一元一次方程
一元一次方程求公式
一元一次方程求公式
一元一次方程是数学中最基础也是最常用的方程之一,它是对一个未知变量的线性关系,有着广泛的应用。
一元一次方程的公式一般为:ax+b=0。
其中,a和b分别代表实数,而x
代表未知数。
一元一次方程的求解有多种方法,最常用的是分母法。
分母法的基本步骤是:首先将一元一次方程化为一元一次不等式,然后将不等式的两边同时除以a,得到x可以取的值。
例如,解求一元一次方程2x-3=0,首先将其化为一元一
次不等式,即2x-3≥0,然后将不等式的两边同时除以a,得到
x≥3/2,即得到了未知数x的取值范围。
除了分母法外,还有一种解一元一次方程的方法叫做解析法,它是一种更加精确的解方程的方法,它的基本步骤是:首先将一元一次方程化为一元一次不等式,然后将不等式的两边同时减去b,得到x可以取的值。
例如,解求一元一次方程2x-3=0,首先将其化为一元一
次不等式,即2x-3≥0,然后将不等式的两边同时减去b,即
2x-3-3=0,得到x=3/2,即得到了未知数x的取值。
一元一次方程广泛应用于日常生活中,例如,在购物中可以用一元一次方程来计算价格,在运动中可以用一元一次方程来计算速度和距离,在建筑中可以用一元一次方程来计算梁的
支撑力。
归根结底,一元一次方程的公式ax+b=0,是一种常用的线性方程,解决它的方法有分母法和解析法,并且它在我们的日常生活中有着广泛的应用。
一元一次方程(含答案)
8.一元一次方程知识纵横早在300多年前法国数学家笛卡尔有一个伟大的设想:首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题转化为代数问题;最后,把所有的代数问题转化为解方程.••虽然笛卡尔“伟大设想”没有实现,但是充分说明了方程(equation)的重要性. 一元一次方程(linear equation with one unknown)是代数方程中最基础的部分,是后续学习的基础,其基本内容包括:解方程、方程的解及其讨论.解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程.当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax=b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论:1.当a ≠0时,方程有惟一解x=b a2.当a=0且b ≠0时,方程无解;3.当a=0且b=0时,方程有无数个解.例题求解【例1】(1)已知关于x 的方程3[x-2(x-3a )]=4x 和312x a +-158x -=1•有相同的解,•那么这个解是___________. (北京市“迎春杯”竞赛题)(2)如果12+16+112+…+1(1)n n +=20032004,那么n=________.(第18届江苏省竞赛题) 思路点拨 (1)设法建立关于a 的等式,再解关于a 的方程求出a 的值;(2)•恰当地解关于n 的一元一次方程.解:(1) 2728 提示:两方程的解分别为27a 、27221a - ;(2)n=2003 【例2】 当b=1时,关于x 的方程a(3x-2)+b(2x-3)=8x-7有无数多个解,则a 等于(• ). A.2 B.-2 C.-23 D.不存在 (“希望杯”邀请赛试题) 思路点拨 将b=1代入原方程,整理所得方程,就方程解的个数情况建立a 的等式. 解:选A. 提示:原方程化为(3a-6)x=2a-4,则3a-6=0且2a-4=0.【例3】 是否存在整数k,使关于x 的方程(k-5)x+6=1-5x 在整数范围内有解?并求出各个解.思路点拨 把方程的解x 用k 的代数式表示,利用整除的知识求出k.解: 存在整数k,k=±1或k=±5,原方程解分别为x=5 或x=1.【例4】解下列关于x 的方程.(1)4x+b=ax-8;(a ≠4)(2)mx-1=nx;(3)13m(x-n)=14(x+2m).思路点拨首先将方程化为ax=b的形式,•然后注意每个方程中字母系数可能取值的情况进行讨论.解:(1)x=84 ba+-;(2)当m≠n时,方程有惟一解x=1m n -;当m=n时,原方程无解;(3)原方程化为(4m-3)x=4mn+6m,当m≠34时,原方程有惟一解x=4643mn mm+-;当m=34,n=-32(由4mn+6m=0,即n=-64mm=-32得到)时,原方程有无数个解;当m=34,n≠-32时,原方程无解.【例5】已知p、q都是质数,并且以x为未知数的一元一次方程px+5q=97•的解是1,求代数式40p+101q+4的值. (第14届“希望杯”邀请赛试题) 思路点拨用代解法可得到p、q的关系式,进而综合运用整数相关知识分析.解:提示:把x=1代入方程px+5q=97,得p+5q=97,故p与5q中必有一个数是偶数.(1)若p=2,则5q=95,q=19,40p+101q+4=40×2+101×19+4=2003.(2)5q为偶数,则q=2,p=87,而87不是质数,与题设矛盾,舍去,因此原式值为2003.学力训练一、基础夯实1.已知x=-1是关于x的方程7x3-3x2+kx+5=0的解,则k3+2k2-11k-85=______.2.计算器上有一个倒数键1/x,能求出输入的不为零的数的倒数(注:有时需先按shift 或2nd键,再按1/x键,才能实现此功能,下面不再说明).例如,输入2,按下键1/x,则得0.5,现在计算器上输入某数,再依下列顺序按键:1/x-1=1/x-1= ,在显示屏上的结果为-0.75,则原来输入的某数是_______. (第17届江苏省竞赛题)3.方程16(20x+50)+23(5+2x)-12(4x+10)=0的解为______;解方程12{12[12(12x-3)-3]-3}-3=0,得x=_______.4.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.(“希望杯”邀请赛试题)5.和方程x-3=3x+4不同解的方程是( ). A.7x-4=5x-11 B.13x +2=0 C.(a 2+1)(x-3)=(3x+4)(a 2+1) D.(7x-4)(x-1)=(5x-11)(x-1)6.已知a 是任意有理数,在下面各题中(1)方程ax=0的解是x=1 (2)方程ax=a 的解是x=1(3)方程ax=1的解是x=1a(4)方程│a │x=a 的解是x=±1 结论正确的个数是( ).A.0B.1C.2D.3 (江苏省竞赛题)7.方程x-16[36-12(35x+1)]=13x-2的解是( ). A. 1514 B.-1514 C. 4514 D.- 4514 8.已知关于x 的一次方程(3a+8b)x+7=0无解,则ab 是( ).A.正数B.非正数C.负数D.非负数9.解下列关于x 的方程:(1)ax-1=bx; (2)4x+b=ax-8; (3)k(kx-1)=3(kx-1).10.a 为何值时,方程3x +a=2x -16(x-12)有无数多个解?无解?二、能力拓展11.已知方程2(x+1)=3(x-1)的解为a+2,那么方程2[2(x+3)-3(x-a)]=3a•的解为_______.12.•已知关于x•的方程9x-•3=•kx+•14•有整数解,•那么满足条件的所有整数k=_______. (“五羊杯”竞赛题)13.已知14+4(11999+1x )=134,那么代数式1872+48·(19991999x x +)的值为_________. 14.若(3a+2b)x 2+ax+b=0是关于x 的一元一次方程,且有惟一解,则x=_____.15.有4个关于x 的方程:(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1) (3)x=0 (4)x-2+11x -=-1+11x - 其中同解的两个方程是( ).A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(4)16.方程12x ⨯+23x ⨯+…+19951996x ⨯=1995的解是( ). A.1995 B.1996 C.1997 D.199817.已知a+2=b-2=2c =2001,且a+b+c=2001k,那么k 的值为( ). A.14 B.4 C.-14 D.-4 (第15届江苏省竞赛题) 18.若k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的k 值有( ).A.4个B.8个C.12个D.16个 (第12•届“希望杯”邀请赛试题)19.若干本书分给小朋友,每人m 本,则余14本;每人9本,则最后一人只得6本,•问小朋友共几个?有多少本书?20.