离心通风机性能计算
风机参数计算(精)
风机常识-风机知识风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。
风机分类及用途:透平式风机--通过旋转叶片压缩输送气体的风机。
容积式风机—用改变气体容积的方法压缩及输送气体机械。
离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。
轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。
混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。
横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。
(以绝对压力计通风机—排气压力低于112700Pa ;鼓风机—排气压力在112700Pa~343000Pa之间;压缩机—排气压力高于343000Pa 以上; (在标准状低压离心通风机:全压P ≤1000Pa 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P ≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法型式和品种组成表示方法压力:离心通风机的压力指升压(相对于大气的压力), 即气体在风机内压力的升高值或者该风机进出口处气体压力之差。
它有静压、动压、全压之分。
性能参数指全压(等于风机出口与进口总压之差), 其单位常用Pa 、KPa 、mH2O 、mmH2O 等。
流量:单位时间内流过风机的气体容积, 又称风量。
常用Q 来表示, 常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。
(有时候也用到“质量流量”即单位时间内流过风机的气体质量, 这个时候需要考虑风机进口的气体密度, 与气体成份, 当地大气压, 气体温度, 进口压力有密切影响, 需经换算才能得到习惯的“气体流量”。
转速:风机转子旋转速度。
常以n 来表示、其单位用r/min(r表示转速,min 表示分钟。
风机性能曲线测定——流体输配管网
风机性能曲线测定实验指导书一.实验目的1.熟悉风机性能测定装置的结构与基本原理。
2.掌握利用实验装置测定风机特性的实验方法。
3.通过实验得出被测风机的性能曲线(P-Q ,Pst-Q ,η-Q , N-Q 曲线)4.将试验结果换算成指定条件下的风机参数。
二.实验原理离心通风机是使气体流过风机时获得能量的一种机械。
气体实际所获得的能量,等于单位体积在风机出口与入口处所具有的能量差,若气体的位能忽略不计,则风机出口与进口的能量差为:2222221121212111()()()()[]222P P V P V P P V V Ps Pd mmH O ρρρ=+-+=-+-=- (1) 式中:P S =P 2-P l ——风机的静压Pd =ρ(V 22-V 11)/2——风机的动压 P =P s 十P d ——风机的全压如果风机是从静止的大气中抽取气体,即V 1≈0,P 1=P a ,则风机的静压就是风机出口静 压的表压值。
P S =P 2-P a [mmH 2O ] (2)风机的动压就是风机出口的动压。
Pd =ρV 22/2 (3)风机的性能曲线通常为流量与全压(Q-P),流量与静压(Q-Ps) ,流量与功率(Q-N),流量与效率(Q-η) 四条曲线。
若绘制这些曲线,需要测出实验状态和实验转速下的参数:静压Pst ,动压Pd 和流量Q 2。
三.测试计算1.风机的动压风机的动压是用毕托管测量得到,毕托管的直管必须垂直管壁,毕托管的弯管嘴应面对气流方向且与风管轴线平行,其平行度不大于5°。
2.风机的静压风机出口静压为静压点处静压Pst 加上从风机出口到静压点测量界面间的静压降。
出口静压 224.44[]DPst Pst Pd mmH O Dλξ=+⋅ (4)式中:λ一一测试管路沿程阻力系数,取λ=0.0253.风机出口处气体密度232013.60.359()[/]273Pst Pa kg m tρρ+=+ (5) 式中:Pa ——大气压力[mmHg]ρo ——标准状态下的空气密度ρo = 1.293 [kg/m 3] P st ——风机出口静压[mmH 2O] 4.风机的流量22222()[/]44D D Q V m s ππ=⋅=(6)式中:ξ——毕托管校正系数。
