高中数学-二项式定理精讲精练

合集下载

95二项式定理5大题型(精讲)(原卷版)

95二项式定理5大题型(精讲)(原卷版)

9.5 二项式定理5大题型【题型解读】【知识储备】1.二项式定理(1)二项式定理:(a+b)n C0n a n C1n a n-1C k n n-k k C n n b n*(2)通项公式:T k+1=C k n a n(3)(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.2.二项式系数的性质[常用结论]若二项展开式的通项为T r+1=g(r)·x h(r)(r=0,1,2,…,n),g(r)≠0,则有以下常见结论:(1)h(r)=0⇔T r+1是常数项.(2)h(r)是非负整数⇔T r+1是整式项.(3)h(r)是负整数⇔T r+1是分式项.(4)h(r)是整数⇔T r+1是有理项.【题型精讲】【题型一求特定项的系数】方法技巧 三项式()()n a b c n N ++∈的展开式:()[()]n n a b c a b c ++=++()n rrr n C a b c -=+++()rq n r q qrn n r C C ab c---=++++r q n r q q r n n r C C a b c ---=++若令n r q p --=,便得到三项式()()n a b c n N ++∈展开式通项公式()r q p q r n n r C C a b c p q r N p q r n -∈++=,,,,其中!(r)!!!()!!()!!!!r q n n r n n n C C r n r q n r q p q r --==---叫三项式系数. 例1 (2022·华师大二附中高三练习) 若()()()2880128111x a a x a x a x =+++++⋅⋅⋅++,则3a = .例2 在73x⎛ ⎝的系数是 .例3 (2022·江西模拟)在 5221y x x x x ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭ 的展开式中,含 32x y 的项的系数是( )A .10B .12C .15D .20【题型精练】1. (2022·河南高三月考)在732x x ⎛⎫- ⎪⎝⎭的展开式中,5x 项的系数是( )A .280B .280-C .560D .560-2.(2022·全国高三课时练习)61x x ⎛⎫- ⎪⎝⎭展开式中二项式系数和为___________,展开式中常数项为___________.3.(2022·枣庄模拟)在()622x x y-+的展开式中,含52x y 项的系数为( )A .480B .480C .240D .2404. (2022·汕头模拟)100的展开式中系数为有理数项的共有_______项.【题型二 已知项的系数求参】例4 (2022·四川模拟)已知二项式52a x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 项的系数为40,则a =( ) A .2B .2C .2或2D .4例5 (2022·武昌模拟)()()611ax x -+的展开式中,3x 项的系数为10,则实数a = .【题型精练】1.(2022·石家庄模拟)已知二项式52a x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 项的系数为40,则=a ( )A .2B .2C .2或2D .42. (2022·临沂二模)已知 ()5221ax x x ⎛⎫+- ⎪⎝⎭ 的展开式中各项系数的和为3,则该展开式中 x 的系数为( ) A .120 B .40 C .40 D .120【题型三 二项式定理的性质】例6 (2022·唐山二模)(多选)已知22nx x ⎛⎫- ⎪⎝⎭的展开式中第3项与第8项的二项式系数相等,则( ) A .n=9B .11n =C .常数项是672D .展开式中所有项的系数和是1例7 设m 为正整数,2()m x y +的展开式中二项式系数的最大值为a ,21()m x y ++的展开式中的二项式系数的最大值为b .若158a b =,则m 的值为( ) A .5 B .6C .7D .8【题型精练】1.(2022·高三课时练习)若()*1N nn x ⎛+∈ ⎝⎭的展开式中第5项与第6项的二项式系数相等,则n =( ) A .11 B .10 C .9 D .82.(2022·广东高三模拟)若n 展开式中前三项的系数和为163,则展开式中系数最大的项为_______.3. (2022·浙江高三模拟)在1)2n x 的展开式中,只有第五项的二项式系数最大,则展开式中6x 的系数为( ) A .454B .358-C .358D .7【题型四 二项式系数和及系数和问题】方法技巧 系数和问题2012()...n n n ax b a a x a x a x +=++++,令1x =得系数和:01...()n n a a a a b +++=+①;令1x =-得奇数项系数和减去偶数项系数和:01230213...()(...)(...)n n a a a a a a b a a a a -+-=-=++-++②,联立①②可求得奇数项系数和与偶数项系数和.例8 (2022·福建泉州科技中学月考)在10(23)x y -的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.【题型精练】1.(2022·常州市新桥高级中学高三模拟)若()5234501234513x a a x a x a x a x a x +=+++++,则012345a a a a a a -+-+-的值为 .2.(2022·济北中学高三月考)设 ()()54234501234521x m x a a x a x a x a x a x ++-=+++++ .若01234532a a a a a a +++++= ,则实数 m = , 3a = .3. (2022·上虞模拟)已知()102100121031x a a x a x a x -=+++⋅⋅⋅+,则3a = ,1012210333a a a ++⋅⋅⋅+= .【题型五 二项式定理的应用】例9 (2022福建省部分名校高三联合测评)(多选)若202051a +能被13整除,则实数a 的值可以为( ) A .0 B .11 C .12 D .25例10 71.95的计算结果精确到个位的近似值为 A .106 B .107 C .108 D .109【题型精练】1.(2022·全国高三课时练习)(1.05)6的计算结果精确到0.01的近似值是 A .1.23 B .1.24 C .1.33 D .1.342. 若1002100012100(21)x a a x a x a x +=++++,则()1359923a a a a ++++-被8整除的余数为___________.。

二项式定理(精讲)(原卷版)

二项式定理(精讲)(原卷版)

8.2二项式定理(精讲)一.二项式定理1.二项式定理:(a +b )n =C n 0a n +C n 1a n -1b 1+…+C n k an -k b k +…+C n n b n(n ∈N *) ①项数为n +1②各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n③字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列, 从第一项起,次数由零逐项增1直到n .2.通项公式:T k +1=C n k an -k b k =g (r )·x h (r )它表示第k +1项①h (r )=0∈T r +1是常数项; ②h (r )是非负整数∈T r +1是整式项; ③h (r )是负整数∈T r +1是分式项; ④h (r )是整数∈T r +1是有理项.3.二项式系数:二项展开式中各项的系数为C n 0,C n 1,…,C n n .二.二项式系数的性质一.形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤①写出二项展开式的通项公式T k +1=C n k an -k b k ,常把字母和系数分离开来(注意符号不要出错); ②根据题目中的相关条件列出相应方程(组)或不等式(组),解出r ;③把k 代入通项公式中,即可求出T k +1,有时还需要先求n ,再求k ,才能求出T k +1或者其他量. 二.求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 ①根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式;②根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到; ③把相乘后的项合并即可得到所求特定项或相关量. 三.求二项式系数最大项1.如果n 是偶数,那么中间一项(第n2+1项)的二项式系数最大; 2,如果n 是奇数,那么中间两项(第n+12项与第n+12+1项)的二项式系数相等且最大.四.求展开式系数最大项求(a +bx )n (a ,b ∈R )的展开式中系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用{A k ≥A k -1,A k ≥A k+1,解出k .五.求三项展开式中特定项(系数)的方法方法一:通过变形把三项式化为二项式,再用二项式定理求解 方法二:两次利用二项展开式的通项求解方法三:利用排列组合的基本原理去求,把三项式看作几个因式之积,得到特定项有多少种方法从这几个因式中取因式中的量 六.二项式定理应用1.用二项式定理处理整除问题,通常把幂的底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再利用二项式定理展开,只考虑后面一、二项(或者是某些项)就可以了.2.利用二项式定理近似运算时,首先将幂的底数写成两项和或差的形式,然后确定展开式中的保留项,使其满足近似计算的精确度.考点一 二项式定理的展开式【例1】(2023广西柳州)化简2341632248x x x x -+-+=( ) A .4x B .()42x -C .()42x +D .()412x -【一隅三反】1.(2022·高二课时练习)设A =37+27C ·35+47C ·33+67C ·3,B =17C ·36+37C ·34+57C ·32+1,则A -B 的值为( ) A .128B .129C .47D .02.(2023·重庆九龙坡)1231261823n n n n n n C C C C -+++⋯+⨯=A .2123n + B .()2413n- C .123n -⨯ D .()2313n- 考点二 二项式指定项的系数【例21】(2023·全国·高三专题练习)在二项式82x ⎫⎪⎭的展开式中,含x 的项的二项式系数为( )A .28B .56C .70D .112【例22】(2022·甘肃兰州·统考一模)6122x x ⎛⎫- ⎪⎝⎭的展开式的常数项是( )A .40B .40C .20D .20【例23】(2023·海南海口·海南华侨中学校考模拟预测)6211(2)2x x ⎛⎫+- ⎪⎝⎭展开式中2x 的系数为( )A .270B .240C .210D .180【例24】(2023·四川绵阳·统考二模)()32+nx 展开式中,只有第4项的二项式系数最大,则n 的值为( )A .8B .7C .6D .5【一隅三反】1.(2023·北京·高三专题练习)在二项式x x - ⎪⎝⎭的展开式中,含3x 项的二项式系数为( )A .5B .5-C .10D .10-2.(2023·河南驻马店·统考二模)51(1)2x x ⎛⎫-- ⎪⎝⎭的展开式中的常数项是( )A .-112B .-48C .48D .1123.(2023·全国·高三对口高考)在12nx x ⎛⎫- ⎪⎝⎭的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .7-B .7C .358-D .358考点三 三项式指定项系数【例3】(2023·全国·高三专题练习)52212x x ⎛⎫+- ⎪⎝⎭的展开式中常数项是( )A .252B .220C .220D .252【一隅三反】1.(2023·河北沧州·校考模拟预测)()52x x y -+的展开式中52x y 的系数为( )A .10-B .10C .30-D .302.(2023·辽宁·大连二十四中校联考模拟预测)6(23)x y z +-的展开式中23xy z 的系数为 (用数字作答).3.(2023秋·福建三明·高三统考期末)512x x ⎛⎫-+ ⎪⎝⎭展开式中常数项是 .(答案用数字作答)4.(2023秋·广东广州·高三执信中学校考开学考试)已知二项式51a x y ⎛⎫-+ ⎪⎝⎭的展开式中含3x y 的项的系数为40-,则=a .考点四 二项式系数性质【例4】(2023春·云南·高三云南师大附中校考阶段练习)()612x +的展开式中二项式系数最大的项是( )A .160B .240C .3160xD .4240x【一隅三反】1.(2023·广东佛山·校考模拟预测)(多选)x x + ⎪⎝⎭的展开式中只有第六项的二项式系数最大,且常数项是252-,则下列说法正确的是( )A .10n =B .各项的二项式系数之和为1024C .1a =-D .各项的系数之和为10242.(2023·西藏日喀则·统考一模)已知(12)n x -的展开式中第四项和第八项的二项式系数相等,则展开式中x 的系数为3.(2023·福建厦门·统考模拟预测)已知2nx ⎫⎪⎭的展开式中第二项的二项式系数比该项的系数大18,则展开式中的常数项为 .考法五 系数最大项和系数和【例51】(2023·上海浦东新·华师大二附中校考模拟预测)()82x +的二项展开式中系数最大的项为 . 【例52】.(2023·辽宁朝阳·朝阳市第一高级中学校考模拟预测)(多选)已知函数()()626012612f x x a a x a x a x =-=+++⋅⋅⋅+(i a ∈R ,0,1,2,3,,6i =⋅⋅⋅)的定义域为R ,则( )A .01261a a a a +++⋅⋅⋅+=-B .135364a a a ++=-C .123623612a a a a +++⋅⋅⋅+=D .()5f 被8整除余数为1【一隅三反】1.(2023·全国·模拟预测)81x y ⎛⎫- ⎪⎝⎭的展开式中系数最大的项为( )A .70B .56C .3556x y 或5356x yD .4470x y2.(2023·湖北襄阳·襄阳四中校考模拟预测)已知()13nx +的展开式中前三项的二项式系数和为79,则展开式中系数最大的项为第( )A .7项B .8项C .9项D .10项 3.(2023春·山东青岛)(多选)已知9290129(12)x a a x a x a x +=++++,则( )A .2144a =B .9012893a a a a a +++++=C .81379024682a a a a a a a a a +++=++++= D .(0,1,2,,8,9)i a i =的最大值为6a4.(2023·福建宁德·校考模拟预测)(多选)若()()()()102100121021111x a a x a x a x -=+-+-++-,x ∈R ,则( )A .01a =B .1012103a a a +++=C .2180a =D .9123102310103a a a a ++++=⨯考法六 二项式定理的应用【例61】(2023春·课时练习)设n 为奇数,那么11221111111111n n n n n n n C C C ---+⋅+⋅+⋅⋅⋅+⋅-除以13的余数是( )A .3-B .2C .10D .11【例62】(2023北京)今天是星期二,经过7天后还是星期二,那么经过20212天后是( ) A .星期三B .星期四C .星期五D .星期六【例63】(2023·全国·高三专题练习)6(1.05) . 【一隅三反】1.(2022·全国·高三专题练习)81.02≈ (小数点后保留三位小数). 2.(2023·辽宁丹东·统考一模)282除以7所得余数为 . 3.(2022秋·福建泉州·高三福建省南安国光中学校考阶段练习)12233445555555C 0.998C 0.998C 0.998C 0.998C 0.998++++≈ (精确到0.01)。

二项式定理(精讲)高中数学新同步精讲讲练(选择性必修第三册)(教师版含解析)

二项式定理(精讲)高中数学新同步精讲讲练(选择性必修第三册)(教师版含解析)

