牛顿法最优潮流汇编

合集下载

电力系统最优潮流分析

电力系统最优潮流分析

电力系统最优潮流分析电力系统是现代社会中最重要的系统工程之一,为社会生产和人民生活提供了绝大部分能量。

电能的生产需要耗费大量的燃料,而目前电能在输送、分配和消费过程中存在着大量的损耗。

因此如何采取适当措施节约能源,提高整个电力系统的运行效率,优化系统的运行方式,是国内外许多学者一直关注与研究的热点。

电力系统的最优化运行是指在确保电力系统安全运行、满足用户用电需求的前提下,如何通过调度系统中各发电机组或发电厂的运行,从而使系统发电所需的总费用或所消耗的总燃料达到最小的运筹决策问题。

数学上可将此问题描述为非线性规划或混合非线性规划问题。

最优潮流问题是指在满足必须的系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。

同经典的经济调度法相比,最优潮流具有全面规划、统筹考虑等优点,它可将安全运行和最优经济运行等问题进行综合考虑,通过统一的数学模型来描述,从而将电力系统对经济性、安全性以及电能质量等方面的要求统一起来。

最优潮流问题的提出把电力系统的最优运行理论提高到一个新的高度,受到了国内外学者高度重视。

最优潮流已在电力系统中的安全运行、电网规划、经济调度、阻塞管理、可靠性分析以及能量管理系统等方面得到了广泛应用,成为了电力系统网络运行分析和优化中不可或缺的工具。

一、最优潮流问题研究的意义最优潮流可将电力系统可靠性与电能质量量化成相应的经济指标,并最终达到优化资源配置、降低成本、提高服务质量的目的。

因此最优潮流研究具有传统潮流计算无法比拟的意义,主要体现在以下两个方面。

一方面,通过最优潮流计算可指导系统调度员的操作,保证系统在经济、安全、可靠的状态下运行。

具体表现为:第一,当所求问题以目标函数、控制变量和约束条件的形式固定下来后,就一定可以求出唯一最优解,并且该结果不受人为因素的影响。

第二,最优潮流的寻优过程可以自动识别界约束,在解逐渐趋于最优的过程中可得到网络传输瓶颈信息,从而可以指导电网扩容与规划。

最优潮流编程 节点导纳矩阵编程

最优潮流编程 节点导纳矩阵编程
统一表示为 h(u,x)<=0
则电力系统最优潮流的数学模型可表示为
min f (u, x) ⎫
u
s .t .
g(u, x) = 0⎪⎪⎬
h(u, x ) ≤ 0⎪⎪⎭
五、实验数据及处理结果
简化梯度法的迭代计算步骤: 1)令迭代计数 k=0;
2)假定一组控制变量 u(0) ;
3)由式 ∂L = g(u, x) = 0 ,通过潮流计算由已知的 u 求得相应的 x(k) ; ∂λ
等。
部分用不等式表示如下
PGi ≤ PGi ≤ PGi ( i ∈ SG )
QRi ≤ QRi ≤ QRi ( i ∈ SR )
Vi ≤ Vi ≤ Vi
( i ∈ SB )
Pl = Pij = ViVj (Gij cosθij + Bij sin θij ) − Vi2Gij ≤ Pl ( l ∈ Sl )
+
⎛ ⎜

∂g
T

∂u
⎟ ⎠
λ
=
0
,则有
∂L ∂u
=
∂f ∂u

⎛ ⎜⎝
∂g ∂u
T
⎞ ⎟⎠
⎡⎛ ⎢⎢⎣⎜⎝
∂g ∂x
T
⎞ ⎟⎠
−1
⎤ ⎥ ⎥⎦
∂f ∂x
6) 若 ∂L = 0 ,说明这组解是最优解,计算结束。否则,转第 7)步。 ∂u
7) 若 ∂L ≠ 0 ,必须按照能使目标函数下降的方向对 u 进行修正, ∂u
f=f(u,x)
(四)最优潮流的约束条件及其数学模型
(1)等式约束条件: 最优潮流分布必须满足基本潮流方程,即
∑ PGi − PDi −Vi

最优潮流

最优潮流

最优潮流算法概述摘要:最优潮流是一类典型的非线性规划问题, 在电力系统中求解最优潮流是一项基本而重要的工作。

本文论述了最优潮流算法问题, 对其中经典的简化梯度法、牛顿法、内点法、序列二次规划法、以及混合序列法做了详细介绍,并对智能化的潮流算法,如遗传算法、模拟退火法等进行了探讨,同时做了相应的比较。

