2019年湖南省益阳中考数学试卷及解析
2019年湖南省益阳中考数学试卷含答案解析
第 1 页湖南省益阳市2019年普通初中学业水平考试数 学本试卷满分150分,考试时间120分钟.一、选择题(本题共10个小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的) 1.6-的倒数是( ) A .16-B .16C .6-D .6 2.下列运算正确的是( )A2=-B .(26=CD=3.下列几何体中,其侧面展开图为扇形的是( )ABCD4.解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是 ( ) A .23x +=B .23x -=C .()2321x x -=-D .()2321x x +=-5.下列函数中,y 总随x 的增大而减小的是( )A .4y x =B .4y x =-C .4y x =-D .2y x =6.已知一组数据5,8,8,9,10,以下说法错误的是( )A .平均数是8B .众数是8C .中位数是8D .方差是87.已知M 、N 是线段AB 上的两点,2AM MN ==,1NB =,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,第 2 页BC ,则ABC △一定是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形8.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图1,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB a =,则此时大桥主架顶端离水面的高CD 为( )A .sin sin a a αβ+B .cos cos a a αβ+C .a tan tan a αβ+D .tan tan a aαβ+9.如图2,P A 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A .PA PB =B .BPD APD ∠=∠C .AB PD ⊥D .AB 平分PD10.已知二次函数2y ax bx c =++的图象如图3所示,下列结论:①0ac <,②20b a -<,③240b ac -<,④0a b c -+<,正确的是( )A .①②B .①④C .②③D .②④二、填空题(本题共8个小题,每小题4分,共32分.请将答案填在答题卡中对应题号的横线上)11.国家发改委发布信息,到2019年12月底,高速公路电子不停车快捷收费(ETC )用户数量将突破1.8亿,将180 000 000用科学记数法表示为 .第 3 页12.若一个多边形的内角和与外角和之和是900︒,则该多边形的边数是 . 13.不等式组103x x -⎧⎨-⎩<>的解集为 . 14.如图4,直线AB CD ∥,OA OB ⊥,若1142∠=︒,则2∠= 度.15.在如图5所示的方格纸(1格长为1个单位长度)中,ABC △的顶点都在格点上,将ABC △绕点O 按顺时针方向旋转得到A B C '''△,使各顶点仍在格点上,则其旋转角的度数是 .16.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是 . 17.反比例函数ky x=的图象上有一点()2,P n ,将点P 向右平移1个单位,再向下平移1个单位得到点Q ,若点Q 也在该函数的图象上,则k = . 18.观察下列等式:①)231-,②25-=,③27-=,…请你根据以上规律,写出第6个等式 .三、解答题(本题共8个小题,共78分,解答应写出文字说明,证明过程或演算步骤)19.(本小题满分8分)计算:()114sin 6020192-⎛⎫︒+---- ⎪⎝⎭.第 4 页20.(本小题满分8分)化简:224442x x x x ⎛⎫+--÷ ⎪⎝⎭.21.(本小题满分8分)已知,如图6,AB AE =,AB DE ∥,70ECB ∠=︒,110D ∠=︒,求证:ABC EAD △≌△.22.(本小题满分10分)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A 、B 、C 、D 、E ,由调查所得数据绘制了图7所示的不完整的统计图表.(1)求本次调查的小型汽车数量及m ,n 的值; (2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5 000辆,请你估计其中每车只乘坐1人的小型汽车数量.类别 频率 A m B 0.35 C 0.20 Dn E0.0523.(本小题满分10分)如图8,在Rt ABC△中,M是斜边AB的中点,以CM为直径作圆O交AC于点N,延长MN至D,使ND MN=,连接AD、CD,CD交圆O于点E.(1)判断四边形AMCD的形状,并说明理由;(2)求证:ND NE=;(3)若2DE=,3EC=,求BC的长.24.(本小题满分10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾·稻”轮作模式.某农户有农田20亩,去年开始实施“虾·稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价-成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为2.5元/千克,该农户估计今年可获得“虾·稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?25.(本小题满分12分)在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知()A,()1,4B.3,0(1)求抛物线对应的二次函数表达式;第5页第 6 页(2)探究:如图9-1,连接OA ,作DE OA ∥交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图9-2,(),P m n 是抛物线在第四象限的图象上的点,且1m n +=-,连接P A 、PC ,在线段PC 上确定一点N ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为()11,x y 、()22,x y ,则线段AB 的中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭.26.(本小题满分12分)如图10,在平面直角坐标系xOy 中,矩形ABCD 的边4AB =,6BC =.若不改变矩形ABCD 的形状和大小,当矩形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半轴上随之上下移动. (1)当30OAD ∠=︒时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形OMCD 的面积为212时,求OA 的长;(3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos OAD ∠的值.第 7 页湖南省益阳市2019年普通初中学业水平考试数学答案解析一、选择题【解析】A 2=,故本选项错误; B:(212=,故本选项错误;C D :根据二次根式乘法运算的法则知本选项正确。
【精校】湖南省益阳市2019年中考数学试题
绝密★启用前湖南省益阳市2019年中考数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.﹣6的倒数是( ) A .﹣16 B .16C .﹣6D .6【答案】A 【解析】解:﹣6的倒数是﹣16.故选A . 2.下列运算正确的是( ) 2 )2=6==【答案】D 【解析】 【分析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可. 【详解】A =2,故本选项错误;B :)2=12,故本选项错误;C D :根据二次根式乘法运算的法则知本选项正确, 故选D .试卷第2页,总23页……线……………线………【点睛】本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键. 3.下列几何体中,其侧面展开图为扇形的是( )A. B. C. D.【答案】C 【解析】 【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案. 【详解】A 、圆柱的侧面展开图是矩形,故A 错误;B 、三棱柱的侧面展开图是矩形,故B 错误;C 、圆锥的侧面展开图是扇形,故C 正确;D 、三棱锥的侧面展开图是三个三角形拼成的图形,故D 错误, 故选C . 【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键. 4.解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A.x+2=3 B.x ﹣2=3C.x ﹣2=3(2x ﹣1)D.x+2=3(2x ﹣1)【答案】C 【解析】 【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得 x ﹣2=3(2x ﹣1), 故选C . 【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.下列函数中,y总随x的增大而减小的是( )A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x2【答案】B【解析】【分析】结合各个选项中的函数解析式,根据相关函数的性质即可得到答案.【详解】y=4x中y随x的增大而增大,故选项A不符题意,y=﹣4x中y随x的增大而减小,故选项B符合题意,y=x﹣4中y随x的增大而增大,故选项C不符题意,y=x2中,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,故选项D不符合题意,故选B.【点睛】本题考查了二次函数的性质、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用一次函数和二次函数的性质解答.6.已知一组数据5,8,8,9,10,以下说法错误的是( )A.平均数是8B.众数是8C.中位数是8D.方差是8【答案】D【解析】【分析】分别计算平均数,众数,中位数,方差后进行判断即可.【详解】由平均数的公式得平均数=(5+8+8+9+10)÷5=8,方差=15[(5﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2.8,将5个数按从小到大的顺序排列为:5,8,8,9,10,第3个数为8,即中位数为8,5个数中8出现了两次,次数最多,即众数为8,故选D.【点睛】本题考查了对平均数,众数,中位数,方差,熟练掌握相关的概念以及求解方法是解题的关键.试卷第4页,总23页○…………外……………○………要※※在※※装※※订※※线○…………内……………○………7.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A.锐角三角形 B.直角三角形C.钝角三角形D.等腰三角形【答案】B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )…装…………○__姓名:___________班…装…………○ A.asinα+asinβ B.acosα+acosβ C.atanα+atanβD.tan tan a aαβ+ 【答案】C 【解析】 【分析】在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可. 【详解】在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=BC AB ,tanβ=BD AB, ∴BC =atanα,BD =atanβ, ∴CD =BC+BD =atanα+atanβ, 故选C . 【点睛】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键. 9.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A.PA =PBB.∠BPD =∠APDC.AB ⊥PDD.AB 平分PD【答案】D 【解析】 【分析】先根据切线长定理得到PA =PB ,∠APD =∠BPD ;再根据等腰三角形的性质得OP ⊥AB ,根据菱形的性质,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,由此可判断D 不一定成立. 【详解】∵PA ,PB 是⊙O 的切线, ∴PA =PB ,所以A 成立; ∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;试卷第6页,总23页……订…………○※※内※※答※※题※※……订…………○∵PA ,PB 是⊙O 的切线, ∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立, 故选D . 【点睛】本题考查了切线长定理,垂径定理,等腰三角形的性质等,熟练掌握相关知识是解题的关键.10.