6.3 二项式定理(精讲)思维导图考法一 二项式定理展开式【例1】(1)求41(3x )x+的展开式为 . (2)(2020·江苏省太湖高级中学高二期中)已知012233444(1)4729n n nn n n n n C C C C C -+-++-=,则n 的值为【答案】(1)1x 2+12x+54+108x +81x 2【解析】(1)方法一 ⎝⎛⎭⎪⎫3x +1x 4=(3x )4+C 14(3x )3·⎝ ⎛⎭⎪⎫1x +C 24(3x )2⎝ ⎛⎭⎪⎫1x 2+C 34(3x )⎝ ⎛⎭⎪⎫1x 3+C 44⎝ ⎛⎭⎪⎫1x 4=81x 2+108x +54+12x +1x2.方法二 ⎝⎛⎭⎪⎫3x +1x 4=⎝ ⎛⎭⎪⎫3x +1x 4=1x 2(1+3x )4=1x 2·[1+C 14·3x +C 24(3x )2+C 34(3x )3+C 44(3x )4]=1x 2(1+12x +54x 2+108x 3+81x 4)=1x 2+12x+54+108x +81x 2.(2)由012233444(1)4729n n nn n n n n C C C C C -+-++-=得常见考法()()()()()0120312312301414141414729nn n n n n nn n n n C C C C C ---⋅⋅-+⋅⋅-⋅⋅-+⋅⋅-⋅-+++=⋅则()12479n-=,即()()672933n =-=-,解得6n =.【举一反三】1.(2021·全国课时练习)化简多项式(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1的结果是( ) A .(2x+2)5 B .2x 5 C .(2x-1)5 D .32x 5【答案】D【解析】依题意可知,多项式的每一项都可看作()()55211rrrC x -+-,故为()5211x ⎡⎤+-⎣⎦的展开式,化简()()555211232x x x ⎡⎤+-==⎣⎦.故选D. 2.(2020·江苏宿迁市·宿迁中学高二期中)化简:2012222412333...3n n n n n n n n C C C C ---⋅+⋅+⋅++⋅=_________.【答案】101n -【解析】()()()()112021211212(31)3131 (3)131n n n n n n n n nnnC C CC ----+=⨯⨯+⨯⨯++⨯⨯+⨯⨯则2012222412233331(31)10n n n n n nn n n n C C C C ---⋅+⋅+⋅++⋅+=+=所以2012222412333...3101nn n n n n n n n C C C C ---⋅+⋅+⋅++⋅=-故答案为:101n -.考法二 二项式指定项的系数与二项式系数【例2】(1)(2020·全国高二单元测试)在(x -3)10的展开式中,x 6的系数是(2)(2020·广东佛山市·高二期末)二项式81x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是______(用数字作答)(3)(2020·安徽省蚌埠第三中学高二月考)3031x x ⎛⎫+ ⎪⎝⎭的有理项共有 项【答案】(1)9410C (2)70(3)6【解析】(1)由T k +1=10kC x 10-k (-3)k ,令10-k =6,解得k =4,∴系数为(-3)4410C =9410C(2)二项式81x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式8821881r r r rr r T C x C x x --+==,令820r -=,得4r =,则常数项为4588765==704321T C ⨯⨯⨯=⨯⨯⨯,故答案为:70(3)3031x x ⎛⎫+ ⎪⎝⎭的通项公式为:()5301036130301rrrrr r T C x C x x --+⎛⎫== ⎪⎝⎭,061051730300,,6,r T x r T x C C ====, 12180513********,,18,r T x r T x C C -====,243010152531303024,,30,r T x r T x C C --====,所以有理项共有6项,故选:C 【举一反三】1.(2020·北京市鲁迅中学高二月考)二项式261(2)x x-的展开式中的常数项是_______.(用数字作答) 【答案】60【解析】有题意可得,二项式展开式的通项为:()62612316612(1)2rrr r r r rr T Cx C xx ---+⎛⎫=-=- ⎪⎝⎭令1230r -=可得4r = ,此时2456260T C ==.2.(2021·上海青浦区)在6212x x ⎛⎫+ ⎪⎝⎭二项展开式中,常数项是_______.【答案】60【解析】展开式的通项公式是()626123166122rrrr rr r T C xC x x ---+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,当1230r -=时,4r = 24416260T C +=⋅=.故答案为603..(2020·青海西宁市)若83a x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为7,则实数a =______. 【答案】12【解析】根据二项展开式的通项公式可得:48883318883=rr r r r r r r r r r a T C x C a x C a x x ----+⎛⎫== ⎪⎝⎭, 令4843r -=,可得3r =,3388==7r r C a C a ,解得:12a =,故答案为:124.(2020·梁河县)已知31(2)n x x+的展开式的常数项是第7项,则n =________.【答案】8【解析】根据题意,可知第7项为()666366324122n n n n n C xC x x ---⎛⎫⋅⋅=⋅⋅ ⎪⎝⎭,而常数项是第7项,则 3240n -=,故8n =.故答案为:8.考法三 多项式系数或二项式系数【例3】(1)(2020·福建三明市·高二期末)52212x x ⎛⎫+- ⎪⎝⎭的展开式中常数项是( ) A .-252B .-220C .220D .252(2).(2021·四川成都市)若5(2)a x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为80-,则a =( )A .2B .1C .2-D .1-【答案】(1)A(2)C 【解析】(1)由2510211(2)()x x x x+-=-, 可得二项式101()x x-的展开式通项为10102110101()(1)rrr r r r r T C xC x x--+=-=-, 令1020r -=,解得=5r ,所以展开式的常数项为5510(1)252C -=-.故选:A.(2)5a x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为:55251(1)r r r r r T C a x--+=⋅⋅⋅-,显然,25r -为奇数, 若求5(2)a x x x ⎛⎫+- ⎪⎝⎭展开式的常数项,251r ∴-=-,解得2r故5(2)a x x x ⎛⎫+- ⎪⎝⎭的展开式的常数项等于:23580C a ⋅=-2a ∴=-故选:C.【举一反三】1.(2020·全国高三专题练习)4211x x ⎛⎫+- ⎪⎝⎭展开式中常数项为( ).A .11B .11-C .8D .7-【答案】B 【解析】将21x x +看成一个整体,展开得到:41421()(1)r r rr T C x x-+=+- 421()r x x-+的展开式为:4243144m r m m m r mm r r T C x x C x -----+--=⋅=取430r m --=当0m =时,4r = 系数为:40440(1)1C C ⨯⨯-= 当1m =时,1r = 系数为:11143(1)12C C ⨯⨯-=-常数项为11211-=- 故答案选B2.(2020·全国高三专题练习)524131x x x x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭的展开式中常数项为( )A .30-B .30C .25-D .25【答案】C【解析】511x ⎛⎫- ⎪⎝⎭ 的通项为151(1)r r r r T C x +⎛⎫=- ⎪⎝⎭, 5522411311x x x x x x ⎛⎫⎛⎫⎛⎫-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 55141311x x x x ⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ ,根据式子可知当4r = 或2r时有常数项,令4r =414551(1)T C x ⎛⎫⇒=- ⎪⎝⎭ ; 令2323512(1)r T C x ⎛⎫=⇒=- ⎪⎝⎭;故所求常数项为13553C C -⨯53025=-=- ,故选C.3.(2020·河南商丘市)()64111x x ⎛⎫++ ⎪⎝⎭的展开式的常数项为( )A .6B .10C .15D .16【答案】D【解析】由题意得611x ⎛⎫+ ⎪⎝⎭的展开式的通项为()160,1,2,,6r r r T C x r -+=⋅=⋅⋅⋅,令4r =,则4615C =,所以()64111x x ⎛⎫++ ⎪⎝⎭的展开式的常数项为11516+=.故选:D. 4.(2020·枣庄市第三中学高二月考)在1020201(1)x x++的展开式中,x 2项的系数为( ) A .30 B .45C .60D .90【答案】B【解析】在1020201(1)x x ++的展开式中,通项公式为T r +110rC =•20201rx x ⎛⎫+ ⎪⎝⎭.对于20201rx x ⎛⎫+ ⎪⎝⎭,通项公式为T k +1kr C =•x r ﹣2021k ,k ≤r ,r 、k ∈N ,r ≤10.令r ﹣2021k =2,可得r =2+2021k ,故k =0,r =2,故x 2项的系数为210C •02C =45,故选:B .5.(2020·全国高二专题练习)若()1021x a x x ⎛⎫-+ ⎪⎝⎭的展开式中6x 的系数为30,则a 等于( ) A .13B .12C .1D .2【答案】D【解析】将题中所给式子可化为()10101022111x a x x x a x x x x ⎛⎫⎛⎫⎛⎫-+=+-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭根据二项式定理展开式通项为1C rn rrr nT a b -+=,101x x ⎛⎫+ ⎪⎝⎭的通项为10102110101rr r r r r T C xC x x --+⎛⎫=⋅= ⎪⎝⎭令1024r-= 解得3r =所以6x 的项为234610120x C xx ⋅=令1026r -=解得2r所以6x 的项为2661045a C x ax -⋅=-综上可知, 6x 的系数为1204530a -= 解得2a = 故选:D考法四 二项式定理的性质【例2】(1)(多选)(2020·全国高二单元测试)111x x ⎛⎫- ⎪⎝⎭的展开式中二项式系数最大的项是( ) A .第5项 B .第6项 C .第7项D .第8项(2)(2020·山东省桓台第一中学高二期中)(多选)二项式1121x x ⎛⎫+ ⎪⎝⎭的展开式中,系数最大的项为( ).A .第五项B .第六项C .第七项D .第八项(3)(2020·绵阳市·四川省绵阳江油中学高二开学考试)若1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是A .462-B .462C .792D .792-【答案】(1)BC(2)BC(3)D【解析】(1)因为n =11为奇数,所以展开式中第1112+项和第11112++项,即第6项和第7项的二项式系数相等,且最大.故选:BC(2)二项式1121x x ⎛⎫+ ⎪⎝⎭的展开式中,每项的系数与二项式系数相等,共有12项 所以系数最大的项为第六项和第七项故选:BC(3)∵1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,∴n 为偶数,展开式共有13项,则12n =. 121x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()1212211C r r r r T x -+=-,令1222r -=,得5r =. ∴展开式中含2x 项的系数是()12551C 792-=-,故选D . 【举一反三】1.(2020·辽宁沈阳市·高二期中)在()()1nx n N +-∈的二项展开式中,若只有第5项的二项式系数最大,则12nx x ⎛⎫- ⎪⎝⎭的二项展开式中的常数项为( )A .960B .1120C .-560D .-960【答案】B【解析】在(x ﹣1)n(n ∈N +)的二项展开式中,若只有第5项的二项式系数最大,则n=8,则1(2)n x x -=812x x ⎛⎫- ⎪⎝⎭的二项展开式的通项公式为T r+1=8r C •28﹣r•(﹣1)r •x 4﹣r , 令4﹣r=0,求得r=4,可得展开式中的常数项为48C •24•(﹣1)4=1120,故选B .2.(2021·湖南常德市)(ax +1x )(2x −1)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .B .C .10D .20【答案】C【解析】由已知,当x =1时,(a +11)(2−1)5=2,即a =1,所以(x +1x )(2x −1)5展开式中常数项为1x ×C 542x ×(−1)4=10,故选C . 3.(多选)(2020·三亚华侨学校高二开学考试)已知()na b +的展开式中第5项的二项式系数最大,则n 的值可以为( ) A .7 B .8C .9D .10【答案】ABC【解析】∵已知()na b +的展开式中第5项的二项式系数4n C 最大,则7n =或n =8或n =9故选:ABC .4.(2020·全国高二课时练习)已知6(31)x +展开式中各项系数的和为m ,且2log n m =,求2nx x ⎛⎫- ⎪⎝⎭展开式中二项式系数最大的项的系数 . 【答案】59136【解析】设6260126(31)x a a x a x a x +=++++,令1x =,得6612(31)42m =+==,所以2log 12n m ==,则122x x ⎛⎫- ⎪⎝⎭展开式中有13项,且中间一项(第7项)的二项式系数最大,该项为6666633712122()(2)59136T C x C x x x --⎛⎫=-=-= ⎪⎝⎭.故所求的系数为59136.5.(2020·重庆市第七中学校高二月考)二项式()*122nx n N x ⎛⎫-∈ ⎪⎝⎭ 的展开式中,二项式系数最大的项是第4项,则其展开式中的常数项是_________. 【答案】-20【解析】由题意知,展开式中有7项,6n =.因为 ()661122rrr Tr C x x -⎛⎫+=- ⎪⎝⎭()6262612r r r rC x --=- 令620r -=,得3r =,所以常数项为()336120C -=-.考法五 二项式系数或系数和【例5】(2020·安徽省泗县)若2701277()(12)f x x a a x a x a x =+=++++.求:(1)017a a a ++⋯+; (2)1357a a a a +++; (3)0127a a a a ++++.【答案】(1)27;(2)14;(3)27.【解析】(1)令1x =,可得301235674()3271f a a a a a a a a ==+++++++=,∴4012356727a a a a a a a a ++++++=+.①(2)令1x =-可得301235674(1)(1)f a a a a a a a a -=-=-+-+-+-,∴401235671a a a a a a a a +-+-+-=--.② 由①-②得13572()28a a a a +++=, ∴135714a a a a +++=.(3)由题意得二项式7(12)x +展开式的通项为177(2)2r r r r r r T C x C x +==,∴每项的系数0(0,1,2,,7)i a i >=,∴01235017647227a a a a a a a a a a a a ++++=++++++=+.【举一反三】1.(2020·北京朝阳区·高二期末)在5(21)x +的二项展开式中,二项式系数之和为___________;所有项的系数之和为_______. 【答案】32 243【解析】根据二项展开式的性质,展开式的二项式系数之和为52232n ==, 令1x =可得所有项的系数之和为55(211)3243==⨯+,故答案为:32,2432.(2020·全国高二单元测试)若(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2= 【答案】1【解析】令1x =,得()10011021a a a +++=-,令1x =-,得()1001231021a a a a a -+-++=+,()()220210139a a a a a a +++-+++()()0110012310a a a a a a a a =+++-+-++()()101021211=+-=.故选:A.3.(2020·福建厦门市·厦门双十中学高二期中)已知()1121011012101112x a a x a x a x a x +=+++++ ,则12101121011a a a a -+-+=_____.【答案】22【解析】对等式112012(12)x a a x a x +=++10111011a x a x +++两边求导,得101222(12)2x a a x+=+91010111011a x a x +++,令1x =-,则1210112101122a a a a -+-+=.4.(2020·宁县第二中学高二期中)设2012(21)n n n x a a x a x a x -=++++展开式中只有第1010项的二项式系数最大.(1)求n ;(2)求012n a a a a ++++; (3)求.312232222n n a a a a ++++. 【答案】(1)2018;(2)20183;(3)-1.【解析】(1)由二项式系数的对称性,1101020182n n +=∴= (2)201801220180122018=3a a a a a a a a ++++-+++= (3)令0x = ,得20180(10)1a =-=, 令12x =,得21232018232018(11)02222a a a a ++++=-=,故3201812023201812222a a a a a +++=-=-.考法六 二项式定理运用【例6】(1)(2020·上海市七宝中学高二期中)7271除以100的余数是________(2)(2020·全国高二单元测试)6(1.05)的计算结果精确到0.01的近似值是_________【答案】(1)41(2)1.34【解析】(1)()727217172727270727127270170177070C C C C +==++++21072701()m m N =+⨯+∈2105041m =+ 即7271除以100的余数为41.故答案为:41.(2)()()66122661.0510.051+0.05+0.05+1+0.3+0.0375=1.3375 1.34C C =+=⋅⋅≈≈故答案为:1.34【举一反三】1.(2020·四川棠湖中学高二月考)已知202074a +能够被15整除,则a =________.【答案】14【解析】由题可知,()0202020275714=-()()()()0120192020020201201920191202002020202020202020751751751751C C C C =-+-++-+- 0202012019201912020202020207575751C C C =-+-+所以0202012019201912020202022020200775754751C C C a a =-++-++,而75能被15整除,要使202074a +能够被15整除,只需1a +能被15整除即可, 所以115a +=,解得:14a =.故答案为:14.2.(2020·江苏泰州市·泰州中学高二期中)83被5除所得的余数是_____________.【答案】1【解析】因为883(52)=-0817262778088888855(2)5(2)5(2)5(2)C C C C C =⋅+⋅⨯-+⋅⨯-++⋅⨯-+⋅⨯- 071625277808888885(55(2)5(2)(2))5(2)C C C C C =⋅+⋅⨯-+⋅⨯-++-+⋅⨯-,所以转化为求80885(2)256C ⋅⨯-=被5除所得的余数, 因为2565151=⨯+,所以83被5除所得的余数是1,故答案为:13.(2021·河北保定市)60.99的计算结果精确到0.001的近似值是【答案】0.941【解析】()()()()6620126666330.9910.0110.010.010.01...C C C C =-=⨯-⨯+⨯-⨯ 10.060.00150.00002...=-+- 0.941≈故选B。

高中数学《二项式定理》微课精讲+知识点+教案课件+习题

高中数学《二项式定理》微课精讲+知识点+教案课件+习题


知识点:
基本知识点梳理一、定理内容
二、基本概念
①二项式展开式:
等式右边的多项式叫作(a+b)n的二项展开式
②二项式系数:
展开式中各项的系数中的
③项数:
展开式第r+1项,是关于a,b的齐次多项式.
④通项:
展开式的第r+1项,记作
三、几个提醒
①项数:
展开式共有n+1项.
②顺序:
注意正确选择a与b,其顺序不能更改,
即:(a+b)n和(b+a)n是不同的.
③指数:
a的指数从n到0, 降幂排列;
b的指数从0到n,升幂排列。

各项中a,b的指数之和始终为n.
④系数:
正确区分二项式系数与项的系数:
二项式系数指各项前面的组合数;
项的系数指各项中除去变量的部分(含二项式系数)。

⑤通项:
通项是指展开式的第r+1项.
四、常用结论
五、几个性质
①二项式系数对称性:
展开式中,与首末两项等距的任意两项二项式系数相等。

②二项式系数最大值:
展开式的二项式系数中,最中间那一项(或最中间两项)的二项式系数最大。

即:
③二项式系数和:
二项展开式中,所有二项式系数和等于,即:
奇数项二项式系数和等于偶数项二项式系数和,即:
(注:凡系数和问题均用赋值法处理)④杨辉三角中的二项式系数:
教案:
教学研讨课件:
基本题型归纳一、求二项展开式
二、求展开式的指定项
三、求展开式中系数和
四、求系数最大(最小)项
五、多项展开式
六、整除性问题
七、近似计算
八、证明不等式
练习:。

