8253定时器

合集下载

8253定时器控制1位led数码管数字递增

8253定时器控制1位led数码管数字递增

8253定时器是一种集成了定时和计数功能的器件,它有3个16位的定时/计数通道,可以分别独立工作,也可以协同工作。

在本实验中,我们将通过8253定时器来控制一位led数码管,使其显示数字递增的效果。

1. 材料准备- 8253定时器- 一位led数码管- 电源- 连接线- 适配器2. 电路连接我们需要将8253定时器和led数码管连接起来。

具体的连接方式可以参考8253定时器和led数码管的 datasheet。

在连接时一定要注意极性和接线的正确性。

3. 代码编写我们使用C语言来编写控制8253定时器的程序。

我们需要包含相应的头文件,并定义8253定时器所需的控制寄存器等。

我们编写一个循环,每隔一定的时间改变8253定时器的计数值,从而控制led数码管上显示的数字递增。

具体的代码实现可以参考8253定时器的使用手册。

4. 程序调试编写完代码之后,我们通过编译、下载到目标设备并调试,确保程序能够正常运行。

在调试过程中,需要检查8253定时器和led数码管的连接是否正确,以及程序中是否存在逻辑错误等。

5. 实验效果经过以上步骤,我们可以看到led数码管上显示的数字会逐渐递增,这是通过8253定时器来控制的。

这个实验可以帮助我们更好地理解和掌握8253定时器的使用方法,也为我们后续的电子设计提供了一定的参考和基础。

通过本实验,我们不仅掌握了8253定时器的基本原理和使用方法,还锻炼了自己的动手能力和实际操作技能。

希望大家在实验的过程中能够认真对待,虚心学习,不断探索和创新,为自己的技术水平和能力提升打下坚实的基础。

8253定时器是一种非常常用的集成器件,具有非常广泛的应用领域。

在本实验中,我们将以控制led数码管显示数字递增的效果来学习和熟悉8253定时器的使用方法。

通过此实验,我们将深入了解8253定时器的工作原理,并通过实际操作来掌握其使用方法。

在材料准备阶段,我们需要准备8253定时器、一位led数码管、电源、连接线和适配器。

微机第9章8253

微机第9章8253

0 0----选计数器0
0 1----选计数器1 1 0----选计数器2 1 1----无意义
写入控制口,地址A1A0=11
2、计数初值的写入
若规定只写低8位,则写入的为计数值的低8位, 高8位自动置0; 若规定只写高8位,则写入的为计数值的高8位, 低8位自动置0; 若是16位计数值,则分两次写入,先写低8位, 再写入高8位。
计数值写入计数器各自的 计数通道(端口地址)
注: ① 写入控制字后,所有控制逻辑电路复位, 输出端OUT进入初始状态。 ② CPU向8253写入的计数初值,要在CLK端输入一个 正脉冲后才能被真正装入指定通道(若在此CLK下降 沿之前读计数器,则其值是不定的)。 之后再次输入时钟脉冲(CLK)才开始计数,且每次 在脉冲的下降沿减1计数。 即:写入计数初值后,经过一个CLK,8253才开始计 数。
④ 当GATE变为低电平时计数 停止,再变为高电平时计数继 续进行。 ⑤若计数过程中重新送入初值, 则按新值重新计数。
(2)方式1——可重复触发单稳触发器
WR CLK GATE OUT 3 2 1 0 FFFE 3 2 方式1时序图 CW N=3
③计数过程中,再次给通道写入时间 ①写入CW后OUT变为高电平, GATE 常数,不影响现行操作过程,GATE再 上升沿触发后,OUT变为低并开始计数, 次触发后才按新的时间常数操作。 归零时OUT变为高电平。 ④计数过程中,GATE触发沿提前到来, ②GATE再来一次上升沿使OUT为低, 在下一个CLK的下降沿,计数器开始重 新计数,这将使输出单稳脉冲比原先 计数器以初值重新计数。 设定的计数值加宽。 可重复触发——当计数归零后,不用再次送计数值,只要给它触发脉冲,即 可产生一个同样宽度的单稳脉冲输出。

实验五 8253定时器

实验五  8253定时器

实验五8253定时器/计数器接口实验5.1实验目的掌握8253定时器/计数器的工作方式及应用编程。

5.2实验条件1. 北京达盛科技有限公司“缔造者”电子电气技术综合实验台、CPU挂箱、8086CPU模块。

2. PC机1台,已安装实验台8086开发调试软件。

3. 万用表、示波器。

5.3实验内容CPU挂箱自带一个脉冲发生器,按基频6.0MHz进行1分频(CLK0)、二分频(CLK1)、四分频(CLK2)、八分频 (CLK3)、十六分频(CLK4)输出方波。

编程设定8253计数器0、计数器1、计数器2工作于方波方式,观察其输出波形。

其中T0、T1的时钟由脉冲发生器的CLK3提供,其频率为750KHz,T0、T1的计数器初值设为927CH(37500十进制),则OUT0、OUT1输出的方波周期为(37500*4/3*10-6=0.05s)。

T2采用OUT0的输出为时钟,如果在T2中设置计数器初值为n,则OUT2输出方波周期为n*0.05s。

5.4实验步骤1. 实验接线将8253定时器/计数器的CS8253与地址译码电路的CS0相连,8253的CLK0、CLK1与脉冲发生器的CLK3相连8253的CLK2与OUT0相连,8253的OUT1与示波器相连,OUT2与开关量输入输出电路的LED1相连。

