例说椭圆焦点弦问题
高中数学椭圆的焦点弦长公式的四种推导方法及其应用
椭圆的焦点弦长公式的四种推导方法及其应用摘要:直线与椭圆相交时的弦长问题,可以用万能的弦长公式解决即12AB x -或者12AB y -,而有一种特殊的弦是过焦点的弦,它的弦长有专门的公式:22222cos ab AB a c θ=-,如果记住公式,可以给我们解题带来方便.下面我们用万能弦长公式,余弦定理,焦半径公式,仿射性四种方法来推导椭圆的焦点弦长公式,这几种方法涉及到很多思想,最后举例说明其应用.解法一:根据弦长公式直接带入解决.题:设椭圆方程为12222=+by a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭圆于1122(,),(,)A x y B x y 两点,求弦长AB .椭圆方程12222=+by a x 可化为0222222=-+b a y a x b ……①,直线l 过右焦点,则可以假设直线为:x my c =+(斜率不存在即为0m =时),代入①得:222222222()20b m a y mcb y b c a b +++-=,整理得,222224()20b m a y mcb y b ++-=∴2412122222222,mcb b y y y y b m a b m a +=-=-++,∴12AB y -==∴()2222221ab AB m b m a=++ (1)若直线l 的倾斜角为θ,且不为90,则1tan m θ=,则有: ()2222222222221111tan tan ab ab AB m b m a b a θθ⎛⎫=+=+ ⎪+⎝⎭+,由正切化为余弦,得到最后的焦点弦长公式为22222cos ab AB a c θ=-……②. (2)若=90θ,则0m =,带入()2222221ab AB m b m a =++,得通径长为22b a ,同样满足②式.并且由()222232222222222222222222()222()2()21=22ab a b m a a ab a a b a a b b AB m a a b m a b m a b m a a a +-+--=+=-≥-=+++,当且仅当0=m 即斜率不存在的时候,过焦点弦长最短为a b 22,故可知通径是最短的焦点弦,.综上,焦点弦长公式为22222cos ab AB a c θ=-.解法二:根据余弦定理解决题:设椭圆方程为12222=+by a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭圆于1122(,),(,)A x y B x y 两点,求弦长AB .解:如右图所示,连结11,F A F B ,设22=,F A x F B y =,假设直线的倾斜角为θ,则由椭圆定义可得11=2,2F A a x F B a y -=-,在12AF F ∆中,由余弦定理得222(2)(2)cos()4c x a x cx πθ+---=,化简可得2cos b x a c θ=-,在12BF F ∆中,由余弦定理同理可得2cos b y a c θ=+,则弦长2222222=cos cos cos b b ab AB x y a c a c a c θθθ=+=+-+-.解法三:利用焦半径公式解决题:设椭圆方程为12222=+by a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭圆于1122(,),(,)A x y B x y 两点,求弦长AB .解:由解法一知22212121222222222=()22m cb a cx x my c my c m y y c c b m a b m a ++++=++=-+=++.由椭圆的第二定义可得焦半径公式,那么2122,F A a ex F B a ex =-=-故222221212222222222(1)=2()ab m ab ab m AB a ex a ex a e x x b m a b m a ++-+-=-+==++后面分析同解法一.解法四:利用仿射性解决题:设椭圆方程为12222=+by a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭圆于1122(,),(,)A x y B x y 两点,求弦长AB .解:利用仿射性,可做如下变换''x xa y yb =⎧⎪⎨=⎪⎩,则原椭圆变为222(')(')x y a +=,这是一个以原点为圆心,a 为半径的圆.假设原直线的斜率为k ,则变换后斜率为ak b.椭圆中弦长212=1AB k x x +-,经过变换后变为212''1()a A B k x x b=+-,带入,得变换前后弦长关系为22221=''b k AB A B b a k++……③而我们知道圆的弦长可以用垂径定理求得.如图所示,假设直线为()ay k x c b=-,圆心到直线的距离为21()a kc bd a k b=+,根据半径为a ,勾股定理求得弦长为222222222()(1)''=221()akc a b k b A B a ak b a k b+-=++,将此结果带入③中,得222222222222222222211(1)2(1)=''=2=b k b k a b k ab k AB A B b a k b a k b a k b a k++++++++,由tan k θ=,带入得 22222cos ab AB a c θ=-.上面我们分别用了四种不同的方法,求出了椭圆中过焦点的弦长公式为:22222cos ab AB a c θ=-,记住这个公式,可以帮助我们快速解决一些题目,下面我们举例说明.例1已知椭圆2212521x y +=的直线交椭圆于,A B 两点,求AB . 分析:如果直接用弦长公式解决,因为有根号,特别繁琐,利用公式则迎刃而解.解:由题,225,21,4=3a b c πθ===,,带入22222cos ab AB a c θ=-得=10AB . 例2已知点3(1,)2P -在椭圆C :22221(0)x y a b a b +=>>上,过椭圆C 的右焦点2(1,0)F 的直线l 与椭圆C 交于,M N 两点. (1)求椭圆的标准方程;(2)若AB 是椭圆C 经过原点O 的弦,且MNAB ,2ABW MN=,试判断W 是否为定值?若是定值,求出这个定值,若不是,说明理由.分析:因为l 过焦点,故弦长可以用过焦点的弦长公式解决,显得十分简洁简单. 解:(1)由题知1c =,将点P 带入得221914a b+=,又222a b c =+,解得224,3a b ==,故椭圆方程为22143x y +=. (2)假设(,)A m n,则AB =,设倾斜角为θ,则cos θ=,根据过焦点的弦长公式则2222222222221234cos 12()4abm n MN m a c m n m n θ+===-+-+,故222=443ABm n W MN =+()=4. 例3如图,已知椭圆22143x y +=的左右焦点为12,F F ,过2F 的直线1l 交椭圆于,A C 两点,过1F 的直线2l 交椭圆于,B D 两点,12,l l 交于点P (P 在x 轴下方),且1234F PF π∠=,求四边形ABCD 的面积的最大值.