九章能力提优测试卷 1.D 函数中,2x -1≥0,解得.2.B 设正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,4).∴将点(2,4)代入y=kx 可得k=2.∴函数解析式为y= 2x ,将选项中各点代入,可以判断(-1,-2)在函数图象上.故选B . 3.B 根据题意设y -1=kx(k≠0),把x=2,y=9代入得9-1= 2k ,解得k=4,所以y -1= 4x ,即y=4x+1,当y=-15时,4x+1=-15,解得x= -4.4.B 观察图象知y 随x 的增大而减小.∴k+1<0,解得k<-1. 5.A 设y 与x 的函数关系式为y=kx+b(k≠0), 由题意可知解得所以函数关系式为y= 30x -600,当y=0时,30x -600=0,解得x=20.故旅客可携带的免费行李的最大质量为20 kg .6.B 把A (-2,0)分别代入一次函数m 32y +=x 和,得,n=-1.故B 、C 两点的坐标分别为(0,4/3),(0,-1) ,则又∵OA=l -2l =2.∴△ABC的面积为×BCx OA=,故选B .7.A 由表格可得,当y=0时,x=1.∴方程ax+b=0的解是x=1. 8.B 如图,∵A(0,0),B(10,0),C(12,6),D(2,6), ∴AB= 10-0= 10,CD= 12-2= 10,∴ AB= CD, 又一点C 、D 的纵坐标相同. AB△CD, ∴四边形ABCD 是平行四边形,∵12÷2=6.6÷2=3,∴对角线交点P 的坐标是(6,3),∵直线 y=mx -3m+6将四边形ABCD 分成面积相等的两部分,21x ≥nx +-=21y 34m =213723721=⨯⨯∴直线y=mx -3m+6经过点P ,∴6m -3m+6=3,解得m= -1.故选B .9.A 由题图可知,当x>-2时,,所以不等式的解集是x>-2.10.B 根据图象信息知,速度和为24÷(30-18)=2(米/秒),由题意得b -24/3=0.3(米/秒),解得b= 26.4,因此慢车速度为0.8(米/秒),快车速度为2-0.8=1.2(米/秒),快车返回追至两车距离为24米的时间为( 26.4 - 24)÷(1.2-0.8)=6(秒),因此a= 33+6= 39.故选B . 二、 1.k≠-1解析:函数y= (k+1)x+k ²-1中,当k 满足k≠-1时,它是一次函数. 2.y= 3x+2解析:将正比例函数y=3x 的图象向上平移2个单位后所得图象的函数解 析式为y= 3x+2. 3.>解析:∵点(-1,y 1)与(2,y 2)在一次函数y= - 2x+1的图象上,∴y 1=-2x(-1)+1=3,y 2=-2x2+1=-3,∴y 1>y 2.4.解析:根据题意可知,二元一次方程组的解就是一次函数y=3x -1和y= -x+3的图象的交点P 的坐标,所以二元一次方程组的解是.5. 150解析:这是一个一次函数模型,设y=kx+b(k≠0),有解得∴ y=5x+115,当 x=7时,y=150.∴预测今年6月7日该商店销售纯净水的数量为150瓶. 6.①②④解析:由题图可知k<0.①y 随x 的增大而减小,故①正确;②图象与z 轴交于点(-2,0),故关于x 的方程kx+b=0的解为x=-2,故②正确;③不等式kx+b>0的解集是x<-2,故③错误;④直线与y 轴负半轴相交.b<0,故④正确.综上所述,说法正确的是①②④.2256x 23-->+x 2256x 23-->+x ⎩⎨⎧==21x y ⎩⎨⎧+-=-=3,13y x y x ⎩⎨⎧+-=-=3,13y x y x ⎩⎨⎧==21x y ⎩⎨⎧=+=+,1252.120k b k b ⎩⎨⎧==.115,5k b7.解析:设直线l 和八个正方形的最上面交点为A ,过点A 作AB ⊥y 轴于点B ,作AC ⊥x 轴于点C ,如图,∵正方形的边长为1.∴OB=3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分, ∴这两部分面积分别是4.∴三角形ABO 面积是5,∴.∴AB=5,∴.∴, 由此可知直线l经过点.设直线l 的解析式为y=kx(k ≠0),则,,∴直线l 的解析式为,∴直线l 向右平移3个单位长度后所得直线l 的解析式为,即,故答案为.8.13解析:由题图得,点P 在BC 上移动了3s ,故BC=2x3=6(cm).点P 在CD 上移动了2s .故CD=2x2=4(cm).点P 在DE 上移动了2s ,故DE=2x2=4(cm). 由EF=AB -CD=6-4=2(cm)可得点P 在EF 上移动了1s . 由AF= BC+DE= 6+4=10( cm)可得点P 在FA 上移动了5s .综上,点P 走完全程的时间为7+1+5= 13(s).故m= 13. 三、1.解:(1)设经过A 、B 两点的一次函数表达式为y=kx+b(k≠0),有解得故经过A 、B 两点的直线的函数表达式为y= -x+4.(2)答案不唯一,如:①函数y 的值随x 的增大而减小;②函数的图象与x 轴的交点为(4,0);③函数的图象与y 轴的交点为(0,4);⑧函数的图象经过第一、二、四象限;⑤函数的图象与坐标轴围成等腰直角三角形;……2.解析:(1)y 电动玩具运动的时间为x s ,则BP=x cm . 则y=×( 20+20-x)×20,即y=400-10x(0≤x<20).(2)把y= 350代入y=400-10x 得400-10x= 350,解得x=5.1027109y -=x 5OB.AB 21=310AB =310OC =⎪⎭⎫⎝⎛3310,k 3103=109k =x109y =)3(109y -=x 1027109y -=x 1027109y -=x ⎩⎨⎧+=+=,31,k 3b k b ⎩⎨⎧=-=.4,1b k 21(3)当电动玩具P由B向C运动时,梯形的上底长越来越小,或者根据一次函数中k<0时,y随x的增大而减小,可得四边形APCD的面积越来越小.3.解析:(1)由函数图象得450÷3=150(元).故填150.(2)设6sx≤9时,函数的解析式为y=kx+b(k≠0),由函数图象,得解得∴y与x的函数关系式为y=210x-450(6≤x≤9).(3)设乙租这款汽车n(6<n<9)天,甲租用的时间为(9-a)天,由题意得甲的租金为150(9-a),乙的租金为210a-450,210a-450-150(9-a)=720,解得a=7.故乙租这款汽车的时间是7天.4.解析:(1)甲步行的速度为5 400÷90= 60(米/分);乙步行的速度为(5 400-3 000)÷( 90-60)= 80(米/分).故答案为60:80.(2)根据题意,设乙乘景区观光车时y与x之间的函数关系式为y=kx+b(△≠O),将(20,0),(30,3 000)代入得解得∴乙乘景区观光车时y与x之间的函数关系式为y=300x-6000(20≤x≤30).(3)设甲的函数解析式为y=mx(m≠0),将(90,5400)代入得m=60.∴y= 60x.由得x= 25,即甲出发25分钟与乙第一次相遇;在y= 60x中,令y=3 000,得x= 50,此时甲与乙第二次相遇,故甲出发25分钟和50分钟与乙两次在途中相遇.5.解析:(1)设A城有肥料a吨,B城有肥料b吨,根据题意,得解得故A城和B城分别有200吨和300吨肥料.(2)设从B城运往D乡x吨肥料,则从B城运往C乡(300-x)吨肥料,从A城运往D乡(260-x)吨肥料,则从A城运往C乡(x- 60)吨肥料,根据题意,得总运费y= 20(x-60)+25( 260-x) +15(300-x)+30x= 10x+9 800.由题意得∴60≤x≤ 260.∴与x的函数关系式为,= 10x+9 800,自变量x的取值范围是60≤x≤260.(3)从B城运往D乡x吨肥料,由于B城运往D乡的运费每吨减少a(a>0)元,所以y= 20(x- 60)+25( 260-x) +15( 300-x)+(30-a)x=(10-a)x+9 800( 60≤x≤260).若C、D两乡的总运费最小值不少于10 040元,若10-a≥0,即0<a≤10,则x= 60时,y最小值=60(10-a)+9 800,由题意知y≥10 040,∴( 10-a) x60+9 800≥10 040,⎪⎪⎩⎪⎪⎨⎧≥≥-≥-≥-.0,0300,0260,060xxxx解得0<a≤6.若10-a<0,即a>10,则x=260时,y 最小值=260(10-a )+9 800,由题意知260(10-a) +9 800≥10 040,解得(不合题意,舍去).综上所述.0<a≤6.故若总运费最小值不少于10 040元,则a 的最大整数值为6.1319a。
第十九章一次函数巩固提升卷(二)2022-2023学年人教版初中数学八年级下册+