风机离心风机的常识与选型(各种压效率概念计算等)
风机离心风机的常识与选型(各种压效率概念计算等)风机类型离心风机分类与结构离心风机(后简称风机)是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。
离心风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;风洞风源和气垫船的充气和推进等。
离心风机分类主要结构部件一些常识1、压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。
它有全压、动压、静压之分。
性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、kPa、mH2O、mmH2O等。
2、流量:单位时间内流过风机的气体容积的量,又称风量。
常用Q来表示,常用单位是;m3/s、m3/min、m3/h。
3、转速:风机转子旋转速度。
常以n来表示,其单位用r/min。
4、功率:驱动风机所需要的功率。
常以N来表示,其单位用KW。
关于全压、动压、静压1、气流在某一点或某一截面上的总压等于该点截面上的静压与动压之和。
而风机的全压,则定义为风机出口截面上的全压与进口截面上的全压之差,即:Pt =(Pst2 +ρ2 V2 2/ 2)-( Pst1 +ρ1 V12/2)Pst2 为风机出口静压,ρ2为风机出口密度,V2为风机出口速度Pst1 为风机进口静压,ρ1为风机进口密度,V1为风机进口速度2、气体的动能所表征的压力称为动压,即:Pd=ρV2/23、气体的压力能所表征的压力称为静压,静压定义为全压与动压之差,即:Pst = Pt–Pd注:我们常说的机外余压指的是机组出风口处的静压和动压之和。
如下图所表示管道内全压、静压和动压:静压(Pj)由于流体分子不规则运动而撞击于器壁,垂直作用在器壁上的压力叫静压,用Pj表示,单位用毫米水柱。
计算时,以绝对真空为计算零点的静压称为绝对静压。
以大气压力为零点的静压称为相对静压。
风机常用计算公式
风机常识-风机知识风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。
风机分类及用途:按作用原理分类透平式风机--通过旋转叶片压缩输送气体的风机。
容积式风机—用改变气体容积的方法压缩及输送气体机械。
按气流运动方向分类离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。
轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。
混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。
横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。
按生产压力的高低分类(以绝对压力计算)通风机—排气压力低于112700Pa;鼓风机—排气压力在112700Pa~343000Pa之间;压缩机—排气压力高于343000Pa以上;通风机高低压相应分类如下(在标准状态下)低压离心通风机:全压P≤1000Pa中压离心通风机:全压P=1000~5000Pa高压离心通风机:全压P=5000~30000Pa低压轴流通风机:全压P≤500Pa高压轴流通风机:全压P=500~5000Pa一般通风机全称表示方法型式和品种组成表示方法压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。
它有静压、动压、全压之分。
性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。
流量:单位时间内流过风机的气体容积,又称风量。
常用Q来表示,常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。
(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切影响,需经换算才能得到习惯的“气体流量”。
转速:风机转子旋转速度。
常以n来表示、其单位用r/min(r表示转速,min表示分钟)。
离心通风机的构造和工作原理
第二章 通 风机
第 三 节 离心式通风机的选择