分析:注意到以原点为圆心,半焦距为半径的圆与椭圆没有交点,故形成1234F PF π∠=的点P 在圆内,先可以用焦点弦长公式表示出面积,再利用换元求出其最大值.解:假设1l 的倾斜角为θ,则2l 的倾斜角为3+4πθ,由椭圆的焦点弦长公式得:2124cos AC θ=-, 2124cos ()4BD πθ=--,221221212=2244cos 4cos ()4S AC BD πθθ⋅⋅⋅=⋅⋅---, 设22()(4cos )(4cos ())4f πθθθ=---71714971(cos 2)(sin 2)sin 2+cos 2+sin 42222448θθθθθ=--=-() 设sin 2cos 2(2,2)t t θθ⎡⎤+=∈-⎣⎦, 则2sin 41t θ=-,带入得24971()+(1)448f t t t =-- 即21797()848f t t t =-+ min 99142()8f t -=,此时2t =, 即sin 2cos 22θθ+=,得到=8πθ.综上,四边形ABCD 的最大值为2882=5.1499142S ≈-.此时=8πθ,得到2l 的倾斜角为78π,刚好两直线关于y 轴对称,如右图所示.。
《椭圆》方程典型例题20例(含标准答案解析)
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
《椭圆》方程典型例题20例(含标准答案解析]
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112aa x x x M +=+=,2111a x y M M +=-=,4112===a x y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=. ∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-. 将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=,112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b ,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b ,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+ay x ay ,将22222y b a a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b cab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12F PF,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα ∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα, ∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+= ∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
《椭圆》方程典型例题20例(含标准答案)
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
椭圆焦点弦结论
椭圆焦点弦结论
椭圆焦点弦结论:第一类是常见的基本结论;
第二类是与圆有关的结论;
第三类是由焦点弦得出有关直线垂直的结论;
第四类是由焦点弦得出有关直线过定点的结论。
1、以焦点弦为直径的圆与准线相切(用抛物线的定义与梯形的中位线定理结合证明)2、1/|AF|+1/|BF|=2/p(p为焦点到准线的距离,下同)3、当且仅当焦点弦与抛物线的轴垂直(此时的焦点弦称为“通径”)时,焦点弦的长度取得最小值2p。
4、如果焦点弦的两个端点是A、B,那么向量OA与向量OB的数量积是-0.75p^2
第五类是1/|AF|+1/|BF|=2/p(p为焦点到准线的距离,下同)。
第六类是当且仅当焦点弦与抛物线的轴垂直(此时的焦点弦称为“通径”)时,焦点弦的长度取得最小值2p。
第七类是如果焦点弦的两个端点是A、B,那么向量OA与向量OB的数量积是-0.75p^2。
第八类是如果它们由反射光的材料制成,则平行于抛物线的对称轴行进并撞击其凹面的光被反射到其焦点,而不管抛物线在哪里发生反射。
椭圆一题80问(程波)
椭圆问题(其实也包括其它圆锥曲线问题)分为⼩题和⼩题两部分,其中⼩题⼩般都注重定义、性质的应⼩,特点是灵活⼩轻巧,计算量不会很⼩,在解题中要结合条件的特殊性灵活运⼩圆锥曲线的常⼩性质和结论.已知是椭圆上⼩动点,为其左、右焦点,⼩轴端点为,短轴端点为,椭圆的离⼩率为下⼩是解⼩题时的⼩些辅助性质和结论:特征三⻆形;;焦半径;焦点弦⼩,通径端点坐标;若AB为过右焦点的弦,则的周⼩为定值;焦点三⻆形:①的周⼩为定值;②最⼩时,为椭圆的短轴端点;③的⼩积为;④内切圆与切于M,则|PM|为定值,且内切圆半径;⑤设的内⼩为,与轴交于M,则;7.点处的切线:①的⼩程为:;②的内⻆平分线与点P处的切线垂直,且切线平分的外⻆;(这是椭圆的光学性质:光线从椭圆的⼩个焦点射⼩,被椭圆反射后从另⼩焦点射出)8.当点P不是椭圆的左、右端点时,;当点P不是椭圆的上、下端点时,.⼩与⼩题的轻巧不同的是,⼩题的出现往往是带有⼩定计算量的,特点是“易想难算”,所以解答⼩题⼩定要有“坚定的信念”、“顽强的意志”以及“百折不挠的精神”⼩般来说,⼩题常以轨迹、定点、定值、最值等形式出现,我们现在以同⼩个椭圆为例,来看看各种不同的问法.已知椭圆的左、右焦点分别为,左、右顶点分别为,上、下顶点分别为.轨迹问题(定义法、相关点法、参数法)已知P为椭圆E上的任意⼩点,为的内切圆圆⼩,求动点的轨迹⼩程.【分析】在正常情况下会怎样思考呢?为内⻆平分线的交点,如果能⼩到性质:的平分线垂直于切线,这很好,可是其它两个内⻆的平分线怎么办?总不能⼩⼩倍⻆公式解⼩次⼩程吧?别忘了刚才给出的性质中有⼩条:的内切圆半径!【解析】设在y轴上⼩,并设点,则点P处的切线为:①⼩的内切圆半径,故②联⼩①②可得,代⼩⼩程可得:.当点P在y轴下⼩时,点的轨迹⼩程为综上,动点的轨迹⼩程为.【归纳总结】(1)刚才的解答中,真正起到简化作⼩的是⼩程②,从的⻆度⼩⼩简化了计算量,起到“化繁为简”的作⼩,所以熟知常⼩性质和结论不仅对解⼩题有益,对解⼩题也⼩样能体现其优势;(2)⼩般结论:设P为椭圆上的动点,则内切圆圆⼩的轨迹⼩程为:.【证明】:设点,因为过P的切线为,从⼩①当点P在y轴上⼩时,的内切圆半径,所以②联⼩①②可得,代⼩⼩程可得:,即此时点轨迹⼩程为.当点P在y轴下⼩时,点轨迹⼩程为.综上,点轨迹⼩程为.例2.已知是椭圆的两条切线,且,垂⼩为P,求动点P的轨迹.【解析】解⼩:(1)当点在轴上时,由对称性知为等腰直⻆三⻆形,切线斜率分别为-1,1.设(t,0),则⼩程为,联⼩⼩程得,由判别式=0,解得。