2023人教版初中数学八年级下册一次函数巩固提升卷二一、单选题(每小题5分,共40分)1.函数的图象经过点,则的值为()A.B.C.D.2.如图,直线y=kx+b交坐标轴于A、B两点,则不等式kx+b≤0的解集是()A.x≥2B.x<1 C.x≤2D.x>23.将直线向下平移个单位,平移后的新直线一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,一次函数的图象过点,则不等式的解集是().A.B.C.D.5.如图,点C的坐标为(4,5),CA垂直于y轴于点A,D是线段AO上一点,且OD=4AD,点B从原点O出发,沿x轴正方向运动,CB与直线y x交于点E,取OE的中点F,则△CFD的面积为()A.10 B.9 C.D.86.小明同学在一次学科综合实践活动中发现,某品牌鞋子的长度y cm与鞋子的码数x之间满足一次函数关系,下表给出y与x的一些对应值:码数x26303442长度y cm18202226根据小明的数据,可以得出该品牌38码鞋子的长度为()A.24cm B.25cm C.26cm D.38cm 7.如图.在Rt△ABC中,∠A=90°,AB=AC=4.点E为Rt△ABC边上一点,以每秒1单位的速度从点C 出发,沿着C→A→B的路径运动到点B为止.连接CE,以点C为圆心,CE长为半径作⊙C,⊙C与线段BC交于点D.设扇形DCE面积为S,点E的运动时间为t.则在以下四个函数图象中,最符合扇形面积S 关于运动时间t的变化趋势的是()A.B.C.D.8.如图,已知A1、A2、……、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=……=A n A n+1=1,分别过点A1、A2、……、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、……、B n、B n+1,连接A1B2、B1A2、A2B3、B2A3、……、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、……、P n,△A1B1P1、△A2B2P2、……、△A n B n P n的面积依次为S1、S2、……、S n,则S n为( )A.B.C.D.二、填空题(每小题5分,共20分)9.若点是直线上一点,则m=______.10.在函数y=中,自变量x的取值范围是_________.11.下列函数中,是一次函数的是_________.①,②,③,④.12.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D 的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:)与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了_________秒(结果保留根号).三、解答题(每小题12分,共60分)13.已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.14.已知函数(1)若函数图象经过原点,求m的值.(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.(3)若函数图象经过第一,三,四象限,求m的取值范围.15.某市对电话费作了调整,原市话费为每3分钟0.2元(不足3分钟,按3分钟计算),调整后,前3分钟为0.2元,以后每分钟加收0.1元(不足1分钟按1分钟计算).(1)根据提供的信息,完成下列表格:通话时间(分) 4 4.2 5.8 6.3 7.1 11调整前的话费(元)调整后的话费(元)(2)若通话时间为11分钟,请你设计两种通话方案(可以分几次拨打),使所需话费小于调整后的话费.16.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.17.如图,在平面直角坐标系中,一次函数的图象与x轴交于点,与一次函数的图象交于点.(1)求一次函数的解析式;(2)C为x轴上点A右侧一个动点,过点C作y轴的平行线,与一次函数的图象交于点D,与一次函数的图象交于点E.当时,求的长;(3)直线经过定点,当直线与线段(含端点)有交点时k的正整数值是.。
第19章一次函数分类提升练习2021--2022学年人教版八年级下册数学
人教版八年级下册数学《一次函数》考点分类提升练习考点一:一次函数的定义1. 已知函数y={2x+1(x≥0),4x(x<0),当x=2时,函数值y为( )A.5B.6C.7D.82. 已知y=(m-3)x|m|-2+1是一次函数,则m的值是( )A.-3B.3C.±3D.±23.若一次函数y=2x+2的图象经过点(3,m),则m= .4. 无论a取何值时,点P(a-1,2a-3)都在直线l上,Q(m,n)是直线l上的点,那么4m-2n+3的值是________.考点二:一函数的图像及性质1. 一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=kx+b的图象如图所示,则下列结论正确的是( )A.k<0B.b=-1C.y随x的增大而减小D.当x>2时,kx+b<03. 已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,-1),则平移后的图象大致是( )4. 一次函数y=2x-1的图象大致是()5. 如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的函数表达式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.6. 在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义:|a|={a(a≥0),-a(a<0).结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx-3|+b中,当x=2时,y=-4;当x=0时,y=-1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函数y=12x-3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx-3|+b≤12x-3的解集.考点三:求一次函数解析式1. 直线y=3x+1向下平移2个单位,所得直线的函数表达式是( )A.y=3x+3B.y=3x-2C.y=3x+2D.y=3x-12. 把直线y=2x-1向左平移1个单位,再向上平移2个单位,则平移后所得直线的函数表达式为.3.如图,正比例函数的图象与一次函数y=-x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的表达式是.4. 在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的表达式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.考点四:一次函数的参数问题1. 若一次函数y=(2m+1)x+m-3的图象不经过第二象限,则m的取值范围是( )A.m>-12B.m<3 C.-12<m<3 D.-12<m≤32.在函数y=3x+2的图象上,则代数式6a-2b+1的值等于( )A.5B.3C.-3D.-13. 一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y24. 一次函数y=(2m-1)x+2的值随x值的增大而增大,则常数m的取值范围为.5. 已知一次函数y=(k-2)x-3k2+12.(1)k为何值时,图象经过原点?(2)k为何值时,图象与直线y=-2x+9的交点在y轴上?(3)k为何值时,图象平行于函数y=-2x的图象?(4)k为何值时,y随x的增大而减小?(5)若k=3,且点(-1,y1),(-2,y2)在该函数图象上,试比较y1与y2的大小.考点四:一次函数实际应用1.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A. B. C. D.2.某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是__________元.3.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?4.某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x (单位:min)之间的关系如图所示.(1)机器每分钟加油量为_____L,机器工作的过程中每分钟耗油量为_____ L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.5.