第三节 离心式通风机的选择
有的风机样本中风机中不列出特性曲线,而只列出选择风机的数 字表格,性能表中每一种转速按流量、风压等分为八个性能点。
转速 4000
序号
1 2 3 4 5 6 7 8
全压
320 310 305 290 285 250 215 190
风量
4250 4820 5275 5870 6300 6800 7300 7760
Ny 100%
N
通风机的有效功率反映了通风机工作的经济性。
后向叶片风机的效率一般在0.8~~0.9之间,前向叶片风机的效率在 0.6~~0.65之间。
同一台风机在一定的转速下,当风量和风压改变时,其效率也随之改 变,但其中必有一个最高效率点,最高效率时的风量和风压称为最佳工况。
通风机在管道系统中工作时,它的风量与风压应尽可能等于或接近最 佳式况时的风量和风压,应注意使其实际运转效率不低于最高效率的90 %。
基 本 位 置
0 °
45 °
90 °
13
5 °
18
0 °
225 °
270 °
315 °
10 15 19
补 充2.2.1°35.36°0
离5 心0风5机的240支28承5 与330传动方式
°°° ° ° °
位风机30的75支1承2 包16 括21机25轴5 、300轴34承5 和机座。我国离
轴流式 离心式 通风机 理论知识
第四章通风动力本章重点和难点1、自然风压的产生、计算、利用和控制2、轴流式和离心式主要通风机特性3、主要通风机的联合运转4、主要通风机的合理工作范围欲使空气在矿井中源源不断地流动,就必须克服空气沿井巷流动时所受到的阻力。
这种克服通风阻力的能量或压力叫通风动力。
由第二章可知,通风机风压和自然风压均是矿井通风的动力。
本章将就。
对这两种压力对矿井通风的作用、影响因素、特性进行分析研究,以便合理地使用通风动力,从而使矿井通风达到技术先进、经济合理,安全可靠。
第一节自然风压一、自然风压及其形成和计算自然风压和自然通风图4-1-1为一个简化的矿井通风系统,2-3为水平巷道,0-5为通过系统最高点的水平线。
如果把地表大气视为断面无限大,风阻为零的假想风路,则通风系统可视为一个闭合的回路。
在冬季,由于空气柱0-1-2比5-4-3的平均温度较低,平均空气密度较大,导致Array两空气柱作用在2-3水平面上的重力不等。
其重力之差就是该系统的自然风压。
它使空气源源不断地从井口1流入,从井口5流出。
在夏季时,若空气柱5-4-3比0-1-2温度低,平均密度大,则系统产生的自然风压方向和冬季相反。
地面空气从井口5流入,从井口1流出。
这种由自然因素作用而形成的通风叫自然通风。
图4—1—1 简化矿井通风系统由上述例子可见,在一个有高差的闭合回路中,只要两侧有高差巷道中空气的温度或密度不等,则该回路就会产生自然风压。
根据自然风压定义,图4—1—1所示系统的自然风压H N 可用下式计算:gdZ gdZ H N ⎰⎰-=532201ρρ 4-1-1 式中 Z —矿井最高点至最低水平间的距离,m ;g —重力加速度,m/s 2;ρ1、ρ2—分别为0-1-2和5-4-3井巷中dZ 段空气密度,kg/m 3。
由于空气密度受多种因素影响,和高度Z 成复杂的函数关系。
因此利用式4-2-1计算自然风压较为困难。
为了简化计算,一般采用测算出0-1-2和5-4-3井巷中空气密度的平均值ρm1和ρm2,用其分别代替式4—1—1中的ρ1和ρ2,则(4-1-1)可写为:H Zg N m m =-()ρρ12 4-1-2二、 自然风压的影响因素及变化规律自然风压影响因素由式4-1-1可见,自然风压的影响因素可用下式表示:H N =f (ρZ )=f [ρ(T,P ,R ,φ)Z ] 4-1-3影响自然风压的决定性因素是两侧空气柱的密度差,而影响空气密度又由温度T 、大气压力P 、气体常数R 和相对湿度φ等因素影响。
离心式通风机的性能参数
离心式通风机的性能参数离心式通风机是一种常用的工业通风设备,它通过离心力将空气吸入并通过高速旋转的叶轮,然后排出室外。
离心式通风机的性能参数主要包括风量、压力、功率和效率等。
在以下1200字以上的文章中,将详细介绍离心式通风机的性能参数以及相关的概念和计算方法。
首先,风量是离心式通风机最重要的性能参数之一、风量指的是单位时间内通过通风机的气体体积,通常以标准立方米/小时(m³/h)为单位。
风量的大小取决于离心式通风机的叶轮尺寸、转速和叶轮叶片的数量以及系统的气体阻力等因素。