第03讲二项式定理(精讲)(原卷版)_1

第03讲二项式定理(精讲)(原卷版)_1

第03讲 二项式定理目录第一部分:知识点必背 .............................................. 1 第二部分:高考真题回归 ............................................. 2 第三部分:高频考点一遍过 ........................................... 3 高频考点一:求二项展开式的特定项(或系数) ...................... 3 高频考点二:两个二项式之积中特定项(或系数)问题 ................ 3 高频考点三:三项展开式中特定项(或系数)问题 .................... 4 高频考点四:二项式系数和与系数和 ................................ 5 高频考点五:二项展开式的逆应用 .................................. 6 高频考点六:二项式系数最大问题 .................................. 6 高频考点七:系数最大问题 ........................................ 7 第四部分:数学文化题 . (9)第一部分:知识点必背知识点一:二项式定理 (1)二项式定理一般地,对于每个k (0,1,2,k n =),()n a b +的展开式中n k k a b -共有k n C 个,将它们合并同类项,就可以得到二项展开式:nn n r r n r n n n n n n n n b a C b a C b a C b a C b a C b a 022211100)(++++++=+--- (n N *∈).0,1,2,n ),项的系数是指该项中除变量外的常数部分0,1,2,n )叫做二项展开式的通项通项体现了二项展开式的项数、系数、次数的变化规律如含指定幂的项常数项、中间项、有理项、系数最大的项等①对称性:二项展开式中与首尾两端距离相等的两个二项式系数相等:(2)奇数项的二项式系数和与偶数项的二项式系数和相等:()02131*2n n n n n C C C C n N -++⋅⋅⋅=++⋅⋅⋅=∈第二部分:高考真题回归第三部分:高频考点一遍过高频考点一:求二项展开式的特定项(或系数)高频考点二:两个二项式之积中特定项(或系数)问题典型例题例题1.(2023秋·重庆沙坪坝·高三重庆一中校考阶段练习)已知实数x不为零,则26+-的展开式中x x(1)(1)2x项的系数为.高频考点三:三项展开式中特定项(或系数)问题高频考点四:二项式系数和与系数和1010a x ++,则22101359)()a a a a a -++++++的值为 2023春·山东菏泽·高二山东省鄄城县第一中学校考阶段练习)设()220230122023a a x a x a x x +++⋅⋅⋅+∈R .32023a a ++的值.22023a a +++.云南昆明·高二校考阶段练习)高频考点五:二项展开式的逆应用典型例题例题1.(2023春·黑龙江七台河·高二勃利县高级中学校考期中)()12312C 4C 8C 2C nnn n n n -+-++-=( ).A .1B .-1C .(-1)nD .3n例题2.(2023春·安徽合肥·高二统考期末)已知012233C 4C 4C 4C (1)4C 729n n nn n n n n -+-++-=,则n 的值为 .例题3.(2023·全国·高三专题练习)已知12n n a -=,解关于n 的不等式:012312341C C C C C 2024n n n n n n n a a a a a +++++⋅⋅⋅+<.练透核心考点1.(2023秋·高二课时练习)化简:设n +∈N ,则()()011C 2C 21C 21C knn n k n kn n n n n ---++-++-= .2.(2023春·上海浦东新·高二校考期中)0122C 2C 2C 2C n n n n n n ++++= .3.(2023春·辽宁·高三辽师大附中校考阶段练习)0122332022202220232023202320232023202320232023C 2C 2C 2C 2C 2C -+-++-的值是 .高频考点六:二项式系数最大问题高频考点七:系数最大问题典型例题例题1.(2023·全国·高二随堂练习)已知()1nx +的展开式中第5,6,7项系数成等差数列,求展开式中系数最大的项.(2)求展开式中项的系数最大的项.第四部分:数学文化题1.(2023春·吉林延边·高二延边二中校考期中)中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a ,b ,()0m m >为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 3C 3C 3a =+⨯+⨯+⋅⋅⋅+⨯,()mod5a b ≡=,则b 的值可以是( )A .2004B .2005C .2025D .20262.(多选)(2023·全国·高二专题练习)“杨辉三角”是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.则下列命题中正确的是( )A .在第10行中第5个数最大B .22222348C C C C 84++++=C .第8行中第4个数与第5个数之比为4:5D .在杨辉三角中,第n 行的所有数字之和为12n -3.(2023春·黑龙江大庆·高二大庆实验中学校考期中)南宋数学家杨辉所著的《详解九章算法》一书中画了一张表示二项式展开式的系数构成的三角形数阵(如图所示),在“杨辉三角”中,第20行所有数字的平方和等于 .(用一个组合数作答)4.(2023春·高二单元测试)干支纪年是中国古代的一种纪年法.分别排出十天干与十二地支如下: 天干:甲 乙 丙 丁 戊 己 庚 辛 壬 癸 地支:子 丑 寅 卯 辰 巳 午 未 申 酉 戌 亥把天干与地支按以下方法依次配对:把第一个天干“甲”与第一个地支“子”配出“甲子”,把第二个天干“乙”与第二个地支“丑”配出“乙丑”,,若天干用完,则再从第一个天干开始循环使用,若地支用完,则再从第一个地支开始循环使用.已知2022年是壬寅年,则813年以后是年.。

人教版高中数学精讲精练选择性必修三6.3 二项式定理(解析版)

人教版高中数学精讲精练选择性必修三6.3 二项式定理(解析版)

