飞机电源系统
飞机的电源技术原理及应用
飞机的电源技术原理及应用1. 引言在现代航空领域,飞机的电源系统是非常关键的组成部分。
飞机电源技术的发展已经取得了突破性的进展,为飞机提供了可靠、高效的电力供应。
本文将介绍飞机的电源技术的原理及应用。
2. 飞机电源系统组成飞机的电源系统主要由以下几个组成部分构成:•发电机:发电机是飞机电源系统的核心部件,主要负责产生电能。
发电机使用内燃机驱动,通过转子和定子的相对运动产生电能。
发电机通常安装在飞机的发动机上。
•电池:电池是飞机电源系统的备用电源,主要用于在紧急情况下提供电能。
电池通常安装在飞机的机翼或机身内部。
•变流器:变流器是将飞机上产生的交流电转换为直流电的装置。
变流器可以将来自发电机的电能转换为直流电供给飞机上的电子设备使用。
•电容器:电容器可以作为电源系统的储能装置,用于存储剩余电能,并在需要时释放给飞机上的电子设备。
•控制系统:电源系统的控制系统用于监测和控制电源系统的工作状态,确保电力的供应稳定和可靠。
3. 飞机电源系统工作原理飞机电源系统的工作原理如下:1.发电机工作原理:发电机通过内燃机的驱动产生机械能,机械能通过转子和定子的相对运动转化为电能。
发电机输出的是交流电,经过变流器转换为直流电。
2.电池工作原理:电池通过化学反应将化学能转化为电能。
飞机电池通常使用铅酸电池或锂离子电池,这些电池具有较高的能量密度和较长的使用寿命。
3.变流器工作原理:变流器通过电子元件的开关控制将交流电转换为直流电。
变流器可以将飞机电源系统的输出电能转换为适合各种电子设备使用的直流电。
4.控制系统工作原理:控制系统通过传感器监测电源系统的工作状态,并根据需要进行调节和控制。
控制系统可以实现电源系统的智能化管理,确保电力供应的稳定性和可靠性。
4. 飞机电源系统应用飞机电源系统广泛应用于飞机上的各个领域,包括但不限于以下几个方面:•机载航电设备:飞机的航电设备需要稳定、可靠的电力供应,包括导航系统、通信系统、雷达系统等。
飞机的电源系统名词解释
飞机的电源系统名词解释在现代航空业中,飞机的电源系统是飞行的关键要素之一。
它不仅为机上各种设备和系统提供电力,同时也保证了飞机正常运行所需的能源供应。
在本文中,我们将对一些与飞机电源系统相关的重要名词进行解释,以帮助读者更好地了解这个领域的专业术语。
一、直流电(Direct Current,简写为DC)直流电是指电流方向不变的电流形式。
在飞机电源系统中,直流电主要由直流发电机或飞机主电池提供。
直流电在飞机上用来供应低电压设备和系统,如仪表板、通信设备和飞控系统等。
二、交流电(Alternating Current,简写为AC)交流电是电流方向和大小周期性变化的电流形式。
在飞机电源系统中,交流电通常由交流发电机或飞机的辅助动力装置(如APU)提供。
交流电主要用于高功率设备和系统,如电动机、起落架系统和空调系统等。
三、静电发电机(Static Electricity Generator)静电发电机是飞机电源系统中的一种装置,用来转换飞机在飞行过程中产生的空气动力能量为电能。
静电发电机通常由马兰诺夫效应或空气摩擦效应产生静电放电,通过电荷转移来产生电流。
这种发电机经常用于静电放电防护和电源备用。
四、直流发电机(Direct Current Generator)直流发电机是飞机电源系统中的一种主要设备,它通过转子与定子之间的旋转相对运动产生电能。
直流发电机通常由飞机引擎的齿轮箱或附属动力装置带动。
它在飞机上负责主要的电力供应,为直流电设备和系统充电。
五、交流发电机(Alternating Current Generator)交流发电机是飞机电源系统中的另一类重要设备,它可以产生交流电能。
交流发电机通过转子上的定子产生变化的磁场,从而使电路中的导线产生电动势。