根据通风需求和工艺要求,选择合适的风量可以确保空气循环和排风的效果,同时也是计算其他性能参数的重要基础。
其次,压力是离心式通风机的另一个重要性能参数。
压力指的是通风机所产生的气体静压力或动压力,通常以帕斯卡(Pa)为单位。
静压力是指通过通风机流动的气体产生的压力,而动压力是指通风机的运动产生的气体压力。
压力的大小取决于通风机的设计和构造,包括叶轮形状、叶片布置、叶轮进出口的尺寸以及转速等因素。
压力参数是决定通风系统性能和风量分配的关键因素。
第三,功率是离心式通风机的能耗参数,通常以千瓦(kW)为单位。
功率是指通风机提供给气体流动所需的能量,包括驱动电机的输入功率和通风机内部能量损失的损耗。
功率的大小取决于通风机的设计和运行条件,如转速、叶轮直径、空气密度以及系统的气体阻力等因素。
合理选择通风机的功率可以提高通风系统的效率和节能性,减少能源消耗和运行成本。
最后,效率是衡量离心式通风机性能的重要参数之一、效率指的是通风机输入的电能转化为有效的风机输出能量的比例,通常以百分比表示。
效率的大小取决于通风机的设计和运行条件,如风量、压力、功率和叶轮的效率等因素。
通常来说,离心式通风机的效率越高,其性能越好,能源利用率也越高。
提高通风机的效率可以减少能源浪费和环境污染,同时也可以提高通风系统的经济性和可持续性。
在实际应用中,为了确保通风系统的正常运行和满足实际需求,除了以上述的性能参数外,还需要考虑其它因素,如噪音、可靠性、维护和安全等。
转风机常用计算公式
电动机容量贮备系数:
轴功率(KW)
电动机容量贮备系数(K)
<0.5
>0.5~1
>1~2
>2~5
>5
1.5
1.4
1.3
1.2
1.15
一般风机
高压风机(>7500Pa直接启动的)
引风机
凡采用软启动(偶合器、水电组、变频器等)
1.15
1.2
1.3
1.1
风机常用参数、技术要求:
一般通、引风机:全压P=….Pa、流量Q=…m3/h、海拔高度(当地大气压)、传动方式、输送介质(空气可不写)、叶轮旋向、进出口角度(从电机端正视)、工作温度T=…℃(常温可不写)、电动机型号…….等。
风机高转速注意事项(B、D、C传动的)
1、4-79型:2900r/min ≤5.5号;1450 r/min ≤10号;960 r/min ≤17号;
2、4-73、4-68型:2900r/min ≤6.5号;1450 r/min ≤15号;960 r/min ≤20号;
风机常需用的计算公式(简化,近似,一般情况下用):
1500~2500M海拨高度时加3%的流量;2500M以上海拨高度时加5%的流量。
比转速:ns
nS=5.54×n×
注: ρ气体密度(Kg/m3);公式:P1=P2×1.2/ρ、ρ=1.2×(273+T2)/(273+20)
20℃=1.2、50℃=1.089、80℃=0.996、100℃=0.943、150℃=0.813、200℃=0.743、250℃=0.672、280℃=0.636、300℃=0.614、350℃=0.564。
转速:风机转子旋转速度。常以n来表示、其单位用r/min(r表示转速,min表示分钟)。
离心风机性能测试实验
离心风机性能测试实验一、实验目的1、了解风机的构造,掌握风机操作和调节方法2、测定风机在恒定转速情况下的特性曲线并确定该风机最佳工作范围二、基本原理1、基本概念和基本关系式1.1、风量风机的风量是指单位时间内从风机出口排出的气体的体积,并以风机入口处气体的状态计,用Q 表示,单位为m 3/h 。
1.2、风压风机的风压是指单位体积的气体流过风机时获得的能量,以t P 表示,单位为J/m 3=N/m 2,由于t P 的单位与压力的单位相同,所以称为风压。
用下标1,2分别表示进口与出口的状态。
在风机的吸入口与压出口之间,列柏努力方程:fH g u g p z H g u g p z ∑+++=+++2222222111ρρ…………………………(1)上式各项均乘以 g ρ并加以整理得:fH g u u p p z z g gH ∑+-+-+-=ρρρρ2)()()(21221212 (2)对于气体,式中ρ(气体密度)值比较小,故)(12z z g -ρ可以忽略;因进口管段很短, f H g ∑ρ 也可以忽略。
当空气直接由大气进入通风机,则21u 也可以忽略。
因此,上述的柏努力方程可以简化成:2)(2212u p p gH P t ρρ+-== (3)上式中)(12p p -称为静风压,以st P 表示。