然后结合最优潮流在电力市场下的应用进行了分析,最后指出最优潮流发展所面临的问题,并深入研究。

一引言最优潮流OPF (Optima l Power Flow)是指从电力系统优化运行的角度来调整系统中各种控制设备的参数,在满足节点正常功率平衡及各种安全指标的约束下,实现目标函数最小化的优化过程。

它将电网的经济调度、质量控制和安全运行统一协调起来,对电力系统的规划和运行有着重要意义。

最优潮流能够统一考虑电力系统在安全、经济和电压质量各方面的要求。

最优潮流问题,实质上是在满足一定的安全约束条件下,使目标函数达到最优的非线性规划问题。

具体地说,最优潮流是研究当系统的结构参数及负荷情况给定时,通过系统变量的优选,所能找到的能满足所有指定的约束条件,并使系统的一个或多个目标达到最优时的潮流分布。

1962年, J. Carpentier介绍了一种以非线性规划方法来解决经济分配问题的方法[1],首次引入了电压约束和其它运行约束。

电力系统最优潮流是经过优化的潮流分布, 其数学模型可以表示为:,min(,)..(,)0(,)0fs t gh⎧⎪⎪=⎨⎪≤⎪⎩u xu xu xu x(1.1)其中目标函数f 及等式、不等式约束g 及h中的大部分约束都是变量的非线性函数, 因此电力系统的最优潮流计算是一个典型的有约束非线性规划问题。

本文论述了最优潮流算问题, 对其中的简化梯度法、牛顿法、内点法、序列二次规划法、遗传算法模拟退火法等进行了详细的比较。

二经典的最优潮流计算方法电力系统最优潮流的经典解算方法主要是指以简化梯度法、牛顿法、内点法和解耦法为代表的基于线性规划和非线性规划以及解耦原则的解算方法,是研究最多的最优潮流算法,这类算法的特点是以一阶或二阶梯度作为寻找最优解的主要信息。

牛顿法最优潮流

牛顿法最优潮流

数学描述
潮流计算
最优潮流
总结分析
N H J M L , Pi jQi (ei jf i ) (Gij jBij )(e j jf j ) ji R S Pi jQi ei jf i ai jbi , ai (Gij e j Bij f j ), bi (Gij f j Bij e j )
其近似解与精确解分别相差
x1 , x2 ,..., xn
f1 ( x1 0 x1 , x2 0 x2 ,....... xn 0 xn ) y1 0 0 0 f 2 ( x1 x1 , x2 x2 ,....... xn xn ) y2 ........ 0 0 0 f ( x x , x x ,....... x x ) y n 1 1 2 2 n n n
1
用△x修正X的初始值得到新值,用k表示迭代次数写成表达式即为
x x
k
J x
k

k
f x
k
k 1
x x
k
数学描述
潮流计算
最优潮流
总结分析
P e, f P sp P e, f sp J * xT f x Q e, f Q P e, f 2 sp 2 2 V e , f i V V (e, f ) P T e Q f T T T x e f , J xT eT V 2 eT V 2 T f P f T Q f T
f1 x2 f n x2

最优潮流

最优潮流
高等电力网络分析:
最优潮流问题
Optimal Power Flow
一、概述
1.最优潮流和基本潮流的比较
✓ 潮流计算可以归结为针对一定的扰动变量p(负荷 情况),根据给定的控制变量u(如发电机的有功出 力、无功出力或节点电压模值等),求出相应的状 态变量x(如节点电压模值及角度),这样通过一次 潮流计算得到的潮流解决定了电力系统的一个运 行状态。
✓ 已有算法归纳起来可分为线性规划法、非线性规划法、混 合规划法、内点法和智能化方法等。
(二)线性规划法
✓ 前提:通常把最优潮流问题分解为有功功率和无 功功率两个子优化问题,
✓ 在求解方法上,大都采用分段线性或逐次线性化 逼近非线性规划问题,然后利用线性规划方法 (如单纯形法、对偶单纯形法)求解。
L f g T 0
x x x
L f g T 0
u u u
(3)由于(3)式就是潮流方程, L g(u, x) 0
所以通过潮流计算就可以由已知的u 求得相应的x(k)
(4)再观察式(1), g 就是牛顿法潮流计算的
x
雅可比矩阵J,利用求解潮流时已经求得的潮流解
点的J及其LU三角因子矩阵,可以方便地求出
(二)非线性规划法
✓ 特点:目标或约束函数呈现非线性特性。
✓ 最优潮流作为一个非线性规划问题,可以利用非线性规划 的各种方法来求解,更由于结合了电力系统的固有物理特 性,在变量的划分、等式及不等式约束条件的处理、有功 与无功的分解、变量修正方向的决定、甚至基本潮流计算 方法的选择等等方面,都可以有各种不同的方案。为此即 使是采用非线性规划方法,也曾出现过为数甚多的最优潮 流算法。
(2)所有发电机节点(包括平衡节点)及具有 可调无功补偿设备节点的电压模值;