下边横排有12个方格,每个方格都有一个数字,•已知任何相邻三个数字的和都是20,求x 的值. (上海市竞赛题)X 10E H G F E D C B A 5三、综合创新21.如果a 、b 为定值,关于x 的方程23kx a +=2+6x bk -,无论k 为何值,它的根总是1,求a 、b 的值. (山东省竞赛题)22.将连续的自然数1~1001按如图的方式排列成一个长方形阵列,•用一个正方形框出16个数,要使这个正方形框出的16个数之和分别等于:(1)1988;(2)1991;(•3)2000;(4)2080.这是否可能?若不可能,试说明理由;若可能,请写出该方框16个数中的最小数与最大数. (2002年河北省竞赛题)1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 2122 23 24 25 26 27 28…………995 996 997 998 999 1000 1001答案:1.-105.2.设原来输入的数为x,则111x-1=-0.75,解得x=0.23.-52;904. 53、-1095.•D •6.A7.A8.B9.(1)当a≠b时,方程有惟一解x=1a b-;当a=b时,方程无解;(2)当a≠4时,•方程有惟一解x=84 ba+-;当a=4且b=-8时,方程有无数个解; 当a=4且b≠-8时,方程无解;(3)当k≠0且k≠3时,x=1k;当k=0且k≠3时,方程无解;当k=3时,方程有无数个解.10.提示:原方程化为0x=6a-12.(1)当a=2时,方程有无数个解;当a≠2时,方程无解.11.10.5 12.10、26、8、-8 提示:x=179k-,9-k│17,则9-k=±1或9-k=±17.13.2000 提示:把(11999+1x)看作一个整体. 14.1.5 15.A 16.B 17.B18.D 提示:x=20011k+为整数,又2001=1×3×23×29,k+1可取±1、±3、±23、•±29、±(3×23)、±(3×29)、±(23×29)、±2001共16个值,其对应的k值也有16个.19.有小朋友17人,书150本. 20.x=521.提示:将x=1代入原方程并整理得(b+4)k=13-2a,此式对任意的k值均成立,即关于k的方程有无数个解.故b+4=0且13-2a=0,解得a=132,b=-4.22.提示:设框中左上角数字为x,则框中其它各数可表示为:x+1,x+2,x+3,x+•7,x+8,x+9,x+10,x+14,x+15,x+16,x+17,x+21,x+22,x+23,x+24, 由题意得:x+(x+1)+(x+2)+(x+3)+…x+24=1998或1999或2000或2001,即16x+192=•2000•或2080解得x=113或118时,16x+192=2000或2080又113÷7=16 (1)即113是第17排1个数,该框内的最大数为113+24=137;118÷7=16 (6)即118是第17排第6个数,故方框不可框得各数之和为2080.。
20道一元一次方程带解答过程
20道一元一次方程带解答过程一元一次方程是初中数学中的基础知识点,也是解决实际问题的常用方法。
下面我将为大家列举20道一元一次方程,并给出相应的解答过程。
1. 问题:某台机器每小时能生产200个产品,已知生产x小时,共生产了600个产品。
求x的值。
解答过程:设生产x小时后共产生y个产品,则由题意得到方程200x = 600,解方程得到x = 3。
2. 问题:某商品原价为100元,现在降价30%,求降价后的价格。
解答过程:设降价后价格为x元,由题意得到方程0.7 * 100 = x,解方程得到x = 70。
3. 问题:一辆汽车以每小时60公里的速度行驶,已知行驶x小时,共行驶了180公里。
求x的值。
解答过程:设行驶x小时后共行驶y公里,则由题意得到方程60x = 180,解方程得到x = 3。
4. 问题:小明和小红一起做作业,小红比小明多做了5道题,已知小明做了x道题,求小红做了几道题。
解答过程:设小红做了y道题,则由题意得到方程x + 5 = y,解方程得到y = x + 5。
5. 问题:某公司的年销售额为100万,已知今年比去年增长了20%,求去年的销售额。
解答过程:设去年的销售额为x万,则由题意得到方程x * 1.2 = 100,解方程得到x = 83.33。
6. 问题:一根绳子长15米,被剪成两段,第一段比第二段长7米,求第一段的长度。
解答过程:设第一段绳子的长度为x米,则由题意得到方程x = x + 7,解方程得到x = 7.5。
7. 问题:小明买了一件衣服,原价为200元,打了8折后购买,求小明购买这件衣服所花的钱。
解答过程:设小明购买这件衣服所花的钱为x元,则由题意得到方程0.8 * 200 = x,解方程得到x = 160。
8. 问题:甲乙两个人一起工作,已知甲一小时能生产2个产品,乙一小时能生产3个产品,他们一起工作x小时,共生产了15个产品。
求x的值。
解答过程:设他们一起工作x小时后共生产y个产品,则由题意得到方程2x + 3x = 15,解方程得到x = 3。
一元一次方程四则运算
一元一次方程四则运算
一元一次方程是指只含有一个未知数的一次方程,通常的形式为ax + b = c,其中a、b、c为已知数,x为未知数。
四则运算包括加法、减法、乘法和除法,我们可以利用这些运算来解一元一次方程。
首先,我们来看加法和减法。
当我们需要解一元一次方程时,我们可以通过加法和减法将含有未知数的项移到方程的一侧,将已知数的项移到方程的另一侧,从而使得未知数的系数为1。
接着,我们可以利用乘法和除法来消去未知数的系数,从而求得未知数的值。
举个例子来说明四则运算在解一元一次方程中的应用:
假设我们有方程2x + 5 = 11,我们首先可以通过减法将已知数项5移到方程的右侧,得到2x = 11 5,即2x = 6。
然后,我们可以利用除法将未知数的系数2消去,得到x = 6 / 2,即x = 3。
这样,我们就求得了方程的解。
除了这种基本的四则运算,我们还可以利用分配律、结合律等
性质来简化方程的求解过程,从而更快地得到答案。
此外,我们还
可以通过图形法、代入法等方法来验证我们得到的解是否正确。
总的来说,四则运算在解一元一次方程中起着至关重要的作用,通过灵活运用这些运算规则,我们可以更快更准确地求得方程的解。
希望这个回答能够帮助你更好地理解一元一次方程的四则运算。
一元一次方程大全
一元一次方程大全一元一次方程是数学中的一种最基本的方程,也是学习数学的第一步。
它应用广泛,可用于分析简单的数学问题,也可以解决复杂的实际应用问题。
本文旨在介绍一元一次方程,阐述它的基本概念、解法、应用以及习题等内容。
一、一元一次方程的定义一元一次方程是一种最基本的数学方程,它的定义如下:一元一次方程是指由一元一次未知数和常数构成的数学方程,通常表示为:ax + b = 0,其中a和b分别为常数和未知数,a≠0。
二、一元一次方程的解法一元一次方程的解法大多有三种:因式分解法、移项法和简单求根法。
(1)因式分解法如果一元一次方程是 ax + b = 0,则可以分解为a(x + b/a)= 0,x = -b/a。
也就是说,一元一次方程的解为x = -b/a。
(2)移项法移项法是指将一元一次方程的右端的常数项移到左端,即将ax + b = 0写成ax=-b的形式,然后除以a,即x=-b/a。
(3)简单求根法简单求根法是指将一元一次方程的右端的常数项对左端的未知数求根,即 ax+b=0变成x=-b/a的形式,然后计算x的值。
三、一元一次方程的应用一元一次方程不仅在学校教育中应用广泛,而且在现实生活中也有重要的应用。
比如,平面几何中的几何计算,可以使用一元一次方程求解平行直线和垂直直线的交点;统计学中的数据拟合,也可以通过一元一次方程拟合数据,以获得更准确的数据分析结果;复杂的工程问题,如两垂直的射线的仿射变换,也可以用一元一次方程来求解。
四、一元一次方程的习题以下为常见的一元一次方程习题:(1)2x + 3 = 0解:x = -3/2。
(2)3x - 5 = 0解:x = 5/3。
(3)-4x + 8 = 0解:x = -8/4。
(4)4x - 7 = -9解:x = 2。
总结从上面的内容可以看出,一元一次方程是学习数学的一个基本概念,不仅在学校数学教育中应用广泛,而且在实际生活中也有广泛的应用。
它的解法有三种,分别是因式分解法、移项法、简单求根法。
一元一次方程应用题公式大全
一元一次方程应用题公式大全一、行程问题。
1. 基本公式。
- 路程 = 速度×时间(s = vt)。
- 速度=s÷ t,时间=s÷ v。
2. 相遇问题。
- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。
- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。