2. 建立PC机与8086CPU模块间的通讯连接将8086CPU模块正确地放在CPU挂箱上的CPU插槽中,系统上电后按下RESET键,几秒钟之后如果显示“P_”,说明CPU挂箱上的8086系统复位及8086CPU模块监控程序运行正常。

在PC机上打开8086开发调试软件,根据提示按下RESET键,几秒种后如果显示“C_”,说明与PC机通讯正常,同时8086开发调试软件用户界面提示通讯成功。

如果通讯不成功,试着选择串口COM2。

3. 编辑汇编语言源程序8086开发调试软件是将编辑、汇编、连接和调试集成在一起的综合开发环境,同时具有断点设定、程序下载到实验台等功能。

8253定时计数器知识点总结

8253定时计数器知识点总结

8253定时/计数器知识点总结1、8253简介8253是用来测量时间或者脉冲的个数,通过计量一个固定频率的脉冲个数,将时间信息转化为数字信息,供计算机系统使用。

8253有着较好的通用性和灵活性,几乎可以在所有由微处理器组成的系统中使用。

2、性能描述(1)每个8253芯片有3个独立的16位计数器通道;(2)每个计数器通道都可以按照二进制或二—十进制计数;(3)每个计数器的计数速率可以高达2MHz;(4)每个通道有6种工作方式,可以由程序设定和改变;(5)所有的输入、输出电平都与TTL兼容。

3、结构组成结构框图如下(1)数据总线缓冲器8253内部实现与CPU数据总线连接的8位双向三态缓冲器,用以传送CPU向8253的控制信息、数据信息以及CPU从8253读取的状态信息,包括某一时刻的实时计数值。

(2)读写逻辑控制控制8253的片选及对内部相关寄存器的读/写操作,它接收CPU发来的址地信号以实现片选、内部通道选择以及对读/写操作进行控制。

(3)控制寄存器在8253的初始化编程时,由CPU写入控制字,以决定通道的工作方式,此寄存器只能写入,不能读出。

(4)计数通道0号、1号、2号三个独立的、结构相同的计数器/定时器通道,每个通道包含一个16位计数寄存器存放计数初始值,一个16位的减法计数器,一个16位的锁存器。

锁存器在计数器工作的过程中,跟随计数值的变化。

接收到CPU的读计数值命令时,锁存计数值,供CPU读取。

读取完毕之后,输出锁存器又跟随减1计数器变化。

另外,计数器的值为0的状态,还反映在状态锁存器中,可供读取。

4、引脚说明与CPU 的接口信号:(1)D0—D7:双向三态数据线,与CPU 相连用以传送数据、控制字以及状态信息。

(2)CS :片选输入信号,低电平有效。

(3)W R RD ,:读/写控制信号,低电平有效。

(4)10,A A :8253的内部计数器和一个控制寄存器的编码选择信号,其功能如下:10,A A 与其他控制信号,如CS ,W R RD ,共同实现对8253的寻址,如下图:8253寻址读写操作逻辑表与外部设备的接口信号(1)CLK 0、1、2:时钟脉冲输入端,输入定时脉冲或计数脉冲信号,CLK最高频率可达2MHz。

第八章(2)定时器8253

第八章(2)定时器8253
§8.3可编程计数/定时器8253
一、概述 二、Intel 8253 定时器/计数器的基本性能参数 三、8253 定时器/计数器的内部结构 四、8253的端口寻址及基本操作 五、8253 的控制字格式 六、8253 的工作方式
1
一、概述 1、定时与计数器的概念
定时器:在时钟信号作用下,进行定时的
减“1”计数,定时时间到(减“1”计数回零),从 输出端输出周期均匀、 频率恒定的脉冲信号。 由上述可知,定时器强调的是精确的时间。 定时举例: ①一天24小时的计时,称为日时钟。 ②在监测系统中,对被测点的定时取样。 ③在读键盘时,为去抖,一般延迟一段时间,再读。 ④在微机控制系统中,控制某工序定时启动。
13
锁存计数器当前计数值控制字
D7 SC1 D6 SC0 D5 RW1 D4 RW0 D3 M2 D2 M1 D1 M0 D0 BCD
未用
00 计数器锁存命令 00 选择计数器0 01选择计数器1 计数器选择 10 选择计数器2
14
4. 8253初始化的工作有两个内容: (1)一是向命令寄存器写入方式命令,以选择器 (3个计数器之一),确定工作方式(6种方式之 一),指定计数器计数初值的长度和装入顺序以及 计数值的码制(BCD或二进制码)。 (2)二是向已选定的计数器按方式命令的要求写入 计数初值。
20
CLK WR ① GATE OUT 4 3 2 1
n=4
0

GATE OUT WR GATE OUT
4 n=3 3 n=2 2
4
3
2
1
0

1
0
2
1
0
21
8253的1方式时序波形
3.方式2:频率发生器 方式2是一种具有自动装入时间常数(计数初 值N) 的 N分频器。 特点:一次设置计数初值,计数器可自动重复进行 减“1”计数操作,减“1”计数到“1”,可从输出端输出 一负脉冲信号。 时序波形如下