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结论:①ac <0,②b ﹣2a <0,③b 2﹣4ac <0,④a ﹣b+c <0,正确的是( )A.①②B.①④C.②③D.②④【答案】A 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所给结论进行判断. 【详解】①图象开口向下,与y 轴交于正半轴,能得到:a <0,c >0, ∴ac <0,故①正确; ②∵对称轴x <﹣1, ∴2ba<﹣1,-2a >0, ∴b <2a ,∴b ﹣2a <0,故②正确;③图象与x 轴有2个不同的交点,依据根的判别式可知b 2﹣4ac >0,故③错误; ④当x =﹣1时,y >0,∴a ﹣b+c >0,故④错误, 故选A . 【点睛】本题考查了二次函数图象与系数的关系,解题的关键是会利用对称轴的范围求2a 与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.试卷第8页,总23页第II卷(非选择题)请点击修改第II卷的文字说明二、填空题11.国家发改委发布信息,到2019年12月底,高速公路电子不停车快速收费(ETC)用户数量将突破1.8亿,将180 000 000科学记数法表示为____________.【答案】1.8×108【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】180 000 000的小数点向左移动8位得到1.8,所以180 000 000用科学记数法表示为1.8×108,故答案为:1.8×108.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若一个多边形的内角和比外角和多900o,则该多边形的边数是_____.【答案】9,【解析】分析:根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.详解:设这个多边形的边数是n,则(n−2)⋅180°−360°=900°,解得n=9.故答案为:9.点睛:本题考查了多边形的内角和外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.13.不等式组103xx-⎧⎨-⎩<>的解集为____________.【答案】x<﹣3……○………______班级:_____……○………【解析】 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 【详解】103x x -⎧⎨-⎩<①>②, 解①得:x <1, 解②得:x <﹣3,则不等式组的解集是:x <﹣3, 故答案为:x <﹣3. 【点睛】本题考查了解一元一次不等式组,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.如图,直线AB ∥CD ,OA ⊥OB ,若∠1=142°,则∠2=____________度.【答案】52 【解析】 【分析】根据平行线的性质可得∠OED =∠2,再根据∠O =90°,∠1=∠OED+∠O =142°,即可求得答案. 【详解】 ∵AB ∥CD , ∴∠OED =∠2, ∵OA ⊥OB , ∴∠O =90°,∵∠1=∠OED+∠O =142°,∴∠2=∠1﹣∠O =142°﹣90°=52°, 故答案为:52.试卷第10页,总23页………订…………………○……※※线※※内※※答※※题………订…………………○……【点睛】本题考查了平行线的性质,垂直的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.15.在如图所示的方格纸(1格长为1个单位长度)中,△ABC 的顶点都在格点上,将△ABC 绕点O 按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是____________..【答案】90° 【解析】 【分析】根据旋转角的概念找到∠BOB ′是旋转角,从图形中可求出其度数即可. 【详解】根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB ′是旋转角,且∠BOB ′=90°, 故答案为:90°. 【点睛】本题主要考查了旋转角的概念,解题的关键是根据旋转角的概念找到旋转角. 16.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是____________. 【答案】16【解析】 【分析】画出树状图得出所有情况,让从左向右恰好成上、中、下的情况数除以总情况数即为所求的概率.线…………线…………【详解】 画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册”的结果有1个, ∴从上到下的顺序恰好为“上册、中册、下册”的概率为16, 故答案为:16. 【点睛】本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 17.反比例函数ky x=的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单位得到点Q ,若点Q 也在该函数的图象上,则k =____________. 【答案】6 【解析】 【分析】根据平移的特性写出点Q 的坐标,由点P 、Q 均在反比例函数ky x=的图象上,即可得出k =2n =3(n ﹣1),解出即可. 【详解】∵点P 的坐标为(2,n),则点Q 的坐标为(3,n ﹣1), 依题意得:k =2n =3(n ﹣1), 解得:n =3, ∴k =2×3=6, 故答案为:6. 【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k 的几何意义,解题的关键:由P 点坐标表示出Q 点坐标. 18.观察下列等式:试卷第12页,总23页①3﹣=﹣1)2, ②5﹣=)2, ③7﹣=)2, …请你根据以上规律,写出第6个等式____________. 【答案】213-= 【解析】 【分析】第n 个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n 个等式右边的式子为)2(n ≥1的整数). 【详解】∵①3﹣﹣1)2, ②5﹣=)2, ③7﹣=2, …,∴第n 个等式为:)2, ∴第6个等式为:213-=,故答案为:213-=. 【点睛】本题考查了规律题,涉及了二次根式的混合运算,通过所给等式发现等式左边与右边的变化规律是解题的关键. 三、解答题19.计算:0114sin 60(2019)()2-+--+-o. 【答案】1. 【解析】 【分析】外…………○…学校:内…………○…原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值. 【详解】 原式=4﹣=41. 【点睛】本题考查了实数的运算,涉及了0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.20.化简:2244(4)2x x x x+--÷. 【答案】24+2x x -. 【解析】 【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可. 【详解】原式=2(2)2(2)(2)x xx x x -⋅+- =24+2x x -. 【点睛】本题考查分式的混合运算,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.21.已知,如图,AB =AE ,AB ∥DE ,∠ECB =70°,∠D =110°,求证:△ABC ≌△EAD .【答案】证明见解析. 【解析】 【分析】由∠ECB =70°得∠ACB =110°,再由AB ∥DE ,证得∠CAB =∠E ,再结合已知条件AB =AE ,可利用AAS 证得△ABC ≌△EAD .试卷第14页,总23页【详解】由∠ECB =70°得∠ACB =110°, 又∵∠D =110°, ∴∠ACB =∠D , ∵AB ∥DE , ∴∠CAB =∠E , ∴在△ABC 和△EAD 中,==ACBD CABE AB AE ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△ABC ≌△EAD(AAS). 【点睛】本题是全等三角形证明的基础题型,在有些条件还需要证明时,应先把它们证出来,再把条件用大括号列出来,根据等三角形证明的方法判定即可.22.某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A 、B 、C 、D 、E ,由调查所得数据绘制了如图所示的不完整的统计图表.(1)求本次调查的小型汽车数量及m ,n 的值; (2)补全频数分布直方图;…………○…………装…线…………○……学校:___________姓…………○…………装…线…………○……(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.【答案】(1)本次调查的小型汽车数量为160辆,m =0.3,n =0.1;(2)见解析;(3)估计其中每车只乘坐1人的小型汽车数量为1500辆. 【解析】 【分析】(1)由C 类别数量及其对应的频率可得总数量,再由频率=频数÷总数量可得m 、n 的值; (2)用总数量乘以B 、D 对应的频率求得其人数,从而补全图形; (3)利用样本估计总体思想求解可得. 【详解】(1)本次调查的小型汽车数量为32÷0.2=160(辆), m =48÷160=0.3,n =1﹣(0.3+0.35+0.20+0.05)=0.1;(2)B 类小汽车的数量为160×0.35=56,D 类小汽车的数量为0.1×160=16, 补全图形如下:(3)估计其中每车只乘坐1人的小型汽车数量为5000×0.3=1500(辆). 【点睛】本题考查了频数分布直方图、用样本估计总体、频数分布表,弄清题意,读懂统计图表,从中找到必要的信息是解题的关键.23.如图,在Rt △ABC 中,M 是斜边AB 的中点,以CM 为直径作圆O 交AC 于点N ,延长MN 至D ,使ND =MN ,连接AD 、CD ,CD 交圆O 于点E .试卷第16页,总23页……线……………线………(1)判断四边形AMCD的形状,并说明理由;(2)求证:ND=NE;(3)若DE=2,EC=3,求BC的长.【答案】(1)四边形AMCD是菱形,理由见解析;(2)证明见解析;(3)BC=【解析】【分析】(1)证明四边形AMCD的对角线互相平分,且∠CNM=90°,可得四边形AMCD为菱形;(2)可证得∠CMN=∠DEN,由CD=CM可证出∠CDM=∠CMN,则∠DEN=∠CDM,结论得证;(3)证出△MDC∽△EDN,由比例线段可求出ND长,再求MN的长,则BC可求出.【详解】(1)四边形AMCD是菱形,理由如下:∵M是Rt△ABC中AB的中点,∴CM=AM,∵CM为⊙O的直径,∴∠CNM=90°,∴MD⊥AC,∴AN=CN,∵ND=MN,∴四边形AMCD是菱形;(2)∵四边形CENM为⊙O的内接四边形,∴∠CEN+∠CMN=180°,∵∠CEN+∠DEN=180°,∴∠CMN=∠DEN,∵四边形AMCD是菱形,∴CD=CM,∴∠CDM=∠CMN,∴∠DEN =∠CDM , ∴ND =NE ;(3)∵∠CMN =∠DEN ,∠MDC =∠EDN , ∴△MDC ∽△EDN , ∴MD DCDE DN=, 设DN =x ,则MD =2x ,由此得252x x=, 解得:x x 不合题意,舍去), ∴MN =∵MN 为△ABC 的中位线, ∴BC =2MN , ∴BC = 【点睛】本题考查了圆的综合知识,熟练运用圆周角定理、菱形的判定与性质、直角三角形的性质、勾股定理以及相似三角形的判定与性质是解题的关键.24.为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【答案】(1)去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)稻谷的亩产量至少会达到640千克. 【解析】 【分析】(1)设去年每千克小龙虾的养殖成本与售价分别为x 元、y 元,由题意列出方程组,解方程组即可;(2)设今年稻谷的亩产量为z 千克,由题意列出不等式,就不等式即可.试卷第18页,总23页…○…………外……………○…………内…………【详解】(1)设去年每千克小龙虾的养殖成本与售价分别为x 元、y 元, 由题意得:32(110)(125)30y x y x -=⎧⎨---=⎩%%,解得:840x y =⎧⎨=⎩,答:去年每千克小龙虾的养殖成本与售价分别为8元、40元; (2)设今年稻谷的亩产量为z 千克,由题意得:20×100×30+20×2.5z ﹣20×600≥80000, 解得:z ≥640;答:稻谷的亩产量至少会达到640千克. 【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用;根据题意列出方程组或不等式是解题的关键.25.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0). (1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解…外…………○…………学校:___________…内…………○…………析;(3)点N(43,﹣73). 