电力系统稳态分析-牛顿拉夫逊法

电力系统稳态分析-牛顿拉夫逊法

0 引言潮流是配电网络分析的基础,用于电网调度、运行分析、操作模拟和设计规划,同时也是电压优化和网络接线变化所要参考的内容.潮流计算通过数值仿真的方法把电力系统的详细运行情况呈现给工作人员,从而便于研究系统在给定条件下的稳态运行特点。

随着市场经济的发展,经济利益是企业十分看重的,而线损却是现阶段阻碍企业提高效益的一大因素.及时、准确的潮流计算结果,可以给出配电网的潮流分布、理论线损及其在网络中的分布,从而为配电网的安全经济运行提供参考.从数学的角度来看,牛顿—拉夫逊法能有效进行非线性代数方程组的计算且具有二次收敛的特点,具有收敛快、精度高的特点,在输电网中得到广泛应用.随着现代计算机技术的发展,利用编程和相关软件,可以更好、更快地实现配电网功能,本文就是结合牛顿—拉夫逊法的基本原理,利用C++程序进行潮流计算,计算结果表明该方法具有良好的收敛性、可靠性及正确性。

1 牛顿-拉夫逊法基本介绍1。

1 潮流方程对于N个节点的电力网络(地作为参考节点不包括在内),如果网络结构和元件参数已知,则网络方程可表示为:YV I (1—1)=式中,Y为N*N阶节点导纳矩阵;V为N*1维节点电压列向量;I为N*1维节点注入电流列向量。

如果不计网络元件的非线性,也不考虑移相变压器,则Y为对称矩阵。

电力系统计算中,给定的运行变量是节点注入功率,而不是节点注入电流,这两者之间有如下关系:ˆˆ=EI S(1—2)式中,S为节点的注入复功率,是N*1维列矢量;ˆS为S的共轭;ˆˆi diag ⎡⎤=⎢⎥⎣⎦E V 是由节点电压的共轭组成的N*N 阶对角线矩阵。

由(1-1)和(1-2),可得:ˆˆ=S EYV上式就是潮流方程的复数形式,是N 维的非线性复数代数方程组.将其展开,有:ˆi i iij j j iP jQ V Y V ∈-=∑ j=1,2,….,N (1—3)式中, j i ∈表示所有和i 相连的节点j ,包括j i =。

牛顿、拉夫逊法在潮流计算中的应用

牛顿、拉夫逊法在潮流计算中的应用

牛顿-拉夫逊法在潮流计算中的应用简介牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。

由于便于编写程序用计算机求解,应用较广。

下面以一元非线性代数方程的求解为例,来说明牛顿-拉夫逊法的基本思想。

设欲求解的非线性代数方程为f(x)=o设方程的真实解为x*,则必有f(x*)=0。

用牛顿-拉夫逊法求方程真实解x*的步骤如下:首先选取余割合适的初始估值x°作为方程f(x)=0的解,若恰巧有f(x°)=0,则方程的真实解即为x*= x°若f(x°)≠0,则做下一步。

取x¹=x°+Δx°为第一次的修正估值,则f(x¹)=f(x°+Δx°)其中Δx°为初始估值的增量,即Δx°=x¹-x°。

设函数f(x)具有任意阶导数,即可将上式在x°的邻域展开为泰勒级数,即:f(x¹)=f(x°+Δx°)=f(x°)+f'(x°)Δx°+[f''(x°)(Δx°)2]/2+…若所取的|Δx°|足够小,则含(Δx°)²的项及其余的一切高阶项均可略去,并使其等于零,即:f(x¹)≈f(x°)+f'(x°)Δx°=0Δx°=-f(x°)/f'(x°)x¹= x°-f(x°)/f'(x°)可见,只要f'(x°)≠0,即可根据上式求出第一次的修正估值x¹,若恰巧有f(x¹)=0,则方程的真实解即为x*=x¹。