222u ρ 称为动风压,用d P 表示。
离心风机出口处气体流速比较大,因此动风压不能忽略。
离心风机的风压为静风压和动风压之和,又称为全风压或全压。
风机性能表上所列的风压指的就是全风压。
2、风机实验流体流经风机时,不可避免的会遇到种种流动阻力,产生能量损失。
由于流动的复杂性,这些能量损失无法从理论上作出精确计算,也因此无法从理论上求得实际风压的数值。
因此,一定转速下的风机的t P —Q, st P —Q ,N—Q,t η—Q ,st η—Q 之间的关系,即特性曲线,需要实验测定。
2.1、风量Q 的测定我们可以通过测量管路中期体的动风压来确定风量的大小。
离心式通风机的变型设计及计算
离心式通风机的变型设计及计算
离心式通风机的变型设计及计算是离心式通风机研制过程中的重要内容,它可以更好地满足用户的需求。
一般情况下,离心式通风机的变型设计及计算主要包括以下几个方面:
一、形状和尺寸变型设计及计算
离心式通风机的形状和尺寸是根据通风机的功能和用途来确定的,它可以满足用户不同的要求。
一般情况下,它的形状和尺寸可以分为风口形状和风口尺寸、风叶形状和风叶尺寸、风道形状和风道尺寸、电机性能和安装尺寸等几个方面。
具体形状和尺寸的设计及计算要根据具体需求而定,一般通过计算机辅助设计的方法来确定。
二、性能变型设计及计算
离心式通风机的性能是指其排风能力、噪声水平、能耗水平等,它们是通风机使用中最重要的性能指标。
性能变型设计及计算要根据用户的需求,根据形状和尺寸的设计及计算,利用计算流体力学和计算机辅助设计的方法,结合实际测试数据,进行相应的变型设计及计算。
三、外形结构变型设计及计算
外形结构变型设计及计算是指将通风机的形状和尺寸、性能、外形结构等设计及计算的结果结合在一起,利
用计算机辅助设计的方法进行外形结构变型设计及计算,从而确定最终的离心式通风机结构图。
四、工艺变型设计及计算
工艺变型设计及计算是指根据外形结构、材料特性等,利用计算机辅助设计的方法,进行工艺变型设计及计算,以确定离心式通风机的不同零部件的加工工艺及工艺条件,从而满足用户的需求。
以上便是离心式通风机的变型设计及计算的全部内容,它主要包括形状和尺寸变型设计及计算、性能变型设计及计算、外形结构变型设计及计算、工艺变型设计及计算等几个方面,通过计算机辅助设计的方法,结合实际测试数据,进行相应的变型设计及计算,以满足用户的需求。
转:风机常用计算公式
压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。
流量:单位时间内流过风机的气体容积,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切影响,需经换算才能得到习惯的“气体流量”。
高炉
天然气
K
L
R
GL
TQ
锅引
锅炉
粉末
转炉
冷冻
Y
G
FM
ZL
LD
纺织
隧道
凉风
煤气
空调
FZ
SD
LF
MQ
KT
传动方式及机械效率:
传动方式
机械效率
电动机直联传动(A型)
联轴器联接转动(D、F型)
皮带传动(B、C、E型)
1.00
0.98
0.95
A型直联传动
D型联轴器联接转动
F型联轴器联接转动
B型皮带传动
C型皮带传动
d.电机同步转速为750转/分时:最大允许值为:0.4mm(双振幅)
e.电机同步转速为600转/分时:最大允许值为:0.5mm(双振幅)
f.电机同步转速为500转/分时:最大允许值为:0.6mm(双振幅)
风机的轴承温度正常时为≤70℃,如果一旦升高到70℃,有电控的应(会)报警。此时应查找原因,首先检查冷却水是否正常?轴承油位是否正常?如果一时找不到原因,轴承温度迅速上升到90℃,有电控的应(会)再次发出报警、停车信号。
通风机、鼓风机和压缩机
第二节气体输送和压缩设备--离心通风机、鼓风机与压缩机离心通风机、鼓风机与压缩机的工作原理和离心泵的相似,即依靠叶轮的旋转运动,使气体获得能量,从而提高了压强。
通风机都是单级的,所产生的表压强低于14.7×lO3Pa,对气体只起输送作用。
鼓风机和压缩机都是多级的,前者产生的表压强低于294×lO3Pa,后者高于294×103Pa,两者对气体都有较显著的压缩作用。
一、离心通风机离心通风机按所产生的风压不同,可分为以下三类:低压离心通风机出口风压低于0.9807×103Pa(表压);中压离心通风机出口风压为0.9807×103~2.942×lO3Pa(表压);高压离心通风机出口风压为2.942×103~14.7×103Pa(表压)。