【解析】 【分析】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解; (2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N 是PQ 的中点,根据C,P 点的坐标求出直线PC 的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q 点的坐标,从而即可求N 点的坐标. 【详解】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式得:0=a(3﹣1)2+4, 解得:a =﹣1,故抛物线的表达式为:y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由: 如图1,∵DE ∥AO ,S △ODA =S △OEA ,S △ODA +S △AOM =S △OEA +S △AOM ,即:S 四边形OMAD =S △OBM , ∴S △OME =S △OBM , ∴S 四边形OMAD =S △OBM ;(3)设点P(m ,n),n =﹣m 2+2m+3,而m+n =﹣1, 解得:m =﹣1或4,故点P(4,﹣5);如图2,故点D 作QD ∥AC 交PC 的延长线于点Q ,由(2)知:点N 是PQ 的中点, 设直线PC 的解析式为y=kx+b ,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:045k b k b -+=⎧⎨+=-⎩,试卷第20页,总23页…………○………※※请※※不…………○………解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣43,即点Q(﹣43,13),∵点N是PQ的中点,由中点公式得:点N(43,﹣73).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点.26.如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)点C的坐标为(2,);(2)OA=;(3)OC的最大值为8,cos∠OAD .【解析】【分析】…………○………:___________班级:_______…………○………(1)作CE ⊥y 轴,先证∠CDE =∠OAD =30°得CE =12CD =2,DE ==OAD =30°知OD =12AD =3,从而得出点C 坐标; (2)先求出S △DCM =6,结合S 四边形OMCD =212知S △ODM =92,S △OAD =9,设OA =x 、OD =y ,据此知x 2+y 2=36,12xy =9,得出x 2+y 2=2xy ,即x =y ,代入x 2+y 2=36求得x 的值,从而得出答案;(3)由M 为AD 的中点,知OM =3,CM =5,由OC ≤OM+CM =8知当O 、M 、C 三点在同一直线时,OC 有最大值8,连接OC ,则此时OC 与AD 的交点为M ,ON ⊥AD ,证△CMD ∽△OMN 得CD DM CM ON MN OM ==,据此求得MN =95,ON =125,AN =AM﹣MN =65,再由OA cos ∠OAD =ANOA可得答案.【详解】(1)如图1,过点C 作CE ⊥y 轴于点E ,∵矩形ABCD 中,CD ⊥AD , ∴∠CDE+∠ADO =90°, 又∵∠OAD+∠ADO =90°, ∴∠CDE =∠OAD =30°, ∴在Rt △CED 中,CE =12CD =2,DE 在Rt △OAD 中,∠OAD =30°, ∴OD =12AD =3, ∴点C 的坐标为(2,; (2)∵M 为AD 的中点, ∴DM =3,S △DCM =6, 又S 四边形OMCD =212,试卷第22页,总23页○…………订……※※订※※线※※内※※答※○…………订……∴S△ODM=92,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=负值舍去),∴OA=(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴CD DM CMON MN OM==,即4353ON MN==,解得MN=95,ON=125,∴AN=AM﹣MN=65,在Rt△OAN中,OA=,∴cos∠OAD=AN OA=【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2019年湖南省益阳市中考数学试题(含分析解答)
第1页(共47页)
2019年湖南省益阳市中考数学试题(含分析解答)
一、选择题:共10小题,每小题4分,共40分,每小题给出的四个选中,只有一项是符题目要求的
1.(4分)(2018•益阳)2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学记数法表示正确的是( )
A .1.35×106
B .1.35×105
C .13.5×104
D .13.5×103
2.(4分)(2018•益阳)下列运算正确的是( )
A .x 3•x 3=x 9
B .x 8÷x 4=x 2
C .(ab 3)2=ab 6
D .(2x)3=8x 3
3.(4分)(2018•益阳)不等式组
的解集在数轴上表示正确的是( ) A .
B . C
.
D . 4.(4分)(2018•益阳)如图是某几何体的三视图,则这个几何体是( )
A .棱柱
B .圆柱
C .棱锥
D .圆锥
5.(4分)(2018•益阳)如图,直线AB 、CD 相交于点O,EO ⊥CD .下列说法错误的是
( )
A .∠AOD=∠BOC
B .∠AOE +∠BOD=90°
C .∠AOC=∠AOE
D .∠AOD +∠BOD=180°
6.(4分)(2018•益阳)益阳市高新区某厂今年新招聘一批员工,他们中不同文化程。
2019年湖南省益阳市中考数学试卷(精编)
2019年湖南省益阳市中考数学试卷一、选择题(本题共10个小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣6的倒数是()A.﹣B.C.﹣6 D.62.(4分)下列运算正确的是()A.=﹣2 B.(2)2=6 C.+=D.×=3.(4分)下列几何体中,其侧面展开图为扇形的是()A.B.C.D.4.(4分)解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3 B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)5.(4分)下列函数中,y总随x的增大而减小的是()A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x26.(4分)已知一组数据5,8,8,9,10,以下说法错误的是()A.平均数是8 B.众数是8 C.中位数是8 D.方差是8 7.(4分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8.(4分)南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+9.(4分)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD 10.(4分)已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的是()A.①②B.①④C.②③D.②④二、填空题(本题共8个小题,每小题4分,共32分,请将答案填在答题卡中对应题号的横线上)11.(4分)国家发改委发布信息,到2019年12月底,高速公路电子不停车快速收费(ETC)用户数量将突破1.8亿,将180 000 000科学记数法表示为.12.(4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.13.(4分)不等式组的解集为.14.(4分)如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2=度.15.(4分)在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是.16.(4分)小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是.17.(4分)反比例函数y=的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k=.18.(4分)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式.三、解答题(本题共8个小题,共78分,解答应写出文字说明,证明过程或演算步骤)19.(8分)计算:4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.20.(8分)化简:(﹣4)÷.21.(8分)已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.22.(10分)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.23.(10分)如图,在Rt△ABC中,M是斜边AB的中点,以CM为直径作圆O交AC于点N,延长MN至D,使ND=MN,连接AD、CD,CD交圆O于点E.(1)判断四边形AMCD的形状,并说明理由;(2)求证:ND=NE;(3)若DE=2,EC=3,求BC的长.24.(10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?25.(12分)在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,).26.(12分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.2019年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣6的倒数是()A.﹣B.C.﹣6 D.6【分析】乘积是1的两数互为倒数.【解答】解:﹣6的倒数是﹣.故选:A.【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.(4分)下列运算正确的是()A.=﹣2 B.(2)2=6 C.+=D.×=【分析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.【解答】解:A:=2,故本选项错误;B:=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确.故选:D.【点评】本题考查的是二次根式的性质及二次根式的相关运算法则,属于基础计算能力的考查,本题较为简单.3.(4分)下列几何体中,其侧面展开图为扇形的是()A.B.C.D.【分析】根据特殊几何体的展开图,可得答案.【解答】解:A、圆柱的侧面展开图可能是正方形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三角形,故D错误.故选:C.【点评】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.4.(4分)解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3 B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)【分析】最简公分母是2x﹣1,方程两边都乘以(2x﹣1),把分式方程便可转化成一元一次方程.【解答】解:方程两边都乘以(2x﹣1),得x﹣2=3(2x﹣1),故选:C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.(4分)下列函数中,y总随x的增大而减小的是()A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x2【分析】根据各个选项中的函数解析式,可以得到y随x的增大如何变化,从而可以解答本题.【解答】解:y=4x中y随x的增大而增大,故选项A不符题意,y=﹣4x中y随x的增大而减小,故选项B符合题意,y=x﹣4中y随x的增大而增大,故选项C不符题意,y=x2中,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,故选项D 不符合题意,故选:B.【点评】本题考查二次函数的性质、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用一次函数和二次函数的性质解答.6.(4分)已知一组数据5,8,8,9,10,以下说法错误的是()A.平均数是8 B.众数是8 C.中位数是8 D.方差是8【分析】分别计算平均数,众数,中位数,方差后判断.【解答】解:由平均数的公式得平均数=(5+8+8+9+10)÷5=8,方差=[(5﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2.8,将5个数按从小到大的顺序排列为:5,8,8,9,10,第3个数为8,即中位数为8,5个数中8出现了两次,次数最多,即众数为8,故选:D.【点评】此题考查了学生对平均数,众数,中位数,方差的理解.只有熟练掌握它们的定义,做题时才能运用自如.7.