接口技术实验-8253定时计数器

接口技术实验-8253定时计数器

接口技术实验报告
实验三:可编程定时/计数器8253
一、实验目的
1、学会8253芯片和微机接口的原理和方法。

2、掌握8253定时器/计数器的工作方式和编程原理。

二、实验设备
微机原理实验箱、计算机一套。

三、实验内容
8253计数器0,1工作于方波方式,产生方波。

四、实验原理
本实验用到三部分电路:脉冲发生电路、分频电路以及8253定时器/计数器电路。

脉冲发生电路:实验台上提供8MHZ的脉冲源,见下图,实验台上标有8MHZ的插
孔,即为脉冲的输出端。

脉冲发生电路
分频电路:该电路由一片74LS393组成,见下图。

T0-T7为分频输出插孔。

该计数器在加电时由RESET信号清零。

当脉冲输入为8.0MHZ时,T0-T7输出脉冲频率依次为4.0MHZ,2.0MHZ,1.0MHZ,500KHZ,250KHZ,125KHZ,62500HZ,31250HZ。

分频电路
8253定时器/计数器电路:该电路由1片8253组成,8253的片选、数据口、地址、读、写线均已接好,时钟输入分别为CLK0、CLK1。

定时器输出、GATE控制孔对应如下:OUT0、GATE0、OUT1、GATE1。

原理图如下:
注:GATE信号无输入时为高电平
8253定时器/计数器电路
四、实验连线
1、实验连线:
T接8.0MHZ;CLK0插孔接分频器74LS393(左下方)的T2插孔; OUT0接CLK 1;OUT1接发光二极管;
各通道门控信号GATE +5V
2、编程调试程序。

3、全速运行,观察实验结果。

计算机8253定时器-计数器

计算机8253定时器-计数器

OUT
5 4 3 2 1 5 4 3 2 1 5 暂停计数 4
启动计数
再次启动计数
方式4 WR启动,自动重复计数 写入初值,启动计数; 计数完成,经过1CLK又重新从初值
开始计数; GATE=0,停止计数。
GATE=1,从初值开始计数
MOV AL,00011000B OUT 43H,AL MOV AL,4 OUT 40H,AL
试分析8253的工作情况。
控制字分析: 00 11 011 0 B
设置计数器0 写入16位初值
初值为二进制数 方式3,方波发生
初值分析: 0000H ,写入后,减1得0FFFFH,再减65535次才输出一次方波。 方波周期:高、低电平期均为32768次CLK, CLK的周期=1/(1.19 ×106) 秒
∴方波周期=65536×CLK的周期=55.072毫秒≈55毫秒
例2 已知PC机中,8253的OUT0接到8259的IRQ0,即:每 55ms发出
一次中断。 试编程,截取此中断,得到一个秒计数器。
注: IRQ0的中断类型号为9.
启动计数
再次启动计数
方式3 WR启动,自动重复方波计数
写入初值,启动计数;
MOV AL,00010110B
计数完成,又重新从初值开始计数,
OUT MOV
43H,AL AL,5
计数期间,前半期OUT=1,后半
OUT 40H,AL
期OUT=0;
计数期间,GATE=0暂停计数
CLK
WR N=5 GATE
第2节 8253定时/计数器
一 定时/计数器的基本概念 什么是定时器计数器? 定时器: 事先设定一个时间长度,当“定时时间到”时,向 CPU输出触发信号。 计数器:统计某事件发生的次数。当累计的次数达到事先设 定的次数时,输出触发信号。 PC机中,用一片集成电路(Intel8253)来完成定时/计 数工作。如: 每隔一定的时间间隔对DRAM刷新、以一定的速率驱动 磁盘马达运转、产生周期性方波使蜂鸣器发出鸣叫提示, 等等。

第八章 可编程计数器定时器8253及其应用

第八章 可编程计数器定时器8253及其应用
WR
LSB=4 CR=4
CLK GATE
OUT CRCE 4 CRCE 2 4 CRCE 2 4 CRCE 2 4 CRCE 2 4
8253方式3 计数初值为奇数时的波形 CW=16H WR LSB=5
CR=5
CLK GATE OUT
CRCE
5 4
CRCE 2 5 2
CRCE 5 4
CRCE 4 3
8253方式0
两种特殊情况:
中途改变计数初值
CW=10H WR CR=3 CLK GATE OUT CR=3 LSB=3
LSB=3
CRCE 3 2
CRCE 1 3 2
1
0
8253方式1
2、方式1——可编程单稳态输出方式
时序图
CW=12H WR
LSB=3 CR=3
CLK GATE
OUT
CRCE
CRCE 3 2
1
0
8253方式1
工作过程
① 写入控制字,OUT立即变为高,并保持不变。 ② 写计数初值N,只有当GATE形成一个上升沿时,才在
下一个时钟脉冲的下降沿,将n装入实际计数器,同 时OUT由高变为低,开始减1计数(再来一个脉冲)。
③ 计数期间,OUT一直为低;当计数结束(计数值为0)
8253综述
Intel 8253是一种可编程的计数器/定时器芯片。 8253内部具有3个独立的16位计数器通道,通过对
它进行编程,每个计数器通道均有6种工作方式,并 且都可以按2进制或10进制2种格式进行计数,最高 计数频率能达到2MHz。 8253还可用作可编程方波频 率产生器、分频器、程控单脉冲发生器等。
教材第八章内容
第八章 可编程计数器/定时器8253及应用