某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=_________;方案二:y2=__________.(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到__________个文具盒(直接回答即可).考点五:一次函数的综合应用1. 直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是 ()A.x≤-2B.x≤-4C.x≥-2D.x≥-42.如图,点A的坐标为(-4,0),直线y=√3x+n与坐标轴交于B,C两点,连结AC,若∠ACB=90°,则n的值为.3. 如图,一次函数y=-x+m的图象与y轴交于点B,与正比例函数y=3x的图象交2于点P(2,n),则△POB的面积为.4. 已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx-b>0的解集为.5.如图,在平面直角坐标系中,已知点A(2,3),点B(-2,1),在x轴上存在点P到A,B两点的距离之和最小,则点P的坐标是.6.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB所对应的函数表达式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.。
19.2.2 一次函数 人教版数学八年级下册提升训练(含答案)
19.2.2一次函数一、单选题1.若是y关于x的一次函数,则m的值为()A.2B.C.2或D.或2.下列函数中,一次函数一共有( )个.(1);(2)y=kx+b;(3)y=3x;(4)y=(x+1)2﹣x2;(5)y=x2﹣2x+1.A.1B.2C.3D.43.已知点关于轴的对称点在正比例函数的图象上,则的值为()A.B.C.D.4.对于函数y=2x+1,下列结论错误的是( )A.当x>1时,y<0B.y随x的增大而增大C.它的图象必经过点(0,1)D.它的图象经过第一、二、三象限5.一次函数的大致图象是()A.B.C.D.6.直线如图所示,则下列关于直线的说法错误的是()A.直线一定经过点B.直线经过第一、二、三象限C.直线与坐标轴围成的三角形的面积为2D.直线与直线关于轴对称7.函数的图象如图所示,对之间的大小关系判定正确的是()A.B.C.D.无法确定8.如图,在平面直角坐标系中,的顶点在轴上,定点的坐标为,若直线经过点,且将平行四边形分割成面积相等的两部分,则直线的表达式()A.B.C.D.二、填空题9.直线与坐标轴组成的三角形的面积是.10.函数y=-6x+8的图象,可以看作由直线y=-6x向平移个单位长度而得到.11.已知正比例函数的图像经过点(1,﹣2),则此函数的解析式是,将此正比例函数的图像向下平移2个单位,得到的函数关系式是.12.在平面直角坐标中,已知点P(1,2),Q(2,6),直线y=kx+k(k≠0)与线段有交点,则k的取值范围为.13.如图,已知直线:和直线:相交于点,且,当时,的取值范围是.14.如图,直线,分别交轴于点,交轴于点,以为直角边构造直角等腰三角形,,动点的坐标为,如果的面积与的面积相等,那么所有符合条件的值之和为.三、解答题15.如图,已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.16.已知函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围.17.某健身器材公司主要推A、B两种型号的健身器材,今年五、六月份的销售情况如表所示:A型(台)B型(台)利润(元)五月份25156750六月份30208500(1)求每台A型健身器材和B型健身器材的销售利润分别是多少;(2)该公司计划一次购进两种型号的健身器材共300台,其中B型健身器材的进货量不超过A型健身器材的1.5倍.设购进A型健身器材x台,这300台健身器材的销售总利润为y元.①求y与x的关系式;②该公司购进A、B型健身器材各多少台,才能使销售利润最大?18.如图,在直角坐标平面内xoy中,点A在x轴上,点C与点E在y轴上,且E为OC中点,BC∥x轴,且BE⊥AE,连接AB.(1)求证:AE平分∠BAO;(2)当OE=6,BC=4时,求直线AB的解析式.参考答案:1.B2.B3.A4.A5.A6.C7.A8.A9.10.上811.y=﹣2x y=﹣2x﹣212.13./14.015.(1)由题意得,k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3;(2)由(1)知,一次函数的解析式是y=x+3.当x=-1时,y=2,∴点B(-1,5)不在该一次函数图象上;当x=0时,y=3,∴点C(0,3)在该一次函数图象上;当x=2时,y=5,∴点D(2,1)不在该一次函数图象上.16.(1)解:把(0,0)代入,得:m﹣1=0,∴m=1;(2)解:根据截距的定义,得:m﹣1=﹣3,∴m=﹣2;(3)解:根据题意,得:2m+3=1,∴m=﹣1;(4)解:根据y随x的增大而减小说明k<0,∴2m+3<0,∴.17.(1)解:设每台型健身器材的销售利润为元,每台型健身器材的销售利润为元,由表格得:,解得,答:每台型健身器材的销售利润为150元,每台型健身器材的销售利润为200元.(2)解:①由题意得:购进型健身器材台,则,即与的关系式是;②∵型健身器材的进货量不超过型健身器材的1.5倍,∴,解得,对于一次函数,在内,随的增大而减小,则当时,取得最大值,此时,答:该公司购进型健身器材120台,型健身器材180台,才能使销售利润最大.18.(1)证明:如图,取AB的中点D,并连接ED,∵E为OC中点,∴DE是梯形OABC的中位线(梯形中位线的定义),∴DE∥OA即∠DEA=∠EAO,∵BE⊥AE,ED是边AB上的中线,∴ED=AD AB,∴∠DEA=∠DAE,∴∠EAO=∠DAE,即AE平分∠BAO;(2)解:设OA为x,∵OE=EC=6,∴C(0,12),∵CB=4,且BC∥x轴,∴B(4,12),∵ED AB,∴AB=2ED=x+4,在Rt△EBC中,BE2=52,在Rt△OAE中,AE2=36+x2,∴在Rt△BEA中,52+36+x2=(x+4)2,x=9,∴A(9,0),设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y x.。
八年级下册数学《一次函数图象与性质》提升训练题(附解析)
19.4 一次函数图象与性质一、单选题1.已知在一次函数y =﹣3x +2的图象上有三个点A (﹣3,y 1),B (3,y 2),C (﹣4,y 3),则下列各式中正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 12.若函数y =2mx −(m 2−4)的图象经过原点,且y 随x 的增大而减小( )A .m =2B .m =−2C .m =±2D .以上答案都不对 3.直线31y x =-+经过第( )象限A .一、二、三B .一、二、四C .一、三、四D .二、三、四4.将直线l :23y x =+,先向下平移3个单位,再向右平移4个单位得直线1l ,则平移后得到直线1l 的解析式为( )A .24y x =+B .24y x =-C .28y x =-D .28y x =+5.定义:(, )A x y 为平面直角坐标系内的点,若满足x y =,则把点A 叫做“平衡点”,例如:(1,1)M ,(2,2)N --都是平衡点.当24x -时,直线2y x m =+上有“平衡点”,则m 的取值范围是( ) A .04m B .42m - C .24m - D .20m -≤6.如下右图是一次函数y =kx+b 的图象,当y <2时,x 的取值范围是( )A .x <1B .x >1C .x <3D .x >37.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),若如图中的折线表示y 与x 之间的函数关系,则下列结论错误的是( )A .甲、乙两地相距1000千米B .点B 的实际意义是两车出发后3小时相遇C .普通列车从乙地到达甲地时间是9小时D .动车的速度是250千米/小时8.要画出一次函数y kx b =+的图象,列表如下,下列结论正确的是( )x … 1- 0 1 2 … y… 5 2 1- 4-… A .y 随x 的增大而增大B .方程2kx b +=的解是4x =-C .一次函数y kx b =+的图象经过二、三、四象限D .一次函数y kx b =+的图象与y 轴的交点是()0,29.如右上图,一次函数y=kx+b 的图象经过点(-3,0),则( ).A .b<0B .方程kx+b=0的解是x=-3C .k<0D .y 随x 的减小而增大 10.