(一)离心通风机的结构离心通风机的结构和单级离心泵相似。
它的机壳也是蜗牛形的,但气体流道的断面有方形和圆形两种,一般低、中压通风机多是方形的(见图2-37),高压的多为圆形。
叶片的数目比较多但长度较短。
低压通风机的叶片多是平直的,与轴心成辐射状安装。
中、高风机的叶片则是弯曲的,所以高压通风机的外形与结构与单级离心泵更为相似。
图2-37 低压离心通风机叶片之间的气体在叶轮旋转时,受到离心力作用获得动能(动压头)从叶轮周边排出,经过蜗壳状机壳的导向,使之向通风机出口流动,从而在叶轮中心部位形成负压,使外部气流源源不断流入补充,从而使风机能排出气体。
电动机通过轴把动力传递给风机叶轮,叶轮旋转把能量传递给空气,在旋转的作用下空气产生离心力,空气延风机叶轮的叶片向周围扩散,此时,风机叶轮越大,空气所接受的能量越大,也就是风机的压头(风压)越大。
如果将大的叶轮割小,不会影响风量,只会减小风压(二)离心通风机的性能参数与特性曲线离心通风机的主要性能参数有风量,风压,轴功率和效率。
由于气体通过风机时压强变化较小,在风机内运动的气体可视为不可压缩流体,所以前述的离心泵基本方程式亦可用来分析离心通风机的性能。
第三章任务四 离心通风机的性能曲线及工作点
转速A 表示。
✓ 公称转速A 与转速n 的关系为:
✓ 式中: No———机号数(它与叶轮直径的分米数相等)。
一、离心式通风机的性能曲线
一、离心式通风机的性能曲线
离心式通风机的无因次性能曲线
✓
横坐标为流量系数Q, 以压力系数H、功率系数N 和全压效率η为纵坐标, 利用通
风机的无因次性能参数Q、H、N 和η绘制出的特性曲线, 称之为无因次性能曲线。
✓
调节风机转速是根据风机的相似理论的全比例定律,依靠改变风机性能曲线的
方式来调整风机的工作点。
P
✓ 特点:优点是没有额外能量损失,是比较经济的改 变风机工作特性的方法,缺点是调速操作往往需要 P1 使用调速电机,故障较多。
P2
H=KQ2
R 1
2 I
II
Q1 Q2
Q
改变转速调节流量
三、离心式通风机的工况调节和节能
也可用表格体现无因次性能参数之间的关系。
一、离心式通风机的性能曲线
离心式通风机的无因次性能曲线
✓
无因次性能参数是没有度量单位的, 对于同一类型的通风机, 不论机号大小, 其
流量系数和压力系数都是基本相同的。这样, 根据无因次性能参数所描绘出来的通
风机性能曲线就表示了这一类型所有不同的通风机的性能特点。
任务四 离心风机的性能曲线和工作点
一、离心式通风机的性能曲线
✓
离心式通风机可以在不同的风量下工作,不同
的风量时,对应的风机全压、功率和效率也不同。
一般将离心式通风机的全压和风量、轴功率和风量
以及效率和风量变化关系绘成的曲线称为离心式通
风机的性能曲线,也称离心式通风机的有因此性能
曲线。
✓
离心式通风机—离心式通风机的性能曲线
容易过载,而后向叶片的风机不容易过载。
一、离心式通风机的性能曲线
✓
实际的离心式通风机的性能曲线如下:
✓
从实际的离心式通风机的性能曲线我们可以看出:压力基本上是随着风量
的增加而降低;效率一般首先是升高随后降低,功率与理想风机的性能曲线相
似。
一、离心式通风机的性能曲线
✓ 各种风机的性能曲线虽不完全一致, 但具有以下共同规律:
有一定的局限性。
一、离心式通风机的性能曲线
✓
离心式通风机的理论性能曲线如下:
压力
功率
风量
风量
✓
由图我们可以看出,在理想状态下,前向叶片风机的压力随着风量的增加而增加,后向
叶片风机的压力随着风量的增加而减少,径向叶片风机的压力保持不变;前向叶片的风机随
风量的增加而急剧增加,后向叶片的风机随风量的增加功率增加不大,所以前向叶片的风机
✓
3.风机的联合工作:
✓
所谓离心通风机的联合工作就是多台风机同在一个网路里进行联合工作。
✓ 在实际生产中, 往往会有这种情况: 一台通风机的风量或压力不能满足风网的要 求, 而换一台大的风机又不可能;或者是风网的风量和压力要求作较大的变动, 以适应 新的生产要求。在这两种特殊情况下, 需要用两台或两台以上的风机联合工作。
✓
表示为: ∑H=KQ2
✓
Hale Waihona Puke 其中:K—管网阻力系数二、离心式通风机的工作点
✓
根据离心通风机的性能曲线可知,离心式通风机可以在不同的压力和风量下工
作,那么将某一台特定的风机安装到特定的风网中,风机是在什么样的状态下工作?