(4分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【解答】解:如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选:B.【点评】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8.(4分)南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+【分析】在Rt△ABD和Rt△ABC中,由三角函数得出BC=a tanα,BD=a tanβ,得出CD=BC+BD=a tanα+a tanβ即可.【解答】解:在Rt△ABD和Rt△ABC中,AB=a,tanα=,tanβ=,∴BC=a tanα,BD=a tanβ,∴CD=BC+BD=a tanα+a tanβ;故选:C.【点评】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC和BD是解题的关键.9.(4分)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD【分析】先根据切线长定理得到PA=PB,∠APD=∠BPD;再根据等腰三角形的性质得OP⊥AB,根据菱形的性质,只有当AD∥PB,BD∥PA时,AB平分PD,由此可判断D不一定成立.【解答】解:∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理、垂径定理和等腰三角形的性质.10.(4分)已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的是()A.①②B.①④C.②③D.②④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①图象开口向下,与y轴交于正半轴,能得到:a<0,c>0,∴ac<0,故①正确;②∵对称轴x<﹣1,∴﹣<﹣1,a>0,∴b<2a,∴b﹣2a<0,故②正确.③图象与x轴有2个不同的交点,依据根的判别式可知b2﹣4ac>0,故③错误.④当x=﹣1时,y>0,∴a﹣b+c>0,故④错误;故选:A.【点评】本题主要考查了二次函数图象与系数的关系,解题的关键是会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本题共8个小题,每小题4分,共32分,请将答案填在答题卡中对应题号的横线上)11.(4分)国家发改委发布信息,到2019年12月底,高速公路电子不停车快速收费(ETC)用户数量将突破1.8亿,将180 000 000科学记数法表示为 1.8×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将180 000 000科学记数法表示为1.8×108.故答案为:1.8×108.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 5 .【分析】本题需先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.【解答】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900﹣360=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故答案为:5.【点评】本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出本题即可.13.(4分)不等式组的解集为x<﹣3 .【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:,解①得:x<1,解②得:x<﹣3,则不等式组的解集是:x<﹣3.故答案为:x<﹣3.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.(4分)如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2=52 度.【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠OCD=∠2,∵OA⊥OB,∴∠O=90°,∵∠1=∠OCD+∠O=142°,∴∠2=∠1﹣∠O=142°﹣90°=52°,故答案为:52.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.15.(4分)在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是90°.【分析】根据旋转角的概念找到∠BOB′是旋转角,从图形中可求出其度数.【解答】解:根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故答案为90°.【点评】本题主要考查了旋转角的概念,解题的关键是根据旋转角的概念找到旋转角.16.(4分)小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是.【分析】画出树状图得出所有情况,让从左向右恰好成上、中、下的情况数除以总情况数即为所求的概率.【解答】解:画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册”的结果有1个,∴从上到下的顺序恰好为“上册、中册、下册”的概率为;故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.(4分)反比例函数y=的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k= 6 .【分析】根据平移的特性写出点Q的坐标,由点P、Q均在反比例函数y=的图象上,即可得出k=2n=3(n﹣1),解得即可.【解答】解:∵点P的坐标为(2,n),则点Q的坐标为(3,n﹣1),依题意得:k=2n=3(n﹣1),解得:n=3,∴k=2×3=6,故答案为:6.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义,解题的关键:由P点坐标表示出Q点坐标.18.(4分)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式13﹣2=(﹣)2.【分析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(﹣)2(n≥1的整数).【解答】解:写出第6个等式为13﹣2=(﹣)2.故答案为13﹣2=(﹣)2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.三、解答题(本题共8个小题,共78分,解答应写出文字说明,证明过程或演算步骤)19.(8分)计算:4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.【分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:原式=4×+1﹣2+2=4﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)化简:(﹣4)÷.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.(8分)已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.【分析】由∠ECB=70°得∠ACB=110°,再由AB∥DE,证得∠CAB=∠E,再结合已知条件AB=AE,可利用AAS证得△ABC≌△EAD.【解答】证明:由∠ECB=70°得∠ACB=110°又∵∠D=110°∴∠ACB=∠D∵AB∥DE∴∠CAB=∠E∴在△ABC和△EAD中∴△ABC≌△EAD(AAS).【点评】本题是全等三角形证明的基础题型,在有些条件还需要证明时,应先把它们证出来,再把条件用大括号列出来,根据等三角形证明的方法判定即可.22.(10分)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.【分析】(1)由C类别数量及其对应的频率可得总数量,再由频率=频数÷总数量可得m、n的值;(2)用总数量乘以B、D对应的频率求得其人数,从而补全图形;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的小型汽车数量为32÷0.2=160(辆),m=48÷160=0.3,n=1﹣(0.3+0.35+0.20+0.05)=0.1;(2)B类小汽车的数量为160×0.35=56,D类小汽车的数量为0.1×160=16,补全图形如下:(3)估计其中每车只乘坐1人的小型汽车数量为5000×0.3=1500(辆).【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体和频率分布表.23.(10分)如图,在Rt△ABC中,M是斜边AB的中点,以CM为直径作圆O交AC于点N,延长MN至D,使ND=MN,连接AD、CD,CD交圆O于点E.(1)判断四边形AMCD的形状,并说明理由;(2)求证:ND=NE;(3)若DE=2,EC=3,求BC的长.【分析】(1)证明四边形AMCD的对角线互相平分,且∠CNM=90°,可得四边形AMCD为菱形;(2)可证得∠CMN=∠DEN,由CD=CM可证出∠CDM=∠CMN,则∠DEN=∠CDM,结论得证;(3)证出△MDC∽△EDN,由比例线段可求出ND长,再求MN的长,则BC可求出.【解答】(1)解:四边形AMCD是菱形,理由如下:∵M是Rt△ABC中AB的中点,∴CM=AM,∵CM为⊙O的直径,∴∠CNM=90°,∴MD⊥AC,∴AN=CN,∵ND=MN,∴四边形AMCD是菱形.(2)∵四边形CENM为⊙O的内接四边形,∴∠CEN+∠CMN=180°,∵∠CEN+∠DEN=180°,∴∠CMN=∠DEN,∵四边形AMCD是菱形,∴CD=CM,∴∠CDM=∠CMN,∴∠DEN=∠CDM,∴ND=NE.(3)∵∠CMN=∠DEN,∠MDC=∠EDN,∴△MDC∽△EDN,∴,设DN=x,则MD=2x,由此得,解得:x=或x=﹣(不合题意,舍去),∴,∵MN为△ABC的中位线,∴BC=2MN,∴BC=2.【点评】本题考查了圆综合知识,熟练运用圆周角定理、菱形的判定与性质、直角三角形的性质、勾股定理以及相似三角形的判定与性质是解题的关键.24.(10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【分析】(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意列出方程组,解方程组即可;(2)设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)设今年稻谷的亩产量为z千克,由题意得:20×100×30+20×2.5z﹣20×600≥80000,解得:z≥640;答:稻谷的亩产量至少会达到640千克.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用;根据题意列出方程组或不等式是解题的关键.25.(12分)在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,).【分析】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式,即可求解;(2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N是PQ的中点,即可求解.【解答】解:(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,将点C(﹣1,0)、P(4,﹣5)的坐标代入一次函数表达式并解得:直线PC的表达式为:y=﹣x﹣1…①,同理直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣,即点Q(﹣,),∵点N是PQ的中点,由中点公式得:点N(,﹣).【点评】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点.26.(12分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=CD=2,DE==2,再由∠OAD=30°知OD=AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=知S△ODM=,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得==,据此求得MN=,ON=,AN=AM﹣MN=,再由OA=及cos ∠OAD=可得答案.【解答】解:(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=,∴S△ODM=,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=3(负值舍去),∴OA=3;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM==5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴==,即==,解得MN=,ON=,∴AN=AM﹣MN=,在Rt△OAN中,OA==,∴cos∠OAD==.【点评】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.。