最优潮流

最优潮流
最优潮流问题特点迭代算法及收敛性最优潮流求解过程是一个迭代过程因此存在迭代是否收敛问题最优解的多值性和存在性最优潮流问题是典型的非线性规划问题从数学观点看应该有多组解由于最优潮流考虑的约束包括运行约束和安全约束比较多在某些情况会出现无解的情非线性规划法nonlinearprogrammingnlp二次规划法quadraticprogrammingqp线性规划法linearprogramminglp人工智能方法非线性规划法有约束非线性规划方法的基本思想是利用拉格朗日乘子法和罚函数法建立增广目标函数使有约束非线性规划问题转化为无约束的非线性规划问题然后利用不用的数学方法优化求解
线性规划法(linear Programming, LP) 混合规划法 内点算法 人工智能方法
非线性规划法
有约束非线性规划方法的基本思想是利用拉 格朗日乘子法和罚函数法建立增广目标函 数,使有约束非线性规划问题转化为无约束 的非线性规划问题,然后利用不用的数学方 法优化求解。
第一个成功的最优潮流算法是Dommel 和Tinnery于1968年提出的简化 梯度算法。
μ = lT z − uT w
2r
Gap = lT z − uT w
如果参数 μ 按上式取值时,算法的收敛性较
差,所以建议采用
μ = σ Gap
2r
σ ∈ (0,1) 为中心参数,一般取0.1,在大多数
场合可获得较好的收敛效果。
线性化的方程为
[ ] −

2 x
f
(
x
)


2 x
h(
x)
y


2 x
⎢⎢∇
T x
h(
x
)
0

高斯法和牛顿法

高斯法和牛顿法

缺点: 本算法的主要缺点是收敛速度很慢。 病态条件系统,计算往往会发生收敛困难 节点间相位角差很大的重负荷系统; 包含有负电抗支路(如某些三绕组变压器或线路串联电 容等)的系统; 具有较长的辐射形线路的系统; 长线路与短线路接在同一节点上,而且长短线路的长 度比值又很大的系统。
此外,平衡节点所在位置的不同选择,也会影响到收敛性能。 目前高斯一塞德尔法已很少使用
牛顿一拉夫逊法
牛顿一拉夫逊法(简称牛顿法)在数学上是求解非线性代数 方程式的有效方法。其要点是把非线性方程式的求解过程变 成反复地对相应的线性方程式进行求解的过程,即通常所称 的逐次线性化过程。
y
y f (x)
第k+1步 迭代
下一步 迭代
y(k)
x(k )
o
x x (k 2) (k 1)
x(k)
x
PV节点 PQ节点
P1 H11
Q1
J11
QP22 Hn1
N 11 L11 N 21 L21 N p1
N n1
H12 J12 H 22 J 22 H p2
of Power Flow Pr-oblems.AIEE Trans,1956,75,III:398~404
该2参IP特参NN1参TP1R11最 1参E含tAA、、5erc、99eeoar法考点考考考8otwSSav优 直77na116nt--isit1411特文:文文文9~9o89vno9o66潮 流9年 年m23inmn6点献收献献献n123:(7’iges7年5年qP流 和, 和8t,::敛::9h13MuNo年o,9,~)ewodeP原性BTSIJ.F法F11wn.tA最e基ti:r0CA,D9honolr理好BaiSoICawL8tnnmA优于E8tdu-reeT保nF1简、85pEB.lpoyal潮阻6S9法 年eHEpt.r,单内onW:~i元留IaTtE流tE抗rySiSAr,、存,a18eaE.Fo,t件非数nrl矩46uE,sc.es内占49最Iast.T学aoE阵9Tc的线HaClan存用~E.rFnOm优a模ao的PEdrrn潮需量性Pn1.ou.ts型otwS4的r乘TCraw求大6FoyiEer的流bar0算ensaYEl子un较大rtAese.P.ttFs快计c法pim.o.l少增oDp法oPAwsnawe速算Po,r1、 加ecaaFAw潮9SrtoauM6lo算 (潮SuAe’ssl2re.p流utapa.法 限ttlFLyn流upieo1dl/doad8o收 制Jn9reaSu8w算La7bdyn(敛 解dty8osueSuFt.aI法es1性 题oml1dmDo0al99puwsFn)i差 规77es,tdldi(4poMo:模a1a,Swnnt59eycc.)b)6teshhyt3iMeoIn:,EmdgaEtsr,Eix 2参A1参T9参112参S3参参oP2参EiMf、、、、0095noohn、n考考考考考考考(187lwDrteRuaoE1111(17teCtth1ue文文文文文文文59999.~xiiroocog9)68799aCFtdnnh献献献献献献献)118462ca8lost:年年年年05nfooa.2no:::::::F:08gwfvM年r1,,,,(1auFI.eRSIDSBGs39ilEAilwrat最最交含274aunlart,oErI-LCeNsa64)anioEcmmECsrum优优直F~1oTooEDPTn包am:~aoainTSonzEnaad潮潮流c1oSdterIagrdtAD319ora,il括sFaTtdetN流流潮278ni元TnieHlSolriMo631soeanavtrnD,.二on的计流86tawgn件aiW,ac,en~TetslATeePds简算计.Mn.的e,阶essmAaL,1dcPt.mei化的算aPh7Or潮SiTonMtaslA项Kn4uh.iI.wps,梯牛nPi3E流roStrtqVaeiniaodE1I的.ouRmr度顿efmw计Y9nEetGIyaSa6n1.Eep.Lo快法算ly算T8Wcr9rPqsPAol.Kr7IFAuitu法aEvone速6,FladnoSemwt8E.Lt.oisdiw7nE. Wooes,P潮(g9.ranNOrET5hdaPsFMSep1rc(流kyAIlewDaFtE0oasicnSVln)omsw1Etioos算or.aon)Ee.wnaFn,:mgbcld’1y:T法tsPCPiJPlN91OcryAeNLoaL8a87arrDlwoSin2ee6.dn6cnas.iw.i6uede~rs.darr~Ilaaptano1.T8FFNatJPcn91i8tell.Aloecoo7R8runwhmww1S7se.i.6t.psoornnes-