根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。
则(3 + 2)t=20,5t = 20,解得t = 4小时。
3. 追及问题。
- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。
- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。
根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。
则(6 - 4)t=5,2t = 5,解得t = 2.5小时。
二、工程问题。
- 工作总量 = 工作效率×工作时间(W = p× t)。
- 工作效率=W÷ t,工作时间=W÷ p。
通常把工作总量看成单位“1”。
2. 合作问题。
- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。
- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。
甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。
根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。
一元一次方程组
一元一次方程组一元一次方程组是由两个或多个一元一次方程组成的方程组。
一元一次方程是指最高次项是一次幂(即x的指数为1)的方程。
而方程组则是一组方程的集合,其中的方程可以有一个或多个未知数。
在一元一次方程组中,每个方程都可以用以下形式表示:a₁x + b₁ = 0a₂x + b₂ = 0...aₙx + bₙ = 0其中a₁,a₂,...,aₙ,b₁,b₂,...,bₙ是已知的常数,x是未知数。
一元一次方程组的解是使得方程组中所有方程同时成立的未知数的值。
解的个数可以有三种情况:1. 方程组有唯一解:方程组中的所有方程是相容的,即可以通过代数运算将方程组化简为只含一个未知数的方程,并得到唯一解。
2. 方程组没有解:方程组中的方程是不相容的,即无法通过代数运算将方程组化简为只含一个未知数的方程。
3. 方程组有无穷多解:方程组中的方程是相容的,即可以通过代数运算将方程组化简为只含一个未知数的方程,并得到一个含有未知参数的方程。
解一元一次方程组的常用方法有消元法、代入法、加减乘除法等。
下面我们将分别介绍这几种方法。
1. 消元法:消元法是一种通过消去某些未知数的系数,从而化简方程组的方法。
具体步骤如下:a) 将方程组按照系数相同的未知数排列,将其转化为一个增广矩阵的形式。
b) 选取一个方程作为基准方程,通过线性组合将其他方程的某个未知数的系数消为0。
c) 重复b)步骤,直至将方程组化简为只含一个未知数的方程。
d) 求解得到唯一解或无解。
2. 代入法:代入法是一种通过将某个已知解代入其他方程中,从而求得未知数的值的方法。
具体步骤如下:a) 选择一个方程,将其中一个未知数表示为其他未知数的函数。
b) 将已知解代入该方程,得到关于其他未知数的方程。
c) 解这个关于其他未知数的方程,得到其他未知数的值。
d) 将其他未知数的值代入方程组中的其他方程,逐步求解得到未知数的值。
e) 检验解是否满足方程组中的所有方程。
3. 加减乘除法:加减乘除法是一种通过将多个方程进行相加、相减、相乘或相除,从而消去某些未知数的系数,从而化简方程组的方法。
一元一次方程的解法
合并同类项
1. 在移项后,如果方程中存在 同类项,则需要将它们合并起来
。
2. 合并同类项时,只需要将同 类项的系数相加,保留共同的字
母部分。
3. 通过合并同类项,可以进一 步简化方程的形式,从而更方便
地求解未知数。
03
一元一次方程的解法分类
一元一次方程的解法分类
• 一元一次方程是数学中的基础知识,解法多种多 样。下面将介绍三种常用的解法:整除法、分数 法和公式法。
2. 练习题: 解方程 2(3x - 4) = 5(x + 2)
1. 练习题: 解方程 5x - 3 = 2x + 9
答案: 通过移项和合并同类项,得到3x = 12,所以 x = 4。
THANKS
感谢观看
3. 注意,在去分母的过程中,方程两边必须同时乘以分母的倒数,以保持方程的平 衡。
移项
1. 在去掉分母后,将方程中的一项移 到等号的另一侧,使其与另一项分离。
2. 移项时,需要保持等式的平衡。即 ,如果移项时乘以或除以一个数,则需 要同时对该项和等号另一侧的常数项进
行相同的操作。
3. 通过移项,可以将方程转化为形如 `ax = b`的形式,其中`a`和`b`是整数。
04
一元一次方程的应用举例
一元一次方程的应用举例
• 一元一次方程是数学中的基础知识,掌握其解法对于解决各种 问题具有重要意义。以下是针对一元一次方程的应用举例。
05
一元一次方程的解法拓展
一元一次方程的解法拓展
• 一元一次方程是数学中的基础知识,它在实际生活和高级数学中都有着广泛的应用。以下是一元一次方程及其相关内容的 拓展。
06
总结与练习
一元一次方程解法的总结
一元一次方程的定义及解法
一元一次方程的定义及解法文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)一元一次方程的定义及解法方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0)。
方程简介一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a ≠0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。
这里a是未知数的系数,b 是常数,x的次数必须是1。
即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。
“方程”一词来源于我国古算术书《九章算术》。
在这本着作中,已经会列一元一次方程。
法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。
在19世纪以前,方程一直是代数的核心内容。
详细内容合并同类项1.依据:乘法分配律2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项3.合并时次数不变,只是系数相加减。
移项1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
2.依据:等式的性质3.把方程一边某项移到另一边时,一定要变号。
性质性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立解法步骤使方程左右两边相等的未知数的值叫做方程的解。
一元一次方程100道及答案过程
一元一次方程100道及答案过程本文精心收集了100道一元一次方程题,且每道题均附上清晰的求解步骤和解答,可供学生们在学习中参考。
一元一次方程是高中一类重要的数学问题,在数学测试中出现的频率也比较高。
下面是一元一次方程100道及解答过程:1. x + 2 = 5解答:x = 32. 2x = 4解答:x = 23. x - 3 = 4解答:x = 74. 4x - 5 = 15解答:x = 45. x - 7 = 3解答:x = 106. 5x + 6 = 36 解答:x = 67. 3x = 9解答:x = 38. 7x - 2 = 12 解答:x = 29. 9x - 4 = 16 解答:x = 210. 6x + 3 = 27 解答:x = 411. 4x + 9 = 25 解答:x = 412. 2x - 7 = -5 解答:x = 413. 2x = 10解答:x = 514. 3x - 4 = 6 解答:x = 415. 8x - 3 = 21 解答:x = 316. x = 8解答:x = 817. 5x + 2 = 27 解答:x = 518. 3x - 7 = 6 解答:x = 519. 8x + 4 = 48 解答:x = 620. 4x - 3 = 7 解答:x = 221. x + 5 = 10 解答:x = 522. 2x = 6解答:x = 323. 8x + 9 = 61 解答:x = 724. 4x + 5 = 21 解答:x = 425. x - 4 = 3 解答:x = 726. 7x + 2 = 20 解答:x = 327. 9x = 27 解答:x = 328. 7x - 4 = 10 解答:x = 229. 9x + 7 = 58 解答:x = 630. 3x - 8 = 14 解答:x = 631. 5x + 9 = 44 解答:x = 732. x = 5解答:x = 533. 6x - 8 = 18 解答:x = 434. 