交流发电机通常由飞机引擎的主发电机驱动,并将电能传输给飞机的交流电设备和系统。
六、整流器(Rectifier)整流器是一种电子器件,用于将交流电转换为直流电。
【飞机结构与系统】12_电源系统
直
流
发动机
发 电
机
直流负载 静交 变流 流负 机载
二次电源——由静变流机把低压直流电转变为单相或三相
交流电。
应急电源——航空蓄电池。
低压直流电的特点: 电压不高,效率低,适于用电量不大的飞机。
一般在30座以下的小型支线客机和通用飞机上得到了广 泛的应用。如Y-5,IL-14,C-16等。
飞机交流电源系统的主要形式
恒速传动装置(CSD) 组合传动发电机(IDG)
(5)变速恒频电源系统
交流发电机直接由发动机传动,发出的变频交流电经变频 器变换为恒频交流电。
发动机
恒频
变速恒频交流电
发电机
电子变频器
特点:恒速恒频交流电源系统同变速恒频电源系统相比存在 重量重、效率低、供电质量差、寿命周期费用高等缺点,正 在被变速恒频交流电源系统取代。如MD-90。
APU发电机直接由APU驱动,并输出与两台发动机驱动 发电机相同的电流。 在地面,APU发电机可提供主要的电源。 飞行中,可作为任一发电机的备用电源。
(3)电瓶——应急电源
电瓶是一种化学电源,是一个化学能和电能相互转化 的装置。放电时,它把化学能转化为电能,向用电设备供 电;充电时,它把电能转化为化学能储存起来。
第代飞机的一个重要组成部分,为飞机用 电设备提供所需的交流电和直流电。
飞机供电系统又可分为飞机电源系统和飞机输配电系统两 部分。飞机电源系统是飞机上电能产生、调节、控制和电能 部分的总称。飞机电源系统是指由飞机电源到电源汇流条间 的部分。飞机输配电系统则是指由电源汇流条到用电设备端 的部分。飞机输配电系统又称飞机电网,由电线、配电装置 和保护元件等构成。
当飞机发电机不能供电时,电瓶 向维持飞行所必需的飞行关键设 备供电,必要时也可作为启动飞 机发动机的起动电源。
飞机 电源系统分类
飞机电源系统分类飞机电源系统分类一、引言飞机电源系统是飞机上非常重要的一个部分,它为飞机提供了所需的电能,保证了飞机各个系统的正常运行。
根据不同的要求和功能,飞机电源系统可以分为三大类:直流电源系统、交流电源系统和备份电源系统。
二、直流电源系统直流电源系统是飞机上最常见的电源系统,它通过直流发电机或直流变频器提供电能。
直流电源系统主要用于供电给飞机上的直流设备,例如飞机的控制系统、通讯设备、导航系统等。
直流电源系统具有稳定性好、响应速度快、体积小等优点,因此在飞机上得到广泛应用。
三、交流电源系统交流电源系统主要用于供电给飞机上的交流设备,例如飞机的照明系统、空调系统、马达等。
交流电源系统可以通过交流发电机或交流变频器来提供电能。
相比直流电源系统,交流电源系统在供电距离远、功率大的情况下更为适用。
同时,交流电源系统还可以通过变压器进行电压匹配,满足不同设备的电压要求。
四、备份电源系统备份电源系统主要用于在主电源系统故障时提供紧急电能。
备份电源系统通常采用蓄电池或应急发电机来提供电能,以保证飞机的关键设备可以继续运行。
备份电源系统的设计要求高可靠性和长时间供电能力,以应对紧急情况。
备份电源系统的自动切换和监控功能也是非常重要的,以确保在主电源故障时能够及时切换到备份电源。
五、其他电源系统除了上述三类电源系统,还有一些特殊的电源系统用于满足特定的需求。
例如,飞机上的舱内电源系统用于为旅客提供电源插座,以供电子设备充电;飞机上的应急电源系统用于在紧急情况下提供电能;飞机上的太阳能电源系统用于利用太阳能发电,减少对传统能源的依赖等。
六、总结飞机电源系统分类包括直流电源系统、交流电源系统和备份电源系统。
直流电源系统用于供电给飞机上的直流设备,交流电源系统用于供电给飞机上的交流设备,备份电源系统用于在主电源故障时提供紧急电能。