2019年湖南省益阳市中考数学试题及参考答案
益阳市2019年普通初中毕业学业考试试卷数学一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.12016-的相反数是A.2016B.2016-C.12016D.12016-答案:C解析:12016-的相反数是12016,注意与倒数的区别。
2.下列运算正确的是A.22x y xy+=B.2222x y xy⋅=C.222x x x÷=D.451x x-=-答案:B解析:A、把加法误算成乘法,错误;C、正确答案为2x;D、不是同类项不能相加减,只有B、2222x y xy⋅=正确。
3.不等式组3,213xx-<⎧⎨-≤⎩的解集在数轴上表示正确的是A B C D答案:A解析:不等式组化为:32xx>-⎧⎨≤⎩,解为32x-<≤,故选A。
4.下列判断错误..的是A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形答案:D5.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为A.67、68 B.67、67 C.68、68 D.68、67答案:C6.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是A.360°B.540°C.720°D.900°答案:D解析:如图,一条直线将该矩形ABCD分割成两个多边(含三角形)设为M和N,有以下三种情况,①当直线不经过任何一个原来矩形的顶点,此时矩形分割为一个五边形和三角形,∴M+N=540°+180°=720°;②当直线经过一个原来矩形的顶点,此时矩形分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;③当直线经过两个原来矩形的对角线顶点,此时矩形分割为两个三角形,∴M+N=180°+180°=360°.故选D.7.关于抛物线221y x x=-+,下列说法错误..的是A.开口向上B.与x轴有两个重合的交点C.对称轴是直线1x=D.当1x>时,y随x的增大而减小答案:D解析:因为a=1>0,开口向上,故A正确;△=0,故B也正确;对称轴为12bxa=-=,C正确;当x>1时,y随x的增大而增大,故D是错误的。
2019湖南益阳中考数学解析
2019年湖南省益阳市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019湖南益阳,1,4分)-6的倒数是( ) A.61- B.61 C.-6 D.6 【答案】A 【解析】-6的倒数是61-. 【知识点】倒数2.(2019湖南益阳,2,4分)下列运算正确的是( )A.2)2(2-=-B.6)32(2=C.532=+D.632=⨯【答案】D【解析】∵2|2|)2(2=-=-,∴A 错误;∵1234)3(2)32(222=⨯=⨯=,∴B 错误;∵32与不是同类二次根式,无法合并,∴C 错误;∵63232=⨯=⨯,∴D 正确.【知识点】二次根式的化简、同类二次根式、二次根式的乘法3.(2019湖南益阳,3,4分)下列几何体中,其侧面展开图为扇形的是( )A. B. C. D.【答案】C【解析】∵圆柱的侧面展开图是长方形、三棱柱的侧面展开图是长方形、圆锥的侧面展开图是扇形、三棱锥的侧面展开图是三块三角形,∴选C.【知识点】圆柱、三棱柱、圆锥、三棱锥的侧面展开图4.(2019湖南益阳,4,4分)解分式方程321212=-+-xx x 时,去分母化为一元一次方程,正确的是( ) A.x+2=3 B.x-2=3 C.x-2=3(2x-1) D.x+2=3(2x-1)【答案】C【解析】两边同时乘以(2x-1),得x-2=3(2x-1) .故选C.【知识点】分式方程的去分母5.(2019湖南益阳,5,4分)下列函数中,y 总随x 的增大面减小的是( )A.y=4xB.y=-4xC.y=x-4D.2x y =【答案】B【解析】∵y 总随x 的增大面减小,∴y=-4x.故选B.【知识点】一次函数、二次函数的增减性6.(2019湖南益阳6,4分)已知一组数据5,8,8,9,10,以下说法误的是( )A.平均数是8B.众数是8C.中位数是8D.方差是8【答案】D 【解析】∵85109885=++++=x , 众数为8,中位数为8, 514541095)810()89(2)88()85(22222=+++=-+-+⨯-+-=S , 故错误的是D.【知识点】平均数、众数、中位数、方差7.(2019湖南益阳,7,4分)已知M 、N 是线段AB 上的两点,AM=MN=2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC 、BC ,则△ABC 一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】B【解析】如图所示,∵AM=MN=2,NB =1,∴AB=AM=MN+NB =2+2+1=5,AC=AN=AM+MN=2+2=4,BC=BM=BN+MN1+2=3,∴25522==AB ,16422==AC ,9322==BC ,∴222AB BC AC =+,∴△ABC 是直角三角形.【知识点】尺规作图、勾股定理的逆定理8.(2019湖南益阳,8,4分)南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图1,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )A. asin α+asin βB. acos α +a cos βC. atan α+atan βD.βαtan tan a a +第8题图【答案】C【思路分析】分别在Rt △ABD 和Rt △ABC 中,使用正切函数求BD 、 BC 的长度,再求和即可得到CD 的长度.【解题过程】解:在Rt △ABD 中,∵tan β=AB BD ,∴BD=atan β. 在Rt △ABD 中,∵tan α=ABBC ,∴BC=atan α. ∴CD=BD+BC=atan α+atan β.【知识点】锐角三角函数定义、仰角、俯角、解直角三角形9.(2019湖南益阳,9,4分)如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A. PA=PBB.∠BPD =∠APDC.AB ⊥PDD.AB 平分PD第9题图【答案】D【思路分析】利用切线的性质、切线长定理、等腰三角形的性质定理进行逐一证明.【解题过程】∵PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,∴PA=PB ,∠BPD =∠APD ,故A 、B 正确;∵PA=PB ,∠BPD =∠APD ,∴PD ⊥AB ,PD 平分AB ,但AB 不一定平分PD ,故C 正确,D 错误.【知识点】切线的性质、切线长定理、等腰三角形的性质定理10.(2019湖南益阳,10,4分)已知二次函数c bx ax y ++=2如图所示,下列结论:①ae <0,②b-2a <0,③ac b 42-<0,④a-b+c <0,正确的是( )A. ①②B.①④C.②③D.②④第10题图【答案】A【思路分析】利用二次函数图象的性质进行逐一判定.【解题过程】∵抛物线开口向下,且与y 的正半轴相交,∴a <0,c >0,∴ac <0,故①正确;∵对称轴在-1至-2之间,∴122---<<ab ,∴4a <b <2a ,∴b-2a <0,故②正确; ∵抛物线与x 轴有两个交点,∴△=ac b 42->0,∴③错误;∵当x=-1时,y=a-b+c >0,∴④错误.∴正确的说法是①②.故选A.【知识点】二次函数图象的性质、对称轴坐标、二次函数与二次方程的关系、二次函数的特殊函数值二、填空题:本大题共8小题,每小题4分,共32分.不需写出解答过程,请把最后结果填在题中横线上.11.(2019湖南益阳,11,4分)国家发改委发布信息,到2019年12月底,高速公路电子不停车快捷收费(ETC)用户数量将突破18亿,将180000000用科学记数法表示为 .【答案】8108.1⨯【解析】180000000=8108.1⨯【知识点】用科学记数法表示大于10的数12.(2019湖南益阳,12,4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 .【答案】5【解析】设多边形的边数为n ,由题意得(n-2)180°+360°=900°,解得n=5.【知识点】多边形的内角和、多边形的外角和13.(2019湖南益阳,13,4分)不等式组⎩⎨⎧--301><x x 的解集为 . 【答案】x <-3【解析】解:⎩⎨⎧--②>①<301x x ,解①得x <1;解②得x <-3.∴原不等式组的解集为x <-3.【知识点】一元一次不等式组的解法14.(2019湖南益阳,14,4分)如图,直线AB ∥CD ,OA ⊥OB ,若∠1=142°,则∠2= 度.第14题图【答案】52°【解析】∵OA ⊥OB ,∴∠O=90°.∵∠1=142°,∴∠OCD=∠1-∠O=142°=90°=52°.∵AB ∥CD ,∴∠2=∠OCD=52°.【知识点】垂直的定义、三角形外角的性质、平行线的性质15.(2019湖南益阳,15,4分)在如图所示的方格纸(1格长为1个单位长度)中,△ABC 的顶点都在格点上,将△ABC 绕点O 按顺时针方向旋转得到△A ′B ′C ′,使各顶点仍在格点上,则其旋转角的度数是 .第14题图【答案】90°【解析】找到一组对应点A 、A ′,并将其与旋转中心连接起来,确定旋转角,进而得到旋转角的度数为90°.【知识点】旋转角16.(2019湖南益阳,16,4分)小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是 .【答案】61 【思路分析】画树状图确定答案.【解题过程】画树状图如下:∵从上到下的顺序总共有种可能的结果,顺序恰好为“上册、中册、下册”的结果又1种,∴从上到下的顺序恰好为“上册、中册、下册”的概率是61. 【知识点】概率17.(2019湖南益阳,17,4分)反比例函数xk y =的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单位得到点Q.若点Q 也在该函数的图象上,则k = .【答案】6【思路分析】利用坐标系中点的平移与周边变化的关系确定点Q 的坐标,再利用函数解析式列方程组求值.【解题过程】∵P(2,n)向右平移1个单位,再向下平移1个单位得到点Q (3,n-1),且点P 、Q 均在反比例函数x k y =的图象上,∴⎪⎪⎩⎪⎪⎨⎧=-=312kn k n ,∴312k k =-,解得k=6. 【知识点】坐标系中点的平移规律、反比例函数与方程组的关系18.(2019湖南益阳,18,4分)观察下列等式: ①2)12(223-=-, ②2)23(625-=-, ③2)34(1227-=-,…请你根据以上规律,写出第6个等式 . 【答案】2)67(42213-=-【思路分析】利用已知的三个特殊结论,确定等式中的每一部分与序号的关系,进而确定用序号表示的统一规律,进而得到第6个等式.【解题过程】解:∵①2)12(223-=-, ②2)23(625-=-, ③2)34(1227-=-,…∴第n 个等式为:2)1()1(2)12(n n n n n -+=+-+∴当n=6时,可以得到第6个等式为:2)67(42213-=-.【知识点】二次根式相关的规律探究三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19.(2019湖南益阳,19,8分)计算: |32|)21()2019(60sin 410----+︒-.【思路分析】利用三角函数值、0指数次幂、负指数次幂、绝对值的求法进行计算求值. 【解题过程】解:|32|)21()2019(60sin 410----+︒-3221234--+⨯=322132--+==-1. 【知识点】特殊角的三角函数、0指数次幂、负指数次幂、绝对值20.(2019湖南益阳,20,8分)化简:xx x x 24)44(22-÷-+. 【思路分析】先通分计算括号内的,再将除法转化为乘法,最后分解因式、约分相乘.【解题过程】解:x x x x 24)44(22-÷-+x x x x x x 24)44(22-÷-+=424422-⋅+-=x x x x x )2)(2(2)2(2-+⋅-=x x x x x )2()2(2+-=x x 242+-=x x . 【知识点】分式的减法、除法、乘法、通分、分解因式、约分、整式的乘法21.(2019湖南益阳,21,8分)已知,如图,AB =AE ,AB ∥DE ,∠ECB=70°,∠D=110°,求证:△ABC ≌△EAD.第21题图【思路分析】利用平行线、邻补角的性质证明∠ACB=∠D ,∠CAB=∠E ,然后使用“AAS ”证明三角形全等.【解题过程】证明:由∠ECB=70°得∠ACB=110°.∵∠D=110°,∴∠ACB=∠D.∵AB ∥DE ,∴∠CAB=∠E.又∵AB=AE ,∴△ABC ≌△EAD.【知识点】平行线的性质、邻补角的性质、全等三角形的判定22.