8x + 1 = 65 解答:x = 835. 4x - 7 = 11 解答:x = 336. 5x + 3 = 28解答:x = 537. 2x + 7 = 17 解答:x = 538. 8x - 5 = 47 解答:x = 639. 9x - 1 = 80 解答:x = 940. 7x - 3 = 26 解答:x = 441. 4x + 8 = 28 解答:x = 542. 6x + 9 = 51 解答:x = 743. x + 6 = 9 解答:x = 344. 5x = 10解答:x = 245. 9x - 8 = 28 解答:x = 446. x = 12解答:x = 1247. 8x - 6 = 36 解答:x = 548. 5x + 4 = 24 解答:x = 449. x - 5 = 8 解答:x = 1350. 6x + 2 = 42 解答:x = 751. 2x + 9 = 23 解答:x = 752. 3x - 7 = 12 解答:x = 753. 5x + 6 = 30 解答:x = 554. x = 18解答:x = 1855. 7x + 4 = 46 解答:x = 656. 4x + 3 = 19 解答:x = 457. 8x = 64解答:x = 858. 6x - 5 = 21 解答:x = 459. 3x + 8 = 14解答:x = 260. x - 6 = 11 解答:x = 1761. 7x - 9 = 32 解答:x = 562. 2x + 7 = 17 解答:x = 563. 6x + 4 = 38 解答:x = 664. 5x = 30解答:x = 665. 3x + 5 = 20 解答:x = 566. x + 9 = 16 解答:x = 767. 8x - 7 = 21 解答:x = 368. x = 20解答:x = 2069. 4x + 3 = 19 解答:x = 470. 7x - 5 = 25 解答:x = 471. x - 9 = 5 解答:x = 1472. 2x + 8 = 14 解答:x = 373. 8x + 4 = 68 解答:x = 874. 6x - 7 = 11 解答:x = 375. 3x + 9 = 24 解答:x = 576. 5x - 8 = 33 解答:x = 777. x + 4 = 10 解答:x = 678. 7x + 2 = 64 解答:x = 979. 9x - 5 = 44 解答:x = 580. 4x + 8 = 28 解答:x = 581. 3x + 2 = 5 解答:x = 182. x - 8 = 10解答:x = 1883. 5x = 40解答:x = 884. 7x + 6 = 74 解答:x = 1085. 9x = 63解答:x = 786. x = 24解答:x = 2487. 4x + 1 = 17 解答:x = 488. 2x - 6 = 8 解答:x = 789. 7x - 9 = 16 解答:x = 390. 5x + 7 = 47 解答:x = 891. 3x - 7 = 4 解答:x = 792. 8x + 9 = 73 解答:x = 993. x - 4 = 9 解答:x = 1394. 6x = 48解答:x = 895. 4x + 6 = 22 解答:x = 496. x + 8 = 13 解答:x = 597. 7x + 5 = 43 解答:x = 698. 9x - 3 = 36 解答:x = 499. 3x + 6 = 24 解答:x = 6100. x - 9 = 16 解答:x = 25。
一元一次方程知识点及经典例题
一元一次方程单元复习与巩固一、知识网络三、知识要点梳理知识点一:一元一次方程及解的概念1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。
方程的右边没有变化,这要与“去分母”区别开。
要点诠释:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
知识点三:列一元一次方程解应用题1、列一元一次方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.四、规律方法指导1、判断一个式子是否是一元一次方程:(1)首先看是否是方程,(2)再看是否满足一元一次方程的三个条件或对原式进行等价变形化简后再看;2、解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行。
(2)当括号内含有分数时,常由外向内先去括号,再去分母。
(3)当分母中含有小数时,可用分数的基本性质化成整数。
(4)运用整体思想,即把含有未知数的代数式看做整体进行变形。
四、经典例题透析类型一:一元一次方程的相关概念1、已知下列各式:①2x-5=1;②8-7=1;③x+y;④x-y=x2;⑤3x+y=6;⑥5x+3y+4z=0;⑦=8;⑧x=0。
一元一次方程
一元一次方程的复习知识点一:一元一次方程的有关概念1. 叫方程,只含有 未知数,并且未知数的次数都是 ,这样的方程叫做一元一次方程(注意:一元一次方程等号两边都是 ). 叫做方程的解。
例.下列各式中,哪些是方程?哪些是一元一次方程?x+2y=9 x 2-3x=1 11=x x x 3121=- 2x=1 3x –5 3+7=10 x 2+x=1下列各式中,哪些是方程?哪些是一元一次方程?知识点二:一元一次方程的标准形式是: 例 如果x k-1+2=0是一元一次方程,则k=____若ax +b=0为一元一次方程,则__________.如果x |k|+2=0是一元一次方程,则k=____如果(k+1)x |k|+2=0是一元一次方程,则k=__如果(k+2)x 2+kx+21=0是一元一次方程,则k=____已知方程(a-2)x |a|-1=1是一元一次方程,则a= ,x= .知识点三.方程的解例1已知关于x 的方程4x -m=0的解是x=1,则m 的值是 .2.已知2-=x 是方程042=-+m x 的根,则m 的值是________________031)9(1211)8(31)7(132)6(3)5(0)4(01552)3(853)2(53)1(2=-++=-==+>+==-+=++yx x x x xy x y x x x x x变式1、x=3是下列哪个方程的解?( )A. 3x-1-9=0B. x=10-4xC. x(x-2)=3D. 2x-7=122、方程62x =-的解是( ) A. -3 .B -13C. 12D. -12 3下列各数中是方程x 2+5x +6=0的解的是( ) A.x =0 B.x =2 C.x =3 D.x =-34小明在解方程5a-x =13(x 是未知数)时,误将-x 看成了+x ,得到方程的解是x =-2,则原方程的解为( )A.x =-3B.x =0 C .x =2 D.x =15已知关于x 的方程4x -m=0的解是x=m ,则m 的值是 .6.如果a 、b 互为相反数,(a ≠0),则ax +b =0的根为( )A .1B .-1C .-1或1D .任意数知识点四:化成标准形式一元一次方程的标准形式:ax +b=0(a 不等于0)例:把下列方程化为ax +b=0的形式(1) 4(x -2)-[5(1-2x )-4(5x -1)]=0;(2)14126110312-+=---x x x 变式:把下列方程化为ax +b=0的形式(1) x x 53231223=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛- (2)61(5x+1)=81(9x+1)-31(1-x) 练习题: 1.当=m 时,关于字母x 的方程0112=--m x 是一元一次方程.2.若9a x b 7 与 – 7a 3x –4 b 7是同类项,则x= .3.如果()01122=+++-y x x ,则21x y -的值是 . 4.当=x ___时,代数式24+x 与93-x 的值互为相反数.5.已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,则m= .一元一次方程的解法考点:一元一次方程的解法。
一元一次方程解法详解
一元一次方程解法详解一元一次方程是初中数学中的基础知识,也是解决实际问题的数学工具之一。
本文将详解一元一次方程的解法,帮助读者理解和掌握这一重要概念。
一、一元一次方程的定义一元一次方程(简称一次方程)是指等号两边含有变量、常数和运算符(如加减乘除)的代数式。
通常形式为ax+b=0,其中a、b都是已知的实数,而x是未知数,a不等于0。
二、解一元一次方程的步骤解一元一次方程的一般步骤如下:步骤一:将方程按照等号两边排列,使得方程左边为零。