运用焦半径公式速解焦点弦问题_马洪炎
在 Rt△MNF 中, | MF | = 于是 | NF | 3 = , cosα 4 - cos2 α
为定值, 并说明理由. 分析 本题第( 2 ) 小题 是一个 典 型 的 解 析 几 何 定 图5 值问题, 通常可运用函数的 思想方法解之, 其解题过程可归纳为: 一选, 二求, 三定值. 具体操作程序如下: 一选: 选择参变量. 需要证明为定值的量在通 常情况下应该是变量, 它应该随某一个量的变化而 可选择这个量为参变量. 变化, 二求: 求出函数的解析式. 即把需要证明为定 值的量表示成关于上述参变量的函数 . 三定值: 化简函数解析式得到定值. 由题目的 结论可知要证明为定值的量必与参变量的大小无 故求出的函数必为常数函数, 因此, 只需对上述 关, 函数的解析式进行必要的化简即可得到定值 . 1] 文献[ 介绍的解法 1 ( 复杂解法 ) 选择以直 线 AB 的斜率 k 为目标函数的变量; 解法 2 ( 简捷解 法) 选择线段 AB 的中点 N 的横坐标为目标函数的 变量. 在运用函数的思想方法解决定值问题时, 目 标函数变量的选择显得很重要. 由于角度形式的焦 半径公式与本题相关的线段可直接对话 , 因此也可 AB x 选择直线 与 轴的夹角 α 为目标函数的变量. 解 π α < . 不妨设 | AF | > | BF | , 则由椭圆的焦半径公 2 式可知 b2 3 | AF | = = ; a - ccosα 2 - cosα b2 3 | BF | = = , a + ccosα 2 + cosα 2 3 + = 从而 | AB | = | AF | + | FB | = 2 - cosα 2 + cosα 12 . 4 - cos2 α 设 AB 的中点为 N, 则 2 3 2 | FN | = | AF | - | FB | = - = 2 - cosα 2 + cosα 6cosα , 4 - cos2 α 3cosα | FN | = . 即 4 - cos2 α ( 2 ) 设直线 AB 与 x 轴的夹角为 α, 则0 <
《椭圆》方程典型例题20例(含实用标准问题详解)
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
椭圆的简单几何性质典型例题
典型例题例1椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置・解:(1)当4(2,0)为长轴端点时,《= 2, b = l,椭圆的标准方程”令+F(2)当A(2,0)为短轴端点时,b = 2, d = 4,椭圆的标准方程为:宁+P说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况•典型例题例2 —个椭圆的焦点将英准线间的距离三等分,求椭圆的离心率.解:•/ 2c = — X 2 X - /. V" = rc 3说明:求椭圆的离心率问题,通常有两种处理方法,一是求求C,再求比.二是列含《和C 的齐次方程,再化含€的方程,解方程即可.典型例题例3已知中心在原点,焦点在兀轴上的椭圆与宜线x+y-1 = 0交于A、B两点,M为A8中点,OM的斜率为,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为亠+尸=44 月+|CF| = 2|BF,且BF=-. 5 18 yx + y-\ = O由 1牙2 分.W(l + t/)\'-2rt-x = 0,2 a\ + aA —+ y-=l 为所求.4说明:(1)此题求椭圆方程采用的是待定系数法:(2)直线与曲线的综合问题,经常要 借用根与系数的关系,来解决弦长、弦中点、弦斜率问题•典型例题四(Q \=1上不同三点A (・X[, yj, B 4T - , C{x^,儿)与焦点F (4・0)的\ 5丿距离成等差数列.(1)求证X] +x^ =8:(2)若线段AC 的垂直平分线与X 轴的交点为7\求直线的斜率a. 证明:(1)由椭圆方程知a = 5 , h = 3 . c = 4・Ccr a---- 斗cAF 由圆锥曲线的统一泄义知:(2)因为线段AC 的中点为(4,匹尹}所以它的垂直平分线方程为又T 点r 在X 轴上,设其坐标为(心,0),代入上式,得33歼一兀 2(X|-X2)又•••点”),B (与 儿)都在椭圆上• -);=却25-彳)y ;=善(25 一卅)-K _ 衣=一舟(“1 + 兀2 -吃)•将此式代入①,并利用西+勺=8的结论得%0-4 =-—0 25典型例题五例5已知椭圆宁+寸=1,片、&为两焦点,问能否在椭圆上找一点M ,便M 到左准线/的距离MN 是M 斥与MF ;的等比中项若存在,则求出点M 的坐标;若不存在, 请说明理由•a = 2tb = Vs ,c = 1 r e = —2「左准线/的方程是x = r ,R - 5 -5 47。
椭圆的焦点弦公式
椭圆的焦点弦公式
摘要:
1.椭圆焦点弦公式的基本概念
2.椭圆焦点弦公式的应用
3.椭圆焦点弦公式的实际意义
正文:
椭圆是一种常见的数学曲线,其在几何、物理等领域具有广泛的应用。
椭圆的焦点弦公式是研究椭圆性质的重要工具,本文将详细介绍椭圆焦点弦公式及其应用。
一、椭圆焦点弦公式的基本概念
椭圆的焦点弦公式主要包括两部分:焦半径公式和弦长公式。
1.焦半径公式:设椭圆的焦点为F,椭圆上一点为M,焦半径为R,则有R = a * sqrt(1 - e^2) ,其中a为椭圆的长半轴,e为椭圆的离心率。
2.弦长公式:设椭圆的焦点弦为AB,AB的中点为M,椭圆的焦距为2c,则有AB = 2 * R * sqrt(1 - e^2),其中R为焦半径,e为椭圆的离心率。
二、椭圆焦点弦公式的应用
1.求解椭圆的焦点弦:已知椭圆的长半轴、短半轴和离心率,可以通过焦点弦公式求解椭圆上的焦点弦。
2.求解椭圆的交点:已知椭圆的焦点和直线方程,可以通过焦点弦公式求解椭圆与直线的交点。
3.求解椭圆的性质:通过焦点弦公式,可以研究椭圆的性质,如椭圆的离
心率、长半轴、短半轴等。
三、椭圆焦点弦公式的实际意义
椭圆焦点弦公式在实际应用中具有重要意义,如在航空航天、通信、物理等领域。
以航空航天为例,飞行器的轨道通常为椭圆,通过焦点弦公式可以求解飞行器的轨道参数,从而为飞行器的设计和控制提供依据。
总之,椭圆焦点弦公式是研究椭圆性质的重要工具,其在实际应用中具有重要意义。
一道椭圆焦点弦问题的7种解法
得 (+
,
即k2(4c2a2-b4)=b4,⑤
(
− ),
+
=
(
+ ),
+
−
− ) (+ + )= + ,
得− = ,④
22=32 ,即 − , − = Βιβλιοθήκη − , ,由①④得: =
−
,
+
−
由③⑤得 = − ,
=
2
2 2
2
,代入②得:a =(25c -a )m ,
+
··
得5b2=6am.②
−
=
(4a2- 5b2)( + ) =
4a2=5b2=5(a2-c2)
a2=5c2
.