最新(电气专业必看)8253定时器详细介绍

最新(电气专业必看)8253定时器详细介绍
初始化程序如下:
MOV DX,203H MOV AL,00011010B
方式5,二进制计数 OUT DX,AL MOV DX,200H MOV AL,100 OUT DX,AL MOV DX,203H MOV AL,01100011B
方式1,十进制计数 OUT DX,AL MOV DX,201H
3 读取计数值
对8位数据线,读取16位计数值需分两次 计数在不断进行,应该将当前计数值先
行锁存,然后读取:
向控制字I/O地址:给8253写入锁存命令 从计数器I/O地址:读取锁存的计数值
读取计数值,要注意读写格式和计数数制
12-2-4 8253的工作方式
8253有6种工作方式,由方式控制字确定 熟悉每种工作方式的特点才能根据实际应用问
分析:因为计数频率为2MHZ,计数器的最大计数值 为65536,所以最大的定时时间为0.5μs×65536= 32.768ms,达不到20秒的要求,因此需用两个计数器 级联来解决问题。
将2MHZ的时钟信号直接加在CLK0输入端,并让计数 器0工作在方式2,选择计数初始值为5000,则从 OUT0端可得到频率为2MHZ/5000=400HZ的脉冲,周 期为0.25ms。再将该信号连到CLK1输入端,并使计 数器1工作在方式3下,为了使OUT1输出周期为20秒 (频率为1/20=0.05HZ)的方波,应取时间常数N1= 400HZ/0.05=8000。硬件连接图如下图所示。
输出锁存器
计数器的3个引脚
CLK时钟输入信号——在计数过程中, 此引脚上每输入一个时钟信号(下降 沿),计数器的计数值减1
GATE门控输入信号——控制计数器工 作,可分成电平控制和上升沿控制两种 类型
OUT计数器输出信号——当一次计数过 程结束(计数值减为0),OUT引脚上 将产生一个输出信号

实验八定时器计数器8253实验

实验八定时器计数器8253实验

8253是Intel公司生产的一款可 编程定时器计数器。
它具有3个独立的16位计数器, 每个计数器都可以独立编程和控
制。
8253的计数器可以用于产生时 间间隔、脉冲信号、PWM(脉
宽调制)等。
8253的工作原理
825ቤተ መጻሕፍቲ ባይዱ的每个计数器都有一个预置 值,当计数达到预置值时,计数 器会自动回置并触发一个中断或
实验八:定时器计数器8253实验
contents
目录
• 实验简介 • 8253定时器计数器概述 • 实验步骤与操作 • 实验结果与分析 • 实验总结与思考
01 实验简介
实验目的
掌握8253定时器计 数器的工作原理。
了解定时器在计算机 系统中的应用。
学习如何编程控制 8253定时器计数器。
实验设备
01
微机实验箱
02
8253定时器计数器芯片
03
示波器
04
信号发生器
02 8253定时器计数器概述
定时器计数器的基本概念
定时器计数器是一种用于产生 时间间隔或计数的电子设备。
它通常由石英晶体振荡器驱动, 以提供稳定的计时基准。
定时器计数器广泛应用于计算 机、通信、自动化等领域。
8253的特性和功能
配置8253定时器计数器
设置工作模式
根据实验要求,选择适当的定时/计数 模式,如计数模式、定时模式或门控 模式等。
设置定时/计数初值
启动定时/计数
通过微处理器发送控制信号,启动 8253定时器计数器的定时/计数操作。
根据实验要求,设置适当的定时/计数 初值,以满足实验条件。
启动和观察实验结果
启动实验
加强实践环节
为了更好地理解和掌握相关知识,建议增加更多的实践环节,例 如组织小组讨论、分享经验等。

第八章 计数定时器8253

第八章 计数定时器8253
可以从8253中读出当前计数值,但其读出过程是:先将当 前计数初值写入到输出锁存器,然后再从输出锁存器中读 出,同时,8253还在不停地进行减计数,虽然输出锁存器 中的值不变,但减计数单元却在不断地减计数,因此,从 输出锁存器中读出的值并不一定是真正的当前计数值。
2.引脚
3.功能
(1)具有三个独立的16位计数通道;
电子钟8253初始化程序段: MOV AL,00100111B MOV DX,113H OUT DX,AL MOV AL,40H MOV DX,110H OUT DX,AL MOV AL,01100101B MOV DX,113H OUT DX,AL MOV AL,10H MOV DX,111H OUT DX,AL
装入初值
因8253是减计数器,故计数初值越大,则计数减至0所用时 间(即定时时间)就越长,但由于8253是先减1,再判是否 到0,故最长的定时时间是设置计数初值为0,代表65536。
十进制计数时范围是0001~10000,其中当计数初值寄存器
为0000H代表十进制数10000。
计数取值范围在二进制计数时是0001H~10000H,其中 10000H代表65536,在计数初值寄存器中的值是0000H。
电子钟中断子程序: MOV AL,MAX ADD AL,1 DAA MOV MAX,AL CMP AL,60H JNZ NEXT MOV BYTE PTR MAX,0 MOV AL,MAX+1 ADD AL,1 DAA MOV MAX+1,AL CMP AL,60H JNZ NEXT
MOV BYTE PTR MAX+1,0 MOV AL,MAX+2 ADD AL,1 DAA MOV MAX+2,AL CMP AL,24H JNZ NEXT MOV BYTE PTR MAX+2,0 NEXT:MOV AL,20H OUT 20H,AL IRET

第8章:定时计数器8253

第8章:定时计数器8253

一、内部结构
8253定时/计数器的工作原理 定时/计数器的核心部件为可预置初值计数器。 预置初值后开始计数,CLK信号每输入一个脉冲, 计数值减1,一直减到0,并且OUT脚同时产定时器 的容量即位数
GATE门控 信号 计数脉冲 CLK 输入
可预置初值计数器
允许 允许 ——
三、设置工作方式和计数值 对8253设置工作方式和设置计数值是连续 进行的。 步骤是:

1、对控制端口写:设置工作方式及计数值格式 2、对计数端口写:计数值低8位(可选) 3、对计数端口写:计数值高8位(可选)

控制字格式:
D7 SC1

D6 SC0
D5 RL1
D4 RL0
D3 M2
OUT 输出
计数初值

说明: 1、每个计数器各有三根I/O线 CLK:时钟信号输入 OUT:计数器输出 GATE:门控信号,用于启动或允许计数器工作
2、通过对控制寄存器写操作,来设置工作方式。 3、有A1A0两条地址线,在PC机中的端口地址是40H~43H。 A1 A0 端口 定义 0 0 40H 0#计数器 0 1 41H 1#计数器 1 0 42H 2#计数器 1 1 43H 控制寄存器
D2 M1
D1 M0
D0 BCD
SC1 SC0 :选择计数器(0#,1#,2#) M2M1M0:设置工作方式(0~5) RL1 RL0 00 01 10 11 设置计数值格式 当前计数值锁存到输出缓冲器 写 / 读计数值的低8位 写 / 读计数值的高8位 写 / 读计数值的16位(先低8位,后高8位)
每次设置
方式 5
启动点
只设一次
启动方式的比较: 工作方式 方式 0 方式 1 启动方式 软件触发 硬件触发

8253定时_计数器实验

8253定时_计数器实验

实验8 8253定时/计数器实验一、实验目的1.了解8253与8086的硬件连接方法。

2.掌握8253的各种方式的编程及其原理。

3.学会Emu8086和Proteus的联合用调。

二、实验要求安装有Emu8086仿真软件和PROTEUS仿真软件的电脑一台。

三、预习内容1、8253定时计数器的内部结构和主要性能。

2、8253芯片的各个引脚及其含义如下图3.1所示。

图3.1 8253A定时计数器D7~D0:双向,8位三态数据线,用以传送数据(计数器的计数值)和控制字CLK0~CLK2:计数器0、1、2的时钟输入,CE对此脉冲计数OUT0~OUT2:计数器0、1、2的输出。

GA TE0~GATE2:计数器0、1、2的门控输入/CS:输入,片选信号。

/RD:输入,读信号。

/WR:输出、写信号。

A0,A1:输入,两位地址选择。

8253的内部寄存器地址如下表表3.1所示:/CS A1 A0 选中0 0 0 计数器00 0 1 计数器10 1 0 计数器20 1 1 控制寄存器表3.1 8253定时计数器的寄存器3、定时、计数器8253的命令字的初始化。

4、8253的六种工作方式具体参考课本(278页至282页)。

5、汇编软件Emu8086和Proteus软件的联合使用方法步骤。

在Proteus软件绘制系统原理图,然后需要对Proteus进行程序导入设置才能进行方真调试。

具体步骤如下:(1)点击Proteus软件菜单中的source的下拉选项中的Dfine Code Generation Tools...如下图3.2所示。

图3.2(2)a在弹出的对话框中单击new按钮如下图3.3所示。

图3.3(3)弹出如下对话框,找到本机中emu8086安装后生成的emu8086文件夹,打开,选择可执行程序emu8086.exe,点击“打开”按钮,如下图3.4所示。

图3.4(4)回到设置对话框后,将源文件和目标文件分别设为ASM和EXE,单击“OK”,如下图3.5所示图3.5(5)单击菜单选项source的下拉选项Add/Remove Source Files...如下图3.6所示。

第17讲 计数器定时器8253

第17讲 计数器定时器8253

例 2 :要求读出并检查 1 号计数器的当前计数值是否是全
“1”(假定计数值只有低8位),其程序段为
L :
MOV DX,306H
;命令口 ;1号计数器的锁存命令 ;写入命令寄存器 ;1号计数器数据口
MOV AL,01000000B OUT DX,AL MOV DX,302H
CW N=4
N 装 控 制 字
N 4 装 计 初 数 值 开 始
3
2
1
计 数 结 束
0 FF
说明:①控制字写入之后,OUT变低;初值装入后,要经过1个CLK 的周期(1个上升沿和1个下降沿)后,计数器才开始计数,所以,输 出OUT要经过N+1个时钟周期后才有输出; ②输出OUT的有效电平为高电平,并可同时触发中断请求; ③门控GATE的作用:高电平时计数,低电平或下降沿时停止计数; ④CW为写入控制字,N=4表示写入初值,计数值一次有效。 22
CS
0
0 0 0 0 0 0
RD
1
1 1 1 0 0 0
WR
0
0 0 0 1 1 1
A1
0
0 1 1 0 0 1
A0
0
1 0 1 0 1 0
传送方式
写入计数器0的初始值
写入计数器1的初始值 写入计数器2的初始值 写入控制寄存器控制字 读自计数器0的OL 读自计数器1的OL 读自计数器2的OL
12
四、8253的控制字
30
MOV AL,00110101B(35H) OUT 86H,AL MOV AX,1000 OUT 80H,AL MOV AL,AH OUT 80H,AL MOV AL,01110110B(76H) OUT 86H,AL MOV AL,0E8H 03E8H=1000D OUT 82H,AL MOV AL,03H OUT 82H,AL