步骤二:类似项合并,即合并方程左边的x项和常数项,使方程左边只剩下一个x。
如果方程左边有多个x,则可以进行移项、合并同类项等操作。
步骤三:通过除法运算,将x的系数化为1。
即将方程左边的x系数除以x的系数,使得方程左边x的系数变为1。
步骤四:通过加减法逆运算,将常数项移到方程右边。
步骤五:检验解是否正确。
将方程左边的x代入原方程,验证等式是否成立。
三、解一元一次方程的示例为了更好地理解解一元一次方程的步骤,以下给出一个具体的示例:示例一:2x+3=7步骤一:将方程按照等号两边排列2x-4=0步骤二:合并同类项2x=4步骤三:将x的系数化为1x=2步骤四:将常数项移到方程右边x-2=0步骤五:检验解是否正确将x=2代入原方程,得到2*2+3=7,等式成立示例二:3(x-4)=5x-7步骤一:将方程按照等号两边排列3x-12=5x-7步骤二:合并同类项3x-5x=-7+12-2x=5步骤三:将x的系数化为1x=-5/2步骤四:将常数项移到方程右边x+5/2=0步骤五:检验解是否正确将x=-5/2代入原方程,得到3*(-5/2-4)=5*(-5/2)-7,等式成立通过以上示例,我们可以看出解一元一次方程的步骤是一致的,只是具体的计算过程和运算符的选择会有所不同。
四、解一元一次方程的注意事项在解一元一次方程时,需要注意以下几点:1. 当方程左边的系数为0时,方程无解。
2. 当方程左边和右边的系数相等且常数项相等时,方程有无数解。
一元一次方程
一元一次方程一、一元一次方程一、双基回顾1、方程、方程的解和解方程含有的叫做方程;使方程相等的的值叫做方程的解。
的过程叫做解方程。
例:x=-3是不是方程2x=5x+9的解,你是怎么知道的.2、一元一次方程只含有未知数,并且未知项的次数的方程叫做一元一次方程。
例:指出下列各式中哪些是一元一次方程?并说明理由。
(1)2x-y=3; (2)x=0; (3)x2-2x+1=0; (4)x+3=2x-1.3、等式的性质性质1 等式两边同一个数(或),结果仍相等。
若a=b,则.性质2 等式两边同一个数,或的数,结果仍相等。
若a=b,则; 若a=b,则.例:用适当的数字或式子填空,使所得的结果仍是等式,并说明理由。
(1)如果3x+8=6,那么3x=6[ ]; (2)如果-5x=25,那么x=[ ];(3)如果2x-3=5,那么2x=[ ]; (4)如果x/4=-7,那么x=[ ]4、合并同类项解一元一次方程如果方程中有同类项,可以先合并同类项变成ax=b(a≠0)的形式,再求解。
例:解方程:-3x+2x=5-1二、例题导引例1 下列说法中正确的是〔〕①若x=y,则x/m2=y/m2;②若x=y,则mx=my; ③若x/m=y/m,则x=y; ④若x2=y2,则x3=y3例2 已知方程(m-2)x︱m︱-1+3=m-5是关于x的一元一次方程,求m的值。
例3 已知x=1/2是关于x的方程4+x=3-2ax的解,求a2+a+1的值。
例4 小明去商店买练习本,回来后和同学说,店主告诉我,如果多买一些就给我8折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本价格是多少?(请你列出方程,并用等式的性质求解。
)三、练习提高夯实基础1、下列各式中,是方程的有〔〕①2x+1; ②x=0; ③2x+3>0;④x-2y=3; ⑤1/x-3x=5;⑥x2+x-3=0.A、3个B、4个C、5个D、6个2、下列方程中,解为1/2的是〔〕A、5(t-1)+2=t-2B、1/2x-1=0C、3y-2=4(y-1)D、3 (z-1) =z-23、下列变形不正确的是〔〕A、若2x-1=3,则2x = 4B、若3x =-6,则x =2C、若x+3=2,则x =-1D、若-1/2x=3,则x=-64、已x=y,下列变形中不一定正确的是〔〕A、x-2=y-2B、-2x=-2yC、ax=ayD、x/c2=y/c25、下列各式的合并不正确的是〔〕A、-x-x = -2xB、-3x+2x = -xC、1/10x-0.1x = 0D、0.1x-0.9x = 0.8x6、若x2a-1+2=0是一元一次方程,则a=.7、某班学生为希望工程捐款131元,比每人平均2元还多35元。
初中数学一元一次方程3篇
初中数学一元一次方程3篇学习是一架保持平衡的天平,一边是付出,一边是收获,少付出少收获,多付出多收获,不劳必定无获!要想取得理想的成绩,勤奋至关重要!下面是小编给大家带来的初中数学一元一次方程,欢迎大家阅读参考,我们一起来看看吧!初中数学一元一次方程1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
(完整版)一元一次方程及其解法
3.1 一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x =3,3(x +2)=4-x 等都是一元一次方程.解技巧 正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根. ②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x =3是方程2x -4=2的解,而y =3就不是方程2x -4=2的解. (3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】 下列各式哪些是一元一次方程( ).A .S =12ab ;B.x -y =0;C.x =0;D.12x +3=1;E.3-1=2;F.4y -5=1;G .2x 2+2x +1=0;H.x +2.解析:E 中不含未知数,所以不是一元一次方程;G 中未知数的次数是2,所以不是一元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程;H 虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D 中分母中含有未知数,不是一元一次方程;只有C ,F 符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】 x =-3是下列方程( )的解. A .-5(x -1)=-4(x -2) B .4x +2=1C .13x +5=5 D .-3x -1=0解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的基本性质(1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. 用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c .②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 用式子形式表示为:如果a =b ,那么ac =bc ,a c =bc(c ≠0).③性质3:如果a =b ,那么b =a .(对称性) 如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c .(传递性) 如:若∠1=60°,∠2=∠1,则∠2=60°. (2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换. 谈重点 应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,因为0不能作除数或分母.【例2-1】 下列运用等式的性质对等式进行的变形中,正确的是( ).A .若4y +2=3y -1,则y =1B .若7a =5,则a =57C .若x 2=0,则x =2D .若x 6-1=1,则x -6=1解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的基本性质1,等式的两边都减去3y +2,左边是y ,右边是-3,不是1;C 根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D 根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B 根据等式的基本性质2,两边都除以7,得到a =57.答案:B【例2-2】 利用等式的基本性质解方程:(1)5x -8=12;(2)4x -2=2x ;(3)x +1=6;(4)3-x =7.分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x =20. 方程的两边同时除以5,得x =4. (2)方程的两边同时减去2x ,得2x -2=0. 方程的两边同时加上2,得2x =2. 方程的两边同时除以2,得x =1. (3)方程两边都同时减去1, 得x +1-1=6-1,∴x=6-1.