=
①
.
引例
已知椭圆C:
+
= > > 的左、右焦点分别是F1、F2,过F2的直
− = ,
③
− ( + ) + =0
④
−
把①②代入④,得:· + -3c·+ +a2=0,
即c2(k2c2-b2)-6c2a2k2+a2(b2+a2k2)=0,
即k2(c4-6c2a2+a4)=-b4
余弦定理巧解椭圆中的焦点弦问题
点 A 为椭圆上的一动点 ( 非长轴端点 ),AF2 的延长线与椭圆交 于 B 点,AO 的 延 长 线 与 椭 圆 交 于 C 点, 求 ΔABC 面 积 的 最 大值 .
点和右顶点,且
,离心率
. ( Ⅰ ) 求椭圆 C 的
方程;( Ⅱ ) 设经过 F2 的直线 l 与椭圆 C 相交于 A, B 两点,求
( 上接第 62 页 )
3.2 指导借方贷方 簿记当中一些术语的含义与实际生活中的差异比较大,例 如“借方”、“贷方”与实际生活的“借贷”含义相距甚远,初 学者由于生活中的观念根深固蒂,容易受到影响和干扰。教师 可以先举出一些实际例子来对这些差异进行说明,但是不能够 因为担心学生会混淆而避之不谈。学生要想学好簿记知识,对 于专业术语的学习是不可避免的。因此,在对簿记逐渐深入地 学习过程中,还是需要对“借方”、“贷方”进行分析和解释。 但是教师也应该了解,“借方”、“贷方”这一专业术语并没有根 本性质的解释和说明 [6]。因此,在实际中可以将“贷方”理解 为原因,“借方”看做是结果,这样便于学生理解。 3.3 指导分录 在簿记教学当中,分录具有重要作用。日式簿记中,对贸 易进行分录是最为基础的环节,但是其作用又至关重要,因此 学生要利用大量的时间进行学习。学生要做到能够随时对会计 科目进行正确的分录,如果不能够掌握,日式簿记的学习将很 难继续进行。因此投入大量的时间成本来实现这一目标是必要 的。很多簿记课程教师在进行分录讲解时,要指导学生学会学 习簿记的基本方法,在对一些专业术语进行讲解时,可以不需 要详细说明其渊源和根本意义,只需要告诉学生将其当做符号 能够使用即可。高校日语专业学生开设日式簿记课程只是为了 让其掌握技能,学习会计的操作流程,如果背景和理论知识等 枯燥的内容过多,学生的学习兴趣会下降。因此,在教学过程 中,培养学生掌握技能的同时,还要对教学的方式和内容进行 相应的调整。 3.4 指导决算整理 在簿记教学中,决算整理也是其中一项重要的内容。在学 习时要注重以下几个方面:①要对学生的数感进行培养。“数感” 是指比较数量大小或者估计运算结果等对于数字的感觉。学生 数感灵敏在运算的过程中就能够预判自己计算结果和真实结果 之间的差异。一旦产生差距会及时进行更正,节省精力和时间; ②在进行账簿登记时,要求学生能够学会现金出纳账,这是账 簿的基础工作;③在精算表的学习过程中要多做题目,做到熟 能生巧。
高中数学椭圆的焦点弦长公式的四种推导方法及其应用
椭圆的焦点弦长公式的四种推导方法及其应用摘要 :直线与椭圆相交时的弦长问题,可以用万能的弦长公式解决即AB = 1 k 2x 1 x 2或者 AB= 1+( k 1)2y 1 y 2 ,而有一种特殊的弦是过焦点的弦,它的弦长有专门的公 式: 2ab2AB 2 2a 2b 2 ,如果记住公式,可以给我们解题带来方便 .a2 c 2 cos 2下面我们用万能弦长公式, 余弦定理, 焦半径公式, 仿射性四种方法来推导椭圆的焦点弦长公式, 这几种方法涉及到很多思想,最后举例说明其应用 .解法一 :根据弦长公式直接带入解决 .22题:设椭圆方程为 x2 y2 1,左右焦点分别为 F 1( c,0), F 2(c,0) ,直线 l 过椭圆的右焦点 F 2 交椭 ab圆于A( x 1 , y 1), B ( x 2 , y 2 )两点,求弦长 AB .22椭圆方程 x2 y 2 1可化为b 2x 2a 2y 2 a 2b 2⋯⋯①, a2b 2直线 l 过右焦点,则可以假设直线为:x my c ( 斜率不存在即为 m 0时 ) ,代入①得:(b 2m 2a 2)y 2 2mcb 2 y b 2c 2 a 2b 2 0 ,整理得, (b 2m 2 a 2)y 22mcb 2y b 4∴y1y 2b 2m 22mcb 22 ,y 1y 2 a b 4b 2m 2aAB = 1+( k 1)2y 1y 21 m2(2 2 bm 2mcb 2 )2 2)a4b 42 2 2b m a1 m 24a 2b 4(1 m 2)2 2 2 2(b m a )∴ AB2ab 22 2 2 b m a1m1)若直线 l 的倾斜角为,且不为 90o ,则1 tan ,则有:ABb 2m 2a 2b a 2 1 m 2b m a2ab 22 1 2 b 2 atan1tan 2由正切化为余弦,得到最后的焦点弦长公式为AB2ab 22 2 2 a c cos②.2)若 =90o ,则 m 0,带入 AB2 2ab 22 2 2 b m a1 m 2,得通径长为 2b 2,同样满足②式 .并且由a解法二 :根据余弦定理解决22题:设椭圆方程为 x 2 y2 1,左右焦点分别为 F 1( c,0), F 2(c,0) ,直线 l 过椭圆的右焦点 F 2 交椭 ab 圆于 A(x 1,y 1),B(x 2,y 2)两点,求弦长 AB .AB2ab 21 m2 =2a(b 2m 2a 2) 2a 32ab 22 2 21 m =2 2 2b m a b m a2a2a 2(a 22 b 22) 2a2a(a 22 b 2) 2b 2b m a a,当且仅当 m 0 即斜率不存在的时候,过焦点弦长最短为2b 22b,故可知通径是最短的焦点弦, a综上,焦点弦长公式为 AB2ab 22 2 2 a c cos22题:设椭圆方程为 x 2 y 2 a 2 b21,左右焦点分别为 F 1( c,0), F 2(c,0) ,直线 l 过椭圆的右焦点 F 2 交椭圆于 A(x 1,y 1),B(x 2,y 2)两点,求弦长 AB .