(2019湖南益阳,22,10分)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A 、B 、C 、D 、E ,由调查所得数据绘制了如图所示的不完整的统计图表.第22题图(1)求本次调查的小型汽车数量及m ,n 的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.【思路分析】(1)首先利用C 的辆数与频率求出本次调查的小型汽车数量,然后利用“频率=频数÷数据总数”求m 、n 的值;(2)先利用“频率=频数÷数据总数”求B 、D 对应的频数,再补全频数分布直方图;(3)利用“每车只乘坐1人的小型汽车”的频率估计总体中每车只乘坐1人的小型汽车数量.【解题过程】22.解:(1)本次调查的小型汽车数量:2.032=160(辆). m=16048=0.3, n=1-(0.3+0.35+0.2+0.05)=0.1.(2)B 类小型汽车的辆数:0.35×160=56,D 类小型汽车的辆数:0.1×160=16.∴补全频数分布直方图如下:第22题答图(3)某时段该路段每车只乘坐1人的小型汽车数量:0.3×5000=1500(辆).【知识点】频数、频率、统计表、条形统计图、样本估计总体23.(2019湖南益阳,23,10分)如图,在Rt △ABC 中,M 是斜边AB 的中点,以CM 为直径作⊙O 交AC 于点N ,延长MN 至D ,使ND =MN ,连接AD 、CD ,CD 交圆O 于点E.(1)判断四边形AMCD 的形状,并说明理由;(2)求证:ND =NE ;(3)若DE=2,EC =3,求BC 的长.第23题图【思路分析】(1)利用直角三角形斜边上的中线等于斜边的一半得到AM=CM ,利用直径所对的圆周角是90°和ND=MN 得到AC 是DM 的垂直平分线,再利用垂直平分线的性质证明四边形AMCD 的四条边都相等,进而得到四边形AMCD 是菱形;(2)利用圆圆内接四边形的性质、菱形的性质证明∠DEN=∠CDM ,进而得到ND=NE ;(3)通过证明△MDC ∽△EDN ,利用相似三角形的对应边成比例求出ND 的长度,再利用三角形的中位线求出BC 的长度.【解题过程】解:(1)四边形AMCD 是菱形,理由如下:∵M 是Rt △ABC 中AB 的中点,∴CM=AM.∵CM 为⊙O 的直径,∴∠CMM=90,∴MD ⊥AC ,∴AN=CN.又∵ND=MN ,∴四边形AMCD 是菱形.(2)∵四边形CEM 为⊙O 的圆内接四边形,∴∠CEN+∠CMN=180°.又∵∠CEN+∠DEN=180°,∴∠CMN=∠DEN.∵四边形AMCD 是菱形,∴CD=CM ,∴∠CDM=∠CMN.∴∠DEN=∠CDM ,∴ND=NE.(3)∵∠CMN=∠DEN ,∠MDC=∠EDN ,∴△MDC ∽△EDN , ∴DNDC DE MD =. 设ND=x ,则MD=2x , ∴x x 522=, 解得x=5或x=-5(不合题意,舍去),∵MN 为△ABC 的中位线,∴BC=2MN ,∴BC=25. 【知识点】直角三角形斜边上的中线的性质、圆周角定理的推论、线段垂直平分线的判定和性质、菱形的判定和性质、圆圆内接四边形的性质、等腰三角形的判定和性质、相似三角形的判定和性质、比例的性质、三角形中位线的性质24.(2019湖南益阳,24,10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾·稻”轮作模式,某农户有农田20亩,去年开始实施“虾·稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价一成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为2.5元/千克,该农户估计今年可获得“虾·稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【思路分析】(1)设去年小龙虾的养殖成本与售价分别为每千克x 元、y 元,根据已知条件列方程组求解;(2)设今年稻谷的亩产量为z 千克,通过列不等式求解.【解题过程】解:(1)设去年小龙虾的养殖成本与售价分别为每千克x 元、y 元,由题意得⎩⎨⎧=---=-30%)251(%)101(32x y x y ,解得⎩⎨⎧==408y x . 答:去年小龙虾的养殖成本与售价分别为每千克8元、40元.(2)设今年稻谷的亩产量为z 千克,由题意得20×100×30+20×25z-20×600≥8000,解得;z ≥640.答:稻谷的亩产量至少会达到640千克.【知识点】二元一次方程组的解法和应用、一元一次不等式的解法和应用25.(2019湖南益阳,25,12分)在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P (m ,n )是抛物线在第四象限的图象上的点,且m+m=-1,连接PA 、PC ,在线段PC 上确定一点N ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(1x ,1y ),(2x ,2y ),则线段AB 的中点坐标为(221x x +,221y y +) .【思路分析】(1)利用待定系数法求抛物线的解析式;(2)利用“同底等高的两个三角形面积相等”、“三角形的中线平分三角形的面积”证明OM 将四边形OBAD 分成面积相等的两部分;(3)先利用点P(m ,n)是抛物线322++-=x x y 的图象上的点,求出点P 的坐标为(4,-5);再利用待定系数法求得直线CP 对应的函数表达式为y=-x-1,直线AC 对应的函数表达式为y=2x+2,直线DQ 对应的函数表达式为y=2x+3;然后通过解方程组⎩⎨⎧+=--=321x y x y 得点Q 的坐标为(3134,-),最后利用线段中点的坐标公式求出点N 的坐标为(3734-,). 【解题过程】解:(1)抛物线的顶点为A(1,4),设函数表达式为4)1(2+-=x a y ,∵抛物线经过点B(3,0),∴04)13(2=+-a ,解得a=-1.∴抛物线对应的二次函数表达式为4)1(2+--=x y ,即322++-=x x y .(2)OM 将四边形OBAD 分成面积相等的两部分.理由如下:∵DE ∥OA ,∴OEA ODA S S △△=(同底等高的两个三角形面积相等).∴AOM OEA AOM ODA S S S S △△△△+=+,即OME OMAD S S △四边形=.∵M 是BE 的中点,∴OBM OME S S △△=∴OBM OMAD S S △四边形=,即OM 将四边形OBAD 分成面积相等的两部分.(3)∵点P(m ,n)是抛物线322++-=x x y 的图象上的点,∴322++-=m m n .∵m+n=-1,∴n=-m-1,代入上式,得3212++-=--m m m ,解得m=4(m=1不合题意,舍去),∴点P 的坐标为(4,-5).如图,过点D 作DQ ∥CA 交PC 的延长线于点Q ,第25题答图由(2)知点N 为PQ 的中点,设经过点C(-1,0),P(4,-5)的直线对应的函数表达式为y=kx+b,则⎩⎨⎧-=+=+-540b k b k ,解得⎩⎨⎧-=-=11b k . ∴直线CP 对应的函数表达式为y=-x-1.同理,直线AC 对应的函数表达式为y=2x+2.∵直线DQ ∥CA ,故设直线DQ 对应的函数表达式为y=2x+b ,∵经过点D(0,3),∴直线DQ 对应的函数表达式为y=2x+3.解方程组⎩⎨⎧+=--=321x y x y 得⎪⎪⎩⎪⎪⎨⎧=-=3134y x , ∴点Q 的坐标为(3134,-).∵点N 为PQ 的中点, ∴点N 的横坐标为342434=+-,点N 的纵坐标为372531-=-, ∴点N 的坐标为(3734-,) 【知识点】待定系数法求函数解析式、同底等高的两个三角形面积相等、三角形的中线平分三角形的面积、函数与方程的关系、一元一次方程的解法、一元二次方程的解法、函数与方程组的关系、二元一次方程组的解法、一次函数图象平行的条件、线段中点的坐标公式26.(2019湖南益阳,26,12分)如图,在半面直角坐标系xOy 中,矩形ABCD 的边AB=4,BC=6.若不改变矩形ABCD 的形状和大小,当形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半上随之上下移动.(1)当∠OAD=30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形 OMCD 的面积为221时,求OA 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos ∠OAD 的值.第26题图 第26题备用图【思路分析】(1)通过作CE ⊥y 轴于点E 构造Rt △CED 和Rt △OAD 然后通过解直角三角形求出点C 的坐标;(2)由M 为AD 的中点求出6=DCM S △,再利用221=OMCD S 四边形,29=ODM S △,求出9=OAD S △.然后设OA=x ,OD=y ,列方程组⎪⎩⎪⎨⎧==+9213622xy y x ,求得OA 的长为23.(3)首先利用M 为AD 的中点确定出:当O 、M 、C 三点在同一直线时,OC 有最大值8.然后连接OC ,证明△CMD ∽△OMN ,再利用相似三角形的对应边成比例求出59=MN ,512=ON ,56=-=MN AM AN .最后在Rt △OAN 中,求出55cos ==∠OA AN OAD . 【解题过程】(1)如图1,过点C 作CE ⊥y 轴,垂足为E.第26题答图1∵矩形ABCD 中,CD ⊥AD ,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°.在Rt △CED 中,CE=21CD=2, ∴DE=32242222=-=-CE CD ;在Rt △OAD 中,∠OAD=30°,∴OD=21AD=3.∴点C 的坐标为(2,323+). (2)∵M 为AD 的中点,∴DM=3,6=DCM S △.又∵221=OMCD S 四边形, ∴29=ODM S △, ∴9=OAD S △.设OA=x ,OD=y ,则⎪⎩⎪⎨⎧==+9213622xy y x ,∴xy y x 222=+,即0)(2=-y x ,∴x=y.将x=y 代入3622=+y x 得182=x , 解得23=x (23-不合题意,舍去),∴OA 的长为23.(3)OC 的最大值为8.理由如下:如图2,第26题答图2∵M 为AD 的中点,∴OM=3,522=+=DM CD CM .∴OC ≤OM+CM=8,当O 、M 、C 三点在同一直线时,OC 有最大值8.连接OC ,则此时OC 与AD 的交点为M ,过点O 作ON ⊥AD ,垂足为N.∵∠CDM=∠ONM=90°,∠CMD=∠OMN ,∴△CMD ∽△OMN ,∴OMCM MN DM ON CD ==, 即3534==MN ON , 解得59=MN ,512=ON , ∴56=-=MN AM AN . 在Rt △OAN 中, ∵55622=+=AN ON OA , ∴55cos ==∠OA AN OAD . 【知识点】矩形的性质、平角的定义、互余的性质、30°角所对直角边等于斜边的一半、勾股定理、解直角三角形、中线的性质、三角形的面积公式、组合图形的面积计算、二元二次方程组的解法、完全平方公式、一元二次方程的解法、最短路径问题、相似三角形的判定和性质、比例的性质、锐角三角函数的定义。
2019年湖南省益阳市中考数学真题(答案+解析)
2019年湖南省益阳市中考数学试卷一、选择题(本题共10个小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣6的倒数是()A.﹣B.C.﹣6 D.6【答案】A【解析】﹣6的倒数是﹣.故选:A.2.下列运算正确的是()A.=﹣2 B.(2)2=6 C.+=D.×=【答案】D【解析】A:=2,故本选项错误;B:=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确.故选:D.3.下列几何体中,其侧面展开图为扇形的是()A.B.C.D.【答案】C【解析】A.圆柱的侧面展开图可能是正方形,故A错误;B.三棱柱的侧面展开图是矩形,故B错误;C.圆锥的侧面展开图是扇形,故C正确;D.三棱锥的侧面展开图是三角形,故D错误.故选:C.4.解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3 B.x﹣2=3 C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)【答案】C【解析】方程两边都乘以(2x﹣1),得x﹣2=3(2x﹣1),故选:C.5.下列函数中,y总随x的增大而减小的是()A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x2【答案】B【解析】y=4x中y随x的增大而增大,故选项A不符题意,y=﹣4x中y随x的增大而减小,故选项B符合题意,y=x﹣4中y随x的增大而增大,故选项C不符题意,y=x2中,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,故选项D不符合题意,故选:B.6.已知一组数据5,8,8,9,10,以下说法错误的是()A.平均数是8 B.众数是8 C.中位数是8 D.