∴x=5.(4)方程两边都加上x,得3-x+x=7+x,3=7+x,方程两边都减去7,得3-7=7+x-7,∴-4=x,即x=-4.3.解一元一次方程(1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的基本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边.③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,-2-3x=7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-”,移到右边后需变成“+”,在移动的过程中同时变号,没有移动的项则不变号.所以由移项,得-3x=7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x=1,把3从方程的左边移到右边要变号,得5x=1-3,是属于移项;而把5x-15x+11x=11变成5x+11x -15x=11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区移项时应注意的问题在移项时注意“两变”:一变性质符号,即“+”号变为“-”号,而“-”号变为“+”号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为1.具体变形名称具体做法变形依据注意事项去分母方程左右两边的每一项都乘以各分母的最小公倍数等式的基本性质2不能有漏乘不含分母的项;分子是多项式的去掉分母后,要加小括号去括号可由小到大,或由大到小去括号分配律;去括号的法则不要漏乘括号内的项;括号前是“-”号的,去括号时括号内的所有项都要变号移项移项就是将方程中的某些项改变符号后,从方程的一边移到另一边等式的基本性质1 移项要变号合并同类项将方程化为ax=b的最简形式合并同类项的法则只将系数相加,字母及其指数不变化系数为1 方程的左右两边同时除以未知数系数或乘以未知数系数的倒数等式的基本性质2 分子、分母不能颠倒值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了避免错误,可将解出的结果代入原方程进行检验.【例3-1】 下列各选项中的变形属于移项的是( ). A .由2x =4,得x =2B .由7x +3=x +5,得7x +3=5+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +9解析:选项A 是把x 的系数化成1的变形;选项B 中x +5变成5+x 是应用加法交换律,只是把位置变换了一下;选项C 是作的移项变形;选项D 是应用等式的对称性“a =b ,则b =a ”所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】 解方程2-x 3-5=x -14.分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x )-60=3(x -1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12, 得4(2-x )-60=3(x -1). 去括号,得8-4x -60=3x -3. 移项,得-4x -3x =-3-8+60. 合并同类项,得-7x =49. 两边同除以-7,得x =-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的基础.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x =a (a 是一个已知数).(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分数的基本性质,把小数或百分数化为整数再去分母运算.(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】 解方程0.4x -90.5-x -52=0.03+0.02x0.03.分析:由于0.4x -90.5和0.03+0.02x 0.03的分子、分母中含有小数,可利用分数的基本性质把小数化为整数,在式子0.4x -90.5的分子、分母中都乘以10,变为4x -905,在式子0.03+0.02x0.03的分子、分母中都乘以100,变为3+2x3,然后去分母,再按解一元一次方程的步骤求解.解:分母整数化,得 4x -905-x -52=3+2x3.去分母,得6(4x -90)-15(x -5)=10(3+2x ). 去括号,得24x -540-15x +75=30+20x . 移项,得24x -15x -20x =540-75+30. 合并同类项,得 -11x =495. 两边同除以-11,得x =-45.5.与一元一次方程的解相关的问题 方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】 关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).A .-2B .43C .2D .-43解析:解方程3x +5=0,得x =-53.将x =-53代入方程3x +3k =1,得-5+3k =1,解得k =2,故应选C. 答案:C【例5-2】 若关于x 的方程(m -6)x =m -4的解为x =2,则m =__________. 解析:把x =2代入方程(m -6)x =m -4,得(m -6)×2=m -4,解得m =8. 答案:86.一元一次方程的常用解题策略 我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解一元一次方程常用的几种技巧.(1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法.(2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快.有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.【例6-1】 解方程34⎣⎡⎦⎤43⎝⎛⎭⎫12x -14-4=32x +1. 分析:注意到34×43=1,把34乘以中括号的每一项,则可先去中括号,34×43⎝⎛⎭⎫12x -14-34×4=32x +1,再去小括号为12x -14-3=32x +1,再按步骤解方程就非常简捷了. 解:去括号,得12x -14-3=32x +1.移项,合并同类项,得-x =174.两边同除以-1,得x =-174.【例6-2】 解方程x +37-x +25=x +16-x +44.分析:此题可按照解方程的一般步骤求解,但本题若直接去分母,则两边乘以最小公倍数420,运算量大容易出错,我们可两边分别通分,5(x +3)-7(x +2)35=2(x +1)-3(x +4)12,把分子整理后再按照解一元一次方程的步骤求解.解:方程两边分别通分,得5(x +3)-7(x +2)35=2(x +1)-3(x +4)12.化简,得-2x +135=-x -1012. 去分母,得12(-2x +1)=35(-x -10). 去括号,得-24x +12=-35x -350. 移项、合并同类项,得11x =-362.两边同除以11,得x =-36211.7.列一元一次方程解题(1)利用方程的解求未知系数的值当已知方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值 利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点 列一元一次方程注意挖掘隐含条件许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可发掘隐含的条件,列一元一次方程解题,发掘隐含条件时需要全面、深刻地理解掌握数学基础知识.【例7-1】 (1)当a =__________时,式子2a +1与2-a 互为相反数. (2)若6的倒数等于x +2,则x 的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a +1+(2-a )=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x +2)=1,解得x =-116.答案:(1)-3 (2)-116【例7-2】 已知x =-2是方程x -k 3+3k +26-x =x +k2的解,求k 的值.分析:把x =-2代入原方程,原方程就变成了以k 为未知数的新方程,解含有未知数k 的方程,可以求出k 的值.