6.3二项式定理考法一二项式的展开式【例1-1】(2023上·高二课时练习)求411x ⎛⎫⎪⎝⎭+的展开式.【答案】答案见解析【解析】4123404132231404444411111C 1C 1C C 1C 1111x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎭⎝⎝⎭⎝⎭23446411x x x x =++++.【例1-2】(2023·黑龙江)()12312C 4C 8C 2C nnn n n n -+-++-= ().A .1B .-1C .(-1)nD .3n【答案】C【解析】原式=()()()()()()0120122222121n n nn n n n n -+-+-++-=-=-C C C C L .故选:C.【一隅三反】1.(2023·甘肃)若对x ∀∈R ,()()()()()()55432252102102521ax b x x x x x +=+-+++-+++-恒成立,其中,a b ∈R ,则a b +=()A .1-B .0C .2D .3【答案】C【解析】由()()()()()()()543255252102102521211x x x x x x x +-+++-+++-=+-=+,得()()551ax b x +=+,所以1a b ==,2a b +=.故选:C.2.(2023·安徽安庆)如果12212C 2C 2C 2187n n n n n ++++= ,则22223C C C n +++=.【答案】56【解析】依题意,1220012212C 2C 2C 2C 2C 2C 2C n n n n n n n n n n n+++++++=+ ()1232187nn =+==,解得7n =,222322237337C C C C C C =++++++ 32232224475567C C C C C C C =+++=+++ 322323667778C C C C C C 87656321⨯⨯=====⨯⨯+++.故答案为:563.(2023·高二课时练习)(1)求4⎛⎫ ⎪⎝⎭的展开式(2)求()()55211x x x -++的展开式;(3)化简()()()()()5432151********x x x x x -+-+-+-+-.【答案】(1)221218110854x x x x-+-+(2)答案见解析;(3)51x -【解析】(1)()4442131x x ⎛⎫⎫==- ⎪⎪⎝⎭⎭()()()()()()()()432234012344444421C 3C 31C 31C 31C 1x x x x x⎡⎤=+⋅-+⋅-+⋅-+-⎣⎦()432218110854121x x x x x=-+-+221218110854x x x x =-+-+.(2)()()()5555223(1)1(1)11x x x x x x x -++-++⎦=⎣-⎡⎤=()()()()()123405314323332341355555C 1C 1C 1C 1C 1x x x x x =⨯⨯⨯+⨯+⨯-+-+---()55035C 1x+⨯-3691215151010 5x x x x x =-+-+-.(3)原式0514********555555C (1)C (1)C (1)C (1)C (1)C (1)1x x x x x x =-+-+-+-+-+--55[(1)1]11x x =-+-=-.考法二二项式指定项的系数【例2-1】(2024·四川绵阳)51x ⎫-⎪⎭的展开式中,x 的系数为()A .5-B .10-C .5D .10【答案】A【解析】51x ⎫⎪⎭的展开式的通项为53521551C (1)C rr r r r rr T x x --+⎛⎫=⋅⎭⋅-=-⋅⋅ ⎪⎝.令5312r-=,得1r =.x ∴的系数为15C 5-=-.故选:A .【例2-2】.(2024·湖南)二项式741x ⎫-⎪⎭的展开式中常数项为()A .7-B .21-C .7D .21【答案】A【解析】二项式741x ⎫⎪⎭的通项公式为()14147317741C C 1rrrr r rr T x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,令1414013r r -=⇒=,所以常数项为()17C 17⋅-=-,故选:A 【例2-3】(2024·云南)写出623x⎛⎝展开式中的一个有理项为.【答案】12729x (答案不唯一)【解析】623x⎛⎝展开式的通项公式为所以展开式中的有理项分别为:0r =时,6121213729T x x ==;2r =时,4277363C 1215T x x ==;4r =时,2422563C 135T x x ==;6r =时,37-=T x .故答案为:12729x (四个有理项任写其一均可).【一隅三反】1.(2024·河南)29(2x x-展开式中的常数项为()A .672B .672-C .5376-D .5376【答案】D【解析】二项式29(2)x x -的展开式的通项218319992C )()(N 2)C (,9,r r r r r rr T r x xr x--+=-=-≤∈,令1830r -=,得6r =,所以二项展开式中的常数项为669C 2)7(536-=.故选:D2.(2024安徽)9a x x ⎛⎫+ ⎪⎝⎭展开式中含3x 项的系数为84-,则实数a 的值为()A .1-B .2-C .3-D .4-【答案】A 【解析】()992199C C 0,1,2,,9rr rr r r r a T xa x r x --+⎛⎫=⋅==⋅⋅⋅ ⎪⎝⎭,令923r -=,得3r =.∴3333349C 84T a x a x ==,依题意38484a =-,∴1a =-.故选:A.3.(2023·全国·模拟预测)5的展开式中,有理项是第项.【答案】3【解析】5的展开式的通项511051362155C 3C 3kkkk k k k T x x x ---+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⋅,其中0,1,2,3,4,5k =,当1k T +为有理项时,1056k-为整数,结合0,1,2,3,4,5k =,所以2k =,即有理项是展开式中的第3项,故答案为:3考法三两个二项式乘积的系数【例3-1】(2024·广东广州)在()()511x x +-展开式中3x 的系数为()A .1-B .0C .1D .2【答案】B【解析】显然()()()()5551111x x x x x +-=-+-,则()51x -展开式第1r +项55155,N,5C (1)C (1)r rr rr r r T xr x r --+-∈=-≤=,当3r =时,33235C (1)10x x x ⋅-=-,当2r =时,22335C (1)10x x -=,所以展开式中含3x 的项为3310100x x -+=,即展开式中3x 的系数为0.故选:B【例3-2】(2023·全国·模拟预测)()7y m x y x ⎛⎫+- ⎪⎝⎭的展开式中34x y 的系数为105-,则实数m =()A .2B .1C .1-D .2-【答案】D【解析】()7x y -的展开式的通项公式为()7171C r r r rr T x y -+=-,所以()61171C r r r r r y T x y x-++=-.令6314r r -=⎧⎨+=⎩,解得3r =,()7171C r r r rr mT m x y -+=⋅-.令734r r -=⎧⎨=⎩,解得4r =.由题意,可知()()()3434343777771C 1C C C 1C 105m m m -+⋅-=-+=-=-,所以2m =-.故选:D .【一隅三反】1.(2023·湖北)若()()542x m x --的展开式中的3x 的系数为600-,则实数m =()A .8B .7C .9D .10【答案】B【解析】由题意知,()52x -展开式的通项公式为()55C 2rr rx --,故3x 的系数为()()3232554C 2C 232040600m m ⨯---=--=-,解得7m =.故选:B .2.(2024·广东·)()()42112x x +⋅-的展开式中3x 的系数为.【答案】40-【解析】()()42112x x +⋅-的展开式中3x 的项为:()()313213441C 2C 240x x x x ⨯-+⨯-=-,所以展开式中3x 的系数为40-.故答案为:40-3.(2024·山东滨州)()622x x y y ⎛⎫+- ⎪⎝⎭的展开式中42x y 的系数为.(用数字作答)【答案】40-【解析】()62x y -的通项公式为()()66166C 2C 2rrr r rr r r T x y x y --+=-=-,令2r =得,()22424236C 260T x y x y =-=,此时4242602120x y x y ⋅=,令3r =得,()33333346C 2160T x y x y =-=-,此时3342160160xx y x y y-⋅=-,故42x y 的系数为12016040-=-故答案为:40-考法四三项式指定项的系数【例4-1】(2023·全国·校联考模拟预测)在6221x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为()A .721B .-61C .181D .-59【答案】D【解析】6221x x ⎛⎫+- ⎪⎝⎭ =()6221x x ⎡⎤+-⎢⎥⎣⎦的展开式的通项公式为1r T +=()6622C 1rrrx x -⎛⎫+- ⎪⎝⎭=()()626C 21r r rr x x ---+,其中()66rx -+的展开式的通项公式为1k T +=66C kr kr x---,当0r =时,60r k --=,6k ∴=,常数项为()00666C C 2-;当1r =时,62r k --=,3k ∴=,常数项为()1365C C 2-;当2r =时,64r k --=,0k ∴=,常数项为()22064C C 2-;故常数项为()00666C C 2-+()1365C C 2-+()22064C C 259-=-.故选:D【例4-2】(2023·广东广州)()522x x y +-的展开式中52x y 的系数为(用数字作答).【答案】120【解析】由于()22522x y x y x =⋅⋅,所以()522x x y +-的展开式中含52x y 的项为()()222211252532C 2C C 120x x y x y ⨯⨯-=,所以()522x x y +-的展开式中52x y 的系数为120.故答案为:120【一隅三反】1(2023上·高二课时练习)()52123x x +-的展开式中5x 的系数为.【答案】92【解析】()()()5552123113x x x x +-=-+,又()51x -展开式的通项()()5155C 1C 1,0,1,2,3,4,5rrr r r r r T x x r -+=-=-=,()513x +展开式的通项()5155C 13C 3,0,1,2,3,4,5kk k k k k k S x x k -+===,所以含5x 的项为162534435261T S T S T S T S T S T S ++⋅+⋅++则含5x 的系数()()()()()()012345055144233322411500555555555555C 1C 3C 1C 3C 1C 3C 1C 3C 1C 3C 1C 392-+-+-+-+-+-=.故答案为:92.2.(2024·福建)412x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项为()A .72-B .70-C .70D .72【答案】C【解析】方法一:8412xx ⎛⎫+-= ⎪⎝⎭展开式中,第()1r +项()84188C 1C rrrrrr r T x--+⎛==- ⎝,所以常数项为()44581C 70T =-=,方法二:441122x x x x ⎡⎤⎛⎫=- ⎪⎛⎫+-+ ⎢⎭⎝⎣⎪⎭⎥⎝⎦展开式中,第()1r +项()4141C 2rrrr T x x -+⎛⎫=-+ ⎪⎝⎭,当0r =时,()4041C 2x x ⎛⎫-+ ⎪⎝⎭展开式中常数项为24C 6=;当2r =时,()22241C 2x x ⎛⎫-+ ⎪⎝⎭展开式中常数项为21424C C 48⨯=;当4r =时,()04441C 216x x ⎛⎫-+= ⎪⎝⎭,所以412x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项为70,故选:C .3.(2023上·河北唐山)()423a b c --的展开式中2abc 的系数为()A .208B .216-C .217D .218-【答案】B【解析】根据二项式定理可得,()423a b c --的展开式中,含2abc 的项为()()211122432C C 2C 3216a b c abc ⋅⋅⋅-⋅⋅-=-.所以,()423a b c --的展开式中2abc 的系数为216-.故选:B.考法五(二项式)系数的最值【例5-1】(2023上·辽宁朝阳·高三建平县实验中学校联考阶段练习)在二项式612x ⎫⎪⎭的展开式中,二项式系数最大的是()A .第3项B .第4项C .第5项D .第3项和第4项【答案】B【解析】二项式612x ⎫⎪⎭的展开式共有7项,则二项式系数最大的是第4项.故选:B.【例5-2】(2023·四川雅安)10(1)x -的展开式中,系数最小的项是()A .第4项B .第5项C .第6项D .第7项【答案】C【解析】依题意,10(1)x -的展开通项公式为()11010C ()(1)N C 010,r r r r r r T x x r r +≤≤=-=∈-,其系数为10(1)C r r-,当r 为奇数时,10(1)C r r-才能取得最小值,又由二项式系数的性质可知,510C 是{}10C r 的最大项,所以当=5r 时,10(1)C r r-取得最小值,即第6项的系数最小.故选:C .【一隅三反】1.(2022·重庆)(多选)若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为()A .第4项B .第5项C .第6项D .第7项【答案】BC【解析】 1n x x ⎛⎫+ ⎪⎝⎭的展开式的通项为211rr n r r n rr n n T C x C x x --+⎛⎫== ⎪⎝⎭,因为展开式中第3项与第8项的系数相等,∴27nnC C =,所以9n =,则91x x ⎛⎫+ ⎪⎝⎭展开式中二项式系数最大的项为第5项和第6项;故选:BC .2.(2024·海南)在()1nx +的二项展开式中,系数最大的项为3x 和4x ,则展开式中含x 项的系数为.【答案】7【解析】()1C 0,1,,kn kk n T xk n -+==⋅⋅⋅,因为系数最大的项为3x和4x ,所以n 为奇数,1142n n +⎛⎫--= ⎪⎝⎭,且132n n +-=,解得7n =.所以含x 项的系数为67C 7=.故答案为:73.(2023·上海嘉定)已知6(12)x +的二项展开式中系数最大的项为.【答案】4240x 【解析】设系数最大的项为()61C 2kkk T x +=,则11661166C 2C 2C 2C 2k k k k k k k k ++--⎧⋅≥⋅⎨⋅≥⋅⎩,解得111433k ≤≤,因为06k ≤≤且k 为整数,所以4k =,此时最大的项为()44456C 2240T x x ==.故答案为:4240x 4.(2023·上海)二项式()71x -的展开式中,系数最大的项为.【答案】335x 【解析】()71x -展开式通项公式为()717C 1rr rr T x -+=-,07r ≤≤且r 为整数.要想系数最大,则r 为偶数,其中()007717C 1T x x =-=,()225537C 121T x x =-=,()44357C 135T x x 3=-=,()6677C 17T x x =-=,显然系数最大项为3535T x =.故答案为:335x 考法六(二项式)系数和--赋值法【例6-1】(2023·广东佛山)(多选)已知()()()()102108012102111x x a a x a x a x ++=+++++++ ,则下列结论正确的是()A .02a =B .217a =C .13579384a a a a a ++++=D .0121023116144a a a a ++++= 【答案】ACD【解析】对于A ,令=1x -,则1080(12)(1)112a =-++-=+=,故A 正确;对于B ,因为108108(2)[(1)1][(1)1]x x x x ++=++++-,所以8662108C C (1)73a =+⋅-=,B 错误;对于C ,令0x =,则10011021024a a a +++== ,令2x =-,则8012102256a a a a -+-+== ,所以1357910242563842a a a a a -++++==,故C 正确;对于D ,由选项B 可知,977564110831084108C C (1)2,C C 64,C C 280a a a =+-==+⨯=-==,5342312510861087108810C C 196,C C 238,C C 112,C 146,a a a a =-==+==-==+=109101010C 10,C 1a a ====,所以01210231122237346452806196a a a a +++⋯+=+⨯+⨯+⨯+⨯+⨯7238811294610101116144+⨯+⨯+⨯+⨯+⨯=,故D 正确.故选:ACD.【例6-2】(2023·广东佛山)(多选)若5250125(1)(1)(1)x a a x a x a x =+-+-++- ,其中(0,1,,5)i a i = 为实数,则()A .01a =B .310a =C .13516a a a ++=-D .1251a a a +++= 【答案】AC【解析】令1x =可得01a =,A 正确.()5511x x =-+,其展开式的第三项是()()33235C 1101T x x =-=--,所以310a =-,B 不正确.令0x =可得01250a a a a ++++= ,所以1251a a a +++=- ,D 不正确.令2x =可得012532a a a a -++-= ,与01250a a a a ++++= 相减可得13516a a a ++=-,C 正确.故选:AC【一隅三反】1.(2023·河北)(多选)若()()20232320230123202332R x a a x a x a x a x x -=+++++∈ ,则()A .202302a =B .20230242022152a a a a -++++=C .20231352023512a a a a --++++=D .20233202312232023213333a a a a ++++=- 【答案】BD【解析】对于A ,当0x =时,()20232023022a =-=-,A 错误;对于B ,C ,当1x =时,20230123202311a a a a a +++++== ,当=1x -时,20230123202220235a a a a a a -+-++-=- ,所以20230242022152a a a a -++++= ,13a a+202352023512a a ++++= ,所以B 正确,C 错误;对于D ,当13x =时,20232023120220231323333a a a a ⎛⎫⨯-=++++ ⎪⎝⎭,所以()20232023123202302320231213333a a a a a ++++=--=- ,D 正确.故选:BD .2.(2023·江苏扬州·高二统考期中)(多选)()201212nn n x a a x a x a x -=++++ 的展开式中第3项和第11项的二项式系数相等,则以下判断正确的是()A .第7项的二项式系数最大B .所有奇数项二项式系数的和为132C .21212121222a a a+++=- D .12312231212a a a a ++++=- 【答案】AC【解析】由题意,可得210C C n n =,所以12n =,对于A 中,根据二项式定理的性质,可得中间项第7项的二项式系数最大,所以A 正确;对于B 中,根据二项式系数的性质,可得所有奇数项二项式系数的和为112,所以B 错误;对于C 中,对于C 中,令12x =,可得1212122102(11)0222a a a a ++++=-= ,令0x =,可得01a =,所以21212121222a a a +++=- ,所以C 正确;对于D 中,由()122120121212x a a x a x a x -=++++ ,可得()122120121212()x a a x a x a x '⎡⎤-=++++⎣⎦' ,即2111231211224(12)312a a x a x x a x -=+++-+ ,令1x =,可得1231112231224(12)24a a a a =+--+⨯+=+ ,所以D 错误.故选:AC.3.(2024·黑龙江·高二校联考期末)(多选)若()82801281(1)(1)x a a x a x a x =+-+-++- ,其中0128,,,,a a a a 为实数,则()A .01a =B .656a =C .1357128a a a a +++=D .2468128a a a a +++=【答案】AC【解析】令1t x =-,则原式转化为8280128(1)t a a t a t a t +=++++ ,对A ,令0=t ,得01a =,故A 正确;对B ,由二项式定理得6a =28C 28=,故B 错误;对CD ,令1t =,得801282a a a a ++++= ,令1t =-,得01280a a a a -+-+= ,所以71357024682128a a a a a a a a a +++=++++==,所以2468127a a a a +++=,故C 正确,D 错误.故选:AC考法七余数与小数【例7-1】(2023下·河南郑州·高二校联考期中)108除以49所得的余数是.【答案】22【解析】法一:由10010198291010101010(71)C 7C 7...C 7C 718=+=+++++,前9项可以被49整除,而910C 71714922+==+,故余数为22.法二:由510564(58491)==+5423324549515491015491015495154915=+⨯⨯+⨯⨯+⨯⨯+⨯⨯+,而515759375491549722==⨯+,故余数为22.故答案为:22【例7-2】.(2023·高二课时练习)将50.991精确到0.01的近似值是.【答案】0.96【解析】因为()55011225550.99110.009C 1C 0.009C 0.00910.0450.000810.95581=-=⨯-⨯+⨯-≈-+= ,且将50.991精确到0.01,故近似值为0.96故答案为:0.96【一隅三反】1.(2023安徽)1.028的近似值是.(精确到小数点后三位)【答案】1.172【解析】由题意得:8801223388881.02(10.02)0.020.020.02 1.172C C C C =+≈+⋅+⋅+⋅≈.故答案为:1.1722.(2023上·河北)1098除以1000的余数是.【答案】24【解析】因为10101922899101010101010109(1002)100+C (2)100+C (2)10C 80(2)100+C (2)=-=⨯-⨯⨯-⨯++⨯-⨯⨯-L 101922891010=[100+C (2)100+C (2)100(2)1000]+1024⨯-⨯⨯-⨯++-⨯L 101922891010=[100+C (2)100+C (2)100(2)1000+1000]24⨯-⨯⨯-⨯++-⨯+L ,所以1098除以1000的余数是:24.故答案为:243.(2023下·江苏淮安·高二江苏省郑梁梅高级中学校考阶段练习)今天是星期日,经过7天后还是星期日,那么经过202315天后是()A .星期日B .星期一C .星期三D .星期四【答案】B【解析】()202320232023120222022202320231514114C 14C 141=+=+++⨯+ ,因为20231202220222023202314C 14C 14+++⨯ 能被7整除,所以202315除以7余1,所以经过202315天后是星期一.故选:B.4.(2024·甘肃武威)干支纪年是中国古代的一种纪年法.分别排出十天干与十二地支如下:天干:甲乙丙丁戊己庚辛壬癸地支:子丑寅卯辰巳午未申酉戌亥把天干与地支按以下方法依次配对:把第一个天干“甲”与第一个地支“子”配出“甲子”,把第二个天干“乙”与第二个地支“丑”配出“乙丑”,L ,若天干用完,则再从第一个天干开始循环使用.已知2023年是癸卯年,则8132+年以后是年.【答案】丙午【解析】因为88817788132(121)212C 12C 123+=++=+⨯++⨯+ ,所以8132+年以后地支为“午”.因为8881777888132(103)210C 103C 10332+=++=+⨯⨯++⨯⨯++ ,又因为88326563,32+=+除以10余数为3,所以8132+年以后天干为“丙”,故8132+年以后是丙午年.故答案为:丙午考法八杨辉三角的应用【例8】(2023·广东广州)(多选)我国南宋数学家杨辉在1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.该表蕴含着许多的数学规律,下列结论正确的是()第0行1第1行11第2行121第3行1331第4行14641第5行15101051第6行1615201561…………A .3333434520232024C C C C C ++++= B .11111=,211121=,L ,51115101051=C .从左往右逐行数,第2023项在第63行第7个D .第5行到第10行的所有数字之和为2024【答案】AC【解析】对于A 选项,由组合数的计算性质()1*1C C C ,,m m m n n n m n m n -++=∈<N ,所以,3333433334520234452023C C C C C C C C ++++=++++ 433434552023202320232024C C C C C C =+++==+= ,A 对;对于B 选项,()555122334455555111101C 10C 10C 10C 1010=+=+⋅+⋅+⋅+⋅+15010001000050000100000161051=+++++=,B 错;对于C 选项,第()n n ∈N 行共有1n +项,从左往右逐行数,第n 行最后一项对应的项数为()()()1212312n n n n ++++++++= ,因为()()62162220162++=,且202320167=+,所以,从左往右逐行数,第2023项在第63行第7个,C 对;对于D 选项,第()*n n ∈N 行所有项之和为01C C C 2n n n n n ++=+ ,所以,第5行到第10行的所有数字之和为()565610212222201612-+++==- ,D 错.故选:AC.【一隅三反】1.(2023·山东青岛·高二校联考期中)(多选)我国南宋数学家杨辉1261年所著的《详解九章算法》一书中展示了二项式系数表,数学爱好者对杨辉三角做了广泛的研究.则下列结论正确的是()A .123367891C C C C +++=B .第2023行的第1012个和第1013个数最大C .第6行、第7行、第8行的第7个数之和为第9行的第7个数D .第34行中从左到右第14个数与第15个数之比为2:3【答案】ABD【解析】A 选项,123678768761C C C 168421321⨯⨯⨯+++=+++=⨯⨯⨯,39987C 84321⨯⨯==⨯⨯,故A 正确;B 选项,由图可知:第n 行有1n +个数字,如果n 是奇数,则第12n +和第112n ++个数字最大,且这两个数字一样大;如果n 是偶数,则第12n+个数字最大,故第2023行的第1012个和第1013个数最大,故B 正确;C 选项,第6行,第7行,第8行的第7个数字分别为:1,7,28,其和为36;第9行第7个数字是84,故C 错误;D 选项,依题意:第34行第14个数字是133434!C 13!21!=⨯,第34行第15个数字是143434!C 14!20!=⨯,所以133443434!C213!21!2:334!C314!20!⨯===⨯,故D 正确.故选:ABD.2.(2024上·江西·高二校联考期末)杨辉三角(如下图所示)是数学史上的一个伟大成就,杨辉三角中从第2行到第2023行,每行的第3个数字之和为()A .32023C B .32024C C .32023C 1-D .32024C 1-【答案】B【解析】()()()()()()()1!C !1!!!+!!1!1!C 1!r r n n n r n n r n n r n r r n r r n r +⋅++⋅-=+=-+--+-()()()()()()11!11!1!!1!C !r n n n n r n r r n r ++⋅++===+-+-,由题意可得,第2行到第2023行,每行的第3个数字之和为2222322232223420233342023442023C C C C C C C C C C C ++++=++++=+++ 323202320232024C C C ==+= ,故选:B .3.(2023上·湖北)如图,“杨辉三角”是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,比欧洲发现早500年左右.现从杨辉三角第20行随机取一个数,该数大于2023的概率为()A .1321B .1320C .57D .34【答案】A【解析】由杨辉三角的性质知第20行的数为()20C 020,N ii i ≤≤∈,一共有21个数,其中012342020202020C 1,C 20,C 190,C 1140,C 48452023=====>,由杨辉三角的对称性可知,第20行中大于2023的数的个数为214231-⨯=,故所求概率为1321.故选:A.一.单选题1.(2023·四川南充)二项式62x ⎫-⎪⎭的展开式中常数项为()A .60-B .60C .210D .210-【答案】B【解析】展开式的通项为()611216=C 2kkk k T x x --+骣琪-琪桫,所以()()161022k k k -+-´=Þ=,常数项为()2665C 24602k´-=´=,故选:B.2.(2023·河北)若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-= ,则012020a a a +++= ()A.1B.0C.20202D.20212【答案】C【解析】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=L Q ,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+L .故选:C.3.(2024上海)二项式30的展开式中,其中是有理项的项数共有()A.4项B.7项C.5项D.6项【答案】D【解析】二项式30的展开式中,通项公式为5153063030rr r r rC C x --⋅⋅=⋅,030r ≤≤,0,6,12,18,24,30r ∴=时满足题意,共6项.故选:D.4.(2023安徽省)在12nx ⎫-⎪⎭的展开式中,只有第5项的二项式系数最大,则展开式中5x 的系数为()A.7-B.358-C.358D.7【答案】D【解析】因为在12n x ⎫-⎪⎭的展开式中,只有第5项的二项式系数最大所以8n =所以812x ⎫-⎪⎭的展开式的通项88218811,0,1,2,,822rrrr r r r T C x C x r +-+⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭令852r +=,得2r =所以展开式中5x 的系数为228172C ⎛⎫-= ⎪⎝⎭故选:D 5.(2023安徽)()6111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为()A.15B.20C.30D.35【答案】D【解析】因为()61x +展开式的通项为6C r r x ,所以()6111x x ⎛⎫++ ⎪⎝⎭展开式中含2x 的项为2261C x ⋅和3631x C x ⋅.因为2366152035C C +=+=,所以()6111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为35.故选:D6.(2023下·四川达州·高二统考期末)()3212x x -+的展开式中,3x 的系数为()A .20B .20-C .15-D .15【答案】B 【解析】()()632112x x x --+=,其展开式的通项为:()616C 1rrr r T x -+=⋅⋅-,取3r =得到3x 的系数为()336C 120⋅-=-.故选:B .7.(2023云南)在71x x ⎛⎫- ⎪⎝⎭的二项展开式中,系数最大的是第()项A.3B.4C.5D.6【答案】C【解析】在二项式71x x ⎛⎫- ⎪⎝⎭的展开式中,通项公式为772+177()()r r r r r r rr T C x x C x ---=⋅⋅-=-,故第r +1项的系数为7(1)r rC -,当0,2,4,6r =时,系数为正,因为0162477777C C C C C <=<<,所以当r =4时,系数最大的项是第5项.故选:C8.(2023·江西赣州·)在52x x ⎛⎫- ⎪⎝⎭的展开式中,下列说法不正确的是()A .不存在常数项B .所有二项式系数的和为32C .第3项和第4项二项式系数最大D .所有项的系数和为1【答案】D【分析】根据给定的二项式,写出展开式判断A ;利用二项式性质判断BC ;利用赋值法计算判断D 作答.【详解】523450514233245555555222222C C C C C C x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=+⋅-+⋅-+⋅-+⋅-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭53358080321040x x x x x x =-+-+-,因此在52(x x-的展开式中没有常数项,A 正确;52(x x-的展开式的所有二项式系数的和为5232=,B 正确;52(x x -的展开式的第3项和第4项二项式系数相等,并且最大,C 正确;当1x =时,52(x x-的展开式的所有项的系数和为5(1)1-=-,D 错误.故选:D二.多选题9.(2024·辽宁辽阳)若2nx⎛⎝展开式的二项式系数之和为64,则下列结论正确的是()A .该展开式中共有6项B .各项系数之和为1C .常数项为60-D .只有第4项的二项式系数最大【答案】BD【解析】因为二项式系数之和为64,即有264n =,所以6n =,则该展开式中共有7项,A 错误;令1x =,得该展开式的各项系数之和为1,B 正确;通项()()36662166C 21C 2rr rr r r rr T x x---+⎛=⋅⋅=-⋅⋅⋅ ⎝,令3602r -=,得4r =,()442561C 260T =-⨯⨯=,C 错误;二项式系数最大的是36C ,它是第4项的二项式系数,D 正确.故选:BD.10.(2023·辽宁朝阳)已知2,n ,8成等差数列,则在12nx x ⎛⎫- ⎪⎝⎭的展开式中,下列说法正确的是()A .二项式系数之和为32B .各项系数之和为1C .常数项为40D .展开式中系数最大的项为80x【答案】ABD【解析】由题意可得:22810n =+=,则5n =,对于选项A :二项式系数之和为5232=,故A 正确;对于选项B :令1x =,可得各项系数之和为()5211-=,故B 正确;对于选项C 、D :因为512x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为:()()55521551C 21C 2,0,1,2,3,4,5rrr r r r rr T x x r x ---+⎛⎫=-=-⋅⋅= ⎪⎝⎭,所以553135123280804010x x x x x x x x ---⎛⎫-=-+-+- ⎪⎝⎭,展开式中没有常数项,故C 错误;展开式中系数最大的项为80x ,故D 正确;故选:ABD.11.(2022上·辽宁本溪·高二校考期末)若202123202101232021(12)(R)x a a x a x a x a x x -=+++++∈ ,则()A .01220211a a a a ++++=-LB .20211352021312a a a a +++++=C .20210242020132a a a a -++++=D .123202123202112222a a a a++++=- 【答案】AD【解析】由题意,当0x =,2021011a ==,当1x =时,202101232021(1)1a a a a a +++++=-=- ,A 正确;当=1x -时,2021012320213a a a a a -+-+-= ,所以20211352021312a a a a +++++=- ,20210242020312a a a a -++++= ,B ,C 错误;2202120211212202122021111222222a a a a a a ⎛⎫⎛⎫+++=⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭,当12x =时,2202101220211110222a a a a ⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭,所以2202112202101111222a a a a ⎛⎫⎛⎫⨯+⨯++⨯=-=- ⎪ ⎪⎝⎭⎝⎭,D 正确.故选:AD .12.(2023下·河北沧州·高二统考期中)已知()112110121123x a a x a x a x -=++++ ,则()A .111231112a a a a ++++=-- B .11135791115a a a a a a +++++=-C .11111231152a a a a ++++=- D .12311231133a a a a ++++=- 【答案】ACD【解析】因为()112110121123x a a x a x a x -=++++ ,令0x =可得1102a =,令1x =可得()11012112311a a a a ++++=-⨯=- ①,所以111231112a a a a ++++=-- ,故A 正确;令=1x -可得()1111012310112315a a a a a a -+-++-=+⨯= ②,①-②得111357911152a a a a a a --+++++=,故B 错误;①+②得110246810152a a a a a a -++++++=,又()1123x -展开式的通项为()11111C 23rrr r T x -+=⋅⋅-(011r ≤≤且N r ∈),所以当r 为奇数时展开式系数为负数,当r 为偶数时展开式系数为正数,即0246810,,,,,0a a a a a a >,1357911,,,,,0a a a a a a <,所以12311a a a a ++++ 1111123101152a a a a a =-+-++-=- ,故C 正确;将()112110121123x a a x a x a x -=++++ 两边对x 求导可得:()102101231133232311x a a x a x a x --=++++ ,再令1x =可得()101231123113323133a a a a ++++=--⨯=- ,故D 正确;故选:ACD 三.填空题13.(2023下·安徽合肥·高二统考期末)已知012233C 4C 4C 4C (1)4C 729n n nn n n n n -+-++-= ,则n 的值为.【答案】6【解析】由012233C 4C 4C 4C (1)4C 729n n nn n n n n -+-++-= ,可得001112220C 1(4)C 1(4)C 1(4)C 1(4)729n n n n nn n n n--⋅⋅-+⋅⋅-+⋅⋅-++⋅⋅-= 则(14)729n -=,即6(3)729(3)n -==-,解得6n =.故答案为:6.14.(2023下·山西吕梁·高二统考阶段练习)20242023被4除的余数为.【答案】1【解析】因为20242024020241202322022202320242024202420242023(20241)C 2024C 2024C 2024C 20241=-=-+--+ ,且2024可以被4整除,所以余数为1.故答案为:1.15.(2023·北京)()82212x x x ⎛⎫-+ ⎪⎝⎭的展开式中常数项为.(用数字作答)【答案】2464-【解析】82x x ⎛⎫+ ⎪⎝⎭的展开式的通项8821882C C 2rr r r r rr T x x x --+⎛⎫=⋅= ⎪⎝⎭(0r =,1,2, (8).当4r =时,其展开式的常数项为448C 21120=;当=5r 时,其展开式中21x的系数为558C 21792=,则()82212x x x ⎛⎫-⋅+ ⎪⎝⎭的展开式中常数项为1120217922464-⨯=-.故答案为:2464-16.(2023上·山东·高二校联考阶段练习)()21nx x ++展开式中各项的系数可以仿照杨辉三角构造如图所示的广义杨辉三角,其性质是以下各行每个数是它正上方和左、右两边三个数的和(不足3个数时,用0补上),则()52(3)1x x x -++的展开式中,7x 项的系数为.【答案】45-【解析】根据题意,可得广义杨辉三角如图所示,可知()521x x ++的展开式中,6x 项的系数为745,x 项的系数为30,所以()()5231x x x -++的展开式中,7x 项的系数为14533045⨯-⨯=-.故答案为:45-四.解答题17.(2023·广东梅州)在二项式()92x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有偶数项系数之和;(4)系数绝对值之和.【答案】(1)512(2)1(3)9841-(4)19683【解析】(1)设()99872901292.x y a x a x y a x y a y -=++++ 二项式系数之和为012999999C C C C 2512++++== (2)设9987290129()2x y a x a x y a x y a y -=++++ ,则各项系数之和为0129a a a a ++++ ,令1,1,x y ==得()9012921 1.a a a a ++++=-= (3)由(2)知01291,a a a a ++++= 令1,1x y ==-可得:901293,a a a a -+--= 将两式相减,可得:9135791398412a a a a a -++++==-,故所有偶数项系数之和为9841-.(4)方法一:012901239,a a a a a a a a a ++++=-+-+- 令1,1,x y ==-则9012901239319683a a a a a a a a a ++++=-+-+-== 方法二:0129a a a a ++++ 即为()92x y +展开式中各项系数和,令1,1x y ==得90129319683a a a a ++++== 故系数绝对值之和为19683.18.(2023·全国·高二随堂练习)(1)求92x⎛⎝的展开式中的常数项;(2)若621x ax ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为52,求a 的值;(3)求(10611⎛⎝的展开式中的常数项;(4)若3nx ⎛⎫⎝的展开式中各项系数之和为128,求展开式中31x 的系数.【答案】答案见详解【解析】(1)设92x⎛⎝的展开式通项为:1r T +,则()()1199922199C 2C 21r r rr rr rr T x x r x -----+⎛⎫=⋅⋅-=⋅⋅-⋅ ⎪⎝⎭,当6r =时,6379C 2672T =⨯=;故92x⎛⎝的展开式中的常数项为672;(2)设621x ax ⎛⎫+ ⎪⎝⎭的展开式通项为:1r T +,则()62112316611C C r rrrr r r T xx x a a ---+⎛⎫⎛⎫=⋅⋅=⋅⋅ ⎪ ⎪⎝⎭⎝⎭,当3r =时,结合题意知此时3333334661515C C 222T x x a a a ⎛⎫⎛⎫=⋅⋅=⇒⋅=⇒= ⎪ ⎪⎝⎭⎝⎭;故a 的值为2;(3)设(10611⎛⎫ ⎪⎝⎭、的展开式通项分别为:11r m T H ++、,则3416110C C r m rm r m Tx H x -++==、,当0r m ==时,111T H ⨯=,当3,4r m ==时,454200T H ⨯=,当6,8r m ==时,7945T H ⨯=故(10611⎛⎝的展开式中的常数项为14200454246++=;(4)令1x =,则由题意可知21287n n =⇒=,设3nx ⎛⎫ ⎝的展开式通项为1r T +,则()()2577733177C 3C 31rrr r r r r r T x x x ----+⎛⎫=-=- ⎪⎝⎭,当6r =时,63377C 321T x x --=⨯=,故展开式中31x 的系数为21.19.(2023上·四川攀枝花·高二统考期末)从①第4项的系数与第2项的系数之比是74;②第3项与倒数第2项的二项式系数之和为36;这两个条件中任选一个,再解决补充完整的题目.已知()201221nn n x a a x a x a x -=+++⋅⋅⋅+(*N n ∈),且()21nx -的二项展开式中,____.(1)求n 的值;(2)①求二项展开式的中间项;②求123n a a a a +++⋅⋅⋅+的值.【答案】(1)条件选择见解析,8n =(2)①451120T x =;②831-.【解析】(1)若选择①第4项的系数与第2项的系数之比是74,则有()()()()()()33113112C 211273214244C 21 nn n n n n n n n n ----⋅⋅---⨯⨯=⋅⋅-==,化简可得24400n n --=,求得8n =或7n =-(舍去).若选择②第3项与倒数第2项的二项式系数之和为36,则有()221211C CC C 3622n nnnnn n n nn --+++=+===,化简可得2720n n +-=,求得8n =或9n =-(舍去).(2)由(1)可得8n =,①()821x -的二项展开式的中间项为()()454458C 211120T x x =⋅⋅-=.②二项式()821x -展开式的通项公式为()()()88888C 2112C rrrrr rr x x ---⋅⋅-=-⋅⋅⋅,所以0a 、2a 、4a 、6a 、8a 为正数,1a 、3a 、5a 、7a 为负数.在()828012821x a a x a x a x -=+++⋅⋅⋅+中,令00,1x a ==.再令1x =-,可得801238123831a a a a a a a a a =-+-+⋅⋅⋅+=++++⋅⋅⋅+,∴1238831a a a a +++⋅⋅⋅+=-.20.(2023下·江苏宿迁·高二统考期中)在()2021212222121D D D D D nn n n n nn n n n n x x x x x x ---++=+++++L 的展开式中,把0122,,,D D D D ,nn n n n 叫做三项式的n 次系数列.(1)求02463333D D D D +++的值;(2)根据二项式定理,将等式2(1)(1)(1)n n n x x x +=++的两边分别展开,可得左右两边的系数对应相等,如()()()()2222122C C C C C n n n nnnn=++++ ,利用上述思想方法,求001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C -+--+- 的值.【答案】(1)14(2)0【解析】(1)230615563333(1)D D D D x x x x x ++=++++ 令1x =得:3015633333D D D D =++++ ①令=1x -得:015633331D D D D =-+-+ ②①+②得:02463333282(D D D D )=+++,所以02463333D D D D 14+++=.(2)因为321(1)(1)x x x x -=-++所以()202332023220231(1)(1)x x x x -=-++,右边展开式中含4046x 项的系数为001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C -+--+- ,而展开式中左边含4046x 项的系数为0,所以001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C 0-+--+-= .21.(2023北京)在()20122112121221D D D D D D D nr r r r n n n nn n n n n n n x x x x x x x x ++--++=+++⋅⋅⋅+++⋅⋅⋅++中,把0122D ,D ,D ,,D nn n n n ⋅⋅⋅叫做三项式系数.(1)当2n =时,写出三项式系数0123422222D ,D ,D ,D ,D 的值;(2)()()*na b n N +∈的展开式中,二项式系数可用杨辉三角表示,如图:第1行11第2行121第3行1331第4行14641第5行15101051…………当04n <≤,*n ∈N 时,类比杨辉三角,请列出三项式系数表;(3)求011223398989999999999999999999999999999D C D C D C D C D C D C -+-+⋅⋅⋅+-的值(可用组合数作答).【答案】(1)02D 1=,12D 2=,22D 3=,32D 2=,42D 1=;(2)系数表见解析;(3)3399C .【解析】(1)因为()2223411232x x x x x x ++=++++,所以02D 1=,12D 2=,22D 3=,32D 2=,42D 1=.(2)当04n <≤,*n ∈N 时,三项式系数表如下:第1行111第2行12321第3行1367631第4行14101619161041(3)()()()9999201223319719719819899999999999911D D D D D D x x x x x x x x++⋅-=++++⋅⋅⋅++()09919829798999999999999C C C C C x x x x ⋅-+-⋅⋅⋅++,其中含99x 项的系数为0011229898999999999999999999999999D C D C D C D C D C -+-⋅⋅⋅+-,又()()()99999923111x x x x ++⋅-=-,()9931x -的展开式中的第1r +项为()()9931991C rrrr T x -+=-,令()39999r -=,解得66r =,所以含99x 项的系数为66339999C C =;所以001122339898999966339999999999999999999999999999D C D C D C D C D C D C C C -+-+⋅⋅⋅+-==.22.(2023上·上海松江·高二上海市松江二中校考阶段练习)已知函数()y f x =,*x ∈N ,满足:①对任意*,a b ∈N ,都有()()()()af a bf b af b bf a +>+;②对任意*n ∈N 都有()3f f n n ⎡⎤=⎣⎦.(1)试证明:()f x 为*N 上的严格增函数;(2)求()()()1628f f f ++;(3)令()3nn a f =,*n ∈N ,试证明:121111424n n n a a a ≤+++<+ .【答案】(1)证明见解析(2)66。