除了这些主要分类,还有其他特殊的电源系统用于满足特定的需求。
飞机电源系统的设计和运行对飞机的正常运行和飞行安全至关重要,因此需要高度重视。
飞机电源系统的原理是什么
飞机电源系统的原理是什么飞机电源系统是飞机上为舱内设备提供电能的系统。
它主要由发电装置、电源管理系统、电池系统和配电系统组成。
飞机的发电装置一般是由燃气涡轮发动机驱动的发电机或者专门的辅助发电机。
发动机的转速通过发电机的转速放大器来提供稳定的电源输出。
一些现代飞机还装备了永磁发电机,它们的特点是结构简单、重量轻、效率高、维护保养成本低。
发电装置的电能输出经过整流装置转换为直流电,然后通过变压器变换为满足不同设备需求的电压。
发电装置输出的直流电经过电源管理系统进行控制和管理。
电源管理系统有多个功能,包括捕获、控制、保护和监测电能的输出。
它能够监测电源的状态和负载需求,根据需要调整发电机的输出电压和频率,以满足各种设备对电能的需求。
此外,电源管理系统还能够提供对电源的保护,包括过载和短路保护,以防止电源故障损坏设备。
电池系统是飞机电源系统的一个重要组成部分,主要用于提供紧急电源。
在飞行过程中,发电机可能会出现故障,导致电能的供给中断。
此时,电池系统就会为关键设备提供必要的电源,以确保飞机的安全。
电池系统通常由多个电池组成,这些电池可以并联或串联连接,以提供所需的电压和容量。
为了将电能分配到各个设备,飞机电源系统还包括配电系统。
配电系统通过配电盘来分配和控制电能的流向。
配电盘上有多个开关和保险丝,用于控制和保护电路。
飞机上的不同设备对电能的需求有所不同,配电系统通过调整开关的位置和状态,将电能分配到不同的设备上。
总的来说,飞机电源系统的原理是通过发电装置产生电能,通过电源管理系统管理和保护电能的输出,通过电池系统提供紧急电源,通过配电系统将电能分配到各个设备上。
这样一套系统能够确保飞机上的各种设备都能获得稳定和可靠的电源供应,以保证飞机的正常运行和乘客的安全。
第四节飞机电气系统
航空蓄电池——一种化学电源,是化学能和电能 相互转换的装置。放电时,它把化学能转化为电能,向 用电设备供电;充电时,它又将电能转化为化学能储存 起来。
当飞机主电源采用直流电源系统时,航空蓄电池 通常与直流发电机并联供电。
正常飞行时,航空蓄电池处于被充电状态; 某些短时工作的“尖峰”用电设备工作时,作为电源系统的 辅助电源,与发电机并联一起向用电设备供电; 当发电机损坏时,作为应急电源向重要负载供电; 在应急状态下,还用作为起动发动机的电源 在地面时,又作为机上检查用的电源。
容量:30、40、60、90、120KVA 辅助电源:APU.G ; 应急电源:BAT 、INV 、RAT 、HMG 二次电源:TRU 特点:恒装的采购费用、维修费用、寿命周期费用 高;重量重、效率低、供电质量差;可靠性和可维 修性也较差。恒频。
(5)变速恒频交流电源系统(VSCF) 结构示意图:
碱性蓄电池有银锌蓄电池和镍铬蓄电池,它们的 电解质都是氢氧化钾。
银锌蓄电池的突出优点是体积小、重量轻、容量大、放电电 压平稳、自放电小;其缺点是寿命短、容易产生内部短路故障, 而且造价很高。
镍铬蓄电池与银锌蓄电池一样,也具有能适应大电流放电和 自放电小等优点;其突出的优点是寿命长,另外其低温性能好、 结构牢固、使用维护简便;其主要缺点是原材料来源少,因此造 价很高。
4)直流发电机的优缺点
缺点:可能产生电弧,烧毁换向器。 优点:并联比较容易,只要直流电压相等,正负极正确就可以通过电 源并联的方式提高供电系统的稳定性,飞机上通常用直流发电机和蓄 电池并联供电。直流发电机还可以作为起动发电机使用。
5)交流发电机的优缺点