已知函数6y kx =-和2y x a =-+,且0k >,6a <-,则这两个一次函数图象的交点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.以二元一次方程21x y +=-的解为坐标的点组成的图象画在坐标系中可能是( )A .B .C .D .12.一次函数y mx n =+与正比例函数y mnx =(m ,n 为常数、且0mn ≠)在同一平面直角坐标系中的图可能是( )A .B .C .D .13.在平面直角坐标系中,点A (2,m )在直线y =﹣2x +1上,点A 关于y 轴的对称点B 恰好落在直线y =kx +2上,则k 的值为( )A .2B .2.5C .﹣2D .﹣314.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( ) A .2 B .0 C .-1 D .-215.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( )A .y=x+2B .2y =+C .y=4x-12D .3y =-16.已知一次函数y kx b =+(k ,b 是常数,0k ≠)若||||k b <,则它的图象可能是( )A .B .C .D .17.若一次函数2y kx k =+-(k 是常数,0k ≠)的图象经过点P ,且函数y 的值随自变量x 的增大而减小,则点P 的坐标可以是( )A .(3,2)B .(3,3)C .(1,3)-D .(1,1)-18.已知点()12,y -,()20,y ,()34,y 是直线5y x b =-+上的三个点,则1y ,2y ,3y 的大小关系是( ). A .123y y y >> B .123y y y << C .132y y y >> D .132y y y <<19.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .C .D .20.一次函数y =﹣bx ﹣k 的图象如下,则y =﹣kx ﹣b 的图象大致位置是( )A .B .C .D .21.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限22.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不确定23.一次函数y=kx +b 中,x 与γ的部分对应值如下表所示,则下列说法正确的是( )A .x 的值每增加1,y 的值增加 3,所以k=3B .x=2是方程 kx +b=0的解C .函数图象不经过第四象限D .当x>1时,y<-1 24.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到25.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .726.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .无法比较27.如图,平面直角坐标系中,一次函数3=-y x x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A.6 B .6 C 3 D .428.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,则直线AC 的函数解析式为( )A .y =3B .yC .y =﹣3D .y 29.一次函数y=-3x-2的图象和性质,表述正确的是( )A .y 随x 的增大而增大B .函数图象不经过第一象限C .在y 轴上的截距为2D .与x 轴交于点(-2,0)30.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D .31.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43)B .(0,1)C .(0,103)D .(0,2)32.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( ) A . B .C . D .33.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D . 34.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .535.已知点P (m ,n )在第二象限,则直线y =nx +m 图象大致是下列的( )A .B .C .D .36.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .37.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( ) A . B . C . D . 38.如图,在平面直角坐标系中,一次函数4y x =+的图象与x 轴交于点A ,与y 轴交于点B ,点P 在线段AB 上,PC x ⊥轴于点C ,则PCO △周长的最小值为( ).A .22B .422+C .4D .442+39.如图所示,直线y=x+4与两坐标轴分别交于A 、B 两点,点C 是OB 的中点,D 、E 分别是直线AB 、y 轴上的动点,则CDE △周长的最小值是( )A .37B .310C .27D .21040.如图点P 按A B C M →→→的顺序在边长为1的正方形边上运动,M是CD 边上的中点.设点P 经过的路程x 为自变量,APM △的面积为y ,则函数y 的大致图象是( ).A .B .C .D . 41.如图,矩形ABOC 的边BO 、CO 分别在x 轴、y 轴上,点A 的坐标是6,4,点D 、E 分别为AC 、OC 的中点,点P 为OB 上一动点,当PD PE +最小时,点P 的坐标为( )A .()1,0-B .()2,0-C .()3,0-D .()4,0-42.如图,在平面直角坐标系中,点1A ,2A ,3A 在直线15y x b =+上,点1B ,2B ,3B 在x 轴上,11OA B ∆,122B A B ∆,233B A B ∆都是等腰直角三角形,若已知点()11,1A ,则点3A 的纵坐标是( )A .32B .23C .49D .9443.如图,在平面直角坐标系中,点1A ,2A ,3A ,和1B ,2B ,3B ,分别在直线15y x b =+和x 轴上,11OA B ∆,122B A B ∆,233B AB ∆,是以1A ,2A ,3A ,为顶点的等腰直角三角形.如果点()11,1A ,那么点2020A 的纵坐标是( )A .201932⎛⎫ ⎪⎝⎭B .202032⎛⎫ ⎪⎝⎭C .201923⎛⎫ ⎪⎝⎭D .202023⎛⎫ ⎪⎝⎭44.我们把三个数的中位数记作Z {a ,b ,c }.例如Z {1,3,2}=2.函数y =|2x +b |的图象为C 1,函数y =Z {x +1,-x +1,3}的图象为C 2.图象C 1在图象C 2的下方点的横坐标x 满足-3<x <1,则b 的取值范围为( ) A .0<b <3B .b >3或b <0C .0≤b ≤3D .1<b <3二、填空题45.如图,在平面直角坐标系中,点A 的坐标为(2,7),点B 的坐标为(5,0),点C是y 轴上一个动点,且点A ,B ,C 三点不在同一条直线上,当ABC 的周长最小时,点C 的坐标是_______.46.一次函数32y x =-+的图象经过_______象限.47.天降大雨,龙湾水库的蓄水量随时间的增加而直线上升,若该水库的蓄水量V (万米3)与降雨的时间t (天)的关系如图所示,则V 与t 的函数关系式是___________.48.已知点P (a ,b )在直线y =﹣x ﹣9上,且7ab -=3,则代数式a 2+b 2﹣ab 的值为__. 49.已知l 1:y =﹣2x +6将l 1向左平移3个单位长度得到的直线解析式为_____.50.若函数y =(a ﹣2)x +b ﹣3的图象如图所示,化简:|b ﹣a |﹣|3﹣b |﹣|2﹣a |=_____.51.如图,正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按其所示放置,点A 1,A 2,A 2,…和C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2020的横坐标是______.52.若y =(m -2)x |m-2|﹣5是关于x 的一次函数,且y 随x 增大而减小,则常数m 的值为______. 53.