第9 章 8253定时器

第9 章 8253定时器
计数的信号随机,定时的信号具有周期性。
19
9.2
8253的控制字及工作方式
000—101选择六 种工作方式
1.工作方式控制字
00:计数器0 01:计数器1 10:计数器2
00:锁存当前计数值 01:只读写低8位 10:只读写高8位 11:先读写低8位, 再读写高8位
0:二进制计数 1:二-十进制计 数(BCD码)
25
(2)采用BCD码计数时,计数初值应写成十六进制数。 例如n=50则指令写成 MOV AL,XX01XXX1B OUT 控制口地址,AL MOV AL,50H; OUT 计数器地址,AL 若n=1250,则写成 MOV 控制口地址,XX11XXX1B MOV AL,50H OUT 计数器地址,AL MOV AL,12H OUT 计数器地址,AL
18
CLK、OUT、GATE三个引脚信号的关系: OUT CLK GATE 门控信号
做计数器:输入一个脉冲,计数器减1,可对事件计数。
当门控信号有效时,计数器/定时器对来自CLK引脚 做定时器:对输入等间隔的脉冲计数,可起到定时作用。 的脉冲信号进行计数,计数到0时,在OUT端产生一 定时与计数本质上是一致的。 个输出。
实时控制系统中,定时对控制对象采样与控制
软件定时的举例: MOV CX,80H LL: DEC CX JNZ LL ……
采用单循 环实现
注意:必须知道每条指令的执行时间。
4
软件定时的举例: MOV CX,80H LL1: MOV BX,90H LL2: DEC BX JNZ LL2 DEC CX JNZ LL1 ……
11
8253读写操作及端口选择
12
3. 控制字寄存器 在初始化编程时,CPU写入方式控制字到控制字 寄存器中,用以选择计数通道及其相应的工作方式。 4. 计数通道0、计数通道1、计数通道2 3个计数通道内部结构完全相同。每个计数通道都 由一个16位计数初值寄存器(CR)、一个16位减法计 数器(CE)和一个16位计数值锁存器组成。 3个计数通道操作完全独立。初始化编程时,3个 计数通道共用一个控制字寄存器端口地址,但CPU可 以分别写3个方式控制字到控制字寄存器,分别选择各 计数通道的工作方式。

实验6:8253定时器∕计数器应用

实验6:8253定时器∕计数器应用

8253定时器/计数器应用一、实验目的1.掌握8253定时/计数器的工作原理、工作方式及应用编程。

2.掌握8253的典型应用电路的接法。

二、实验设备PC 机一台,TD-PITE 实验教学系统一台。

三、实验原理实验系统中安装的为8254(8253的改进型)共有三个独立的定时/计数器,其中0号和1号定时/计数器开放供实验使用,2号定时/计数器为串行通信单元提供收发时钟信号。

定时/计数器0的GATE 信号连接好了上拉电阻,若不对GA TE 信号进行控制,可以在实验中不连接此信号。

四、实验内容计数应用实验:使用单次脉冲模拟计数,使每当按动“KK1+”5次后,产生一次计数中断,并在显示器上显示一个字符“M”。

初始化设置:8254的计数器0、计数器1、计数器2、控制口地址分别为06C0H 、06C2H 、06C4H 、06C6H ;选择计数器0,仅用低8位计数,方式0,二进制计数;8259的地址为20H 、21H ,边沿触发,IR7对应的中断类型码为0FH ,一般全嵌套方式,非缓冲方式,非自动结束。

五、实验步骤(实验报告中要详细写出你自己的实验步骤)计数应用实验步骤:(1)按图1连接实验线路。

(2)编写实验程序,对实验程序进行编译、链接无误后,加载到实验系统。

(3)执行程序。

并按动单次脉冲输入KK1+,观察程序执行结果。

(4)改变程序中的定时/计数值,验证8253的定时/计数功能。

思考题1.执行实验步骤(3)时,程序的执行结果和按动KK1+的速度有关吗?2.如果将图1中OUT0连接到系统总线的MIR6引脚,如何修改程序,使其仍能正常 4.7K图1 8253计数应用实验VCC · · XA1 XA2 系统 XD0· 总 ·XD7 线IOW# IOR# IOY3 MIR7 A0 A1 GATE0 D0 8254 · 单元 · D7 CLK0 WR RD CS OUT0 KK1+单次 脉冲单元计数?3.如果将图1中OUT0连接到系统总线的SIR1引脚,如何修改程序,使其仍能正常计数?提示:主片8259的地址为20H、21H,从片8259的地址为A0H、A1H,从片的INT 连接到主片的IR2引脚上,构成两片8259的级联。

定时器-计数器8253

定时器-计数器8253
2021年1月30日星期六
1.2 8253的结构及其外部引脚
8253具有3个功能相同的16位减法计数器CNT0、CNT1和CNT2,可 进行二进制或8421 BCD码计数或定时操作。工作方式和计数常数可 由软件编程来设定,可以方便地与PC总线连接,外部引脚如图1-26 (a)所示,其内部结构如图1-26(b)所示,每个计数器有3个引脚: CLK为时钟输入端,作为定时或计数方式时的减1计数脉冲输入端, 当CLK输入为恒定周期的时钟信号时,则主要作为定时器用(定时器 是一种特殊的计数器),若CLK用于工业控制或实验中脉冲信号输入, 则一般来说,CLK的无固定的时钟周期只能看成计数器;OUT为计数 器输出端,当计数器减到0时,根据所置的工作方式输出相应的信号; GATE为门控端,用于启动或禁止计数器操作。控制字寄存器用来寄 存工作方式控制字,只能写入不能读出。
定时器/计数器8253
1.1 定时器/计数器概述
通常有3种方法来实现定时或计数:软件法、硬件法以及可 编程的硬件定时/计数法。
(1)软件实现。 (2)简单硬件实现。 (3)利用可编程定时器/计数器。由于它的定时值及计数范 围可以由软件来设定改变,因此,可以脱离CPU独立定时/计数。 它不占用CPU大量时间,所以使用方便,且功能强大。
2021年1月30日星期六
2021年1月30日星期六
图1-26 8253外部引脚和内部结构
1.3 8253的控制字和编程命令
1.8253的控制字 8253每个计数器的工作方式和计数值都必须由CPU通过输出指 令来设定。对8253的初始化要求是: (1)通过8253的控制端口向控制寄存器写入相应通道的控制 字,一般情况下,应指定通道的工作方式(6种工作方式之一)、 通道计数器的读/写方式(是读/写高/低8位数据,还是16位数据) 和通道计数器/定时器所采用的计数制(BCD/二进制)。 (2)通过8253的通道端口向相应的通道计数器写入计数初始 值。如果在控制字中已经确立为16位的控制方式,则应分两次对 通道端口进行写操作,先写入初始值的低8位,再写入初始值的高 8位。