优点:交流发电机没有换向器,不会产生火花,可靠性高,重量轻。 缺点:交流电并联比较困难,需要交流电的幅值、频率和相位完全 一致,否则并联时可能会损坏发电机,因此交流电通常不进行并联 供电。
第四章飞机交流电源系统
(二)恒速传动的三种情况
1、恒装输入轴转速为制动点转速时
液压马达不转动时,( n12 0)发动机通过差动齿轮系驱动发电机, 正好保持发电机转速为额定值所需要的输入轴转速 称n为1 制动点 转速。可由(4-6)令 n12 0 而求得:
(一)以机体为中线的三相三线制 实际上相当于三相四线制,只是以机体作中线而省去一根导线。这 种供电系统重量轻,单相负载的通、断及保护装置都比较简单,对 机上人员来说比较安全。 (二)中点不接地的三相三线制 单相负载的电压为线电压,缺点是单相负载的电压只有单一的一种 线电压。 (三)以单相为主而兼有三相的供电系统 它的交流电源是借助一台三角形联接的三相有刷交流同步发电机发 电的,但它只主用其中的 C2 C3 相以提供单相交流电源。
2、传动比
假定游星齿轮架 Z 2 的转速 n 2 输入环形齿轮 Z 3 (或 Z 4 )的转速 n 3(或 n 4 ) 输出环形齿轮 Z 8 (或 Z 7 )的转速 ,规定顺时针转动为正方向。 输入环形齿轮与输出环形齿轮之间的传动比为:
由式4-1可以求得 输出转速
i47
i38
Z7 Z4
n7Z Z7 4n4Z4Z7Z7n2
第三节恒速传动装置
一、概述 (一)恒速传动装置的位置 (二)轴向齿轮差动液压机械式恒速传动装置的基本组成 液压机械式恒速传动装置的主要组成包括传动系统、滑油系统、 调速系统和保护系统。 恒速传动装置输出轴的转速是由两部分合成的,一是发动机输入 轴的转速经过差动游星齿轮系直接传输的转速,它随发动机转速 的变化而变化。两者合成使恒速传动装置输出轴转速保持恒定。
四、正差动状态和负差动状态时的工作情况
飞机交流电源系统课件
通过输出端子,电压 被输送飞机电网。
当转子发动机带动旋 转时,磁场定子中产 生,从而感应出电压 。
变压整流器原理
变压整流器将交流电转换直流电 。
它由变压器整流器两部组成。
变压器将交流电压降低适当水平 ,然后整流器将交流电转换直流
电。
电源系统控制与保护
01
控制装置调节发电机工作状态,确保电压频率稳定。
飞机交流电源系统组成与功能
组成
飞机交流电源系统主由发电机、整流 器、蓄电池、配电装置等组成。
功能
发电机产生交流电,整流器将交流电 转换直流电供给直流负载,蓄电池作 备电源,配电装置负责电能配控制。
02
CATALOGUE
飞机交流电源系统基本原理
交流发电机工作原理
交流发电机由转子、 定子输出端子组成。
统可靠性。
热备份冗余
关键电源模块,可采热备份冗余 设计,即运行两模块,当其中一 模块出现故障时,另一模块能够
自动接管。
05
CATALOGUE
飞机交流电源系统未发展
高性能发电机研发与应
总结词
随着航空工业发展,飞机电源系统求越越高,高性能发电机研发应成未重趋势。
详细描述
高性能发电机具更高效率可靠性,能够提供更加稳定电能输出。它采先进材料设 计,能够极端环境正常工作,满足现代飞机电源系统苛刻求。
特点
具高可靠性、高效率、高功率密 度、易维护等优点,能够满足飞 机各种飞行状态电需求。
飞机交流电源系统历史与发展
历史
飞机交流电源系统发展经历从直流电源交流电源转变,最初使直流电源,随着 技术发展,交流电源逐渐成主流。
发展
目前,飞机交流电源系统技术发展主体现提高效率、降低重量、提高可靠性等 方面,未还将进一步发展布式电源系统多电飞机等技术。
《飞机电源系统》课件
采用简单的直流发电机作为电源,功率小、可靠性差 。
现代飞机电源系统
采用大功率的交流发电机和先进的控制技术,具有更 高的可靠性和效率。
未来飞机电源系统
将采用更加先进的电源技术和能源,如燃料电池、太 阳能等,以实现更加环保和高效的电能供应。