方差是8【答案】D【解析】由平均数的公式得平均数=(5+8+8+9+10)÷5=8,方差=[(5﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2.8,将5个数按从小到大的顺序排列为:5,8,8,9,10,第3个数为8,即中位数为8,5个数中8出现了两次,次数最多,即众数为8,故选:D.7.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】B【解析】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选:B.8.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+【答案】C【解析】在Rt△ABD和Rt△ABC中,AB=a,tanα=,tanβ=,∴BC=a tanα,BD=a tanβ,∴CD=BC+BD=a tanα+a tanβ;故选:C.9.如图,P A、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.P A=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD【答案】D【解析】∵P A,PB是⊙O的切线,∴P A=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵P A,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥P A时,AB平分PD,所以D不一定成立.故选:D.10.已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的是()A.①②B.①④C.②③D.②④【答案】A【解析】①图象开口向下,与y轴交于正半轴,能得到:a<0,c>0,∴ac<0,故①正确;②∵对称轴x<﹣1,∴﹣<﹣1,a>0,∴b<2a,∴b﹣2a<0,故②正确.③图象与x轴有2个不同的交点,依据根的判别式可知b2﹣4ac>0,故③错误.④当x=﹣1时,y>0,∴a﹣b+c>0,故④错误;故选:A.二、填空题(本题共8个小题,每小题4分,共32分,请将答案填在答题卡中对应题号的横线上)11.国家发改委发布信息,到2019年12月底,高速公路电子不停车快速收费(ETC)用户数量将突破1.8亿,将180 000 000科学记数法表示为 1.8×108.【解析】将180 000 000科学记数法表示为1.8×108.故答案为:1.8×108.12.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是5.【解析】∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900﹣360=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故答案为:5.13.不等式组的解集为x<﹣3.【解析】,解①得:x<1,解②得:x<﹣3,则不等式组的解集是:x<﹣3.故答案为:x<﹣3.14.如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2=52度.【解析】∵AB∥CD,∴∠OCD=∠2,∵OA⊥OB,∴∠O=90°,∵∠1=∠OCD+∠O=142°,∴∠2=∠1﹣∠O=142°﹣90°=52°,故答案为:52.15.在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC 绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是90°.【解析】根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故答案为90°.16.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是.【解析】画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册”的结果有1个,∴从上到下的顺序恰好为“上册、中册、下册”的概率为;故答案为:.17.反比例函数y=的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k=6.【解析】∵点P的坐标为(2,n),则点Q的坐标为(3,n﹣1),依题意得:k=2n=3(n﹣1),解得:n=3,∴k=2×3=6,故答案为:6.18.观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式13﹣2=(﹣)2.【解析】写出第6个等式为13﹣2=(﹣)2.故答案为13﹣2=(﹣)2.三、解答题(本题共8个小题,共78分,解答应写出文字说明,证明过程或演算步骤)19.(8分)计算:4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.解:原式=4×+1﹣2+2=4﹣1.20.(8分)化简:(﹣4)÷.解:原式=•=.21.(8分)已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC ≌△EAD.证明:由∠ECB=70°得∠ACB=110°,又∵∠D=110°,∴∠ACB=∠D,∵AB∥DE,∴∠CAB=∠E,∴在△ABC和△EAD中,∴△ABC≌△EAD(AAS).22.(10分)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.(1)求本次调查的小型汽车数量及m,n的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.解:(1)本次调查的小型汽车数量为32÷0.2=160(辆),m=48÷160=0.3,n=1﹣(0.3+0.35+0.20+0.05)=0.1;(2)B类小汽车的数量为160×0.35=56,D类小汽车的数量为0.1×160=16,补全图形如下:(3)估计其中每车只乘坐1人的小型汽车数量为5000×0.3=1500(辆).23.(10分)如图,在Rt△ABC中,M是斜边AB的中点,以CM为直径作圆O交AC于点N,延长MN至D,使ND=MN,连接AD、CD,CD交圆O于点E.(1)判断四边形AMCD的形状,并说明理由;(2)求证:ND=NE;(3)若DE=2,EC=3,求BC的长.(1)解:四边形AMCD是菱形,理由如下:∵M是Rt△ABC中AB的中点,∴CM=AM,∵CM为⊙O的直径,∴∠CNM=90°,∴MD⊥AC,∴AN=CN,∵ND=MN,∴四边形AMCD是菱形.(2)∵四边形CENM为⊙O的内接四边形,∴∠CEN+∠CMN=180°,∵∠CEN+∠DEN=180°,∴∠CMN=∠DEN,∵四边形AMCD是菱形,∴CD=CM,∴∠CDM=∠CMN,∴∠DEN=∠CDM,∴ND=NE.(3)∵∠CMN=∠DEN,∠MDC=∠EDN,∴△MDC∽△EDN,∴,设DN=x,则MD=2x,由此得,解得:x=或x=﹣(不合题意,舍去),∴,∵MN为△ABC的中位线,∴BC=2MN,∴BC=2.24.(10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)设今年稻谷的亩产量为z千克,由题意得:20×100×30+20×2.5z﹣20×600≥80000,解得:z≥640;答:稻谷的亩产量至少会达到640千克.25.(12分)在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接P A、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,).解:(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,将点C(﹣1,0)、P(4,﹣5)的坐标代入一次函数表达式并解得:直线PC的表达式为:y=﹣x﹣1…①,同理直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣,即点Q(﹣,),∵点N是PQ的中点,由中点公式得:点N(,﹣).26.(12分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.解:(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=,∴S△ODM=,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=3(负值舍去),∴OA=3;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM==5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴==,即==,解得MN=,ON=,∴AN=AM﹣MN=,在Rt△OAN中,OA==,∴cos∠OAD==.。
2019年湖南省益阳中考数学试卷-答案
湖南省益阳市2019年普通初中学业水平考试数学答案解析一、选择题1.【答案】A【解析】6的倒数是16.故选:A。
【提示】乘积是1的两数互为倒数。
【考点】倒数的定义。
2.【答案】D【解析】A:222,故本选项错误;B:22312,故本选项错误;C:2与3不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确。
故选:D。
【提示】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可。
【考点】二次根式的性质及二次根式的相关运算法则。
3.【答案】C【解析】A.圆柱的侧面展开图可能是正方形,故A错误;B.三棱柱的侧面展开图是矩形,故B错误;C.圆锥的侧面展开图是扇形,故C正确;D.三棱锥的侧面展开图是三角形,故D错误。
故选:C。
【提示】根据特殊几何体的展开图,可得答案。
【考点】几何体的展开图。
4.【答案】C【解析】方程两边都乘以21x,得2321x x,故选:C。
【提示】最简公分母是21x,方程两边都乘以21x,把分式方程便可转化成一元一次方程。
【考点】解分式方程。
5.【答案】B【解析】4y x 中y 随x 的增大而增大,故选项A 不符题意,4y x 中y 随x 的增大而减小,故选项B 符合题意,4y x 中y 随x 的增大而增大,故选项C 不符题意,4yx 中,当0x >时,y 随x 的增大而增大,当0x <时,y 随x 的增大而减小,故选项D 不符合题意,故选:B 。
【提示】根据各个选项中的函数解析式,可以得到y 随x 的增大如何变化,从而可以解答本题。
【考点】二次函数的性质、一次函数的性质、正比例函数的性质。
6.【答案】D【解析】由平均数的公式得平均数58891058,方差222221588888981082.85,将5个数按从小到大的顺序排列为:5,8,8,9,10,第3个数为8,即中位数为8,5个数中8出现了两次,次数最多,即众数为8,故选:D 。
【提示】分别计算平均数,众数,中位数,方差后判断。
2019年湖南省益阳市中考数学试卷及答案解析
2019年湖南省益阳市中考数学试卷一、选择题(本题共10个小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣6的倒数是()A.﹣B.C.﹣6 D.62.(4分)下列运算正确的是()A.=﹣2 B.(2)2=6 C.+=D.×=3.(4分)下列几何体中,其侧面展开图为扇形的是()A.B.C.D.4.(4分)解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3 B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)5.(4分)下列函数中,y总随x的增大而减小的是()A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x26.(4分)已知一组数据5,8,8,9,10,以下说法错误的是()A.平均数是8 B.众数是8 C.中位数是8 D.方差是8 7.(4分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8.(4分)南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+9.(4分)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD 10.(4分)已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的是()A.①②B.①④C.②③D.②④二、填空题(本题共8个小题,每小题4分,共32分,请将答案填在答题卡中对应题号的横线上)11.(4分)国家发改委发布信息,到2019年12月底,高速公路电子不停车快速收费(ETC)用户数量将突破1.8亿,将180 000 000科学记数法表示为.12.(4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.13.(4分)不等式组的解集为.14.(4分)如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2=度.15.(4分)在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是.16.(4分)小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是.17.(4分)反比例函数y=的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k=.18.(4分)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式.三、解答题(本题共8个小题,共78分,解答应写出文字说明,证明过程或演算步骤)19.(8分)计算:4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.20.(8分)化简:(﹣4)÷.21.(8分)已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.22.(10分)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.类别频率A mB0.35C0.20D nE0.05 (1)求本次调查的小型汽车数量及m,n的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.23.(10分)如图,在Rt△ABC中,M是斜边AB的中点,以CM为直径作圆O交AC于点N,延长MN至D,使ND=MN,连接AD、CD,CD交圆O于点E.(1)判断四边形AMCD的形状,并说明理由;(2)求证:ND=NE;。