如图,直线y =33x 上有点A 1,A 2,A 3,…A n +1,且OA 1=1,A 1A 2=2,A 2A 3=4,A n A n +1=2n ,分别过点A 1,A 2,A 3,…A n +1作直线y =3x 的垂线,交y 轴于点B 1,B 2,B 3,…B n +1,依次连接A 1B 2,A 2B 3,A 3B 4,…A n B n +1,得到△A 1B 1B 2,△A 2B 2B 3,△A 3B 3B 4,…,△A n B n B n +1,则△A 4B 4B 5的面积为_____.54.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11AB 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3(4,0)A 作x 轴的垂线,交直线2y x =于点3B ⋅⋅⋅按此规律作下去, 则点4A 的坐标为_______;点2021B 的坐标为_______ .55.如图,在平面直角坐标系中,点M (﹣1,3)、N (a ,3),若直线y =﹣2x与线段MN 有公共点,则a 的值可以为_____.(写出一个即可)56.在平面直角坐标系中,对于两点A 、B ,给出如下定义:以线段AB 为直角边的等腰直角三角形称为点A 、B 的“对称三角形”.一次函数y =﹣12x +4的图象与x 轴、y 轴分别交于点A 和点B ,在第一象限内,点A ,B 的“对称三角形”的另一个顶点坐标为_____.57.如图,直线2y x a =-,3y x b =-(a ,b 是整数)分别交x 轴于点A ,B .若线段AB 上只有三个点的横坐标是整数(分别为4,5,6),则有序数对(,)a b 一共有__________对.58.已知某直线经过点(0,1)A ,且与两坐标轴围成的三角形的面积为2,则该直线的函数表达式是_________. 59.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.三、解答题60.一次函数(24)(3)y m x n =++-,求:(1)m ,n 是什么数时,y 随x 增大而增大?(2)m ,n 为何值时,函数图象与y 轴的交点在x 轴的下方?(3)若1,2m n =-=时,求一次函数与两坐标轴所围成的三角形的面积.61.小融同学根据学习函数的经验,对函数|1|y m x x n =-++的图象与性质进行了探究.下表是小融探究过程中的部分信息:x … 3- 2- 1- 01 2 3 ... y (2)1 0 1- 2- a 4 …请按要求完成下列各小题:(1)该函数的解析式为 ,a 的值为 ;(2)在如右图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象;(3)结合函数的图象,解决下列问题:①写出该函数的一条性质: ;②如图,在同一坐标系中是一次函数1y x =-的图象,根据图象回答,当|1|1m x x n x -++<-时,自变量x 的取值范围为 .62.如图,一次函数y =(m ﹣3)x ﹣m +1图象分别与x 轴正半轴、y 轴负半轴相交于点A 、B . (1)求m 的取值范围;(2)若该一次函数的图象向上平移4个单位长度后可得某正比例函数的图象,试求这个正比例函数的解析式.63.如图,一次函数y =x +3的图象分别与x 轴和y 轴交于C ,A 两点,且与正比例函数y =kx 的图象交于点B (﹣1,m ).(1)求m 的值;(2)求正比例函数的表达式;(3)点D 是一次函数图象上的一点,且△OCD 的面积是4,求点D 的坐标.64.甲、乙两地相距500千米,汽车从甲地以每小时80千米的速度开往乙地(1)写出汽车离乙地的距离s (千米)与开出时间t (时)之间的函数关系式,并指出是不是一次函数? (2)汽车从甲地开出多久,距离乙地100千米?65.已知一次函数y =12x +1的图象与x 轴交于点A ,与y 轴交于点B . (1)求A 、B 两点的坐标;(2)过B 点作直线BP 与x 轴交于点P ,且使ABP △的面积为2,求点P 的坐标.66.如图,在平面直角坐标系中,直线l 与y 轴交于点A ,与x 轴交于点B .(1)直接写出A 、B 两点的坐标;(2)求直线l 的函数解析式;(3)在x 轴上是否存在点C ,使△ABC 的面积为10?若存在,求出点C 的坐标,若不存在,请说明理由.67.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4),B (﹣4,2),C (﹣3,1),按下列要求作图.(1)画出△ABC 关于x 轴对称的图形△1A 1B 1C (点A 、B 、C 分别对应1A 、1B 、1C ); (2)写出1A 、1B 、1C 坐标:1A ,1B ,1C ;(3)求△1A 1B 1C 的面积;(4)请在y 轴上找出一点P ,满足线段AP +1B P 的值最小,并写出P 点坐标.68.如图,已知A (﹣2,4),B (4,2),C (2,﹣1).(1)作△ABC 关于x 轴的对称图形△A 1B 1C 1,写出点C 关于x 轴的对称点C 1的坐标;(2)P 为x 轴上一点,请在图中画出使△P AB 的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).69.已知a ,b 为实数,且2(1)a b +-与24a b -+的值互为相反数,(1)求a 、b 的值;(2)若一次函数y kx m =+的图象经过点()a b ,与点()b a ,,求这个一次函数的关系式.70.有这样一个问题:探究函数|1|y x =+的图象与性质.小明根据学习一次函数的经验,对函数|1|y x =+的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如图是x 与y 的几组对应值.x … 5- 4-3- 2- 1- 0 1 2 3 ... y (4)3 2 m 0 1 2 34 … m 的值为________;(2)在如图的坐标系xOy 中,描出表中各对对应值为坐标的点,并画出该函数的图象;(3)小明根据画出的函数图象,得出了如下几条结论:①函数有最小值为0;②当1x >-时,y 随x 的增大而增大;③图象关于过点(1,0)-且垂直于x 轴的直线对称.小明得出的结论中正确的是___________.(只填序号)71.在平面直角坐标系中,设一次函数1y kx b =+,2y bx k =+(k ,b 是实数,且0bk ≠)(1)若函数1y 的图象过点(4,3)b ,求函数1y 与x 轴的交点坐标;(2)若函数1y 的图象经过点(,0)m ,求证:函数2y 的图象经过点1,0m ⎛⎫ ⎪⎝⎭; (3)若函数1y 的图象不经过第一象限,且过点(2,3)-,当k b <时,求k 的取值范围.72.如图1,直线AB :y=43x +4分别与x 轴、y 轴交于A 、B 两点,过点B 的直线交x 轴负半轴于点C ,将△BOC 沿BC 折叠,使点O 落在BA 上的点M 处.(1)求A 、B 两点的坐标;(2)求线段BC 的长;(3)点P 为x 轴上的动点,当∠PBA=45°时,求点P 的坐标.73.如图,直线l 1:y =x +1与直线l 2:y =mx +n 交于点P (1,b ),直线l 2与x 轴交于点A (4,0). (1)求b 的值;(2)解关于x ,y 的方程组1y x y mx n=+⎧⎨=+⎩,并直接写出它的解; (3)判断直线l 3:y =nx +m 是否也经过点P ?请说明理由.74.如图1,已知函数132y x =+与x 轴交于点A ,与y 轴交于点B ,点C 与点A 关于y 轴对称. (1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线AB 于点P ,交直线BC 于点Q .①若PQB ∆的面积为72,求点Q 的坐标; ②点M 在线段AC 上,连接BM ,如图2,若BMP BAC ∠=∠,直接写出P 的坐标.75.如图,正方形ABCO 的边长为4,OA 在x 轴上,OC 在y 轴上,且//BC OA ,//AB OC ,点D 为AB 的中点,点E 在x 轴上,直线CD 交x 轴于点F .(1)如图1,若1AE =,①求证:90CDE ∠=︒;②点P 是直线DE 上的一个动点,求作点P 使得PA PF +的值最小,并直接写出PA PF +的最小值; (2)如图2,E 在x 轴上运动,当ECD 为等腰三角形时,求点E 的坐标.76.如图,在△ABC 中,AB =AC =10,BC =12,AD ∥BC ,CD ⊥AD ,BD 和AC 相交于点P .求△BPC 的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适当的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点P 的坐标,从而可求得△BPC 的面积.请你按照小明的思路解决这道思考题.77.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为m和n,且满足m2+n2=2mn.