✓
离心通风机安装在特定的风网中有以下规律:
✓
离心式通风机的构造和工作原理
离心式通风机的构造和工作原理第二章通风机通风机作为空气动力机械,在通风除尘与气力输送系统中,都用来输送空气和粉尘或物料。
因而,合理地选择风机,对通风除尘与气力输送的效果有着很大的影响。
通风系统常见的风机有离心式通风机和轴流式通风两种,而在通风除尘和气力输送系统中大都有采用离心式通风机,另外,随着制粉技术的发展,配粉技术的广泛应用,作为正压输送的动力来源-罗茨鼓风机也受到重视。
因此,本章重点介绍离心式通风机,同时介绍罗茨鼓风机。
2.1 离心式通风机的构造和工作原理离心式通风机的构造如图所示。
它的主要部件是机壳、叶轮、机轴、吸气口、排气口。
此外还有轴承、底座等部件。
通风机的轴通过联轴器或皮带轮与电动机轴相连。
当电动机转动时,风机的叶轮随着转动。
叶轮在旋转时产生离心力将空气从叶轮中甩出,空气从叶轮中甩出后汇集在机壳中,由于速度慢,压力高,空气便从通风机出口排出流入管道。
当叶轮中的空气被排出后,就形成了负压,吸气口外面的空气在大气压作用下又被压入叶轮中。
因此,叶轮不断旋转,空气也就在通风机的作用下,在管道中不断流动。
图2-1通风机的各部件中,叶轮是最关键性的部件,特别是叶轮上叶片的形式很多,但基本上可分为前向式、径向式和后向式三种。
如图所示。
图2-2这三种不同形式的叶片是以叶片出口角β来区分的,所谓叶片出口角就是叶片的出口方向(出口端的切向方向)和叶轮的圆周方向(在叶片出口端的圆周切线方向)之间的夹角(β)。
这三种叶片形式各有特点。
后向式叶片的弯曲度较小,而且符合气体在离心力作用下的运动方向,空气与叶片之间的撞击很小。
因此能量损失和噪音较小,效率较高。
但后向式叶片只能使空气以较低的流速从叶轮甩出,空气所获得的动压较低。
前向式叶片与后向式不同,它的形状与空气在离心力作用下的运动方向完全相反,空气与叶片之间撞击剧烈。
因此能量损失和噪音都较大,故效率就低,但前向式叶片能使空气以较高的流速从叶轮中甩出,从而使空气在风机出口处获得较大的静压。
离心式风机.
102
QH 102
式中: η——通风机效率,%。 N——轴功率,千瓦 当通风机的转速一定时,它的轴功率随着风量的改变而改变,一般离 心式通风机的轴功率随着风量的增加而增加。
四、效率
通风机的有效功率与轴功率之比为通风机的效率η,即:
Ny N
Hale Waihona Puke 00 %通风机的有效功率反映了通风机工作的经济性。
3.1.2主轴 主轴的作用是支撑叶轮旋转和传递动力装置的机械能。 主轴必须有足够的强度和刚度来传递机械能和支撑叶轮旋转不 发生振动。 大型风机主轴采用高强度的合金钢锻造和精加工而成。 叶轮和主轴有两种连接方式:采用轮毂结构的叶轮是通过轴上 的键连接;采用法兰结构的叶轮是通过高强度的铰制螺栓连接,在 足够的拧紧力矩下可保证叶轮和主轴紧密连接,铰制螺栓起到连接 和定位作用。这两种连接方式在双支撑风机中都有采用。悬臂式风 机则都采用轮毂结构的叶轮,键连接。
体挤入机壳,于是机壳内的气体压强增高,最后被导向出口排
出。气体被甩出后,叶轮中心部分的压强降低。外界气体就能 从风机的吸入口通过叶轮前盘中央的孔口吸入,源源不断地输
送气体。
6
叶轮的工作原理
• (一)速度三角形 空气在叶道上任一点处,有绝对速度c,它是气流与 叶轮的相对速度ω与牵连速度μ的向量和。绝对速度c与牵连速度μ的夹角 以α表示。相对速度ω与牵连速度μ的反方向的夹角以β表示。通常只画出 叶片入口及出口的速度三角形,并以1点表示叶轮入口;2点表示叶轮出 口(图14-3b、c)。
叶轮与轴联接方式
3.1.3机壳 机壳的作用是将叶轮排出的高能气体汇聚起来,引到出口管道 上,同时将一部分动能转化为静压能。 机壳主要是由两侧板和一圈板焊接而成的结构件,其圈板形状 是蜗壳形的。从蜗舌到出口的流通面积是从小到大,与流量的大小 相匹配,最有效地提高风机的静压。机壳要有足够的刚度和强度防 止变形过大和振动。在合适的圈板位置上开有人孔门(或检查孔), 以方便安装检修和查看叶轮(出口)的使用情况。
通风机理论基础
h h = PT hw = P PT PT
风机全压 风机理论全压
8
5.2 容积损失
容积损失:叶轮工作时,叶轮内 存在高压区和低压区,同时, 叶轮转动部件与静止部件间也 必然存在间隙,气体有从高压 区通过间隙泄露到低压区的可 能性。 容积效率:
hv =
QT - DQ Q = QT QT
式中:QT —理论流量; △Q —泄露的总回流量。
1
w
c
β
α
cu
cr
u
速度三角形的计算: pDn u= 圆周速度:
60 径向绝对分速度:c = Q = Q r A pDbe
相对速度流动角:β 上述各式中:D —叶轮进、出口直径; n —叶轮转速; Q —风机流量; b —叶轮进、出口宽度; ε—叶轮阻塞系数。
2
2 通风机的基本方程——欧拉方程
通风机的理论基础
1 流体在叶轮内的运动及叶轮进、出口速度三角形
风机运转时,气体一方面和叶轮一起作旋转运动,同时又从叶轮的流道里向外流 动,因此,流体在叶轮内的运动是其相对运动w、圆周运动u(牵连运动)和绝对 运动c合成的复合运动。即 r r r r =r +r c2 = u2 + w2 叶轮进口 叶轮出口 c1 u1 w1
4
4 离心通风机的理论性能曲线
通风机性能曲线:风机流量与全压之间、流量与风机轴功率之间及流量与风机效率之 间的关系曲线。通常以流量为横坐标,三种关系曲线绘于同一张图上。 通风机的理论全压曲线:三种叶轮型式具有各自的直线斜率,均起始于风机动压ρu2。 其中后向风机的全压随流量增加而降低,前向风机的全压随流量的增加而加大, 而径向风机全压不随流量变化。 通风机的理论功率曲线:径向风机为一条直线,后向风机为一条向下凹的抛物线,前 向风机为一条向上凹的抛物线。可以看出,前向叶轮的风机在运行中增加流量时, 电动机超载的可能性最大,而后向风机几乎不会发生超载现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.10.01 170101 5-32 №16 离心通风机性能计算(参考通风机手册)(参考《风机手册》第2版 正文第十七章第一节第一小节)( 黑三角 ▲ 置换法 )专利代号: ZL 02 2 14256 .8 (安装软件:Excel 2003 )
一、5-32 №16 离心通风机性能计算
5-32 №16 离心通风机性能计算 见 表 17-1
5-32 №16 离心通风机略图见 图17-1
表17- 1 5-32 №16 离心通风机性能计算
代 号
单 位
数 值注
12
机壳出口长度
m 0.707
13扩压器出口长度m
0.95
最初设定的风机出口速
度
C d = 30 m/s
14扩压器出口高度
m
1.143
1
压缩性系数
—
0.9568
空气绝热指数 =1.4
2
风机全压内效率
—
0.82
3
轴功率
kw 240.1
4所需功率kw 276.1
5
电机容量
kw
按 300 kw 选电机
注:
项 目
机 壳 计 算
功率及电动机
8036
.098.082.0=⨯=⨯=me
n i tF ηηη143
.112707.095.0120
0'=-=-=tg tg C C L 9568
.010325
4.1212258121211
112=⨯⨯-=⨯⨯-
=⨯⨯--
=st sF
st st st p K p p K p p δ82
.0100
62.3144.18.2607.1100
4.148.26=⨯+⨯=⨯+⨯
=LN LNn K s
in in ηη98
.0.=e
m η
2
.2
()2100030(0.956812258 1.1628)15.75
2240.1
10000.820.98
sF v s
sh in me
Cd p q P δρηη⨯+⨯⨯=
⨯⨯⨯+⨯⨯==⨯⨯0.860.860.9553
in h r v in h
K K ηηηηηη=⨯⨯=⨯
=⨯08209808063
tF in me ...ηηη=⨯=⨯=D
P ()
h s f n η=0.860.860.95530.82
in h r v
in h
K K ηηηηηη=⨯⨯=⨯
=⨯≅0.860.860.9553
in h r v
in h
K
K ηηηηηη=⨯⨯=⨯=⨯1.15240.1276.1
N E sh P K P =⨯=⨯=1.40.5050.707CCC C K A =⨯=⨯='
.15.750.95
0.552630
v s d q C B C ===⨯⨯
图17-1 5-32 №16 离心通风机略图
编写人员:
沈阳鼓风机研究所 续魁昌
临沂市风机厂 盖京方 魏如斌 吕晓丽 路新艳 张京亮 孔祥飞。