解:如右图所示,连结 F 1 A, F 1B ,设 F 2A=x, F 倾斜角为 ,则由椭圆定义可得AF 1F 2 中,由余弦定理得cos( )(2c)2x 2(2a x)2,化简可得4cxBF 1F 2 中,由余弦定理同理可得b 2a ccosABb 2b 2ya ccos a ccos2ab 2222a c cos解法三:利用焦半径公式解决 解:由解法一知x 1x 2=my 1 c my 2 c m(y 1 y 2 ) 2c22 2m 2cb 2 2 2 2bm a 2c22a 22c2 .由椭圆b 2m 2a 2的第二定义可得焦半径公式,那么 F 2A a ex 1, F 2B aex 2,则弦长2 F 1A =2a x中 结 得AB③2 abkc为a2果带入③将此b 1 k 22 2 2 a 2b 2(1 k 2)2 2 2 b 2 a 2k 2b2 a 2k2 A'B'b 2m2 A'B' =b 2 a 2k 22 2 2b 2 a 2k 22 2 2b 2 a 2k 2后面分析同解法解法四 :利用仿射性解决22题:设椭圆方程为 x 2 y 2 1,左右焦点分别为 F 1( c,0), F 2(c,0) ,直线 l 过椭圆的右焦点 F 2 交椭 ab圆于 A(x 1,y 1),B(x 2,y 2)两点,求弦长 AB .b 1 k 2a 2b 2(1 k 2) 2ab 2(1 k 2),由 k tan ,带入得AB = b 1 k 2AB =b 2 a 2k 22ab 2m 2 2ab 2 故AB =a ex 1 a ex 2 2a e(x 1 x 2)2 2 2b m ax' x解:利用仿射性, 可做如下变换 a ,则原椭圆变为 (x')2 (y')2 y' ya 2,这是一个以原点为圆心,a 为半径的圆 . 假设原直线的斜率为k ,则变换后斜率为 bak .椭圆中弦长 AB = 1 k 2x 1 x 2 ,经过 变换后变为 A'B' 1 (a k)2 x 1x 2 ,带入,得变换前后弦长关系为AB =(akc )2 b 1 (a bk )2bA'B' =2 a 22ab 2a 2 c 2 cos 22ab 2(1 m 2)勾股定理求得弦长为而我们知道圆的弦长可以用垂径 定理求得 .如图所示,假设直线y a k(x c) ,圆心到直线的距 b离为 d,根据半径1 (a bk)2a4上面我们分别用了四种不同的方法,求出了椭圆中过焦点的弦长公式为: 记住这个公式,可以帮助我们快速解决一些题目,下面我们举例说明 22 例 1已知椭圆 x y25 21 AB2ab 2,2 2 2,a c cos1,过椭圆焦点且斜率为 3 的直线交椭圆于 A, B 两点,求 AB . 分析:如果直接用弦长公式解决, 因为有根号,特别繁琐,利用公式则迎刃而解解:由题, a 5,b 2 21,c 24, = , 带入 AB 3 2ab 2 222a c cos 得 AB =10. 例 2已知点 P(1, 3) 在椭圆 C :x2 2 a 22y2 1(a> b> 0)上,过椭圆 C 的右焦点 F 2 (1,0)的直线 l与b 椭圆 C 交于 M,N 两点 . 1)求椭圆的标准方程; 2)若AB 是椭圆 C 经过原点 O 的弦,且MN PAB ,W AB MN 2,试判断 W 是否为定值?若是定值,求出这个定值,若不是,说明理由 . 分析:因为 l 过焦点,故弦长可以用过焦点的弦长公式解决,显得十分简洁简单 9 2 2 2 21 ,又 a b c 4b2 1 解:(1)由题知 c 1,将点 P 带入得 12 a 2 ,解得 a 2 4,b 23 ,故椭 22 圆方程为 x y1. 43 2)假设 A(m,n) ,则 AB 2 m 2 n 2,设倾斜角为 ,则 cos m m 2 n 2 ,根据过焦点的弦长公式则 MN 2ab 22 a 22 c cos 12 2 m 22 mn3m 212(m 2 4n 2 ,故 W n 2) AB MN m 2 =4( 4 2 n )=4. 3 例3如图,已知椭圆 1的左右焦点为 F 1,F 2, 过 F 2 的直线 l 1 交椭圆于 A,C 两点,过 F 1 的直线 l 2交椭圆于 B,D 两点, l 1,l 2交于点 P ( P 在x 轴下方),且 F 1PF 2 43 ,求四边形 ABCD 的 面积的最大值 . 分析:注意到以原点为圆心,半焦距为半径的圆与椭圆没有交点,故形成F 1PF 23的点 P 在圆 内,先可以用焦点弦长公式表示出面积,再利用换元求出其最大值2解:假设 l 1 的倾斜角为,则 l 2的倾斜角为 3+,由椭圆的焦点弦长公式得: AC12 4 cosBD 12 S=1 2ACBD12 12 cos ( )4 2cos4 cos 2() 4设 f( (4 cos )(4 cos ( 7(72 cos2 )( 1 12sin 2 )4))49 7 ( sin2 44+cos 21)+ sin4 8设 sin2 cos2t(t2, 2 ) ,则sin4 t 21,带入得 f(t)49 7t+1(t 2 4481)即f(t)1t 28 7t 97 48f (t)min 99 14 2,此时 t 2,即 sin2 cos22 ,得到 综上,四边形 ABCD 的最大值为 288 2 S=99 14 2 = 8 ,得到l 2的倾斜角为 8 ,刚好两直线关于 y 轴对称,如 右图所示 .5.14 .此时。
高中数学:焦半径公式及其应用