解:把x =-2代入原方程,得 -2-k 3+3k +26-(-2)=-2+k2. 去分母,得2(-2-k )+3k +2-(-2)×6=3(-2+k ). 去括号,得-4-2k +3k +2+12=-6+3k . 移项、合并同类项,得 -2k =-16.方程两边同除以-2,得k =8.【题01】下列变形中,不正确的是( ) A .若25x x =,则5x =.B .若77,x -=则1x =-.C .若10.2x x -=,则1012x x -=. D .若x ya a=,则ax ay =. 【题02】下列各式不是方程的是( ) A .24y y -=B .2m n =C .222p pq q -+D .0x =【题03】解为2x =-的方程是( ) A .240x -=B .5362x +=C .3(2)(3)5x x x ---=D .275462x x --=- 【题04】若关于x 的方程223(4)0n x n -+-=是一元一次方程,求n 的值.课后作业【题05】已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m = .【题06】若关于x 的方程2(2||)(2)(52)0m x m x m -+---=是一元一次方程,求m 的解.【题07】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .【题08】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x = .【题09】2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( ) A .2140- B .2140C .5615-D .5615【题10】解方程:135(3)3(2)36524x x ---=【题11】解方程:11 (4)(3) 34y y-=+【题12】解方程:122233x xx-+ -=-【题13】解方程:21511 36x x+--=【题14】解方程:11(0.170.2)1 0.70.03x x--=【题15】解方程:1(4)33519 0.50.125xxx+++=+【题16】解方程:0.20.450.0150.010.5 2.50.250.015x xx++-=-【题17】解方程:0.10.90.21 0.030.7x x--=【题18】解方程:4213 2[()] 3324x x x--=【题19】解方程:111[(1)6]20343x --+=。
一元一次方程
一元一次方程一元一次方程是初中数学中的重要概念之一,它是由一个未知数和系数构成的代数方程,其中未知数的最高幂为1,例如:2x + 3 = 7。
解一元一次方程可以帮助我们找到未知数的值,从而解决实际问题。
一、一元一次方程的定义和性质一元一次方程是指只有一个未知数的代数方程,其一般形式为:ax + b = c,其中a、b、c为已知数,a≠0。
方程中的未知数一般用x表示。
一元一次方程的求解可以通过以下步骤进行:1. 将方程中未知数的系数和常数项移到同一侧,以得到ax = c - b的形式;2. 如果方程中未知数系数a为1,则可直接得到x的值,即x = c - b;3. 如果方程中未知数系数a不为1,则需要通过除以a的方式,将x 的系数化为1,从而得到x的值。
二、解一元一次方程的实例展示以下是几个解一元一次方程的实例:例1:解方程2x + 3 = 7。
解:首先将方程中未知数系数与常数项移到同一侧,得到2x = 7 - 3。
然后,将等式两边除以2,得到x = (7 - 3) / 2,即x = 4 / 2,所以x = 2是方程的解。
例2:解方程3(x - 2) = 5(x + 1) - 4。
解:首先将方程中的分布式展开,得到3x - 6 = 5x + 5 - 4。
然后,将未知数系数移到一侧,得到3x - 5x = 5 - 4 + 6。
化简得到-2x = 7,再将等式两边除以-2,得到x = -7 / 2,所以x = -3.5是方程的解。
例3:解方程4(x - 1) + 2 = 5(x + 3) - 1。
解:首先将方程中的分布式展开,得到4x - 4 + 2 = 5x + 15 - 1。
然后,将未知数系数移到一侧,得到4x - 5x = 15 - 1 + 4 - 2。
化简得到-x = 16,再将等式两边乘以-1,得到x = -16,所以x = -16是方程的解。
三、一元一次方程的应用举例一元一次方程的求解在实际问题中有着广泛的应用,以下是几个相关应用的示例:例1:小明拥有某笔钱财,他将其中2/5捐给了慈善机构,然后将剩下的400元全部存入银行,求小明原先有多少钱。
一元一次方程大全
一元一次方程大全一元一次方程是数学中最常见的方程,它以一个变量和一个常量组成,可以用来描述一些实际问题,在学习中也是一个基础性的部分。
本文旨在介绍一元一次方程的特点及求解方法,以及一些常见的一元一次方程的例子。
一、一元一次方程的特点一元一次方程是一个以变量一个常量组成的二次方程。
其特点主要有三点:第一,一元一次方程具有易解性,它的求解相对来说比较容易。
第二,一元一次方程可以用来描述许多实际问题,如物流路线选择、线性规划等等。
第三,一元一次方程具有广泛的应用,它可以应用到工程、物理、金融、统计等诸多学科中。
二、一元一次方程的求解一元一次方程的求解比较简单,主要有三种方法:第一,用移项法,即把变量都移到一边,常量都移到另一边,最后求出变量的值。
第二,用乘除法,即把变量都乘到一边,常量都除到另一边,最后求出变量的值。
第三,用分式法,即把一元一次方程转化为分式形式,然后用乘除法和分式法结合来求出变量的值。
三、一元一次方程的例子1. 一元一次方程的应用:如果有一个20厘米的木棍被剪成两部分,其中一部分有8厘米,求另一部分的长度。
此时可以用一元一次方程来求解:设x为另一部分的长度,则有20=8+x,即x=12,所以另一部分的长度为12厘米。
2. 一元一次方程的应用:已知一个正方形的边长是20厘米,求出该正方形的面积。
此时可以用一元一次方程来求解:设x为正方形的边长,则有面积=x2,即x2=20,所以x=√20,所以正方形的面积为√20的平方,也就是400厘米。
四、总结一元一次方程是一种比较简单的方程,它具有易解性和多样的应用。
我们可以把它应用到我们日常生活中,解决很多实际问题。
一元一次方程的求解方法也是数学学习中基础性的内容,需要我们熟练掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程一、选择题1、满足方程|x-1|-2|x-2|+3|x-3|=4的有理数x有多少个()A.1B.2C.3D.无数2、x+2x+3x+4x+5x+…+97x+98x+99x+100x=5050,x的解是()A.0B.1C.-1D.103、方程=2013的解是()A.2013B.2014C.2015D.20124、适合关系式|3x-4|+|3x+2|=6的整数x的值有()个.A.0B.1C.2D.大于2的自然数5、方程|x-2|+|x+3|=6的解的个数是()A.1B.2C.3D.46、方程|x-2008|=2008-x的解的个数是()A.1个B.2个C.3个D.无穷多个7、方程|3x|+|x-2|=4的解的个数是()A.0B.1C.2D.38、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是( )A .x+1=2(x﹣2)B .x+3=2(x﹣1)C . x+1=2(x﹣3)D .x-1=二、填空题9、关于x的方程(k-5)x+6=1-5x,在整数范围内有解,求整数k的值__________10、已知是方程的解,则m=__________.11、如果|x-3|-3+x=0,那么x的取值范围是__________.12、关于x的方程9x-2=kx+7的解是自然数,则整数k的值为__________.13、关于x的方程3mx+7=0和2 x+3n=0是同解方程,那么(mn)2=__________.14、方程|2x+1|=5的解为x=__________.15、书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折。
小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是__________元。