02 飞机电源系统的 组成
电源装置
总结词
电源装置是飞机电源系统的核心组成部分,负责产生和提供 电能。
可靠性试验
进行各种环境下的可靠性试验,验证电源系 统的可靠性。
预防性维护策略
制定有效的预防性维护策略,降低电源系统 故障率,提高其可靠性。
04 飞机电源系统的 维护与保养
日常维护与保养
每日检查
检查电源系统各部件是否正常工作,如发现异常 应及时处理。
清洁保养
定期清洁电源系统表面,保持其清洁干燥,防止 灰尘和污垢影响正常工作。
1 2
可再生能源利用
利用太阳能、风能等可再生能源为飞机供电,减 少对化石燃料的依赖,降低碳排放。
高效储能技术
研发高性能的储能电池和超级电容器,提高能源 储存和释放效率,满足飞机短时高功率需求。
3
能源回收与再利用
利用先进的能量回收技术,将飞机滑行、制动等 过程中的能量回收并再利用于电源系统,提高能 源利用效率。
电源的特性
高电压特性
飞机电源系统通常需要提供高 电压以驱动各种电子设备。
大电流特性
由于飞机上设备众多,需要大 电流来满足设备的用电需求。
稳定性
电源必须稳定,以确保飞机上 电子设备的正常运行。
高效性
为了减少能源消耗和减轻重量 ,飞机电源系统需要高效工作
。
对电源系统的要求
安全性
飞机电源系统的组成
飞机电源系统的组成以飞机电源系统的组成为标题,我们来探讨一下飞机电源系统的构成和工作原理。
飞机电源系统是飞机上的一项重要系统,它为飞机提供电力,并确保飞机在飞行中各个设备的正常运行。
飞机电源系统主要由以下几个组成部分构成:1. 主发电机:主发电机是飞机电源系统的核心部分,通常由发动机驱动。
它产生高压交流电,并通过变频器将其转换为稳定的低压交流电。
主发电机是飞机电源系统的主要电源,为整个飞机提供能量。
2. 辅助发电机:辅助发电机通常由APU(辅助动力装置)或其他独立的发电机提供电力。
它们主要用于满足飞机在地面或起飞、着陆等特殊情况下的电力需求。
3. 静变流器:静变流器将交流电转换为直流电,供给飞机上的直流设备使用。
静变流器也可以将直流电转换为交流电,以供给飞机上的交流设备使用。
4. 蓄电池:蓄电池是飞机电源系统中的备用电源,主要用于提供飞机在关机或紧急情况下的电力需求。
蓄电池通常通过发电机充电,以确保其始终保持充足的电量。
5. 电源管理系统:电源管理系统负责监控和控制飞机电源系统的运行。
它可以实时监测电源的状态,根据需要自动切换电源,确保各个设备的正常供电。
6. 配电盒:配电盒是飞机电源系统中的分配中心,将电源分配到各个设备。
配电盒还负责保护电源系统免受过载、短路等故障的影响,确保电源系统的稳定和安全运行。
7. 控制开关和保护装置:控制开关和保护装置用于控制和保护飞机电源系统的各个组件。
它们可以手动或自动地控制电源的开关和保护装置的动作,确保飞机电源系统的正常工作。
飞机电源系统的工作原理如下:当飞机的主发动机启动后,主发电机开始工作并产生交流电。
交流电经过变频器转换为低压交流电,并供给飞机上的交流设备使用。
同时,一部分交流电经过静变流器转换为直流电,供给飞机上的直流设备使用。
辅助发电机和蓄电池也可以提供电力,以满足飞机在特殊情况下的电力需求。
飞机电源系统的控制开关和保护装置负责监控和控制电源系统的运行。
飞机电源系统的原理是
飞机电源系统的原理是飞机电源系统是飞机上的一个重要系统,它为飞机提供稳定的电力供应。
飞机电源系统的原理主要包括电源生成、电力分配和故障保护三个方面。
首先,电源生成是飞机电源系统的核心,它负责将来自发动机的机械能转化为电能,并确保电能的稳定输出。
在飞机上常用的电源生成装置包括发电机和辅助动力装置。
发电机是一种通过发动机的转动产生电能的装置。
当飞机的发动机运转时,其内部的发电机也会开始工作。
发电机通过转子和定子之间的相对运动,产生电磁感应,将机械能转化为电能。