高中数学:焦半径公式及其应用从圆锥曲线(特指椭圆、双曲线、抛物线)的定义与标准方程出发,如何去推导与焦点相关的焦半径公式、焦点弦长公式及其相关的结论,进而加以应用.本文不作特别说明,椭圆、双曲线、抛物线都是针对焦点在轴上标准方程(其中抛物线考虑标准方程),分别为椭圆或双曲线的左、右焦点,是抛物线的焦点,是相应圆锥曲线上的一点.所有的公式推导均以椭圆方程为例,且优先考虑左焦点对应的相关公式.双曲线可以完全类比椭圆的推导过程得到,特殊情况会另外说明.焦半径是指圆锥曲线上任意一点与焦点的连线段.对于椭圆与双曲线上的任意一点,都对应两条焦半径;对于抛物线上的任意一点,焦半径唯一存在.设是椭圆上任意一点,则有从而焦半径而,所以其中为椭圆的离心率.事实上,在由椭圆的定义推导椭圆方程的过程中,就已经产生了这个式子,设满足即分子有理化得于是有(1)(2)两式相加得即为椭圆上一点到椭圆左焦点的距离.于是我们得到椭圆的焦半径公式(I):同理有双曲线的焦半径公式(I):当点在双曲线上的不同支上时,绝对值里面式子的正负大家可以自行讨论.抛物线的焦半径公式可以直接由抛物线的定义得到,即例1椭圆的右焦点为,直线与轴的交点为,在椭圆上存在点满足线段的垂直平分线过点,则椭圆离心率的取值范围是____.正确答案是.解设,则有,即解得又因为,所以有两边同除可解得由椭圆的焦半径公式(I)知,已知椭圆上一点的横坐标,就很容易求出椭圆的焦半径长,但有时,我们知道的不是横坐标的值,而是焦半径与轴形成的角度,我们可以从上面的焦半径公式(I)出发去推导由焦半径与轴正半轴所成的角对应的焦半径公式.设与轴正半轴形成的角度为,则有整理得,于是有解得同理可以推得右焦点对应的焦半径公式其中,是焦半径与轴正半轴所成的角,注意,同一个点与左焦点与右焦点连线形成的焦半径与轴正半轴所成的角不是同一个角,这是与焦半径公式(I)很不相同的地方,如图:于是我们得到椭圆的焦半径公式(II):其中为焦半径与轴正半轴所成的角.对于双曲线来说,与椭圆类似可以得到双曲线的焦半径公式(II),需要注意的是,当双曲线上的点在双曲线的不同支上时,焦半径公式(I)中绝对值的正负不同,所以需要分别讨论.双曲线的焦半径公式(II):当在双曲线的左支时,有当在双曲线的右支时,有其中为焦半径与轴正半轴所成的角.抛物线的焦半径公式为:其中为焦半径与轴正半轴所成的角.椭圆的焦半径公式(II)有两个常用的推论:推论1 椭圆的焦点弦长公式:其中为椭圆的焦点弦,的倾斜角为.圆锥曲线的焦点弦是指过某一焦点的直线与该圆锥曲线相交得到的两个交点之间的线段.当该弦与轴(椭圆的长轴,双曲线的实轴)垂直时,得到的弦我们称为通径.因为焦半径公式(II)是与角度相关的公式,所以我们很容易从它得到椭圆的焦点弦长公式.证明设是过椭圆左焦点的焦点弦,的倾斜角为,不妨设点在轴上方,如图:由焦半径公式(II)知于是这就是椭圆的焦点弦长公式,容易知道,对于经过椭圆右焦点的弦,此公式同样适用.事实上,对于双曲线,同样有推论1,即双曲线的焦点弦长公式:其中为双曲线的焦点弦,的倾斜角为.不论两点在双曲线的同支还是异支上,都有这个公式成立,只是绝对值中的式子正负有所不同.抛物线的焦点弦长公式更为简单,即其中是抛物线的焦点弦,的倾斜角为.例2椭圆,为椭圆上四个不同的点,都不和轴垂直,且分别过,,求证:为定值.解设的倾斜角为,则的倾斜角为,则由焦点弦长公式知所以为定值.推论2 椭圆的焦点弦被焦点所分成的两段线段长的调和平均数为定值(即焦半径的倒数和为定值).证明由焦半径公式(I)知于是我们知道与的调和平均数为定值,即这个定值就是半通径长,由均值不等式易知椭圆的所有焦点弦中,通径长最短.几道练习:练习1椭圆的焦点为和,点在椭圆上,如果线段的中点在轴上,求的值.练习2椭圆的左右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,,求四边形面积的取值范围.答案练习1 .提示设,则,于是于是.练习2 .提示设的倾斜角为,则的倾斜角为,于是四边形的面积练习3备注1椭圆的焦半径公式(I)是从椭圆的第一定义向第二定义过渡的重要桥梁,可以通过椭圆的焦半径公式(I)去发掘椭圆的第二定义.由焦半径公式(I)知设直线:,称为椭圆的左准线,记点到的距离为,则有即椭圆上任一点到椭圆左焦点的距离与到左准线的距离的比为定值,这个值为椭圆的离心率.同样地有椭圆的右准线于是有,椭圆上的任意点到椭圆的焦点与对应准线的距离的比值为定值.对于双曲线也有类似的结论,双曲线的准线方程为双曲线上任意点到焦点的距离与到对应准线的距离的比也为定值,即为双曲线的离心率.同时,平面上到定点与到定直线(其中)的距离比为定值(其中)的轨迹为椭圆、双曲线或抛物线,取决于的大小.当时为椭圆,当时为抛物线,当时为双曲线.从而有圆锥曲线的统一定义:平面上到一个定点的距离与到一条定直线(其中定点不在直线上)的距离的比为定值的点的轨迹为圆锥曲线,时这个定义就是抛物线的定义,当的范围在与上时,对应的定义被称为椭圆与双曲线的第二定义.备注2由椭圆的焦半径公式(II)很容易得到椭圆的极坐标方程:以椭圆的一个焦点为极点,以轴正半轴方向为极轴方向建立极坐标系,则椭圆上任意一点的坐标满足:这就是椭圆的极坐标方程,注意如果以椭圆的右焦点为极点,轴正方向为极轴建立极坐标系,得到的极坐标方程为▍▍ ▍▍。
椭圆焦点弦的定理证明及应用
椭圆焦点弦的定理证明及应用椭圆焦点弦定理是应用数学中的一种定理,这个定理规定在一个椭圆中,由任意两个焦点投射出的射线之间的弦距离等于从第一个焦点出发的射线与从第二个焦点出发的射线的对比例。
它是一个关于椭圆的重要定理。
一、定理的证明1. 假设图形上有一个椭圆,它的焦点为F1,F2,距离焦点F1长度为a,距离焦点F2长度为b。
2. 用P表示在椭圆上的任意一点,称这点到F1的距离为x,称它到F2的距离为y。
3. 则有:a/b=x/(y+b)b/a=y/(x+a)联立上面式子得x/(y+b)=y/(x+a)即xy=ax+by+ab(*)4. 当椭圆上的点P,P1,P2在y轴上的坐标分别为y1,y2,y3的时候,由(*)可得ay1+by1+ab=ay2+by2+ab=ay3+by3+ab又由x1=a-y2x2=a-y1x3=a-y3可得ax1+by1+ab=ax2+by2+ab=ax3x+by3+ab即x1y1=x2y2=x3y3由此得证:对于任意两点P1,P2,在椭圆上,距离F1的长度比距离F2的长度的比例等于距离P2的长度和距离P1的长度的比例。