8253定时器工作方式

8253定时器工作方式

8253定时器工作方式
8253定时器是一种常见的计时器芯片,它通常用于控制计算
机硬件设备的定时操作。

8253定时器可以通过以下方式工作:
1. 方式0:8253定时器的方式0是最基本的工作方式,它可以实现一个简单的定时功能。

在这个方式下,定时器计数器会从初始值开始递增,当计数器达到设定的目标值时,会触发一个计时中断。

2. 方式1:8253定时器的方式1是一种周期性工作方式。

在这个方式下,定时器计数器会从初始值开始递增,当计数器达到目标值时,会触发一个计时中断,并且回到初始值重新开始计数。

这样就实现了一个周期性的定时功能。

3. 方式2:8253定时器的方式2是一种用于产生脉冲的工作方式。

在这个方式下,定时器计数器会从初始值开始递增,当计数器达到目标值时,会反转输出引脚的电平,然后回到初始值重新开始计数。

这样就可以产生一个周期性的脉冲信号。

以上是8253定时器的三种常见工作方式,它们可以根据实际
需要选择合适的方式来实现所需的定时功能。

第10章(8253定时器)

第10章(8253定时器)

工作方式 000=方式0 001=方式1 010=方式2 011=方式3
0=二进制 1=BCD码源自100=方式4101=方式5
2.初始化编程:向8253分别写入控制字和计数初值, 顺序为:
注意: 1) A1A0=00 读/写计数器0 A1A0=01 读/写计数器1 A1A0=10 读/写计数器2 A1A0=11 写8253控制字 2)写入计数初值,如果是8位,只写入一次,如果 16位,则先写低8位,后写高8位。
3.控制寄存器:8位,对8253初始化时,由CPU发 来的控制字经数据总线缓冲器、内部数据总线写 入该寄存器。 4.计数通道:8253有3个相互独立的计数通道, 分别为计数器0、计数器1和计数器2 。每个通道 包含一个8位的控制寄存器,用来存放计数器的 工作模式字;一个16位的初值寄存器CR,8253工 作前要对其置初值;一个16位计数执行单元CE, 接收计数初值寄存器CR送来的内容,并对该内容 执行减1计数操作;一个16位输出锁存器OL,锁 存CE的内容,供CPU读取。
• 【例2】IBM/PC微机的某扩展板上使用一 片8253,其端口地址为400H~403H,要 求从定时器0的输出端OUT0得到250HZ的 方波信号,从定时器1的输出端OUT1得 到10HZ的连续单拍负脉冲信号。已知系 统提供的计数脉冲频率为125KHZ,硬件 连接如图所示,试编写程序。
① 确定工作方式 根据题目要求,OUT0端输出的是连续方波,所 以定时器0应工作在方式3,而OUT1端输出连续 的单拍负脉冲,因此,定时器1必须工作在方式2。
1.8253的控制字:用来设置8253每个计数通道的 工作方式及计数初值进制。 如下图所示:
8253工作方式控制字 D7 D6 D5 D4 D3 M2 D2 M1 D1 D0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
与系统的连接示意图
8253占用4个接口
地址:
计数器0
DB
计数器1
IOW
计数器2
控制寄存器 IOR
A1
A0
高位地址 A15-A2
(决定8253的基地址)
译码器
8253
D0~D7 WR CLK RD GATE A1 OUT A0
CS
共三组
9
内部结构
~
D0
D7
总线缓
RD