高三数学二项式定理通用版知识精讲

高三数学二项式定理通用版知识精讲

高三数学二项式定理通用版知识精讲【本讲主要内容】二项式定理二项式定理和二项展开式性质及其应用【知识掌握】 【知识点精析】1. 二项式定理:对任意的正整数n ,有)N n (b C ......b a C ......b a C a C )b a (*n n n r r -n r n 1-n 1n n 0n n ∈+++++=+这个公式所表示的定理叫做二项式定理,右边的多项式叫做n )b a (+的二项展开式,各项系数rn C ……(r =0,1,2,……,n )叫做二项式系数。

特例:在二项展开式中令a =1,b =x ,则有公式:()= (111)22+++++x C x C x C x nn n n n n2. 通项公式:二项展开式中的第r+1项r r-n rn b aC 叫做通项,记做)n r 0,N n (b a C T *r r -n r n 1r ≤≤∈=+。

注意:(1)它表示二项展开式中的任意项,只要n 和r 确定,该项也随之确定。

(2)通项公式表示的是第r+1项,而不是第r 项。

(3)公式中a ,b 的位置不能颠倒,它们的指数和一定为n 。

3. 二项式系数的性质:(1)二项式系数的对称性在二项展开式中,与首末两端“等距离”的两项的二项式系数相等; (2)二项式系数的大小规律如果二项式幂指数是偶数,中间一项12n T +的二项式系数最大;如果二项式幂指数是奇数,中间两项121n T ++和121n T +-的二项式系数相等并且最大。

(3)二项式系数的和:nn n 2n 1n 0n 2C ......C C C =++++ 当n 为偶数时C C C C C C C C n n n n n n n n n n n 024135112++++=++++=--…………当n 为奇数时C C C C C C C C n n n n n n n n n n n 024113512++++=++++=--…………(4)二项式系数与项的系数的区别:如n)bx a (+的展开式中,第r+1项的二项式系数为r n C ,第r+1项的系数为r r-n r n b aC 。

专题58二项式定理-高考数学复习资料(解析版)

专题58二项式定理-高考数学复习资料(解析版)

A.5 B.-10 C.-32 D.-42
【答案】 D
1
1
1
-2
-2
【解析】 由于 x 5 的通项为 Cr5· x 5-r·(-2)r=Cr5(-2)r·x,故(x2+1)· x 5 的展开式的常
数项是 C15·(-2)+C55(-2)5=-42.故选 D. 8.(2019·潍坊模拟)设 a∈Z,且 0≤a<13,若 512018+a 能被 13 整除,则 a=( )
方程或不等式的知识求解.
2.求几个多项式积的特定项:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情
形,求出相应的特定项,最后进行合并即可.
3.三项展开式特定项:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系
数)问题的处理方法求解;(2)将其中某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项
A.5
B.-10
C.-32
D.-42
31
x- 3 10
(2)
2 x 的展开式中所有的有理项为________.
【答案】 (1)D (2)45x2,-63, 45 x-2
4
8 256
1
5
1 5-r
1
5
-2
r-5
-2
【解析】 (1)由于 x
的通项为 Cr5· x ·(-2)r=Cr5·(-2)r·x 2 ,故(x2+1)· x
所以 a6=C510,则 k 的最大值为 6. x3+2 n
2.(2019·烟台模拟)已知 x 的展开式的各项系数和为 243,则展开式中 x7 的系数为( )
A.5
B.40
C.20
D.10

高三数学二项式定理(知识点和例题)

高三数学二项式定理(知识点和例题)

二项式定理1. 知识精讲:(1)二项式定理:()nn n r r n r n n n n n nb C b a C b a C a C b a +++++=+-- 110(*∈N n )其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555156b a C T T n n -+== 亦可写成:=+1r T rnr n aba C )(()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=--- (*∈N n ) 特别地:()n n n r n r n n n n nx C x C x C x C x +++++=+- 101(*∈N n )其中,rn C ——二项式系数。

而系数是字母前的常数。

例1.n nn n n n C C C C 1321393-++++ 等于 ( ) A .n4 B 。

n43⋅ C 。

134-n D.314-n 解:设nnn n n n n C C C C S 1321393-++++= ,于是: n n n n n n n C C C C S 3333333221++++= =13333332210-+++++nn n n n n n C C C C C故选D例2.(1)求7(12)x +的展开式的第四项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数解:(1)7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280. (2)∵91()x x-的展开式的通项是9921991()(1)r rr r r r r T C xC x x--+=-=-, ∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.(2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 ,,,,2211kn nkn n n n n n n nn n C C C C C C C C ---====②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。

高中数学-2二项式定理(带答案)

高中数学-2二项式定理(带答案)

二项式定理一.二项式定理1.右边的多项式叫做()na b +的二项展开式2.各项的系数rn C 叫做二项式系数3.式中的r n rr n C ab -叫做二项展开式的通项,它是二项展开式的第1r +项,即1(0,1,2,,).r n r r r n T C a b r n -+==4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到n 递增,与b 的次数相同;每项的次数都是.n二.二项式系数的性质性质1 ()na b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()na b +的二项展开式中,所有二项式系数的和等于2n,即012.n n n n n C C C +++=(令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()na b +的二项展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,即022132112.rr n n n n n n n C C C C C C +-++++=++++=(令1,1a b ==-即得)性质5 ()na b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n nC 取得最大值;当n 为奇数时,中间两项的二项式系数12,n nC -12n nC+相等,且同时取得最大值.(即中间项的二项式系数最大)【题型精讲】题型一、展开式中的特殊项1.21()n x x-的展开式中,常数项为15,则n =A .3B .4C .5D .6 2.在()()1nx n N *+∈的二项展开式中,若只有5x的系数最大,则n =A .8B . 9 C. 10 D .113.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.3B.5 C.6 D.10题型二、展开式的系数和1.已知()()()()100210001210012111.x a a x a x a x +=+-+-++-求:(1)0a ;(2)012100a a a a ++++(3)13599a a a a ++++;2.(江西理4)已知33nx x ⎛⎫+ ⎪⎝⎭展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4B.5C.6 D.73.(江西文5)设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,则01211a a a a ++++的值为( ) A.2-B.1- C.1D.24.(安徽文12)已知45235012345(1)x a a x a x a x a x a x -=+++++,())(531420a a a a a a ++++ 的值等于.题型三、一项展开:拆成两项1.233除以9的余数是( )A .1B .2C .4D .8题型四、多项展开:1.(|x |+||1x -2)3展开式中的常数项是( ) A .12 B .-12 C .20 D .-202.求()()()2111nx x x ++++++ 展开式中3x 项的系数.二项式定理1、展开式中的特殊项1.解.21()n x x-的展开式中,常数项为15,则223331()()15n n nn C x x -=,所以n 可以被3整除,当n=3时,13315C =≠,当n=6时,2615C =,选D 。