16、已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t 秒.(1)点A表示的数为__________,点B表示的数为__________,点C表示的数为__________;(2)用含t的代数式表示P到点A和点C的距离:PA=__________,PC=__________;(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.17、实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升 __________ cm.(2)开始注入 __________ 分钟的水量后,乙的水位比甲高0.5cm.三、解答题18、解方程:|x+1|+|x-3|=4.19、求|x+1|+|x-3|=4的整数解。
20、某同学在解方程=-2去分母时,方程右边的-2没有乘6,因而求得的方程的解为x=2,求a的值,并正确地解方程.21、解下列方程:(1)|5x-2|=3;(2).22、解方程:|x-1|=-2x+1.23、解方程:|2x-1|+|x-2|=|x+1|.24、若x=6是关于x的方程(x-a)=-1的解,求代数式a2+2a+1的值.25、26、27、若m=2(3x-4),n=5(x-2),当m=2n+3时,求x的值.28、已知关于x的方程和有相同解,求a的值及这个相同解.29、甲、乙两个物流公司分别在相距400km的A、B两地之间进行货物交换,C地为两车的货物中转站,假设A、B、C三地在同一条直线上,甲车以每小时120km 的速度从A地出发赶往C地,乙车以每小时80千米的速度从B地出发也赶往C 地,两车同时出发,在C地相遇,并且在C地利用0.5小时交换货物,然后各自按原速返回自己的出发地.假设两车在行驶过程中各自速度保持不变.(1)求两车行驶了多长时间相遇;(2)A、C两地相距__________km;B、C两地相距__________km;(3)求两车相距50km时的行驶时间.30、一家游泳馆的游泳收费标准为40元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类10030B类20025C类50015(1)若购买A类会员年卡,一年内游泳11次,则共消费__________元;(2)一年内游泳的次数为多少时,购买B类会员年卡最划算?通过计算验证你的说法。
31、某班将举行知识竞赛活动,班长安排小明购买奖品,小明去文化用品店买了两种大小不同的笔记本一共a本,其中大笔记本单价8元,小笔记本单价5元,若设买单价5元的小笔记本x本.(1)填写下表:单价(元/本)数量(本)金额(元)小笔记本5x本5x元大笔记本8____________________(2)列式表示:小明买大小笔记本共花__________元.(3)若小明从班长那里拿了300元,买了40本大小不同的两种笔记本(a=40),还找回55元给班长,那么小明买了大小笔记本各多少本?(4)若这个班长预计下次活动中,让小明花400元购买这两种大小笔记本,并且购买的小笔记本数量x要小于60本,但还要超过30本(30<x<60),请设计一下,小明怎样购买,才能使400元恰好全部用来买这两种大小不同的笔记本?32、A、B两地相距600千米,一列慢车从A地开出,每小时行80千米,一列快车从B地开出,每小时行120千米,两车同时开出.(1)若同向而行,出发后多少小时相遇?(2)若相背而行,多少小时后,两车相距800千米?(3)若两车同向而行,快车在慢车后面,多少小时后,快车追上慢车?(4)若两车同向而行,慢车在快车后面,多少小时后,两车相距760千米?33、拓展探究初一年级某班举行乒乓球比赛,需购买5副乒乓球拍,和若干盒乒乓球,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球拍和乒乓球、乒乓球拍每副定价48元,乒乓球每盒12元,经洽谈后,甲店每买一副乒乓球拍就赠送一盒乒乓球;乙店则全部按定价9折优惠,设该班需购乒乓球x盒(不少于5盒)(1)通过计算和化简后,用含x的代数式分别表示甲、乙两店购买所需的费用?(2)当需要购40盒乒乓球时,请你去办这件事,你打算去哪家商店购买划算?为什么?(3)试探究,当购买乒乓球的盒数x取什么值时去哪家商店购买划算?(直接写出探究的结论)34、如图,点A在数轴上表示的数是-2,点B表示+6,P、Q两点同时分别以1个单位/秒和3个单位/秒的速度从A、B两点出发,沿数轴规则运动(1)求线段AB的长度;(2)如果P、Q两点在数轴上相向移动,问几秒钟后PQ=AB?(3)如果P、Q两点在数轴上同时沿数轴负半轴方向移动(Q在P的左侧),若M、N分别是PA和BQ中点,问是否存在这样的时间t,使得线段MN=AB?若存在,请求出t的值;若不存在,请说明理由.35、一个三位数,它的个位数字是a,十位数字是个位数字的3倍少1,百位数字比个位数字大5.(1)用a的式子表示此三位数;(2)若交换个位数字和百位数字,其余不变,则新得到的三位数字比原来的三位数减少了多少?(3)请你根据题目的条件思考,a的取值不可能是多少?此时相应的三位数是多少?36、为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过160千瓦时的部分x金榜教育超过 160 千瓦时的部分x+0.15某居民五月份用电 190 千瓦时,缴纳电费 90 元. (1)求 x 和超出部分电费单价; (2)若该户居民六月份所缴电费不低于 75 元且不超过 84 元,求该户居民六月份 的用电量范围.精品金榜教育一元一次方程的答案和解析一、选择题1、答案: D 试题分析:根据绝对值的性质,要分四种情况:当 x-1≥0,x-2≥0,x-3<0 时,当 x-1 ≥0,x-2≥0,x-3>0 时,当 x-1≥0,x-2<0,x-3<0 时,当 x-1≤0,x-2<0,x-3<0 时 进行讨论,化简绝对值,再解出方程即可求出答案. 试题解析:当 x-1≥0,x-2≥0,x-3<0 时, x-1-2(x-2)+3(3-x)=4, x=2, 当 x-1≥0,x-2≥0,x-3>0 时, x-1-2(x-2)+3(x-3)=4, x=5, 当 x-1≥0,x-2<0,x-3<0 时, x-1-2(2-x)+3(3-x)=4 原方程有无数解, 当 x-1≤0,x-2<0,x-3<0 时, 1-x-2(2-x)+3(3-x)=4, x=1, ∴满足方程|x-1|-2|x-2|+3|x-3|=4 的有理数 x 有无数个. 故选 D.2、答案: B 试题分析:合并同类项、系数化为 1 即可得解. 试题解析:x+2x+3x+4x+5x+…+97x+98x+99x+100x=5050 合并同类项得 5050x=5050, 系数化为 1,得 x=1. 故选 B.3、答案: B 试题分析:方程左边各项拆除后,抵消合并,将 x 系数化为 1,即可求出解.精品金榜教育试题解析:方程变形得:x(1- + - +…+ - )=2013, 整理得: x=2013, 解得:x=2014. 故选 B4、答案: C 试题分析:分别讨论①x≥ ,②- <x< ,③x≤- ,根据 x 的范围去掉绝对值,解出 x,综合三种情况可得出 x 的最终范围. 试题解析:从三种情况考虑: 第一种:当 x≥ 时,原方程就可化简为:3x-4+3x+2=6,解得:x= ; 第二种:当- <x< 时,原方程就可化简为:-3x+4+3x+2=6,恒成立; 第三种:当 x≤- 时,原方程就可化简为:-3x+4-3x-2=6,解得:x=- ; 所以 x 的取值范围是:- ≤x≤ ,故符合条件的整数位:0,1. 故选 C.5、答案: B 试题分析:要充分利用|x-2|+|x+3|的几何意义(x 到 2 的距离与 x 到-3 的距离的 和). 试题解析:(1)当 x>2 时,原方程化为:x-2+x+3=6,∴x= ; (2)当 x<-3 时,原方程化为:2-x-3-x=6,∴x=- ; (3)当-3≤x≤2 时,原方程化为:2-x+x+3=6,5=6 不成立,舍去 ∴方程解的个数有 2 个 故选 B6、答案: D 试题分析:这道题我们用整体的思想解决.将 x-2008 看成一个整体,问题即转化为求 方程|a|=-a 的解,利用绝对值的代数意义我们不难得到,负数和零的绝对值等于它的精品金榜教育相反数,所以零和任意负数都是方程的解,即本题的答案为 D. 试题解析:由方程|x-2008|=2008-x 可知, 2008-x≥0 ∴x≤2008 ∴x 解得个数有无穷多个. 故选 D7、答案: C 试题分析:根据 x 的取值范围取绝对值,所以需要分类讨论:①当 x≥2 时;②当 0<x <2 时;③当 x<0 时;根据 x 的三种取值范围来解原方程. 试题解析:①当 x≥2 时,由原方程,得 3x+x-2=4,即 4x-2=4, 解得 x= (舍去); ②当 0<x<2 时,由原方程,得 3x-x+2=4,解得 x=1; ③当 x<0 时,由原方程,得 -3x-x+2=4,解得 x=- . 综上所述,原方程有 2 个解. 故选 C.8、答案: C 试题分析: 根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可。