(1)判断△AOB的形状.(2)如图②,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=13,MN=6,求BN的长.(3)如图③,E为线段AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连接PD、PO.试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明.=+与x轴交于A(-3,0)、与y轴交于B点,78.如图,已知直线:l y kx b且经过(1,8),在y轴上有一点C(0,3),动点D从点A以每秒1个单位的速度沿x轴向右移动,设动点D的移动时间为t秒.(1)求k、b的值;(2)当t为何值时△COD≌△AOB,并求此时点D的坐标;(3)求△COD的面积S与动点D的移动时间t之间的函数关系式.19.4 一次函数图象与性质解析答案一、单选题1.已知在一次函数y=﹣3x+2的图象上有三个点A(﹣3,y1),B(3,y2),C(﹣4,y3),则下列各式中正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【答案】B【剖析】根据一次函数图象的增减性来比较A、B、C三点的纵坐标的大小.【剖析】解:∵一次函数y=﹣3x+2中的﹣3<0,∴该函数的y随x的增大而减小.又∵3>﹣3>﹣4,∴y2<y1<y3.故选:B.【考点说明】本题考查了一次函数图象上点坐标特征.解答该题的关键是熟练掌握一次函数的增减性.2.若函数y=2mx−(m2−4)的图象经过原点,且y随x的增大而减小()A.m=2 B.m=−2C.m=±2 D.以上答案都不对【答案】B【分析】根据函数过原点,求出m的值,利用一次函数的性质得m<0,即可得到答案.【剖析】解:∵若函数y=2mx−(m2−4)的图象经过原点,则函数经过得一个点的坐标为(0,0),则0=−(m2-4),∴m=±2,∵y随x的增大而减少,则2m<0,即m<0.∴m=-2.故选:B.【考点说明】本题主要考查对一次函数的性质,一次函数图象上点的坐标特征等知识点的理解和掌握,能熟练地运用一次函数的性质进行推理求解待定参数是解此题的关键.3.直线31y x =-+经过第( )象限A .一、二、三B .一、二、四C .一、三、四D .二、三、四【答案】B【分析】由y =-3x +1可知直线与y 轴交于(0,1)点,且y 随x 的增大而减小,可判断直线所经过的象限.【剖析】解:直线y =-3x +1与y 轴交于(0,1)点,且k =-3<0,y 随x 的增大而减小,∴直线y =-3x +1的图象经过第一、二、四象限.故选B .【考点说明】本题考查了一次函数的性质.关键是根据图象与y 轴的交点位置,函数的增减性判断图象经过的象限. 4.将直线l :23y x =+,先向下平移3个单位,再向右平移4个单位得直线1l ,则平移后得到直线1l 的解析式为( )A .24y x =+B .24y x =-C .28y x =-D .28y x =+ 【答案】C【分析】根据一次函数平移k 、b 变化规律,在自变量或常数项上加减即可.【剖析】解:23y x =+,先向下平移3个单位,再向右平移4个单位得直线为: 2(4)33y x =-+-,即28y x =-;故选:C .【考点说明】本题考查了一次函数图象的平移变换,解题关键是明确函数图像平移的规律:上加下减常数项,左加右减自变量.5.定义:(, )A x y 为平面直角坐标系内的点,若满足x y =,则把点A 叫做“平衡点”,例如:(1,1)M ,(2,2)N --都是平衡点.当24x -时,直线2y x m =+上有“平衡点”,则m 的取值范围是( )A .04mB .42m -C .24m -D .20m -≤【答案】B【分析】 根据x =y ,24x -可得出关于m 的不等式,求出m 的取值范围即可.【剖析】解:∵x =y ,∴x =2x +m ,即x =−m .∵24x -,∴−2≤−m ≤4,∴−4≤m ≤2.故选:B .【考点说明】本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m 的不等式是解答此题的关键. 6.如图是一次函数y =kx+b 的图象,当y <2时,x 的取值范围是( )A .x <1B .x >1C .x <3D .x >3【答案】C【分析】 从图象上得到函数的增减性及当y =2时,对应的点的横坐标,即能求得当y <2时,x 的取值范围.【剖析】解:一次函数y =kx+b 经过点(3,2),且函数值y 随x 的增大而增大,∴当y <2时,x 的取值范围是x <3.故选:C .【考点说明】本题主要考查了一次函数的性质,正确利用函数图象分析是解题关键.7.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),若如图中的折线表示y与x之间的函数关系,则下列结论错误的是()A.甲、乙两地相距1000千米B.点B的实际意义是两车出发后3小时相遇C.普通列车从乙地到达甲地时间是9小时D.动车的速度是250千米/小时【答案】C【分析】根据函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.【剖析】解:由图象可得,甲、乙两地相距1000千米,故选项A正确;点B的实际意义是两车出发后3小时相遇,故选项B正确;普通列车从乙地到达甲地时间是12小时,故选项C错误;普通列出的速度为1000÷12=2503(千米/小时),动车的速度为:1000÷3﹣2503=250(千米/小时),故选项D正确;故选:C.【考点说明】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.8.要画出一次函数y kx b=+的图象,列表如下,下列结论正确的是()A .y 随x 的增大而增大B .方程2kx b +=的解是4x =-C .一次函数y kx b =+的图象经过二、三、四象限D .一次函数y kx b =+的图象与y 轴的交点是()0,2【答案】D【分析】根据待定系数法求得解析式,然后根据一次函数的特点进行选择即可.【剖析】解:由题意得,当x =1时,y =-1,当x =0时,y =2,则12k b b +-⎧⎨⎩==,解得:32k b -⎧⎨⎩==, 函数解析式为:y =-3x +2,A 、∵k =-3<0,∴y 随x 的增大而减小,故错误;B 、当-3x +2=2时,x =0,∴方程kx +b =2的解是x =0,故错误;C 、∵k =-3<0,b =2>0,∴一次函数y =kx +b 的图象经过第一、二、四象限,故错误;D 、令x =0,则y =2,∴一次函数y =kx +b 的图象与y 轴交于点为(0,2),故正确;故选:D .【考点说明】本题主要考查对一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式等知识点的理解和掌握,能求出一次函数的解析式是解此题的关键.9.如图,一次函数y=kx+b 的图象经过点(-3,0),则( ).A .b<0B .方程kx+b=0的解是x=-3C .k<0D .y 随x 的减小而增大【答案】B【分析】 根据一次函数y=kx+b 的图象与坐标轴的交点、所经过的象限、增减性逐项进行判断,即可求解.【剖析】一次函数y=kx+b 的图象与y 轴交于正半轴,则b >0,故A 错误;一次函数y=kx+b 的图象经过点(-3,0),则方程kx+b=0 的解是x=-3,故B 正确;一次函数y=kx+b 的图象经过第一、二、三象限,则k >0,故C 错误;一次函数y=kx+b 中k >0,则y 随x 的增大而增大,故D 错误;故答案为:B .【考点说明】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.10.已知函数6y kx =-和2y x a =-+,且0k >,6a <-,则这两个一次函数图象的交点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【分析】由函数解析式,得y 62kx y x a =-⎧⎨=-+⎩,求得交点的坐标,根据0k >,6a <-,判断交点的坐标特点,确定位置.【剖析】∵y 62kx y x a =-⎧⎨=-+⎩, ∴6x 2122a k ak y k +⎧=⎪⎪+⎨-⎪=⎪+⎩,∵0k >,6a <-,∴k +2>0,a +6<0,a <0,ak <0,ak -12<0, ∴612022a ak k k +-++<0,<, ∴交点位于第三象限,故选C .【考点说明】本题考查了一次函数的交点坐标的求法,点的坐标与象限的关系,熟练运用二元一次方程组的思想确定交点是解题的关键.11.以二元一次方程21x y +=-的解为坐标的点组成的图象画在坐标系中可能是( )A .B .C .D .