即椭圆福焦点弦定理得证。
二、椭圆焦点弦定理的应用1. 椭圆焦点弦定理可以实现经济分析:由于在椭圆图中,到达椭圆的给定点的距离对比是两个廊的长度的对比,所以椭圆焦点弦定理可以用来研究经济分析中两个变量间的关系,例如生产成本与产品价格之间的关系。
2. 椭圆焦点弦定理可以用来研究月亮的运行轨迹:由于月球运动的轨道是一个椭圆,所以它的焦点可以用椭圆焦点弦定理来研究,从而了解月球运行轨迹的特点。
3. 椭圆焦点弦定理可以用来研究太阳能系统:椭圆焦点弦定理可以用于设计太阳能系统,例如太阳能集热器的安装及放射器的优化,由椭圆焦点弦定理可以精准的确定各个部位放射器的位置,以充分的利用太阳的能量。
4. 椭圆焦点弦定理可以用来研究动态平衡:常见的二轮平衡车或三轮平衡车的几何结构是一个椭圆,那么椭圆焦点弦定理可以应用于理解动态平衡车的原理及动态模型,可以有效的实现准确的控制,保证车辆稳定运行。
焦点分弦成比例公式推导
焦点分弦成比例公式推导
【最新版】
目录
1.焦点分弦成比例公式的定义
2.焦点分弦成比例公式的推导过程
3.焦点分弦成比例公式的应用
正文
【1】焦点分弦成比例公式的定义
焦点分弦成比例公式,是几何学中关于焦点三角形与分弦定理的一个公式。
该公式描述了在椭圆或双曲线中,一个焦点与两个顶点构成的三角形,其边长与另外两个焦点与这两个顶点构成的三角形的边长之间有一个固定的比例关系。
具体来说,就是对于椭圆或双曲线上的任意一点,以该点为焦点的三角形两边之比与以另外两个焦点为焦点的三角形两边之比
相等。
【2】焦点分弦成比例公式的推导过程
为了更好地理解焦点分弦成比例公式,我们先来了解一下分弦定理。
分弦定理是指在椭圆或双曲线中,任意一点到两个焦点的距离之和等于该点到椭圆或双曲线的两个定点的距离之和。
接着,我们以椭圆为例进行推导。
假设在椭圆上任意选取一点 P,以P 为焦点,与椭圆上另外两个点 A、B 构成一个三角形。
根据分弦定理,有 PF1+PF2=PA+PB。
我们再以 A、B 为焦点,P 为顶点,构成另一个三角形。
根据分弦定理,有 PA+PB=AF1+BF1。
将上述两个等式联立,可以得到 PF1/PA=AF1/PF2,即焦点分弦成比例公式。
【3】焦点分弦成比例公式的应用
焦点分弦成比例公式在几何学中有着广泛的应用,特别是在解决一些与椭圆或双曲线相关的几何问题时,使用这个公式可以大大简化问题。
例如,在求解椭圆或双曲线上的某个点的切线长度时,可以利用焦点分弦成比例公式,通过已知的焦点和切线长度的比例,求解出该点到焦点的距离,从而求得切线长度。
与焦半径相关的圆锥曲线的解题技巧
焦半径、焦点弦、焦点三角形的巧妙应用提示:会推导、会运用,可以简化运算(一)焦半径有两种计算方式:根据离心率、坐标;根据离心率、焦准距、倾斜角。
1)焦半径 根据离心率、坐标计算,焦半径的代数形式椭圆: (图1) (图2)F1、F2为椭圆的焦点,椭圆的一点A (x ,y ),A 与F1、F2的线段AF1、AF2叫做焦半径,分别设为r1、r2,根据椭圆第二定义有:2111'()''AF r a e r AA e x e a ex AA AA c ==⇒=⋅=+⋅=+ 左焦半径2222'()''AF r a e r AA e x e a ex AA AA c==⇒=⋅=-⋅=- 右焦半径椭圆的焦半径:左加右减。
长轴在y 轴上可以比照,易得上减下加。
左边下边都为负,不足都要加。
双曲线:(图3)(图4)双曲线为双支,焦半径可能在一支上,也可能在两支上。
在一支上时,称之为焦半径,通常也叫焦半径。
在两支上叫外焦半径。
以焦点在左支上为例,推导左焦半径公式。
设焦半径AF1为r1,根据双曲线第二定义有:2111'(''''')()''F A r a e r AA e AA A A e x e a ex AA AA c ==⇒=⋅=-=--⋅=--同理,右支2211'()''F A r a e r AA e x e a ex AA AA c==⇒=⋅=-⋅=-+ 双曲线焦半径,与椭圆有两点相反,左减右加,半长轴取反。
实轴在y 轴上,可以比照,易得上加下减。
联想特征:左边下边都为负,要减一起减。
可以从图形上理解,双曲线的左半支相当于抛物线的右半支。
以左焦点为起点的外焦半径,根据双曲线第二定义有:2122'(""')()''F B r a e r BB e BB B B e x e a ex BB BB c==⇒=⋅=+⋅=+⋅=+同理,以右焦点为起点的外焦半径公式:2222'()''F B r a e r BB e x e a ex BB BB c==⇒=⋅=-+⋅=-双曲线外焦半径,与椭圆相同。
题型43 椭圆、双曲线的焦点弦被焦点分成定比
题型43 椭圆、双曲线的焦点弦被焦点分成定比【方法点拨】1. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,过F 的直线l 与椭圆相交于A B 、两点,直线l 的倾斜角为θ,且=()AF FB λλ>0,则e θλ、、间满足1cos 1e λθλ-=+. 2.长短弦公式:如下图,长弦=1cos ep AF e θ-,短弦=1cos epBF e θ+(其中p 是焦参数,即焦点到对应准线的距离,θ是直线l 与x 轴的夹角,而非倾斜角). 说明:(1)公式1的推导使用椭圆的第二定义,不必记忆,要有“遇过将焦半径转化为到准线距离”的意识即可.(2)双曲线也有类似结论.【典型题示例】例1 已知椭圆方程为2214x y +=,AB 为椭圆过右焦点F 的弦,则的最小值为 . 