高中数学高考《二项式定理》专题复习导学讲义

高中数学高考《二项式定理》专题复习导学讲义

第3讲 二项式定理知 识 梳 理1.二项式定理(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -kn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为C n -12n 或C n +12n .(3)各二项式系数和:C 0n +C 1n +C 2n +…+C nn =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 辨 析 感 悟1.二项式定理的理解(1)C r n an -r b r 是(a +b )n 的展开式中的第r 项.(×) (2)在(1-x )9的展开式中系数最大的项是第5项和第6项.(×) (3)(教材习题改编)在⎝ ⎛⎭⎪⎫x -2x 6的二项展开式中,常数项为-160.(√)2.二项式系数的性质(4)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.(√)(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.(×) (6)(2013·安徽卷改编)若⎝ ⎛⎭⎪⎪⎫x +a 3x n 的展开式中,仅有第5项的二项式系数最大,且x 4的系数为7,则实数a =12.(√) [感悟·提升]1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)揭示二项展开式的规律,一定牢记通项公式T r +1=C r n an -r b r 是展开式的第r +1项,不是第r 项,如(1).2.二项式系数与展开式项的系数的异同一是在T r +1=C r n a n -r b r 中,C r n 是该项的二项式系数,与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分,前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负,如(2)就是混淆两个概念的区别.二是二项式系数的最值与增减性与指数n 的奇偶性有关,当n 为偶数,中间一项的二项式系数最大,如(6);当n 为奇数时,中间两项的二项式系数相等,且同时取得最大值.考点一 通项公式及其应用【例1】 (1)(2013·浙江卷)设二项式⎝ ⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________.(2)(2013·新课标全国Ⅱ卷改编)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a 等于________. 解析 (1)T r +1=C r 5(x )5-r⎝⎛⎭⎪⎪⎫-13x r =C r 5(-1)r x 52-5r 6,令52-56r =0,得r =3,∴A =-C 35=-10.(2)(1+ax )(1+x )5=(1+x )5+ax (1+x )5,又(1+x )5中含有x 与x 2的项为T 2=C 15x ,T 3=C 25x 2. ∴展开式中x 2的系数为C 25+a ·C 15=5,∴a =-1. 答案 (1)-10 (2)-1规律方法 (1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解. 【训练1】(1)(2013·大纲全国卷改编)(1+x )8(1+y )4的展开式中x 2y 2的系数是________. (2)设二项式⎝ ⎛⎭⎪⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B ,若B =4A ,则a的值是________.解析 (1)∵(1+x )8的通项为C k 8x k ,(1+y )4的通项为C t 4y t,∴(1+x )8(1+y )4的通项为C k 8C k 4x k y t ,令k =2,t =2,得x 2y 2的系数为C 28C 24=168.(2)⎝⎛⎭⎪⎫x -a x 6展开式的通项T r +1=(-a )r C r 6x 6-32r , ∴A =(-a )2C 26,B =(-a )4C 46,由B =4A ,得(-a )4C 46=4(-a )2C 26,解之得a =±2. 又a >0,所以a =2. 答案 (1)168 (2)2学生用书第161页【例2】 (1)(2014·青岛模拟)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是________.(2)若⎝ ⎛⎭⎪⎫x +1x n 的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为________.审题路线 (1)先赋值求a 0及各项系数和,进而求得n 值,再运用二项式系数性质与通项公式求解.(2)根据二项式系数性质,由C 2n =C 6n ,确定n 的值,求出1x 2的系数. 解析 (1)∵(1+x )n =a 0+a 1x +a 2x 2+…+a n x n , 令x =0,得a 0=1.令x =1,则(1+1)n =a 0+a 1+a 2+…+a n =64,∴n =6, 又(1+x )6的展开式二项式系数最大项的系数最大,∴(1+x )6的展开式系数最大项为T 4=C 36x 3=20x 3. (2)由题意知,C 2n =C 6n ,∴n =8.∴T r +1=C r 8·x 8-r ·⎝ ⎛⎭⎪⎫1x r=C r 8·x 8-2r, 当8-2r =-2时,r =5,∴1x 2的系数为C 58=C 38=56. 答案 (1)20x 3 (2)56规律方法 (1)第(1)小题求解的关键在于赋值,求出a 0与n 的值;第(2)小题在求解过程中,常因把n 的等量关系表示为C 3n =C 7n ,而求错n 的值.(2)求解这类问题要注意:①区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质;②根据题目特征,恰当赋值代换,常见的赋值方法是使得字母因式的值或目标式的值为1,-1.【训练2】 (1)二项式⎝ ⎛⎭⎪⎫x +2x 2n 的展开式中只有第6项的二项式系数最大,则展开式中常数项是________.(2)若(1-2x )2014=a 0+a 1x +a 2x 2+…+a 2014x 2014(x ∈R ),则a 12+a 222+a 323+…+a 201422014的值为________.解析 (1)由二项式系数的性质,得n =10,∴T r +1=C r 10(x )10-r ⎝ ⎛⎭⎪⎫2x 2r =2r C r 10·x 5-52r , 令5-52r =0,则r =2,从而T 3=4C 210=180. (2)令x =0,得a 0=(1-0)2013=1. 令x =12,则a 0+a 12+a 222+…+a 201422014=0, ∴a 12+a 222+…+a 201422014=-1. 答案 (1)180 (2)-1考点三 二项式定理的应用【例3】 (2012·湖北卷改编)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =________.解析 512 012+a =(52-1)2 012+a=C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52·(-1)2 011+C 2 0122 012·(-1)2 012+a , ∵C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52·(-1)2 011能被13整除. 且512 012+a 能被13整除,∴C 2 0122 012·(-1)2 012+a =1+a 也能被13整除. 因此a 可取值12. 答案 12规律方法 (1)本题求解的关键在于将512 012变形为(52-1)2 012,使得展开式中的每一项与除数13建立联系.(2)用二项式定理处理整除问题,通常把底数写成除数(或与余数密切相关联的数)与某数的和或差的形式,再用二项式定理展开,但要注意两点:一是余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,切记余数不能为负,二是二项式定理的逆用.【训练3】 1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是________.解析 1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数是1.答案 11.二项展开式的通项T k +1=C k n an -k b k是展开式的第k +1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数要根据通项公式讨论对k 的限制.2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.3.二项式定理的应用主要是对二项展开式正用、逆用,要充分利用二项展开式的特点和式子间的联系.创新突破9——二项式的和与积问题【典例】 (2014·济南质检)⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为________.突破:展开式的常数项来源于:①“x +a x ”中的x 与⎝ ⎛⎭⎪⎫2x -1x 5展开式中含1x 的项相乘;②a x 与⎝ ⎛⎭⎪⎫2x -1x 5展开式中含x 的项相乘.解析 在⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5中,令x =1,得(1+a )(2-1)5=1+a =2,∴a =1.∵⎝ ⎛⎭⎪⎫2x -1x 5展开式的通项T r +1=C r 5(2x )5-r ⎝ ⎛⎭⎪⎫-1x r =C r 5·25-r (-1)r ·x 5-2r . ①令5-2r =1,得2r =4,即r =2,因此⎝ ⎛⎭⎪⎫2x -1x 5展开式中x 的系数为C 2525-2·(-1)2=80.②令5-2r =-1,得2r =6,即r =3,因此⎝ ⎛⎭⎪⎫2x -1x 5展开式中1x 的系数为C 3525-3·(-1)3=-40. ∴⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5展开式中常数项为80-40=40. 答案 40[反思感悟] 对于求多个二项式的和或积的展开式中某项的系数问题,要注意排列、组合知识的运用,还要注意有关指数的运算性质.对于三项式问题,一般是通过合并其中的两项或进行因式分解,转化成二项式定理的形式去求解. 【自主体验】(1+2x )3(1-x )4展开式中x 项的系数为________.解析 (1+2x )3(1-x )4展开式中的x 项的系数为两个因式相乘而得到,即第一个因式的常数项和一次项分别乘以第二个因式的一次项与常数项,它为C 03(2x )0·C 14(-x )1+C 13(2x )1·C 0414(-x )0,其系数为C 03·C 14(-1)+C 13·2=-4+6=2. 答案 2基础巩固题组 (建议用时:40分钟)一、填空题1.(2014·西安调研)若(1+3)4=a +b 3(a ,b 为有理数),则a +b =________.解析 (1+3)4=1+C 14·3+C 24·(3)2+C 34(3)3+(3)4=28+163,由题设a =28,b =16,故a +b =44. 答案 442.(2013·辽宁卷改编)使⎝⎛⎭⎪⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为________. 解析T r +1=C r n (3x )n -r ⎝ ⎛⎭⎪⎫1x x r =C r n 3n -r xn -52r ,当T r +1是常数项时,n -52r =0,当r =2,n =5时成立. 答案 53.已知⎝ ⎛⎭⎪⎫x -a x 8展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是________.解析 由题意知C 48·(-a )4=1 120,解得a =±2,令x =1,得展开式各项系数和为(1-a )8=1或38. 答案 1或384.已知(x +1)10=a 1+a 2x +a 3x 2+…+a 11x 10.若数列a 1,a 2,a 3,…,a k (1≤k ≤11,k ∈Z )是一个单调递增数列,则k 的最大值是________.解析 由二项式定理知a n =C n -110(n =1,2,3,…,n ).又(x +1)10展开式中二项式系数最大项是第6项.∴a 6=C 510,则k 的最大值为6. 答案 65.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为________.解析 令x =0,得a 0=(1+0)6=1,令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6,又a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3. 答案 1或-36.(2013·四川卷)二项式(x +y )5的展开式中,含x 2y 3的项的系数是________(用数字作答).解析 T r +1=C r 5x5-r y r(r =0,1,2,3,4,5),依题意,r =3, ∴含x 2y 3的系数为C 35=5×4×33×2×1=10.答案 107.(a +x )4的展开式中x 3的系数等于8,则实数a =______.解析 (a +x )4的展开式中的通项T r +1=C r 4a 4-r x r,当r =3时,有C 34·a =8,所以a =2. 答案 28.设⎝ ⎛⎭⎪⎫5x -1x n 的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中含x 的项为________. 解析 由已知条件4n -2n =240,解得n =4, T r +1=C r 4(5x )4-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r 54-r C r 4x 4-3r 2, 令4-3r2=1,得r =2,T 3=150x . 答案 150x 二、解答题9.已知二项式(3x +1x )n 的展开式中各项的系数和为256. (1)求n ;(2)求展开式中的常数项.解 (1)由题意得C 0n +C 1n +C 2n +…+C nn =256,∴2n =256,解得n =8.(2)该二项展开式中的第r +1项为 T r +1=C r 8(3x )8-r·⎝ ⎛⎭⎪⎫1x r =C r8·x 8-4r 3, 令8-4r 3=0,得r =2,此时,常数项为T 3=C 28=28.10.若(2+x +x 2)⎝ ⎛⎭⎪⎫1-1x 3的展开式中的常数项为a ,求⎠⎛0a (3x 2-1)d x .解 ∵⎝⎛⎭⎪⎫1-1x 3=1-3x +3x 2-1x 3,∴(2+x +x 2)⎝ ⎛⎭⎪⎫1-1x 3的展开式中的常数项为a =2×1+1×(-3)+1×3=2.因此⎠⎛0a (3x 2-1)d x =(x 3-x )⎪⎪⎪a0=(x 3-x )⎪⎪⎪20=6.能力提升题组 (建议用时:25分钟)一、填空题1.(2013·陕西卷)设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为________. 解析 当x >0时,f (x )=-x <0, 所以f [f (x )]=f (-x )=⎝ ⎛⎭⎪⎫1x -x 6,T r +1=C r 6x -12(6-r )·(-x 12)r =(-1)r C r6x -3+r 2+r 2, 由r -3=0,得r =3.所以f [f (x )]表达式的展开式中常数项为(-1)3C 36=-20. 答案 -202.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析 f (x )=x 5=(1+x -1)5,它的通项为T r +1=C r 5(1+x )r ·(-1)5-r ,T 4=C 35·(-1)2(1+x )3=10(1+x )3, ∴a 3=10. 答案 103.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________. 解析 令x =1,则a 0+a 1+a 2+…+a 12=36, 令x =-1,则a 0-a 1+a 2-…+a 12=1, ∴a 0+a 2+a 4+…+a 12=36+12.令x =0,则a 0=1,∴a 2+a 4+…+a 12=36+12-1=364.答案 364二、解答题4.已知(a 2+1)n展开式中的各项系数之和等于⎝ ⎛⎭⎪⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的系数最大的项等于54,求正数a 的值.解 ⎝⎛⎭⎪⎫165x 2+1x 5展开式的通项为T r +1=C r 5⎝ ⎛⎭⎪⎫165x 25-r ·⎝ ⎛⎭⎪⎫1x r =⎝ ⎛⎭⎪⎫1655-r C r 5x 20-5r 2,令20-5r =0,得r =4,故常数项T 5=C 45×165=16.又(a 2+1)n 展开式的各项系数之和为2n ,由题意得2n =16,∴n =4.∴(a 2+1)4展开式中系数最大的项是中间项T 3,从而C 24(a 2)2=54,解得a = 3.方法强化练——计数原理 (对应学生用书P359)(建议用时:60分钟)一、填空题1.A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边(A ,B 可以不相邻),那么不同的排法共有________.解析 可先排C ,D ,E 三人,共A 35种排法,剩余A 、B 两人只有一种排法,由分步乘法计数原理满足条件的排法共A 35=60种.答案 60种2.(2014·重庆质检)(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于________.解析 (1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n36x 6.由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7. 答案 73.(2014·济南调研)只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有________.解析 由题意知,1,2,3中必有某一个数字重复使用2次,第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.答案 18个4.组合式C 0n -2C 1n +4C 2n -8C 3n +…+(-2)n C n n 的值等于________.解析 在(1+x )n =C 0n +C 1n x +C 2n x 2+…+C n n x n 中,令x =-2,得原式=(1-2)n =(-1)n .答案 (-1)n5.若⎝ ⎛⎭⎪⎫x -12n 的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为________.解析 由题意知C 2n =n (n -1)2=15,所以n =6,则⎝ ⎛⎭⎪⎫x -12n =⎝ ⎛⎭⎪⎫x -126,令x =1得所有项系数之和为⎝ ⎛⎭⎪⎫126=164. 答案 1646.(2014·杭州检测)甲、乙两人计划从A ,B ,C 三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有________.解析 甲、乙各选两个景点有C 23C 23=9种方法,其中,入选景点完全相同的有3种.∴满足条件要求的选法共有9-3=6(种).答案 6种7.若(x -1)8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,则a 6=________.解析 (x -1)8=[(x +1)-2]8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,∴a 6=C 28(-2)2=4C 28=112.答案 1128.(2014·长沙模拟)已知x ,y 满足⎩⎨⎧ x -y +2≥0,x +y -2≤0,0≤y <2(x ∈Z ,y ∈Z ),每一对整数(x ,y )对应平面上一个点,则过这些点中的其中3个点可作不同的圆的个数为________.如图所示,阴影中的整点部分为x ,y 满足的区域,其中整数点(x ,y )共有8个,从中任取3个有C 38=56种取法.其中三点共线的有1+C 35=11(种).故可作不同的圆的个数为45.答案 459.(2014·广州调研)已知a =2⎠⎛0πcos ⎝ ⎛⎭⎪⎫x +π6d x ,则二项式⎝ ⎛⎭⎪⎫x 2+a x 5的展开式中x 的系数为________.解析 a =2⎠⎛0πcos ⎝ ⎛⎭⎪⎫x +π6d x =2sin ⎝ ⎛⎭⎪⎫x +π6⎪⎪⎪π0=-2,则⎝ ⎛⎭⎪⎫x 2+a x 5=⎝ ⎛⎭⎪⎫x 2-2x 5,∴T r +1=C r 5x 2(5-r )⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 5x 10-3r . 令10-3r =1,得r =3.∴展开式中x 的系数为(-2)3C 35=-80.答案 -8010.(2014·衡水中学模拟)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是________.解析 先将3,5排列,有A 22种排法;再将4,6插空排列,有2A 22种排法;最后将1,2插入3,4,5,6形成的空中,有C 15种排法.由分步乘法计数原理知,共有A 22·2A 22·C 15=40种.11.⎝⎛⎭⎪⎪⎫2x +13x n 的展开式中各项系数之和为729,则该展开式中二项式系数最大的项等于________.解析 依题意,令x =1,有3n =729,则n =6,∴展开式第4项的二项式系数最大,则T 4=C 36(2x )3⎝ ⎛⎭⎪⎪⎫13x 3=160x 2. 答案 160x 212.(2014·郑州调研)某商店要求甲、乙、丙、丁、戊五种不同的商品在货架上排成一排,其中甲、乙两种必须排在一起,而丙、丁两种不能排在一起,不同的排法共有________种.解析 甲、乙作为元素集团,内部有A 22种排法,“甲乙”元素集团与“戊”全排列有A 22种排法.将丙、丁插在3个空档中有A 23种方法.∴由分步计数原理,共有A 22A 22A 23=24种排法.答案 2413.(2013·新课标全国Ⅰ卷)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =________.解析 由二项式系数的性质,得a =C m 2m ,b =C m 2m +1=C m +12m +1,又13a =7b ,因此13C m 2m=7C m 2m +1,解得m =6.答案 614.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).解析 当每个台阶上各站1人时有A 33C 37种站法,当两个人站在同一个台阶上时有C 23C 17C 16种站法,因此不同的站法种数有A 33C 37+C 23C 17C 16=210+126=336(种). 答案 33615.(2014·无锡质检)(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是________. 解析 二项式⎝ ⎛⎭⎪⎫1x 2-15展开式的通项为: T r +1=C r 5⎝ ⎛⎭⎪⎫1x 25-r ·(-1)r =C r 5·x 2r -10·(-1)r .当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5;当2r -10=0,即r =5时,有2·C 55x 0·(-1)5=-2. ∴展开式中的常数项为5-2=3.答案 316.将6位志愿者分成4个组,其中两个组各2人,另两个组各1人.分赴世博会的四个不同场馆服务,不同的分配方案种数有________.解析 将6位志愿者分为2名,2名,1名,1名四组,有C 26C 24A 22=12×15×6=45种分组方法.将四组分赴四个不同场馆有A 44种方法.∴根据分步乘法计数原理,不同的分配方案有45·A 44=1 080种方法.答案 1 080二、解答题17.已知⎝ ⎛⎭⎪⎫12+2x n , (1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解 (1)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝ ⎛⎭⎪⎫12423=352, T 5的系数为C 47⎝ ⎛⎭⎪⎫12324=70, 当n =14时,展开式中二项式系数最大的项是T 8.∴T 8的系数为C 714⎝ ⎛⎭⎪⎫12727=3 432. (2)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0.∴n =12或n =-13(舍去).设T k +1项的系数最大,∵⎝ ⎛⎭⎪⎫12+2x 12=⎝ ⎛⎭⎪⎫1212(1+4x )12, ∴⎩⎨⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1. ∴9.4≤k ≤10.4,∴k =10.∴展开式中系数最大的项为T 11,T 11=C 1012·⎝ ⎛⎭⎪⎫122·210·x 10=16 896x 10. 18.(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为多少?(2)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?解 (1)由题意知有5个座位都是空的,我们把3个人看成是坐在座位上的人,往5个空座的空档插.由于这5个空座位之间共有4个空,3个人去插,共有A 34=24种.(2)法一 每个学校至少一个名额,则分去7个,剩余3个名额分到7所学校的方法种数就是要求的分配方法种数.分类:若3个名额分到一所学校有7种方法;若分配到2所学校有C 27×2=42种;若分配到3所学校有C 37=35种.∴共有7+42+35=84种方法.法二 10个元素之间有9个间隔,要求分成7份,相当于用6块档板插在9个间隔中,共有C 69=84种不同方法.所以名额分配的方法共有84种.。