发电机输出的电能经过整流装置和稳压装置的处理,最终变为直流电能供应给飞机的各个电气设备。
辅助动力装置是飞机电源系统中的备用电源装置。
它通常由一台独立的发动机驱动,通过发电机产生电能。
辅助动力装置不仅能够为飞机提供电力,还可以提供其他辅助能源,如空调供应等。
辅助动力装置在飞机停泊、起飞和降落过程中起到至关重要的作用。
其次,电力分配是飞机电源系统中的一个重要环节。
它负责将发电机和辅助动力装置产生的电能分配给飞机上的各个电气设备。
电力分配系统主要包括电路保护和电源管理两个方面。
电路保护是指对飞机电路进行监控和故障保护的措施。
在飞机电源系统中,每一个电路都有一个相应的保护装置,如保险丝或保护开关。
如果电路发生短路或超载等故障,电路保护装置会自动切断电路,以防止故障扩大,保护飞机的安全。
电源管理是指对飞机电源进行控制和管理的操作。
电源管理系统可以根据飞行阶段和电能需求,合理分配和控制电能的输出。
通过电源管理系统,可以实现电源的合理调度,降低电能消耗,提高飞机的效率。
最后,故障保护是飞机电源系统的重要保障措施。
故障保护系统主要包括故障检测和故障恢复两个方面。
故障检测通过传感器和检测器等装置,实时监测飞机电源系统的运行状况,一旦检测到异常,会发出警报并采取相应的措施。
故障恢复则是指当飞机电源系统发生故障时,通过备用电源或备用设备的切换,保证飞机仍能正常运行,确保飞机安全。
飞机电源系统课件
03
飞机电源系统的设计与实现
电源系统的设计原则与要求
01
02
03
04
可靠性原则
电源系统必须能够保证飞机在 任何情况下都能提供稳定的电 力,特别是在紧急情况下。
效率原则
电源系统应尽可能地减少能源 浪费,确保能源的高效利用。
适应性原则
电源系统应能适应各种环境和 飞行条件,包括高海拔、高温、
极寒等极端环境。
交流发电机的发电原理
当转子在发动机的带动下旋转时,线圈切割磁力线,产生三相交流电动 势。整流器将三相交流电转换为直流电输出。
03
交流发电机的并联运行
飞机上通常有多个交流发电机,为了满足负载需求,这些发电机需要并
联运行。并联运行时,各发电机的电压、频率和相位必须保持一致。
直流Байду номын сангаас电机原理
直流发电机的基本结构
飞机电源系统的组成与分类
组成
飞机电源系统主要由发电机、电源控 制器、汇流条、电缆和保护装置等组 成。
分类
根据发电方式和电源性质,飞机电源 系统可分为直流电源系统和交流电源 系统两大类。
飞机电源系统的历史与发展
历史
飞机电源系统的发展经历了从机械发电机到交流发电机的演变,目前已经进入 了数字化和智能化的时代。
案例分析
波音737飞机采用三相交流电源系统,主电源为两台发动机驱动的发电机,同时还配备有辅助电源和应急电源。 该系统的设计保证了在单台发电机故障的情况下,另一台发电机能够自动承担全部负载,确保飞机的正常供电。
飞机电源系统的故障诊断与排除
故障诊断
飞机电源系统的故障诊断通常采用在线监控和离线检测相结合的方式。在线监控可以实时监测电源系 统的运行状态和参数,一旦发现异常立即报警;离线检测则通过专业的检测设备对电源系统进行全面 的性能测试和故障排查。
飞机电源系统
飞机电源系统简介飞机电源系统是飞行器中供电的重要组成部分,为飞机提供所需的电能。
它包括多个子系统,每个子系统负责不同的功能,以确保飞机各种设备和系统的正常运行。
主要组成部分1. 基本电源系统基本电源系统是飞机电源系统的核心部分,用于为飞机提供必要的直流和交流电能。
它通常由以下组件组成:•发电机:发电机是飞机电源系统的主要能源单元,通过旋转机械能转换为电能。
•电池:电池作为备用电源,提供飞机在紧急情况下的电力支持。
•电源管理系统:电源管理系统负责监控和控制电能的分配,确保电能在飞机各个系统间的平衡分配。