【答案】【解析】由,得,,则椭圆的离心率为,右准线方程为如图,过作于,则,① 设的倾斜角为,||2||AF FB ∴+3224+2214x y +=2a =3c =32e =43:.3l x =A AM l ⊥M ||3||2AF AM =AB θFxABO则,① 联立①①,可得,同理可得,. 令,,,.当且仅当时上式取等号...例 2(2021·江苏南京盐城二调·7)已知双曲线()2222100x y C a b a b-=>>:,的左、右焦点分别为F 1,F 2,过点F 2作倾斜角为θ的直线l 交双曲线C 的右支于A ,B 两点,其中点A 在第一象限,且cos θ=14.若|AB |=|AF 1|,则双曲线C 的离心率为A .4B .15C .32 D .2【答案】D||||||cos ||cos ||cos AM CF AF AF AF θθθ=-==||AF =||BF ||2||AF BF ∴++==cos t θ=[1t ∈-1]1||2||32(6)12AF FB ∴+==-+322(6)1263t-+++326363t =+t ||2||AF FB ∴+【解析】22cos b AF a c θ=-,22cos b BF a c θ=+,2222122122230124b AB AF BF AF a AF BF a a e e ac =+==+⇒=⇒=⇒--=⇒+2e =.例3 已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,与过右焦点F 且斜率为k (k >0)的直线相交于A ,B两点.若AF →=3FB →,则k =________.【答案】2【解析】如右图,设l 为椭圆的右准线,过A 、B分别向l 作垂线AA /、BB /,A /、B /分别是垂足,过B 作AA /垂线BD ,D 是垂足 设BF =t ,AF =3t则t BB e '=,3t AA e'= Rt ABD 中,2,4tAD AB t e==故11cos 23AD AB e θ=== 又k >0,所以tan 2k θ==.xDF BBAyOB/A /【巩固训练】1. 设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2①x 轴,则椭圆E 的离心率为________.2.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________.3. 已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .(公众号:钻研数学)4.已知1F ,2F 是椭圆2222:1(0)x y E a b a b+=>>的左右焦点,若E 上存在不同两点A ,B ,使得123F A F B =,则该椭圆的离心率的取值范围为( )A .1,1)B .1)C .(21)D .(0,2-【答案与提示】1.【解析】如右图,设直线AB 的倾斜角为θ则12Rt AF F ,21212,b F F c AF a==所以cos θ=由|AF 1|=3|F 1B |、长短弦公式得:31cos 1cos ep epe e θθ=-+,化简得:2cos 1e θ=1=,即4e ===解之得:213e (负值已舍),所以33e . 2.【答案】333.【答案】3+4.【答案】C【解析】延长1AF 交椭圆于1A ,根据椭圆的对称性,则211F B A F =,1113F A A F =, 由12F A F B λ=,且1||1cos ep F A e θ=-,11||1cos epA F e θ=+,由112A F F B =,所以1cos 1cos ep epe e λθθ=-+,整理得1cos 1e λθλ-=+,其中[0θ∈,2)π,由A ,B 不重合,所以0θ≠,cos e e θ=<,解得2e >,所以,椭圆的离心率的取值范围(2,1).。
椭圆焦点弦倒数之和公式
椭圆焦点弦倒数之和公式椭圆焦点弦倒数之和公式,是椭圆的一个重要性质,它描述了椭圆焦点与弦的关系。
椭圆是一个优美的几何形状,它具有许多独特的性质和特点。
在这篇文章中,我将为大家介绍椭圆焦点弦倒数之和公式,并通过一些生动的例子来说明。
让我们来了解一下椭圆的基本概念。
椭圆是由一个固定点(焦点)和一个到焦点距离之和等于常数的点(弦)构成的曲线。
椭圆是对称的,焦点位于椭圆的中心轴上,而弦则是椭圆的主轴上的一条线段。
椭圆有许多重要的性质,其中之一就是焦点弦倒数之和公式。
焦点弦倒数之和公式可以表示为:焦点到椭圆上一点的距离的倒数之和等于椭圆的短半轴的倒数。
换句话说,对于椭圆上的任意一点,它到椭圆焦点的距离的倒数与它到椭圆上任意一条弦的距离的倒数之和,等于椭圆的短半轴的倒数。
这个公式的意义在于,它描述了椭圆上各点到焦点和弦的关系。
无论该点在椭圆的什么位置,它到焦点和弦的距离的倒数之和都是相等的,等于椭圆的短半轴的倒数。
这个公式可以帮助我们更好地理解椭圆的形状和性质。
为了更好地理解焦点弦倒数之和公式,让我们举一个例子。
假设我们有一个椭圆,它的焦点到弦的距离为2,而焦点到椭圆上某一点的距离为3。
根据焦点弦倒数之和公式,我们可以得到:1/2 + 1/3 = 1/椭圆的短半轴的倒数根据计算,我们可以得到椭圆的短半轴的倒数为6。
因此,我们可以得出结论,椭圆的短半轴的倒数为6。
通过这个例子,我们可以看到焦点弦倒数之和公式的应用。
无论椭圆上的点在哪里,它到焦点和弦的距离的倒数之和都等于椭圆的短半轴的倒数。
这个公式在解决椭圆相关问题时非常有用,可以帮助我们更好地理解和应用椭圆的性质。
椭圆焦点弦倒数之和公式是椭圆的一个重要性质,它描述了椭圆焦点与弦的关系。
这个公式可以帮助我们更好地理解椭圆的形状和性质,并解决与椭圆相关的问题。
通过生动的例子,我们可以更好地理解焦点弦倒数之和公式的应用。
椭圆是一个优美而神奇的几何形状,它具有许多独特的性质和特点,椭圆焦点弦倒数之和公式是其中之一。