高中数学二项式定理知识点+练习

高中数学二项式定理知识点+练习

要求层次重难点二项式定理用二项式定理解决与二项展开式有关的简单问题B二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.(一)知识内容1.二项式定理:011()C C C C*n n n r n r r n nn n n na b a a b a b b n--+=+++++∈N,.2.通项公式:展开式的第1r+项1C0r n r rr nT a b r n-+=,≤≤.3.杨辉三角.4.二项式系数的性质:⑴在二项展开式中,与首末两端“等距离”的两项的二项式系数相等;⑵当12nk+<时,二项式系数C kn是逐渐递增的,它的后半部分是逐渐递减的.n是偶数时,中间项最大;n是奇数时,中间两项相等且最大.⑶二项式系数之和:01C C C2n nn n n+++=.(二)典例分析【例1】1003(23)+的展开式中共有_______项是有理项.【例2】64(1)(1)x x-+的展开式中x的系数是_______(用数字作答).【例3】610341(1)(1)xx++展开式中的常数项为_______(用数字作答).【例4】在25(42)x x++的展开式中,x的系数为_______(用数字作答).【例5】在25(42)x x++的展开式中,2x的系数为_______(用数字作答).例题精讲高考要求二项式定理板块一:二项式展开的通项与系数【例6】 在25(42)x x ++的展开式中,3x 的系数为_______(用数字作答).【例7】 求294(31)(21)x x x +-+展开式中含2x 项系数.【例8】 51(2)2x x++的展开式中整理后的常数项为 (用数字作答).【例9】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【例10】 若1()n x x+展开式的二项式系数之和为64,则展开式的常数项为_______(用数字作答).【例11】 在26(1)(1)(1)x x x ++++++的展开式中,2x 项的系数是 .(用数字作答)【例12】 2345(1)(1)(1)(1)(1)x x x x x ---+---+-的展开式中2x 的系数等于________.(用数字作答)【例13】 若423401234(23)x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+的值为_____(用数字作答).【例14】 若31(2)n x x+的展开式中含有常数项,则最小的正整数n 等于 .【例15】 在2()n x x+的二项展开式中,若常数项为60,则n 等于 (用数字作答)【例16】 21()n x x-的展开式中,常数项为15,则n = .【例17】 已知231(1)()n x x x x+++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【例18】 291()2x x -展开式中9x 的系数是_______(用数字作答).【例19】 1231()x x-展开式中的常数项为_______(用数字作答).【例20】 在8(1)(1)x x -+的展开式中5x 的系数是( ).A .−14B .14C .−28D .28【例21】 已知2()n i x x-的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【例22】 在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( )【例23】 在56789(1)(1)(1)(1)(1)x x x x x -+-+-+-+-的展开式中,含3x 项的系数是 (用数字作答)【例24】 已知5(cos 1)x θ+的展开式中2x 的系数与45()4x +的展开式中3x 的系数相等cos θ= .【例25】 若261()x ax +的二项展开式中3x 的系数为5,2则a =__________.(用数字作答)【例26】 设常数0a >,241()ax x+展开式中3x 的系数为32,则a =_____.【例27】 已知26(1)kx +(k 是正整数)的展开式中,8x 的系数小于120,则k = .【例28】 已知10()n n ∈N ≤,若nxx )1(23-的展开式中含有常数项,则这样的n 有( ) A .3个 B .2 C .1 D .0【例29】 求26(1)x x +-展开式中5x 的系数.【例30】1003(23)+的展开式中共有_______项是有理项.【例31】 64(1)(1)x x -+的展开式中x 的系数是_______(用数字作答).【例32】 610341(1)(1)x x++展开式中的常数项为_______(用数字作答).【例33】 在25(42)x x ++的展开式中,x 的系数为_______(用数字作答). 【变式】 在25(42)x x ++的展开式中,2x 的系数为_______(用数字作答).【变式】 在25(42)x x ++的展开式中,3x 的系数为_______(用数字作答).【例34】 求294(31)(21)x x x +-+展开式中含2x 项系数.【例35】 51(2)2x x++的展开式中整理后的常数项为 (用数字作答).【例36】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【例38】 在26(1)(1)(1)x x x ++++++的展开式中,2x 项的系数是 .(用数字作答)【例39】 2345(1)(1)(1)(1)(1)x x x x x ---+---+-的展开式中2x 的系数等于________.(用数字作答)【例40】 12()m n ax bx +中,a b ,为正实数,且200m n mn +=≠,,它的展开式中系数最大的项是常数项,求ab的取值范围.【例41】 若31(2)n x x+的展开式中含有常数项,则最小的正整数n 等于 .【例42】 在2()n x x+的二项展开式中,若常数项为60,则n 等于 (用数字作答)【例43】 21()n x x-的展开式中,常数项为15,则n = .【例44】 已知231(1)()n x x x x+++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【例45】 291()2x x -展开式中9x 的系数是_______(用数字作答).【例46】 1231()x x-展开式中的常数项为_______(用数字作答).【例47】 在8(1)(1)x x -+的展开式中5x 的系数是( ).A .−14B .14C .−28D .28【例48】 已知2()n i x x-的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【例49】 在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( )(A )15- (B )85 (C )120- (D )274【例50】 在56789(1)(1)(1)(1)(1)x x x x x -+-+-+-+-的展开式中,含3x 项的系数是 (用数字作答)【例51】 若261()x ax +的二项展开式中3x 的系数为5,2则a =__________.(用数字作答)【例52】 设常数0a >,241()ax x+展开式中3x 的系数为32,则a =_____.【例54】 已知10()n n ∈N ≤,若nx x )1(23-的展开式中含有常数项,则这样的n 有( ) A .3个 B .2 C .1 D .0【例55】 (2009浙江4)在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5【例56】 5231x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为______;各项系数之和为______.(用数字作答)【例57】34(12)(1)x x +-的展开式中x 的系数是______,2x 的系数为______. 【例58】 关于二项式2005(1)x -有下列命题:①该二项展开式中非常数项的系数和是1:②该二项展开式中第六项为619992005C x; ③该二项展开式中系数最大的项是第1003项与第1004项; ④当2006x =时,2005(1)x -除以2006的余数是2005.其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上)【例59】 若231nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n =_____,其展开式中的常数项为______.(用数字作答)其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上)【例60】 411(1)x x ⎛⎫++ ⎪⎝⎭的展开中含2x 的项的系数为( ) A .4B .6C .10D .12【例61】 求二项式1532x x ⎛⎫- ⎪⎝⎭的展开式中:⑴常数项;⑵有几个有理项(只需求出个数即可); ⑶有几个整式项(只需求出个数即可).【例62】 1231x x ⎛⎫- ⎪⎝⎭展开式中的常数项为( )【例63】 若231nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n =_________,其展开式中的常数项为___________.(用数字作答)【例64】 已知()π0sin cos a x x dx =+⎰,则二项式61a x x ⎛⎫- ⎪⎝⎭ 展开式中含2x 项的系数是 .【例65】 设()5nx x-的展开式的各项系数之和为M , 二项式系数之和为N ,若240M N -=, 则展开式中3x 的系数为( )A .150-B .150C .500-D .500【例66】 ()()6411xx -+的展开式中x 的系数是( )A .4-B .3-C .3D . 4【例67】 若621x ax ⎛⎫+ ⎪⎝⎭的二项展开式中2x 的系数为52,则a = (用数字作答).【例68】6260126(1)x a a x a x a x -=++++,则0a +126a a a +++=______.【例69】 若在二项式10(1)x +的展开式中任取一项,则该项的系数为奇数的概率是_____.【例70】 在261(2)x x-的展开式中常数项是______,中间项是________.【例71】 在7(1)ax +的展开式中,3x 的系数是2x 的系数与4x 的系数的等差中项,若实数1a >,那么_______a =.【例72】 令n a 为1()(1)n n f x x +=+的展开式中含1n x -项的系数,则数列1{}na 的前2009项和为______.【例73】 已知lg lg 2(21)x n x ++展开式中最后三项的系数的和是方程2lg(7272)0y y --=的正数解,它的中间项是42lg 210+,求x 的值.【例74】 二项式1532()x x-的展开式中:⑴求常数项;⑵有几个有理项; ⑶有几个整式项.【例75】 在()11332x x⋅-⋅的展开式中任取一项,设所取项为有理项的概率为p ,则1p x dx =⎰A .1B .67 C .76 D .1113【例76】 若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为 .【例77】 已知26(1)kx +(k 是正整数)的展开式中,8x 的系数小于120,则k =______.【例78】 若12nx x ⎛⎫+ ⎪⎝⎭的展开式中前三项的系数成等差数列,则展开式中4x 项的系数为_______.【例79】 在二项式412nx x ⎛⎫+ ⎪⎝⎭的展开式中,前三项的系数成等差数列,求展开式中所有有理项.【例80】 求()()31011x x -+展开式中5x 的系数;【例81】 求612x x ⎛⎫++ ⎪⎝⎭展开式中的常数项.【例82】 在312nx x ⎛⎫⎪⎝⎭+的展开式,只有第5项的二项式系数最大,则展开式中常数项为 .(用数字作答)【例83】 在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5【例84】 6122x x ⎛⎫- ⎪⎝⎭的展开式的常数项是 (用数字作答)【例85】6(2)x +的展开式中3x 的系数是( ) A .20B .40C .80D .160【例86】4()x y y x -的展开式中33x y 的系数为 .【例87】 已知12nx x ⎛⎫+ ⎪⎝⎭展开式的第二项与第三项的系数比是1:2,则n =________.【例88】 若n x )2(+展开式的二项式系数之和等于64,则第三项是 .【例89】 522x x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数是________;其展开式中各项系数之和为_______.(用数字作答)【例90】 在2nx x ⎛⎫+ ⎪⎝⎭的二项展开式中,若常数项为60,则n 等于( )A.3 B.6 C.9 D.12【例91】 已知a 为实数,10()x a +展开式中7x 的系数是15-,则a =_______.【例92】 求91x x ⎛⎫- ⎪⎝⎭的二项展开式中含3x 的项的二项式系数与系数.【例93】 1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .【例94】 二项式41nx x x ⎛⎫+ ⎪⎝⎭的展开式中第三项系数比第二项系数大44,求第4项的系数.【例95】10()x y -的展开式中,73x y 的系数与37x y 的系数之和等于__________.(一)知识内容1.二项式定理:011()C C C C *n n n r n r rn nn n n n a b a ab a b b n --+=+++++∈N ,. 2.通项公式:展开式的第1r +项1C 0r n r rr n T ab r n -+=,≤≤. 3.杨辉三角.4.二项式系数的性质:⑴在二项展开式中,与首末两端“等距离”的两项的二项式系数相等;⑵当12n k +<时,二项式系数C k n 是逐渐递增的,它的后半部分是逐渐递减的.n 是偶数时,中间项最大;n 是奇数时,中间两项相等且最大.板块二:二项式系数与最值(二)典例分析展开式【例1】 求51x x ⎛⎫+ ⎪⎝⎭的二项展开式.【例2】 若()5122a b +=+(a ,b 为有理数),则a b +=( ) A .45B .55C .70D .80二项式系数的和【例3】 若()10023100012310023xa a x a x a x a x -=+++++,求()()22024********a a a a a a a a ++++-++++的值.【例4】 若201(1)(1)(1)(1)(1)n n n x x x a a x a x ++++++=+-+-,则01n a a a ++= .【例5】 若423401234(23)x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+的值为_____(用数字作答).【例6】 若52345012345(2)x a a x a x a x a x a x -=+++++,则12345a a a a a ++++=_____.【例7】 已知7270127(12)x a a x a x a x -=++++,求017||||||a a a +++.【例8】 若()72345670123456712x a a a x a x a x a x a x a x +=+++++++,求0246a a a a +++的值.【例9】 若423401234(23)x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+的值为( ).【例10】 设5432()5101051f x x x x x x =-+-++,则1()f x -等于( )A .51x +B .512x --C .512x +-D .51x -【例11】 若1002100012100(12)(1)(1)(1)x a a x a x a x +=+-+-++-,则13599a a a a ++++=( )A .1001(31)2-B .1001(31)2+C .1001(51)2-D .1001(51)2+【例12】 已知()77012712x a a x a x a x -=++++,求:⑴ 1237a a a a ++++;⑵ 1357a a a a +++; ⑶ 0246a a a a +++.【例13】 若()10023100012310023xa a x a x a x a x -=+++++,求()()22024********a a a a a a a a ++++-++++的值.【例14】 若55432543210(2)x a x a x a x a x a x a -=+++++,则12345a a a a a ++++=________.(用数字作答)【例15】 若201(1)(1)(1)(1)(1)n n n x x x a a x a x ++++++=+-+-,则01n a a a ++= .【例16】 若()2009200901200912x a a x a x -=+++,则20091222009222a a a +++的值为( ) A .0B .2C .1-D .2-最值问题【例17】 如果232(3)nx x -的展开式中含有非零常数项,则正整数n 的最小值为_______(用数字作答).【例18】20(23)x +展开式中系数最大的项是第几项?【例19】 12()m n ax bx +中,a b ,为正实数,且200m n mn +=≠,,它的展开式中系数最大的项是常数项,求a的取值范围.【例20】 如果232(3)nx x -的展开式中含有非零常数项,则正整数n 的最小值为_______(用数字作答).【例21】20(23)x +展开式中系数最大的项是第几项?【例22】 二项式(1sin )n x +的展开式中,末尾两项的系数之和为7,且二项式系数最大的一项的值为52,则x 在(0,2π)内的值为___________.【例23】 已知1()2n x x+的展开式中前三项的系数成等差数列.⑴求n 的值;⑵求展开式中系数最大的项.【例24】 已知(13)n x +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.【例25】 在132nx x -⎛⎫- ⎪⎝⎭的展开式中,只有第5项的二项式系数最大,则展开式中常数项是____.A .7-B .7C .28-D .28【例26】 (12)n x +的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.【例27】 已知lg 8(2)x x x +的展开式中,二项式系数最大的项的值等于1120,求x .【例28】 求10312x x ⎛⎫- ⎪⎝⎭的展开式中,系数绝对值最大的项以及系数最大的项.【例29】 已知3241nx x ⎛⎫+ ⎪ ⎪⎝⎭展开式中的倒数第三项的系数为45,求: ⑴含3x 的项; ⑵系数最大的项.【例30】 设m n +∈N ,,1m n ,≥,()(1)(1)m n f x x x =+++的展开式中,x 的系数为19.⑴求()f x 展开式中2x 的系数的最大、最小值;⑵对于使()f x 中2x 的系数取最小值时的m 、n 的值,求7x 的系数.(一)知识内容1.二项式定理:011()C C C C *n n n r n r rn nn n n n a b a ab a b b n --+=+++++∈N ,. 2.通项公式:展开式的第1r +项1C 0r n r rr n T ab r n -+=,≤≤. 3.杨辉三角.4.二项式系数的性质:⑴在二项展开式中,与首末两端“等距离”的两项的二项式系数相等;⑵当12n k +<时,二项式系数C k n 是逐渐递增的,它的后半部分是逐渐递减的.n 是偶数时,中间项最大;n 是奇数时,中间两项相等且最大.⑶二项式系数之和:01C C C 2nn n n n +++=.(二)典例分析【例1】 计算()50.997的近似值(精确到0.001).()()550.99710.003=-2150.003100.003=-⨯+⨯-【例2】 利用二项式定理证明:22389n n +--是64的倍数.【例3】 若*n ∈N ,证明:2332437n n +-+能被64整除.【例4】 证明:22(13)(13)(*)n n n ++-∈N 能被12n +整除.【例5】 证明:2121(13)(13)(*)n n n ++++-∈N 能被12n +整除.板块三:二项式定理的应用【例6】 求证:021222()()()C C C C n nn n n n +++=【例7】 证明:mm k 0C C 2C n m k mn k n n --==∑【例8】 求证:121C 2C C 2n n n n n n n -+++=⋅【例9】 证明:n nkn k n k k n n +=--=++++∑20123C (1)(2)(1)(2).【例10】 证明:220C (1)2nk n n k k nn -==+∑.【例11】 n ∈N 且3n ≥,求证:()323238.n n n n ->++【例12】 求证:()()()21sin 1sin *nnn n θθ++-∈N ≥【例13】 求证:()()()()21221*nnnn n n n ++-∈N ≥【例14】 已知:1x y x y +=∈R ,,,求证:112n n n x y -+≥,(*)n ∈N【例15】 0*a b a b n ∈+∈R N 、,,≥,求证:()22n n na b a b ++≥11n n n n na ab ab b a b --++⋯+++【例17】 设数列{}n a 是等比数列,311232C mm m a +-=Α,公比q 是421()4x x +的展开式的第二项. ⑴用n x ,表示通项n a 与前n 项和n S ;⑵若1212C C C nn n n n n A S S S =+++用n x ,表示n A【例18】 已知数列0123a a a a ,,,,(00≠a )满足:112(123)i i i a a a i -++==,,, 求证:对于任意正整数n ,【例19】 ⑴3023-除以7的余数________;⑵555515+除以8的余数是__________; ⑶20001991除以310的余数是 .【例20】 求证:()2223n n n n +∈N ,≥≥【例21】 对于*n ∈N ,111(1)(1)1n n n n ++<++.【例22】 求证:12(1)3*n n n+<∈N ,≤【例23】 若()5122a b +=+(a ,b 为有理数),则a b +=( )A .45B .55C .70D .80【例24】 若0()C ni i n i f m m ==∑,则22log (3)log (1)f f 等于( )1【例25】 请先阅读:在等式2cos 22cos 1()x x x =-∈R 的两边求导得2(cos 2)(2cos 1)x x ''=-,由求导法则得(sin 2)24cos (sin )x x x -⋅=⋅-,化简得sin22sin cos x x x =.⑴利用上述想法(或其他方法),结合等式012211(1)C C C C C n n n n nn n n n n x x x xx --+=+++⋅⋅⋅++(x ∈R ,整数2n ≥),证明:112[(1)1]C nn k k n k n x k x--=+-=∑; ⑵对于整数3n ≥,求证:1(1)C 0nk k n k k =-=∑.⑶对于整数3n ≥,求证①21(1)C 0nkknk k =-=∑;②10121C 11n nkn k k n +=-=++∑.【例26】 已知23*0123(1)(1)(1)(1)(1)(2,)n n n x a a x a x a x a x n n +=+-+-+-++-∈N ≥.⑴当5n =时,求012345a a a a a a +++++的值; ⑵设22343,2n n n n a b T b b b b -==++++.试用数学归纳法证明:当2n ≥时,(1)(1)3n n n n T +-=.【例27】 已知函数()f x 满足()()ax f x b f x ⋅=+(0ab ≠),(1)2f =,并且使()2f x x =成立的实数x 有且只有一个.⑴求()f x 的解析式;⑵若数列{}n a 的前n 项和为n S ,n a 满足132a =,当2n ≥时,2()n nS n f a -=,求数列{}n a 的通项公式.⑶在⑵的条件下,令112log (1)n n d a +=-(d ∈N ),求证:当3n ≥时,有1210121C C C C 3C 41n n nn n n n n n d d d d n --+++++>-+.【例28】 已知,,i m n 是正整数,且1i m n <<≤,⑴证明A A i i i i n m m n >;⑵证明(1)(1)n m m n +>+.【例29】 在二项式()1nx +的展开式中,存在着系数之比为57∶的相邻两项,则指数()*n n ∈N 的最小值为 .【例30】 100111-的末尾连续零的个数是 ( )A .7B .5C .3D .2【例31】 设2a i =+,求11212121212121A C a C a C a =-+-+【例32】 设()()21*174n n ++∈N 的整数部分和小数部分分别为nM与n m ,则()n n n m M m +的值为 .。