WR

A0
A1
逻辑

CS
线
寄存器
➢ 8253是一种可编程的计数器/定时器接口芯片。内 部有三个独立的计数器,通过设置控制字,各计数 器可以工作于不同方式。该芯片的最高计数频率为 2MHz,可用于产生各种定时波形,也可用于对外 部事件计数。
可以实现定时与计数两个功能,可用于: ➢ 系统时钟 ➢ DRAM刷新定时 ➢ 定时采样 ➢ 实时控制 ➢ 脉冲的计数
数据线:写控 制字,读写计 数器的计数值
计数器0的时钟 输入端
计数器0的输出端
计数器0的门控信 号脉冲输入端,
控制计数
为低电平的时候,CPU 将计数值写入计数器或将 控制字写入控制字寄存器
为低电平的时候,CPU 读取所选计数器的内容
A1 A0 00 01 10 11
选中端口 计数器0 计数器1 计数器2 控制字寄存器
编址部件3
编址部件0
计数器 0
CLK 0 GATE 0 OUT 0
计数器 1
CLK 1 GATE 1 OUT1
编址部件1
计数器 2
CLK 2 GATE 2 OUT 2
编址部件2
10
编程结构—程序员的观点
➢ 计数器(3个)——每个包括
16位初值寄存器 16位计数寄存器(减法计数器) 16位输出锁存器
– 利用程序循环延迟指定的时间 – 缺点:CPU占用率?延时精度?兼容?
➢ 硬件方法:定时/计数器电路
– 利用脉冲计数在设定的时间输出定时信号,灵活性较差?
➢ 采用可编程定时器/计数器
– 定时时间与计数值可由软件来确定和改变,设定后与CPU并行工 作,不占用CPU的时间。
4
可编程计数器/定时器8253
2
地址译码
✓A15~A8为
译码器使能
✓A7~A5决定 芯片端口范围
✓A4~A0选择 芯片片内端口
A15 A14 A13 A12 A11 A10 A9 A8
IO/M
A5 A6 A7 &
&Βιβλιοθήκη 74LS138A Y0
B C
Y1 Y2
Y3
G2AY4
Y5
G2B Y6 G1 Y7
3
如何实现定时?
➢ 软件方法:用一段程序实现延时
求),并保持,不开始重新计数。只有写入另一个计数值时,开始新的计数。 在GATE=0时 停止计数,直至GATE恢复高电平,再继续计数
15
工作方式0:计数结束产生中断(小结)
➢ 软件启动,不自动重复计数。 ➢ 装入初值后OUT端变低电平,计数结束OUT输出高电平。 ➢ 计数过程中,GATE端应保持高电平。
5
可编程计数器/定时器8253-5
掌握: ➢ 引线功能及计数启动方法 ➢ 6种工作方式及其输出波形 ➢ 8253的使用:
– 芯片与系统的连接 – 芯片的初始化编程
6
可编程计数器/定时器8253-
➢ 引脚及其功能 ➢ 内部结构 ➢ 寻址方式 ➢ 控制字格式 ➢ 工作方式 ➢ 编程及应用
7
引脚及其功能
2. 计数到0,OUT变成高电平,负脉冲结束,脉冲宽度=tc×n(tc为时钟周期)。 3. 在计数过程中,若GATE变低,不影响计数。
0 0----选计数器0 0 1----选计数器1 1 0----选计数器2 1 1----无意义
0 0----对计数器进行锁存 0 1----只读/写低8位字节 1 0----只读/写高8位字节 1 1----只读/写低8位字节,
再读/写高8位字节.
M2 M1 M0 000 001 /10 / 11 100 101
– 在CLK的下降沿时,计数器执行部件从初值开始作减1计数;其中0 是最大初值,1是最小初值;
– 若以二进制数制计数,则0相当于216=65536;若以BCD(十进制) 数制计数,则0相当于104=10000
➢ 减到0时,OUT端输出一特殊波形的信号
14
工作方式0:计数结束产生中断
在GATE=1时 1. 写入控制字,OUT端输出低电平为起始电平,装入计数初值n,开始计数。 2. 写信号后沿( )经一个CLK( )将n值装入计数器。 3. 每经过一个CLK,在CLK下降沿,计数器减1。 4. n=0时,计数结束,OUT由低电平变为高电平(可利用该电平变化向CPU发出中断请
➢ 控制寄存器—— 存放控制命令字(只写)
➢ 占用4个地址— 3个计数器,1个控制寄存器
11
寻址方式
A1
A0
0
0
0
1
1
0
1
1
寻址对象 计数器0(16位) 计数器0(16位) 计数器0(16位) 控制字寄存器(8位)
12
控制字格式
SC1 SC0 RW1 RW0 M2 M1 M0 BCD
1--计数值为BCD码格式 0--计数值为二进制格式
– 每写入一次初值计数一个周期,然后停止计数。 – OUT端输出是一个约(n+1) *CLK宽度的负脉冲。 – 计数过程中可随时修改初值重新开始计数。
16
工作方式1:可编程单稳态触发器
方式1的时序图(计数过程中GATE仅有一个上升沿)
1. 写入控制字,OUT端输出高电平为起始电平。装入计数初值n后,必须等待 GATE的上升沿来后才转入计数,这时OUT变低,开始计数,每一个计数脉冲, 计数器值减1。
可编程接口芯片及应用
➢ 学习重点:可编程接口芯片8253 、8259, 8255结 构、编程I/O接口和CPU、外设的连接方法。
➢ 学习方法:紧密结合实验与作业,学习I/O通道的 设计与编程方法。
1
I/O地址译码方法
➢ 地址译码的方法灵活多样 ➢ 高位地址线与CPU的控制信号进行组合,经译码电路
产生I/O接口芯片的片选信号CS,实现系统中的接口 芯片寻址 ➢ 低位地址线直接接到I/O接口芯片的地址引脚,进行I/O 接口芯片的片内端口寻址
模式选择 模式0 模式1 模式2 模式3 模式4 模式5
13
定时/计数的工作过程
➢ 设置8253的工作方式:
– 此时,全部控制逻辑电路复位,输出OUT为初始状态(高电平或低 电平);
➢ 设置计数初值到初值寄存器 ➢ 第一个CLK信号使初值寄存器的内容置入计数寄存器 ➢ 以后每来一个CLK信号
– 在CLK的上升沿时,计数器对门控信号GATE进行采样,来决定工作 状态(计数、触发、停止、重新置初值);
相关文档
最新文档