(完整word版)牛顿拉夫逊法潮流计算

(完整word版)牛顿拉夫逊法潮流计算

摘要本文,首先简单介绍了基于在MALAB中行潮流计算的原理、意义,然后用具体的实例,简单介绍了如何利用MALAB去进行电力系统中的潮流计算。

众所周知,电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各线的电压、各元件中流过的功率、系统的功率损耗等等。

在电力系统规划的设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。

此外,在进行电力系统静态及暂态稳定计算时,要利用潮流计算的结果作为其计算的基础;一些故障分析以及优化计算也需要有相应的潮流计算作配合;潮流计算往往成为上述计算程序的一个重要组成部分。

以上这些,主要是在系统规划设计及运行方式安排中的应用,属于离线计算范畴。

牛顿-拉夫逊法在电力系统潮流计算的常用算法之一,它收敛性好,迭代次数少.本文介绍了电力系统潮流计算机辅助分析的基本知识及潮流计算牛顿-拉夫逊法,最后介绍了利用MTALAB程序运行的结果。

关键词:电力系统潮流计算,牛顿-拉夫逊法,MATLABABSTRACTThis article first introduces the flow calculation based on the principle of MALAB Bank of China,meaning, and then use specific examples,a brief introduction, how to use MALAB to the flow calculation in power systems。

As we all know, is the study of power flow calculation of power system steady-state operation of a calculation,which according to the given operating conditions and system wiring the entire power system to determine the operational status of each part:the bus voltage flowing through the components power, system power loss and so on. In power system planning power system design and operation mode of the current study, are required to quantitatively calculated using the trend analysis and comparison of the program or run mode power supply reasonable, reliability and economy.In addition, during the power system static and transient stability calculation, the results of calculation to take advantage of the trend as its basis of calculation;number of fault analysis and optimization also requires a corresponding flow calculation for cooperation;power flow calculation program often become the an important part. These,mainly in the way of system design and operation arrangements in the application areas are off—line calculation。

牛顿法

牛顿法

牛顿法(英语:Newton's method)又称为牛顿-拉弗森方法(英语:Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。

方法使用函数的泰勒级数的前面几项来寻找方程的根。

牛顿法思想
用目标函数的二阶泰勒展开近似该目标函数,通过求解这个二次函数的极小值来求解凸优化的搜索方向。

牛顿法的特点牛顿法收敛很快,对于二次函数只需迭代一次便达到最优点,对非二次函数也能较快迭代到最优点,但要计算二阶偏导数矩阵及其逆阵,对维数较高的优化问题,其计算工作和存储量都太大。

阻尼牛顿法可以看出原始牛顿法就相当于阻尼牛顿法的步长因子取成固定值1的情况。

阻尼牛顿法每次迭代都在牛顿方向上进行一维搜索,避免了迭代后函数值上升的现象,从而保持了牛顿法二次收敛的特性,而对初始点的选取并没有苛刻的要求。

这类方法的主要缺点计算复杂,工作量大,要求计算机存储量大。

共轭方向共轭方向主要是针对二次函数的,但也可以用于一般非二次函数。

共轭方向法是二次收敛的;
牛顿法,拟牛顿法,共轭梯度法各自的优缺点是什么?各自的算法是怎样的?
牛顿法需要函数的一阶、二阶导数信息,也就是说涉及到Hesse矩阵,包含矩阵求逆运算,虽然收敛速度快但是运算量大。

拟牛顿法采用了一定的方法来构造与Hesse矩阵相似的正定矩阵,而这个构造方法计算量比牛顿法要小;共轭梯度法的基本思想是把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜素,求出目标函数的极小点。