【答案】D【分析】根据二元一次方程与一次函数的关系,先将方程21x y +=-化为21y x =--,再利用一次函数图象与性质判断出图象经过的象限,即可得出结论.【剖析】解:方程21x y +=-可化为21y x =--,∵2k =-,1b =-,∴一次函数21y x =--的图象经过第二、三、四象限,故以二元一次方程21x y +=-的解为坐标的点组成的图象画在坐标系中可能是选项D .故选:D .【考点说明】此题考查了二元一次方程与一次函数的关系,掌握二元一次方程与一次函数的关系是解题的关键. 12.一次函数y mx n =+与正比例函数y mnx =(m ,n 为常数、且0mn ≠)在同一平面直角坐标系中的图可能是( )A.B.C. D.【答案】C【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【剖析】解:①当mn>0,m,n同号,m,n同正时y=mx+n过第一,二,三象限,同负时过二,三,四象限,y =mnx过原点,一、三象限;②当mn<0时,m,n异号,则y=mx+n过一,三,四象限或一,二,四象限,y=mnx过原点,二、四象限.故选:C.【考点说明】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.13.在平面直角坐标系中,点A(2,m)在直线y=﹣2x+1上,点A关于y轴的对称点B恰好落在直线y =kx+2上,则k的值为()A.2 B.2.5 C.﹣2 D.﹣3【答案】B【分析】由点A的坐标以及点A在直线y=﹣2x+1上,可得出关于m的一元一次方程,解方程可求出m值,即得出点A的坐标,再根据对称的性质找出点B的坐标,由点B的坐标利用待定系数法即可求出k值.【剖析】解:∵点A在直线y=﹣2x+1上,∴m=﹣2×2+1=﹣3,∴点A 的坐标为(2,﹣3).又∵点A 、B 关于y 轴对称,∴点B 的坐标为(﹣2,﹣3),∵点B (﹣2,﹣3)在直线y =kx +2上,∴﹣3=﹣2k +2,解得:k =2.5.故选:B .【考点说明】本题考查了一次函数图象上点的坐标特征以及关于x 、y 轴对称的点的坐标,解题的关键是求出点B 的坐标.14.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( ) A .2B .0C .-1D .-2 【答案】A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【剖析】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【考点说明】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.15.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( )A .y=x+2B .2y =+C .y=4x-12D .3y =-【答案】D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【剖析】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x ≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x ≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (,0),且x= -1≤x ≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x ≤2的解,∴与x 轴的交点不在线段AB 上,∵3y -交x 轴于点A 0),且-1≤x ≤2的解, ∴与x 轴的交点在线段AB 上,故选D .【考点说明】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.16.已知一次函数y kx b =+(k ,b 是常数,0k ≠)若||||k b <,则它的图象可能是( )A .B .C .D .【答案】D逐一分析各个选项的k 、b 的符号,结合已知条件即可做出判断【剖析】解:A 、由图可知k >0,b >0,且当x=-1时,-k+b <0, k >b ,则|k|=k ,|b|=b ,可得|k|>|b|与题意||||k b <不符;B 、由图可知k >0,b <0,且当x=1时,k+b >0, k >-b ,则|k|=k ,|b|=-b ,可得|k|>|b|与题意||||k b <不符;C 、由图可知当x=-1时,-k+b=0, k=b ,则 |k|=|b|与题意||||k b <不符;D 、由图可知k <0,b >0,且当x=1时,k+b >0, -k <b ,则|k|=-k ,|b|=b ,可得|k|<|b|与题意||||k b <相符; 故选:D【考点说明】此题考查了一次函数图象与k 和b 符号的关系,关键是掌握当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.17.若一次函数2y kx k =+-(k 是常数,0k ≠)的图象经过点P ,且函数y 的值随自变量x 的增大而减小,则点P 的坐标可以是( )A .(3,2)B .(3,3)C .(1,3)-D .(1,1)- 【答案】C【分析】先根据增减性判断k 的取值范围,再分别把各个点代入,将解得的k 与取值范围对照即可.【剖析】解:∵一次函数2y kx k =+-(k 是常数,0k ≠)的图象,函数y 的值随自变量x 的增大而减小, ∴0k <,当一次函数2y kx k =+-经过(3,2)时,232k k =+-,解得k=0,与k 的取值范围不符,故A 选项不符合题意;当一次函数2y kx k =+-经过(3,3)时,332k k =+-,解得12k =,与k 的取值范围不符,故B 选项不符合题意;当一次函数2y kx k =+-经过(-1,3)时,32k k =-+-,解得12k =-,与k 的取值范围符合,故C 选项符合题意;当一次函数2y kx k =+-经过(1,1)-时,12k k =-+-,解得12k =,与k 的取值范围不符,故D 选项不故选:C .【考点说明】本题考查一次函数的性质.对于一次函数,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.18.已知点()12,y -,()20,y ,()34,y 是直线5y x b =-+上的三个点,则1y ,2y ,3y 的大小关系是( ). A .123y y y >>B .123y y y <<C .132y y y >>D .132y y y <<【答案】A【分析】结合题意,根据一次函数图像的性质分析,即可得到答案.【剖析】∵直线5y x b =-+上,y 随着x 的增加而减小,且204-<<∴123y y y >>故选:A .【考点说明】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.19.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .。
八年级下册数学一次函数提高习题(有难度)
八年级下册数学一次函数提高习题(有难度)1、已知一次函数y=(m+4)x+m+2的图象不过第二象限,则m为多少?2、若直线y=-x+a和直线y=x+b的交点坐标为(m,8),则a+b为多少?3、在同一直角坐标系内,直线y=2x+1和直线y=kx-3的交点为(2,5),则k为多少?4、当m满足什么条件时,一次函数y=mx-2的图象过点(3,-4)?5、函数y=(2x/3)与直线y=2x/3-5都经过点(-2,5),且与y 轴交于负半轴,求x的取值范围。
6、一个长120m,宽100m的矩形场地要扩建成一个正方形场地,设长增加xm,宽增加ym,则y与x的函数关系是什么?自变量的取值范围是多少?且y是x的函数。
7、如图1是函数y=-|x+5|的图象,求:(1)自变量x的取值范围;(2)当x取-5时,y的最小值为多少;(3)在(1)中x的取值范围内,y随x的增大而?8、已知函数y=(k-1)x+k2-1,当k=0时,它是一次函数,当k=2时,它是正比例函数.9、已知一次函数y=kx+b的图象经过点(-2,5),且它与y 轴的交点和直线y=-x+3与y轴的交点关于x轴对称,求这个一次函数的解析式。
10、一次函数y=kx+b的图象过点(m,1)和(1,m)两点,且m>1,则k为多少?b的取值范围是什么?11、一次函数y=kx+b-1的图象如图2,则3b与2k的大小关系是什么?当b=1时,y=kx+b-1是正比例函数。
12、当b为多少时,直线y=2x+b与直线y=3x-4的交点在x轴上。
13、已知直线y=4x-2与直线y=3m-x的交点在第三象限内,求m的取值范围。
