光电存储技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论光存储技术

班级:

姓名:

学号:

2013.10.8

目录

摘要---------------------------------------------------------------------- 关键词---------------------------------------------------------------------- 引言----------------------------------------------------------------------

一、光存储技术的原理及特点---------------------------------------

二、光存储技术的分类-----------------------------------------------

三、光存储技术的发展及前景----------------------------------------- 参考文献

论光存储技术

辽宁科技大学应用物理系 2010级

指导老师:王颖

摘要伴随信息资源的数字化和信息量的迅猛增长,对存储器的存储密度、存取速率及存储寿命的要求不断提高。在这种情况下,光存储技术应运而生。光存储技术具有存储密度高、存储寿命长、非接触式读写和檫出、信息的信噪比高、信息位的价格低等优点。

关键词存储;信息;容量;介质

引言信息资料迅速增长是当今社会的一大特点。据统计,科技文献数量大约每7年增加1倍,而一般的情报资料则以每2年~3年翻一番的速度增加。大量资料的存储、分析、检索和传播,迫切需要高密度、大容量的存储介质和管理系统。磁存储和光存储作为当今数据存储的两种常用方式,具有各自的特点。磁存储应用较早,适合与计算机联用,信息存取方便、可靠,技术相对成熟,得到了广泛的应用;光存储的发展及应用则是随着激光技术的发明,步入了高密度光学数据存储的新阶段,指明了未来数据存储的新方向。

一、光存储技术的原理及特点

1.光存储的概念及其基本原理

光存储技术是用激光照射介质,通过激光与介质的相互作用使介质发生物理、化学变化,将信息存储下来的技术。其基本物理原理是:存储介质受到激光照射后,介质的某种性质(如反射率、反射光极化方向等)发生改变,介质性质的不同状态映射为不同的存储数据,存储数据的读出则通过识别存储单元性质的变化来实现。

作为光储存方式,已有近百年的发展历史。常见的照相术就是最早的光存储

技术。无论是胶片感光灵敏度、分辨率、色彩,还是照相仪器,都取得了长足的进步,不仅能拍摄静止景物,还能通过电影、电视将活动图像记录和再现。然而,包括全息照相在内的照相术,都属于模拟光存储范畴,它在存储容量、存储密度及传输速率等方面都受到一定限制。随着信息社会的发展,特别是激光的出现和计算机的日益普及,数字光储技术开始兴起,数字光盘的诞生成为存储技术的一项重大突破。下图1示出数字光盘存储的基本原理。

图1 数字光盘存储基本原理

在实际操作中,一般用电脑来处理信息,因为电脑只能识别二进制数据,所以要在存储介质上面储存数据、音频和视频等信息,首先要将信息转化为二进制数据。现在常见的CD光盘、DVD光盘等光存储介质,与软盘、硬盘相同,都是以二进制数据的形式来存储信息的。写入信息时,将主机送来的数据经编码后送入光调制器,使激光源输出强度不同的光束,调制后的激光束通过光路系统,经物镜聚焦然后照射到介质上,存储介质经激光照射后被烧蚀出小凹坑,所以在存储介质上,存在被烧蚀和未烧蚀两种不同的状态,这两种状态对应着两种不同的二进制的数据。

聚焦光束人射到光盘上,如果光盘上已经存在记录信息,反射光的特征,例如,光强、光的相位或者光的偏振状态将发生某种变化,通过电子系统处理可以再现原始记录的数据信息,这就是光盘的基本读出过程。具体来说,就是读取信息时,激光扫描介质,在凹坑处由于反射光与入射光相互抵消入射光不返回,而在未烧蚀的无凹坑处,入射光大部分返回。这样,根据光束反射能力的不同,就可以把存储介质上的二进制信息读出,然后再将这些二进制代码转换成为原来的信息。

另外,可擦写光盘的存储介质为使光照点的结晶态发生变化,即相变型介质。而磁光存储材料的光盘的存储介质则是产生磁化方向的改变,从而记录或删除信

息。

2.光存储的主要特点

光盘存储的主要特点如下:

(1)记录密度高、存储容量大。

(2)光盘采用非接触式读写,光学读写头与记录盘片间通常有大约2mm的距离。这种结构带来了一系列优点:首先,由于无接触,没有磨损,所以可靠性高、寿命长,记录的信息不会因为反复读取而产生信息哀减;然后,记录介质上附有透明保护层,因而光盘表面上的灰尘和划痕,均对记录信息影响很小,这不仅提高了光盘的可靠性,同时使光盘保存的条件要求大大降低;其次,焦距的改变可以改变记录层的相对位置,这使得光存储实现多层记录成为可能;最后,光盘片可以方便自由的更换,并仍能保持极高的存储密度。这既给用户带来使用方便,也等于无限制的扩大了系统的存储容量。

(3)激光是一种高强度光源,聚焦激光光斑具有很高的功率,因而光学记录能达到相当高的速度;

(4)易于和计算机联机使用,这就显著地扩大了光存储设备的应用领域;

(5)光盘信息可以方便地复制,这个特点使光盘记录的信息寿命实际上为无限长。同时,简单的压制工艺,使得光存储的位信息价格低廉,为光盘产品的大量推广应用创造了必要的条件。

二、光存储技术的分类

2.1 三维体存储技术

三维体存储是实现超高密度信息存储的重要途径,研究领域主要集中在体全息存储和光子三维存储两个方面。

2.1.1体全息存储

体全息数据存储机理为:待存储的数据(数字或模拟)经空间光调制器(SLM)被调制到信号光上,形成一个二维信息页,然后与参考光在记录介质中干涉形成体全息图从而完成信息的记录读出时使用和原来相同的参考光寻址,可以读出相应地存储在晶体中的全息图。利用体全息图的布拉格选择性,改变参考光的入射角度或波长,就可在一个单位体积内复用多幅图像,实现多重存储,达到超高密度存储的目的。

全息存储具有以下特点:

(1)存储密度高、容量大:在可见光谱中存储密度可达1012bits/cm3;

相关文档
最新文档