根据共轭方向基本性质,这种方法运算量不太大收敛速度也不慢。

牛顿法最优潮流

牛顿法最优潮流

j=1,2……N
ij
令 Vi ei jfi 展开得 P i jQi (ei jf i )
(G
ji
jBij )(e j jf j )
ji
Pi jQi ei jfi ai jbi , ai (Gij e j Bij f j ) bi (Gij f j Bij e j )
数学描述
潮流计算
最优潮流
总结分析
牛顿法是解非线性方程 式的一个有效方法,所 以也被广泛的应用于潮 流计算。核心是修正方 程式的建立与求解。如 图所示利用泰勒公式展 开,取其线性部分代替 非线性方程近似求解。
f ( x) f ( x 0 ) f ' ( x 0 )( x x 0 )
'
ji ji
Pi P sp ei ai f i bi , Qi Q sp f i ai ei bi H ii N ii M ii Lii Pi Pi ai Gii ei Bii f i , H ij Gij ei Bij f i ei e j Pi Pi bi Bii ei Gii f i , N ij Bij ei Gij f i , fi f j Qi Qi bi Bii ei Gii f i , M ij N ij ei e j
上式全部用泰勒展开即可
f1 f1 f1 0 0 0 f ( x , x .. x ) x x ,....... x y 1 1 2 n 1 2 n 1 x1 x2 xn .... f n f n f n f n ( x1 0 , x2 0 ..xn 0 ) x1 x2 ,....... xn yn x x x 1 2 n

最优化理论与方法——牛顿法(1)

最优化理论与方法——牛顿法(1)

牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。

结合着matlab 可以对其进行应用,求解方程。

牛顿迭代法(Newton ’s method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。

牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。

牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。

牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。

如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点 的横坐标1k x +作为*x 的新的近似值。

鉴于这种几何背景,牛顿法亦称为切线法。

2 牛顿迭代公式:(1)最速下降法:以负梯度方向作为极小化算法的下降方向,也称为梯度法。

设函数()f x 在k x 附近连续可微,且()0k k g f x =∇≠。

由泰勒展开式: ()()()()()T k k k k fx f x x x f x x x ο=+-∇+- (*)可知,若记为k k x x d α-=,则满足0Tk k d g <的方向k d 是下降方向。

当α取定后,Tk k d g 的值越小,即T kk d g -的值越大,函数下降的越快。

由Cauchy-Schwartz 不等式: T k k kk d g d g ≤,故当且仅当k k d g =-时,Tk k d g 最小,从而称k g -是最速下降方向。

最速下降法的迭代格式为: 1k k k k x x g α+=-。

潮流计算的牛顿法

潮流计算的牛顿法

潮流计算的牛顿法一.程序原理说明1.基本步骤:(1) 形成节点导纳阵。

(2) 给定各节点电压初值`)0()0(,f e 。

(3) 将电压初值)0()0(,fe 代入下式,求修正方程式的常数项)0(2)0()0()(,,V Q P ∆∆∆。

对于PQ 节点:0)()(=+---=∆∑∑∈∈ij j ij j ij ij i j ij j ij i is i e B f G f f B e G e P P0)()(=++--=∆∑∑∈∈ij j ij j ij ij i j ij j ij i is i e B f G e f B e G f Q Q对于PV 节点:0)()(=+---=∆∑∑∈∈ij j ij j ij ij i j ij j ij i is i e B f G f f B e G e P P0)(2222=+-=∆i i is i f e V V(4) 将电压初值代入下式中求修正方程式系数矩阵(雅可比矩阵)各元素。

当i j ≠时:)(i ij i ij j ij i f B e G f Q e P +-=∂∆∂-=∂∆∂i ij i ij jij i f G e B e Q f P -=∂∆∂=∂∆∂022=∂∆∂-=∂∆∂ji j i f V e V 当j = i 时:i ii i ii i ii i ii i j j ij j ij i if B e G a f B e G f B e G f Q ++-=++--=∂∆∂∑∈)( i ii i ii i ii i ii i j j ij j ij i if G e B b f G e B e B f G f P -+-=-++-=∂∆∂∑∈)( i ii i ii i ii i ii i j j ij j ij i if G e B b f G e B e B f G e Q -+=-++=∂∆∂∑∈)( i ii e e V 22-=∂∆∂i ii f f V 22-=∂∆∂ (5) 解如下修正方程式,求修正量)0()0(,fe ∆∆。