高三数学 专项精析精炼 考点47 二项式定理

高三数学 专项精析精炼 考点47 二项式定理

考点47 二项式定理一、选择题1. (2014·湖北高考理科·T2)若二项式7)2(x a x +的展开式中31x 的系数是84,则实数a = A. 2 B. 34 C.1 D.42【解题提示】 考查二项式定理的通项公式【解析】选C. 因为1r T += r r r r r r r x a C xax C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得a =1.2. (2014·湖南高考理科·T4)51(2)2x y -的展开式中23x y 的系数是( ) A .-20 B .-5 C .5 D .20【解题提示】利用二项式定理展开式的通项公式。

【解析】选A. 因为()32323520221y x y x C -=-⎪⎭⎫ ⎝⎛,所以23x y 的系数是-20。

3.(2014·浙江高考理科·T5)在46)1()1(y x ++的展开式中,记n m y x 项的系数为 ),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 210【解题指南】根据二项展开式的性质求解.【解析】选C.由二项展开式的通项性质可知n m y x 项的系数为),(n m f 64m n C C =所以=+++)3,0(2,1()1,2()0,3(f f f f )321123664644120C C C C C C +++=4.(2014·四川高考理科·T2)在6)1(x x +的展开式中,含3x 项的系数为( )A.30B.20C.15D.10【解题提示】利用二项式定理将6)1(x x +展开即得3x 项的系数.【解析】选C. 因为6)1(x x +=001122334455666666666(C C C C C C C )x x x x x x x x ++++++ =23456761520156x x x x x x x ++++++,故选C.二、填空题5. (2014·山东高考理科·T14) 若24()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .【解题指南】本题考查了,二项式定理,基本不等式的应用,可先写出已知式子二项展开式的通项,然后利用基本不等式求出最值. 【解析】将62⎪⎭⎫ ⎝⎛+x b ax 展开,得到r r r r r x b a C T 312661--+=,令3312=-r ,得3=r . 由22,1,20223336=≥+==ab b a ab b a C 所以得. 答案:2.6.(2014·安徽高考理科·T13)设n a ,0≠是大于1的自然数,na x ⎪⎭⎫ ⎝⎛+1的展开式为n n x a x a x a a ++++Λ2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a【解题提示】 由二项展开式定理分别得出2x x 和的二项式系数12a a 和,联立求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-二项式定理精讲精练1.二项式定理(1)二项式定理011()C C C C ()n n n k n k k n nn n n n a b a ab a b b n --*+=+++++∈L L N ,这个公式叫做二项式定理,等号右边的多项式叫做()na b +的二项展开式,共有____________项,其中各项的系数_____________叫做二项式系数.说明:二项式定理中的,a b 既可以取任意实数,也可以取任意的代数式,还可以是别的.在二项式定理中,如果设1,a b x==,则得到公式:0122(1)C C C C C n k k n n n n n n n x x x x x +=++++++L L .(2)二项展开式的通项 二项展开式中的C kn kk n ab -叫做二项展开式的通项,用1k T +表示,即通项为展开式的第__________项:1C k n k k k n T a b -+=.2.“杨辉三角”与二项式系数的性质(1)杨辉三角当n 依次取1,2,3,…时,()na b +展开式的二项式系数可以表示成如下形式:该表称为“杨辉三角”,它蕴含着许多规律:例如:在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;在相邻的两行中,除1以外的其余各数都等于它“肩上”两个数字之_______. (2)二项式系数的性质①对称性.与首末两端“等距离”的两个二项式系数_________.事实上,这一性质可直接由公式C C m n mn n -=得到.②增减性与最大值.当12n k +<时,二项式系数是逐渐增大的;当12n k +>时,二项式系数是逐渐减小的,因此二项式系数在中间取得最大值.当n 是偶数时,中间的一项的二项式系数_________最大;当n 是奇数时,中间的两项的二项式系数_________相等且最大.③各二项式系数的和.已知0122(1)C C C C C n k k n nn n n n n x x x x x +=++++++L L .令1x =,则0122C C C C n nn n n n =++++L .也就是说,()na b +的展开式的各个二项式系数的和为_________.K 知识参考答案:1.(1)n +1C ({0,1,2,,})kn k n ∈L (2)1k +2.(1)和(2)①相等②2C nn 1122C,Cn n nn-+③2nK —重点 二项式定理及二项展开式的通项公式K —难点 用二项式定理解决与二项展开式有关的简单问题 K —易错容易混淆项与项的系数,项的系数与项的二项式系数一、二项展开式中特定项(项的系数)的计算求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n =L ).一定要记准二项式的展开式,对于较复杂的二项式,有时先化简再展开更简捷. 【例1】已知在的展开式中,第6项为常数项.(1)求含的项的系数;(2)求展开式中所有的有理项.【解析】(1)由通项公式得,因为第6项为常数项,所以时,有,解得,令,得,故所求系数为.(2)根据通项公式,由题意得1023010rr r -∈≤≤∈⎧⎪⎪⎨⎪⎪⎩Z Z ,令,则,即,因为,所以应为偶数,所以可以取,即可以取2,5,8,所以第3项、第6项、第9项为有理项,它们分别为, ,,即22456345,,48256x x . 【名师点睛】第m 项是令1k m +=;常数项是该项中不含“变元”,即“变元”的幂指数为0;有理项是通项中“变元”的幂指数为整数.【例2】(2015陕西)二项式(1)()n x n *+∈N 的展开式中2x 的系数为15,则n = A .4 B .5 C .6 D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n Τx +=,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得6n =或5n =-,因为n *∈N ,所以6n =,故选C .二、与二项式定理有关的求和问题二项式定理011()C C C C ()n n n k n k k n n n n n n a b a a b a b b n --*+=+++++∈L L N 中,,a b 既可以取任意实数,也可以取任意的代数式,还可以是别的.我们在求和时,要根据具体问题灵活选取,a b 的值.【例3】在的展开式中,求:(1)二项式系数的和;(2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和;(4)奇数项的系数和与偶数项的系数和;(5)x 的奇次项系数和与x 的偶次项系数和. 【解析】设,各项系数和即为,奇数项系数和为,偶数项系数和为,x 的奇次项系数和为,x 的偶数项系数和为.由于(*)是恒等式,故可用“赋值法”求出相关的系数和. (1)二项式系数的和为.(2)令x =y =1,得各项系数和为.(3)奇数项的二项式系数和为.偶数项的二项式系数和为.(4)令x=y=1,得①.令x=1,y=-1(或x=-1,y=1),得②.①+②得,故奇数项的系数和为.①-②得,故偶数项的系数和为.(5)x的奇次项系数和为;x的偶次项系数和为.【名师点睛】二项式定理是一个恒等式,即对,a b的一切值都成立,在做题时,,a b的-,1或0.值一般取1三、整除、求余问题有关整除、求余问题是二项式定理的应用之一,关键在于如何把问题转化为一个二项式问题,注意结合二项式定理和整除、求余的有关知识来解决.∈N)能被25整除.【例4】利用二项式定理证明2n+2·3n+5n-4(n*【解析】因为2n+2·3n=4×(1+5)n,所以2n+2·3n+5n-4,则n ≥2时,2n +2·3n +5n -4能被25整除,当n =1时,2n +2·3n +5n -4=25. 所以,当n *∈N 时,2n +2·3n +5n -4能被25整除. 四、混淆项的系数与项的二项式系数【例5】若28()a x x -的展开式中常数项为1120,则展开式中各项系数之和为 .【错解】28()a x x-的展开式中各项系数之和为012888888C C C C 2++++=L .【错因分析】错解中误把求展开式中各项系数之和理解为求展开式中二项式系数的和,二者是不同的概念.【正解】28()a x x -的展开式的通项为82282188C ()C ()r r r r r r rr T x a x a x---+=-=-,令8-2r =0,解得r =4,则·(-a 2)4=1120,解得a 2=2,故2882()()a x x x x-=-,令x =1,则展开式中各项系数之和为(1-2)8=1.【名师点睛】一个二项展开式的第1k +项的二项式系数是C kn ,所有的二项式系数是一组仅与二项式的次数n 有关的1n +个组合数,与,a b 的取值无关,且是正数;而第1k +项的系数则是二项式系数C kn 与数字系数的积,可能为负数.只有当数字系数为1时,二项式系数恰好就是项的系数.1.10(1)x +的二项展开式中的一项是A .45B .290xC.3120x D.4252x2.二项式102xx⎛-⎪⎝⎭的展开式的二项式系数和为A.1B.1-C.102D.03.化简得A.B.C.D.4.二项式的展开式中只有一项的系数为有理数,则的可能取值为A.6B.7C.8D.95.的展开式中,各项系数之和为,各项的二项式系数之和为,且,则展开式中的常数项为A.6B.9C.12D.186.设a∈Z,且0≤a<13,若512012+a能被13整除,则a=A.0B.1C.11D.127.()73x -的展开式中,x 5的系数是_________.(用数字填写答案)8.已知,则.9.已知,在的展开式中,第二项系数是第三项系数的.(1)求的值;(2)求展开式中二项式系数最大的项; (3)若+,求的值.10.设,求下列各式的值:(1)a 0.(2)a 1+a 2+a 3+a 4+…+a 100. (3)a 1+a 3+a 5+…+a 99.(4)(a 0+a 2+…+a 100)2-(a 1+a 3+…+a 99)2. (5)|a 0|+|a 1|+…+|a 100|.11.若()332d a x x x -=+⎰,则在的展开式中,的幂函数不是整数的项共有A .13项B . 14项C .15项D . 16项12.若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 .13.设n a ,0≠是大于1的自然数,na x ⎪⎭⎫⎝⎛+1的展开式为n n x a x a x a a ++++Λ2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .14.程序框图如图所示,若输入0s =, 10n =, 0i =,则输出的为__________.15.已知展开式的二项式系数之和为256,展开式中含项的系数为112.(1)求的值;(2)求展开式中含项的系数.16.(四川)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为A .-15x 4B .15x 4C .-20i x 4D .20i x 4 17.(新课标全国Ⅰ)5(2)x x +的展开式中,x 3的系数是.(用数字填写答案)18.(山东)若ax 25x的展开式中x 5的系数是—80,则实数a =_______.1.C 【解析】由通项公式110C k k k T x +=可知,当3k =时,有34120T x =.2.C 【解析】展开式的二项式系数和为012101010101010C C C C 2++++=L .故选C.3.B 【解析】根据题意,可知,故选4.B 【解析】展开式的通项为=,而展开式中只有一项的系数为有理数,则为有理数,即为有理数,即为3的倍数,为2的倍数.若,则的可能取值为7.选B.5.B 【解析】由题意可得,令x=1,则,又各项的二项式系数之和为,所以,解得.所以该二项式展开式的通项为.令,得该二项式展开式的常数项为.故选B.6.D 【解析】201220120201212011201112012201220122012201251(521)C 52C 52C 52C a a a =-=-+-++++L , 由于020121201120111201220122012C 52C 52C 52-+-L 含有公因数52,故能被52整除,即能被13整除,要使512012+a 能被13整除,又a ∈Z ,且0≤a <13,则113a +=,故12a =.故选D.7.-189 【解析】由二项式定理得()71713C rrr rr T x -+=-,令r = 5得x 5的系数是2573C 189-=-.8.-5 【解析】,由二项式定理得,故,所以.9.【解析】(1)由题意得,解得.(2)由(1)知,二项式系数最大的值为,二项式系数最大的项为第四项,则.(3)=,令,得.10.【解析】(1)令x=0,则展开式为a0=2100.(2)令x=1,可得(*),所以.(3)令x=-1,可得.与(2)中(*)式联立相减得.(4)原式=(a0+a2+…+a100)+(a1+a3+…+a99)](a0+a2+…+a100)-(a1+a3+…+a99)].(5)因为,所以a2k -1<0(k∈N*).所以|a 0|+|a1|+|a 2|+…+|a100|=a0-a1+a2-a3+…+a100.11. C 【解析】,由得,当时,的幂函数不是整数,即共有15项,选C.12.【解析】26()baxx+展开式的通项为266123166C()()Cr r r r r r rrbT ax a b xx---+==,令1233,r-=得3r=,所以,由63336C20a b-=得1ab=,从而2222a b ab+≥=,当且仅当a b=时,22a b+的最小值为.13.【解析】由图易知0121,3,4a a a===,则1221211C3,C()4n na aa a====,即23(1)42nan na⎧=⎪⎪⎨-⎪=⎪⎩,解得3a=.14.1024 【解析】由程序框图可知,该程序执行的是求0121010101010C C C C++++L的和,易知012101010101010C C C C21024++++==L.15.【解析】(1)由二项式系数之和为,可得,设含的项为第项,则,故,即,则,解得,,.(2)由(1)知,故含项的系数为.16.A 【解析】二项式6(i)x +的展开式的通项为616C i r r rr T x -+=,令64r -=,则2r =,故展开式中含4x 的项为24246C i 15x x =-,故选A.17.10【解析】5(2)x x +的展开式的通项为555255C (2))2C r rrr rr x x x---=(0r =,1,2,…,5),令532r -=得4r =,所以3x 的系数是452C 10=. 18.2-【解析】因为5102552155C ()(C r r rr r rr T ax a x x---+==,所以由510522r r -=⇒=,因此2525C 80 2.a a -=-⇒=-。

相关文档
最新文档