2. 交流电供应系统交流电供应系统为飞机中的交流电设备提供电力。
它通常由以下组件组成:•变频器:变频器将直流电能转换为交流电能,以满足飞机各种交流电设备的需求。
•分配盒:分配盒将变频器提供的电能分配给飞机中的各个交流设备。
•监控和保护系统:监控和保护系统负责监控交流电供应系统的运行状态,并在必要时提供保护。
3. 直流电供应系统直流电供应系统为飞机中的直流电设备提供电力。
它通常由以下组件组成:•整流器:整流器将交流电能转换为直流电能,以满足飞机各种直流电设备的需求。
•分配盒:分配盒将整流器提供的电能分配给飞机中的各个直流设备。
•监控和保护系统:监控和保护系统负责监控直流电供应系统的运行状态,并在必要时提供保护。
4. 光电供能系统光电供能系统利用太阳能或其他光能源为飞机提供电力。
它通常由以下组件组成:•太阳能电池板:太阳能电池板将太阳能转化为电能,并存储到电池中。
•充电器:充电器将太阳能电池板提供的电能充电到电池中。
•监控和保护系统:监控和保护系统负责监控光电供能系统的运行状态,并在必要时提供保护。
工作原理飞机电源系统的工作原理是将机械能转化为电能,并通过合理的分配和控制,为飞机各种设备和系统提供所需的电力。
首先,发电机将涡轮引擎产生的机械能转化为直流电能。
直流电能经过整流器转换为所需的直流电压,并通过分配盒分配给飞机中的直流设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞机电源系统
现代飞机战术技术水平在迅速地发展和提高,为了完成复杂的飞行任务并保证飞行安全,需要装配大量先进机载设备。
在飞机上,航空发动机是机械能源,称为一次能源,向机载设备提供的能源称为二次能源。
二次能源主要有液压能、气压能和电能。
由于电能易于输送、分配、变换和控制,绝大部分机载设备采用电能工作。
随着电气技术水平的提高,国外正在研制“全电飞机”,它将用电能全部取代飞机液压能和气压能。
飞机上用来产生电能的设备组合(电源及其调节、控制和保护设备)称为飞机电源系统,电源系统中有主电源、辅助电源、应急电源和二次电源,飞机上用来传输、分配、转换和控制电能的导线和设备按一定方式组合起来,称为飞机配电系统或飞机电网。
飞机电网主要由传输电能的导线和电缆、防止导线和设备受短路或超载危害的保护装置、配电装置、电源、用电设备的控制和转换装置及电源检查仪表等组成。
电源系统与配电系统总称为飞机供电系统。
依靠电能工作的设备称为用电设备,供电系统与用电设备总称为飞机电力系统。
飞机主电源由发电机及其传动、调节、控制、保护装置等组成,向正常飞行的飞机用电设备供电。
主电源不工作时由辅助电源或地面电源供电。
常用的辅助电源是航空蓄电池或辅助动力装置驱动的发电机。
在飞行中主电源一旦发生故障不能正常供电时,由应急电源供电。
常用的应急电源有航空蓄电池和风动涡轮发电机。
二次能源(以下简称次电源)是将主电源一种型式的电能转变为不同电压、不同电流和不同质量电能的设备,以满足不同用电设备对不同形式电能的要求。
电源和混合电源。
混合电源就是同时采用两种主电源。
各种电源与其调节、控制、保护装置及电网一起组成供电系统。
这些供电系统在飞机发展的不同时期都发挥了它们的作用。
同时在使用中也看出了它们的优缺点。
因此,随着飞机的发展各国都在改进和研制较理想的供电系统。
一、低压直流供电系统
(一)低压直流供电系统的优点
在飞机发明后的半个世纪里,低压直流供电系统一直充当飞机主电源是因为它有
突出的优点:
1. 容易实现多台发电机与蓄电池的并联供电,保证不中断供电,供电安全可靠。
2. 直流电动机的启动,调整性能好。
因此,直流供电系统实现电力控制和操纵比较方便。
3.直流发电机可以作为电力起动电动机使用,一机两用可以减轻设备总重量。