最优化潮流算法综述

最优化潮流算法综述
1
早在 1920 年出现的经济负荷调度,以及 20 世 纪 20 年代在电力系统功率调度开始使用的等耗量 微增率准则 EICC(Equal Incremental Cost Criteria) 总结中就涉及了最优化潮流的相关问题。等耗量微 增率准则至今在一些商用 OPF 中仍有应用。 而现代 的经济调度可以视为 OPF 问题的简化, 它们都是优 化问题,最终实现目标函数的最小化。经济调度一 般考虑发电机有功的分配,同时考虑的约束多仅为 潮流功率方程等式的约束。20 世纪 60 年代初法国 学者 Carpentier 介绍了一种以非线性规划方法来解 决经济分配问题的方法,首次引入了电压约束和其 它运行约束,提出了由于目标函数和约束条件不同 而构成应用范围不同的最优潮流数学模型,这也即 是最优潮流问题的最初模型。随后的大量学者,在 此基础上,从改善算法的收敛性能,提高计算速度
0 引言
随着我国电网和工业化的快速发展,对电力系 统运行的稳定性,经济性和可靠性的要求越来越 高。这就需要对系统运行进行优化,也就是说,从 所有可行潮流解中挑选出性能指标(主要包括系统 总的燃料消耗量、系统总的网损等)最佳的一个方 案,这就是最优潮流要解决的问题。所谓最优潮流 [1] ,就是当系统的结构参数及负荷情况给定时,通 过控制变量的优选,所找到的能满足所有指定的约 束条件,并使系统的某一个性能指标或目标函数达 到最优时的潮流分布。由于最优潮流是同时考虑网 络的安全性和经济性的分析方法,因此在电力系统 的安全运行、经济调度、电网规划、复杂电力系统 的可靠性分析、传输阻塞的经济控制等方面得到了 日益广泛的应用。
这个方向移动一步,使目标函数有所下降,然后再 由这个新的点开始,再重复进行上述步骤,直到所 求解满足收敛判据为止。而在很多情况下,最优潮 流的不等式约束条件很多。按性质将其分为控制变 量不等式约束和函数不等式约束。对第一种情况, 若控制变量超过其限值时,则该越界的控制变量就 被强制在相应的界上,即使得目标函数能进一步的 减小。而对于函数不等式约束无法采用和控制变量 不等式约束相同的办法来处理,通常采用罚函数的 方法。罚函数的基本思路是将约束条件引入原来的 目标函数而形成一个新的函数将原来有约束最优 化问题的求解转化成一系列无约束最优化问题的 [2] 求解 。最优潮流的这种算法原理比较简单,存储 需求小,程序设计也比较简便。但是这种算法存在 很多缺点:在计算过程中会出现锯齿现象,收敛性 较差,尤其是在接近最优点附近收敛速度很慢;每 次迭代都要重新计算潮流, 计算量很大, 耗时较多; 另外,采用罚函数处理不等式时,罚因子数值的选 取对算法的收敛速度影响很大等等。现在对这种方 法用于最优潮流的研究己经很少。 最优潮流作为一个非线性规划问题,可以利用 非线性规划的各种方法来求解,更由于结合了电力 系统的固有物理特性,在变量的划分、等式及不等 式约束条件的处理、有功与无功的分解、变量修正 方向的决定、甚至基本潮流计算方法的选择等等方 面,都可以有各种不同的方案。采用非线性规划的 方法,也有很多不同的算法,其中的最优潮流牛顿 算法,是得到了广泛认可并予以优选的一种算法。 牛顿法是另一种求无约束极值的方法。它是一 种直接求解Kuhn—Tucker等式寻优的方法。以牛顿 法为基础的最优潮流用以实现系统无功的优化的 方法被公认为是牛顿OPF算法实用化的重大飞跃。 该法以Lagrange乘子法处理等式约束,以惩罚函数 法处理违约的变量不等式约束。将电力系统的稀疏 [3] 性和牛顿法结合起来,可以大大减小计算量 。牛 顿法的难点在于,在迭代的过程中,中间变量是不 满足潮流方程的。这样,就会在每一个迭代步变量 修正后,无法判断不等式约束是否越界。而如果无 法确定那些越界的不等式就无法形成罚函数,而且 引入的罚函数对Hessian阵的部分对角元素有影响, 会明显改变计算结果。因此对违约不等式约束的处 理,在牛顿法中多采用试验迭代处理,对违约变量 进行修正。牛顿法另一个难题是:对应控制变量的