14、要使y=(m-2)x^(n-1)+n是关于x的一次函数,n,m应满足什么条件?选择题:1、图3中,表示一次函数y=mx+n与正比例函数y=mx(m、n是常数,且m≠0,n<0)的图象的是()。
A。
A。
B。
B。
C。
C。
D。
D2、直线y=kx+b经过一、二、四象限,则直线y=bx-k的图象只能是图4中的()。
八年级数学下《一次函数》综合提高题及答案
八年级数学下《一次函数》综合提高题及答案1.某蓄水池横断面示意图如下,分为深水区和浅水区。
如果以固定的水流量(单位时间注水的体积)向蓄水池中注水,水深h与时间t之间的关系大致如下图所示:[插入示意图]2.一次函数y=-2x+1的图象不经过第二象限。
3.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系为a>b。
4.下图中表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数)图像的是[插入图像]。
5.已知一次函数y=kx+b中y随x的增大而减小,且kb<0,则直线y=kx+b的图象经过第一三四象限。
6.已知一次函数y=-2x+1通过平移后得到直线y=-2x+7,则向上平移6个单位。
7.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有6个。
8.当直线y=x+2上的点在直线y=3x-2上相应点的上方时,则x<2.9.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是x>(1-b)/k。
10.A、B两点在一次函数图象上的位置如图,两点的坐标分别为A(x+a,y+b),B(x,y),则结论a<0成立。
11.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为x≥3.12.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的整数解为x≤-5.13.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是m>1.22.已知函数 $y=(m-5)x^{m-4}-4m-4+m-2$,若它是一次函数,则 $m=5$;$y$ 随 $x$ 的增大而增大。
23.已知一次函数 $y=(k+3)x+2k-10$,$y$ 随 $x$ 的增大而增大,且图像不经过第二象限,则 $k>-3$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数综合提高测试题
一、选择题。
(3分×10)
1、已知一次函数,若随着的增大而减小,则该函数的图像经过: k kx y -=y x A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限
D .第一、三、四象限
2、若函数是一次函数,则的值为:
132
-+=m x y m A . B .的全体实数 C .全体实数 D .不能确定
1±=m 1±≠m 3、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L ,又知单开进水管10min 可以把容器注满,若同时打开进、出水管,20min 可以把满容器的水放完,现已知水池内有水200L ,先打开进水管5min ,再打开出水管,两管同时开放,直
到把容器中的水放完,则正确反映这一过程中容器的水量Q (L )随时间t (min )变化的图像是
的交点不可能在: 4+-=
x y A .第三象限 B .第四象限 C .第一象限 D .第二象限
5、与的图像交于轴上一点,则为: 1+=mx y 12-=x y x m A .2
B .
C .
D .2-2
12
1
-
6
、已知两个一次函数的图像重合,则一次函数
的图像所经a
x a y x b y 1
1,42+=--
=b ax y +=过的象限为:
A .第一、二、三象限
B .第二、三、四象限
C .第一、三、四象限
D .第一、二、四象限
7、两个物体A 、B 所受的压强分别为与(P) (、为常数),它们所受压力F(N)与受)(P P A B P A P B P 力面积S (㎡)的函数关系图像分别是射线、,(公式),如图所示,则: A I B I S F
P = A .>
B .<
C . ≥
D .≤A P B P A P B P A P B P A P B
P 8
9、若 <0,且的图像不过第四象限,则点( c )所在象限为 abc a
c
x a b y -=,b a + A 、一
B 、二
C 、三
D 、四
10、如果一次函数当自变量的取值范围是-1<<3时,函数y 的取值范围是-2<<6,那x x y 么此函数解析式为: A 、
B 、
C 、或
D 、或
x y 2=42+-=x y x y 2=42+-=x y x y 2-=42-=x y 二、填空题。
(3分×8)
11、某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与储存月数x 之间的函数关系为:________________
12、已知正比例函数的图象经过第二、四象限,则m=_____________
3
)1(--=m x
m y 13、直线向上平移3个单位,再向左平移2个单位后直线解析式为:x y 2-=_____________
14、已知函数,则自变量x 的取值范围是:_____________
32-=
x y 15、某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分,每人10元,写出应收门票y (元)与游览人数(人)之间的函数关系式x ________________。
利用该函数关系计算某班54名学生去该风景区游览时,购门票共花了_______元。
16、关于的一次函数的图像与y 轴的交点在轴的上方,则y 随x )2()73(-+-=a x a y x x 的
增大而减小,则a 的取值范围是 。
17、在弹性限度内,一弹簧长度(cm)与所挂物体的质量x(kg)之间的函数关系是
y ,如果该弹簧最长可以拉伸到20cm, 则它所挂物体的最大质量是________________。
105
3
+=
x y 18、2与成正比例,且=3时,1,则与的函数关系式为________________。
-y x x =y y x 三、解答题。
(66分)
19、已知一次函数的图像交x 轴于A (-6,0),交正比例函数图像于B ,且B 在第二象限,其横坐标是-4,若△AOB 的面积是15(平方单位),求正比例数和一次函数的解析式。
(8分)
20、如图,表示甲、乙两名选手在一次自行车越野赛中,路程y (km )随时间(min )变化的图象(全程)根据图像回答。
(12分)
(1)比赛开始多少分钟时,两人第一次相遇? (2)这次比赛全程多少千米?
(3)比赛开始多少分钟时,两人第二次相遇?
21、(8分)直线过点A (-1,5)且平行于直线。
b kx y +=x y -= (1)求这条直线的解析式;
(2)若点B (m ,-5)在这条直线上,O 为坐标原点,求m 及△AOB 的面积。
22、如图,已知直线的图象与x 轴、y 轴交于A 、B 两点,直线经过原点与线段AB 3+=x y l 交于点C ,且把△AOB 的面积分成2:1两部分,求直线的解析式。
(8分)
l 23、(8分)某贮水塔在工作期间,每小时的进水量与出水量都是固定不变的,每日从凌晨4点到8点只进水,不出水;8点到12点既进水又出水;14点至次日凌晨只出水不进水,经测定,水塔中贮水量y (m 3)与时间(h)的函数关系如图所示。
x (1)求每小时的进水量;
(2)当8≤≤12时,求y 与的函数关系式;
x x (3)当14≤≤18时,求y 与的函数关系式。
x x (4)水塔的不小于水量是28(m 3)时间是多少?
24、(10分)如图所示,直线,相交于点A (2,3),与轴的交点坐标为(-1,0),1l 2l 1l x 2l 与y 轴的交点坐标为(0,-2),结合图像解答下列题: (1)求出直线表示的一次函数的表达式。
2l (2)当为何值时,,表示的两个一次函数值都大于0?x 1l 2l 某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:
现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C .设购买甲种原料x 千克.
(1)至少需要购买甲种原料多少千克?
(2)设食堂用于购买这两种原料的总费用为y 元,求y 与x 的函数关系式.并说明购买甲种原料多少千克时,总费用最少
原料维生素C 及价格
甲种原料
乙种原料维生素C (单位/千
克)
600
400原料价格(元/千克)
9
5。