4.由于电压低,各种有触头转换的电路设备制造容易,体积小,比较安全可靠。
5.低压直流供电系统理论和技术不太复杂。
整体维护性好。
全周期维护费用也不高。
在飞机没有发展到高空、空速的中小型飞机上,每台发电机的功率不超过9~12千瓦的情况下,低压直流供电系统得到了最广泛的使用。
因为在这种条件下它是比较理想的供电系统。
(二)低压直流供电系统存在的问题
随着现代飞机的发展,飞机的高度、速度不断提高和机载设备的增多对飞机供电系统影响很大。
高空、高速使供电系统工作条件变化了,机载设备的增多使供电量增大、需要电源种类变多。
这些,对供电系统提出了更高的要求,使低压供电系统遇到了难以克服的问题:
1.电机换向火花加大、电刷磨损加剧
飞行高度增加,空气稀薄、温度和湿度降低,直流电机换向火花加大,电刷磨损严重。
特别是在飞机用电量大量增加的情况下,如果单机功率增加(单机功率在30千瓦以上)、直流发电机己很难做到安全可靠。
2.发电机冷却很难解决
在高空、高速条件下,飞机上的直流发电机冷却很难解决。
在高空条件下,空气稀薄、发电机的冷却效果下降。
例如,在15公里高空时,进入发电机的冷却空气量减少五分之三。
在高速飞行条件下,应用迎面气流冷却发电机几乎成为不可能。
例如,当M=2时,入口冷空气温度达100摄氏度;当M=2.5时入口冷却空气温度高达200摄氏度。
这时己不能用迎面气流来冷却发电机。
但又不能用油冷,因为直流发电机损耗的75%在转子上,为了冷却,必须把冷却油通到转子上,可是电刷和换向器是不允许接触油液的,因此需要解决冷却油液的动密封问题,这
在技术上是很难做到的。
3.电机重量功率比增加,供电系统重量大
随着现代飞机用电机载设备的不断增加,飞机电源的安装容量几十倍、几百倍地增加。
目前,歼击机的安装容量可达60~120千伏安;大型运输机和重型轰炸机都在200~300千伏安以上(伊尔七六飞机上四台主系统主电机共240千伏安,辅助交流发电机40千伏安和辅助直流发电机12千伏安)。
如果仍然采用低压直流供电系统的话,重量将会增加很多。
仅对发电机来说,由于直流发电机换向(有刷)条件的限制,发电机电压不能太高,单机容量也不能太大,因此其重量较大,重量功率比大。
例如,功率为18KW的ZF-18直流发电机、重量为41.5KG,而喷油冷却的60KVA的200/115 V的交流发电机的重量仅17KG左右。
低压直流供电系统的电网重量也很大。
如某型轰炸机电网重量达630KG,占全机重量的1.75%,若将电压从28.5V提高到120V,约可减少150KG。
总之,对28.5V低压直流供电系统,解决装机容量问题,不能通过提高发电机电压,因为提高电压,直流电机换向条件恶化,有触头的按触器和各种开关的电弧烧伤严重,都降低供电系统的可靠性;不能提高单机容量,也不能增加发电机数量(安十二飞机上,有8个主发电机СТГ-12,总功率为96KW,总重量为300多千克;如果伊尔七六采用СТГ-12为主发电机,得安装24个,总重量近1吨),因为每个发电机,都有一套电源系统,数量太多,总重量太大。
因此,只能寻找其它供电系统。
4.电能变换设备笨重、效率较低
现代飞机上用电机载设备多,需要多种不同频率不同电压的交流电和不同电压的直流电。
因此,需要多种电能变换设备。
如果主电源系统是直流电,要获得不同电压的直流电,一般用直流升压机或晶体直流变换器;要获得不同频率,不同电压的交流电,一般采用变流机或静止变流器,等等。
机电式电能变换设备,其效率低,变换设备比较笨重,一般重量功率比为10KG/KW。
而且升压机、变流机也存在一个高空换向困难问题。
所以,机载用电设备的增多,使得直流供电系统在能量变换上遇到了较大困难。
这也是这种供电系统的一个不足。
综上所述,低压直流供电系统己不适用于高空、高速和用电量大且用电种类多的飞机。