牛顿拉夫逊潮流计算程序共56页

牛顿拉夫逊潮流计算程序共56页
人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
牛顿拉夫逊潮流计算程序
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

j=1,2……N
ij
令 Vi ei jfi 展开得 P i jQi (ei jf i )
(G
ji
jBij )(e j jf j )
ji
Pi jQi ei jfi ai jbi , ai (Gij e j Bij f j ) bi (Gij f j Bij e j )
数学描述
潮流计算
最优潮流
总结分析
为了便于用迭代法解方程组,需要将上述功率方程改 写成功率平衡方程,并对功率平衡方程求偏导,得出 对应的雅可比矩阵,给未知节点赋电压初值,一般为 额定电压,将初值带入功率平衡方程,得到功率不平 衡量,这样由功率不平衡量、雅可比矩阵、节点电压 平衡量(未知的)构成了误差方程,解误差方程,得 到节点电压不平衡量,节点电压加上节点电压不平衡 量构成新的节点电压初值,将新的初值带入原来的功 率平衡方程,并重新形成雅可比矩阵,然后计算新的 电压不平衡量,这样不断迭代,不断修正,一般迭代 三到五次就能收敛。
数学描述
潮流计算
最优潮流
总结分析
牛顿法是解非线性方程 式的一个有效方法,所 以也被广泛的应用于潮 流计算。核心是修正方 程式的建立与求解。如 图所示利用泰勒公式展 开,取其线性部分代替 非线性方程近似求解。
f ( x) f ( x 0 ) f ' ( x 0 )( x x 0 )
'
电力系统潮流计算方法----牛顿法
数学描述
潮流计算
最优潮流
总结分析
电力系统分析包括潮流、最优潮流、预想故障分析、电 压稳定、暂态稳定和其他分析,电力系统分析是输电系 统规划中的关键技术之一。潮流计算是电力系统分析的 基础,所谓潮流计算即在给定电力系统网络拓扑、元件 参数和发电、负荷参量条件下,计算有功功率、无功功 率及电压在电力网中的分布。 手算如何计算? 一般来说,各个母线所供负荷的功率S是已知的,各个 节点V是未知的(平衡节点外)可以根据网络结构形成 节点导纳矩阵B,然后由B列写功率方程,由于功率方 程里功率是已知的,电压的幅值和相角是未知的,这样 潮流计算的问题就转化为求解非线性方程组的问题了。
ji
数学描述
潮流计算
最优潮流
总结分析

Vi Vi i
则潮流方程的极坐标形式如下:
Pi jQi Vi i (Gij jBij ) V j j
ji
Pi jQi Vi V j (Gij jBij ) cos ij j sin ij
其近似解与精确解分别相差
x1 , x2 ,..., xn
f1 ( x1 0 x1 , x2 0 x2 ,....... xn 0 xn ) y1 0 0 0 f 2 ( x1 x1 , x2 x2 ,....... xn xn ) y2 ........ 0 0 0 f ( x x , x x ,....... x x ) y n 1 1 2 2 n n n
f1 x2 f n x2
f1 x1 xn x 2 ... f n xn xn

J称函数的雅克比矩阵;△x为列向量, △f称不平衡量的 列向量,把初始值X(0)代入,可得△f,J中的元素,0 x f J x i 然后运用解线性方程的方法,求得 第一次迭代计算出的值 xi1 xi0 xi0 然后把计算值 再次代入求得△f,J中的元素,直到满足精确度即可。但 是,初值一定要选取的足够接近精确值,否则迭代过程 可能不收敛。(何以见得)
ji
Pi Vi V j (Gij cos ij Bij sin ij )i 1, 2,........N
数学描述
潮流计算
最优潮流
总结分析
y f ( x 0 , x 0 ..x 0 ) 1 1 2 n 1 ... yn f n ( x1 0 , x2 0 ..xn 0 )


f1 x1 f n x 1
数学描述
潮流计算
最优潮流
总结分析
潮流方程的描述 对于N个节点的电力网络若元件参数已知则网络方程表示为
YU I E*I S *
其中Y为n*n阶节点导纳矩阵, U为N*1阶,I*为N*1阶节点注入电 流列向量 但是电力网络中给定的往往是S而不是电流,所以线性方程就变成
E *YU S *
* P i jQi Vi YijV j ji
f 2 ( x 0 )( x x 0 ) 2 2!
......
f ( x) f ( x 0 ) f ( x 0 )( x x 0 ) 0, x x 0
f ( x0 ) f ' ( x0 )
数学描述
Hale Waihona Puke 潮流计算最优潮流总结分析
f1 ( x1 , x2 , x3 ....... xn ) y1 f ( x , x , x ....... x ) y 2 1 2 3 n 2 ........ f n ( x1 , x2 , x3 ....... xn ) yn
上式全部用泰勒展开即可
f1 f1 f1 0 0 0 f ( x , x .. x ) x x ,....... x y 1 1 2 n 1 2 n 1 x1 x2 xn .... f n f n f n f n ( x1 0 , x2 0 ..xn 0 ) x1 x2 ,....... xn yn x x x 1 2 n
相关文档
最新文档