2019年中考试卷:数学(湖南省益阳卷)及答案
2019年中考试卷:数学(湖南省益阳卷)及答案一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.据益阳市统计局在上发布的数据,2018年益阳市地区生产总值(GDP )突破千亿元大关,达到了2018亿元,将102 000 000 000用科学记数法表示正确的是A .111002.1⨯B .10102.10⨯C .101002.1⨯D .11102.1⨯2.下列运算正确的是 A .623=÷a aB .422)(ab ab =C .22))((b a b a b a -=-+D .222)(b a b a +=+ 3.分式方程xx 325=-的解是 A .x =3B .x =3-C .x =34D .x =34-4.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合这组数据的中位数和众数分别是A .88,90B .90,90C .88,95D .90,955.一个物体由多个完全相同的小正方体组成,它的三视图如图1所示,那么组成这个物体的小正方体的个数为 A. 2个B. 3个C. 5个D. 10个6.如图2,在平行四边形ABCD 中,下列结论中错误..的是 A .∠1=∠2B .∠BAD=∠BCDC .AB=CDD . AC ⊥BD7.抛物线1)3(22+-=x y 的顶点坐标是A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)8.已知一次函数2-=x y ,当函数值0>y 时,自变量x 的取值范围在数轴上表示正确的是ABCD二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡...中对应题号后的横线上) 9.因式分解:24xy x -= .10.化简:111x x x ---= . 1112. 如图3,若AB 是⊙O 的直径,10=AB cm ,︒=∠30CAB ,则BC 1 2A BC图2主视图左视图俯视图图10 -2x (时)y (℃) 182O 图5ABC三、解答题(本大题共2小题,每小题6分,共12分)14.已知:3=a ,2-=b ,21=c . 求代数式:24a b c +-的值.15. 如图4,在ABC Δ中,AC AB =,CD BD =,AB CE ⊥于E . 求证:CBE ABD ΔΔ∽.四、解答题(本大题共3小题,每小题8分,共24分) 16.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图5是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线xky =的一部分.请根据图中信息解答下列问题: (1)恒温系统在这天保持大棚内温度18℃的时间有多少小时? (2)求k 的值;(3)当x=16时,大棚内的温度约为多少度?AC E图417.某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图6).(1)表中a = ;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?18.如图7,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,小张在小道上测得如下数据:0.80=AB 米,︒=∠5.38PAB ,︒=∠5.26PBA .请帮助小张求出小桥PD 的长并确定小桥在小道上的位置.(以A ,B 为参照点,结果精确到0.1米) (参考数据:62.05.38sin ≈︒,78.05.38cos ≈︒,80.05.38tan ≈︒,45.05.26sin ≈︒,89.05.26cos ≈︒,50.05.26tan ≈︒五、解答题(本大题共2小题,每小题10分,共20分)19.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石. (1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.如图8,在ABC Δ中,︒=∠36A ,AC AB =,ABC ∠的平分线BE 交AC 于E .(1)求证:BC AE =; (2)如图8(2),过点E 作EF ∥BC 交AB 于F ,将AEF Δ绕点A 逆时针旋转角α)1440(︒<<︒α得到F E A ''Δ,连结E C ',F B ',求证:CE BF ''=;(3)在(2)的旋转过程中是否存在E C '∥AB ?若存在,求出相应的旋转角α;若不存在,请说明理由.图7图6A 36A 36E 'F '36A六、解答题(本题满分12分)21.阅读材料:如图9,在平面直角坐标系中,A 、B 两点的坐标分别为11()A x y ,,22()B x y , ,AB 中点P 的坐标为()p p x y ,.由12p p x x x x -=-,得122p x x x +=, 同理122p y y y +=,所以AB 的中点坐标为1212()22x x y y ++,. 由勾股定理得2222121AB x x y y =-+-,所以A 、B 两点间的距离公式为AB 注:上述公式对A 、B 在平面直角坐标系中其它位置也成立.解答下列问题:如图10,直线l :22+=x y 与抛物线22x y =交于A 、B 两点,P 为AB的中点,过P 作x 轴的垂线交抛物线于点C .(1)求A 、B 两点的坐标及C 点的坐标;(2)连结AC BC 、,求证ABC ∆为直角三角形; (3)将直线l 平移到C 点时得到直线l ',求两直线l 与l '的距离.参考答案一、选择题(本大题共8小题,每小题4分,共32分).二、填空题(本大题共5小题,每小题4分,共20分).9.)2)(2(-+y y x ;10.1;11.32;12.5;13.21.三、解答题(本大题共2小题,每小题6分,共12分).14.解:当3=a ,2-=b ,21=c 时, c b a 42-+=2142)3(2⨯--+=223-+ ··············· 5分=3 ························· 6分15.证明:在ABC Δ中,AC AB =,CD BD =,1y 图10图8次数第17题解图∴BC AD ⊥, ························ 2分 ∵AB CE ⊥,∴︒=∠=∠90CEB ADB , ···················· 4分 又B B ∠=∠,∴CBE ABD ΔΔ∽. ······················ 6分四、解答题(本大题共3小题,每小题8分,共24分) 16. 解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时. ········ 2分(2)∵点B (12,18)在双曲线xky =上, ∴1218k =, ∴216=k . ························ 5分 (3)当x=16时,5.1316216==y , 所以当x=16时,大棚内的温度约为13.5 8分 17. 解:(1)a =4. 2分 (2)如图. 5分 (3)∵小组成员共10人,参加了10次活动的成员有3人,∴103=P ,答:从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率是103. 8分18.解:设x PD =米,∵AB PD ⊥,∴︒=∠=∠90BDP ADP . 在Rt △PAD 中,ADxPAD =∠tan , ∴5tan38.50.804x x AD x =≈=︒. ··················3分 在Rt △PBD 中,DBxPBD =∠tan , ∴2tan 26.50.50x xDB x =≈=︒.·················· 5分 又AB=80.0, ∴0.80245=+x x . ∴6.24≈x ,即6.24≈PD . ∴2.492≈=x DB .答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米. ···· 8分五、解答题(本大题共2小题,每小题10分,共20分) 19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:⎩⎨⎧=+=+11010812y x y x , ················ 2分解之得⎩⎨⎧==75y x .∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆; · 5分 (2)设载重量为8吨的卡车增加了z 辆,依题意得:165)67(10)5(8>-+++z z , ··········· 7分解之得:25<z ∵0≥z 且为整数, ∴=z 0,1,2 ;∴=-z 66,5,4. ······················ 8分 ∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆; ②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆. ···· 10分20.解:(1)证明:∵AC AB =,︒=∠36A ,∴︒=∠=∠72C ABC , ················· 1分 又BE 平分ABC ∠,∴︒=∠=∠36CBE ABE ,∴︒=∠-∠-︒=∠72180CBE C BEC ∴A ABE ∠=∠,C BEC ∠=∠, ∴BE AE =,BC BE =,∴BC AE =. ····················· 3分(2)∵AB AC =且EF ∥BC ,∴AF AE =;由旋转的性质可知:AB F AC E '∠='∠,F A E A '=', ∴E CA 'Δ≌F BA 'Δ,∴F B E C '='. ······················· 6分 (3)存在E C '∥AB ,由(1)可知BC AE =,所以,在ΔE 点经过的路径(圆弧)与过点C 且与AB 平行的直线l 交于M 、①当点E 的像E '与点M ∴︒=∠=∠72ABC BAM ,又∠BAC ∴︒=∠=36CAM α. 8分 ②当点E 的像E '与点N 重合时,由l AB ∥得,︒=∠=∠72BAM AMN ∵AN AM =, ∴︒=∠=∠72AMN ANM ,∴︒=︒⨯-︒=∠36722180MAN ,∴︒=∠+∠=∠=72MAN CAM CAN α. 所以,当旋转角为︒36或︒72时,E C '∥AB . ········· 10分六、解答题(本题满分12分)21.解:(1)由⎩⎨⎧=+=2222x y x y ,解得⎪⎩⎪⎨⎧-=-=5325111y x ,⎪⎩⎪⎨⎧+=+=5325122y x . 第20题解图 )')E '则A ,B 两点的坐标分别为:)53,251(--A ,)53,251(++B , ·· 2分 ∵P 是A ,B 的中点,由中点坐标公式得P 点坐标为)3,21(,又x PC ⊥轴交抛物线于C 点,将21=x 代入22x y =中得21=y ,∴C 点坐标为11(,)22. ····················· 4分(2)由两点间距离公式得:5)]53()53[()251251(22=+--++--=AB ,25213=-=PC ,∴PB PA PC ==, ························· 6分∴PCA PAC ∠=∠,PCB PBC ∠=∠, ∴︒=∠+∠90PCB PCA ,即︒=∠90ACB ∴ ABC Δ为直角三角形. ······················ 8分(3)过点C 作AB CG ⊥于G ,过点A 作PC AH ⊥于H则H 点的坐标为)5321(-,, ∴ AH PC CG AP S PAC⨯=⨯=2121Δ, ∴2521251=--==AH CG . 又直线l 与l '之间的距离等于点C 到l 的距离CG , ∴直线l 与l '之间的距离为25. ·················· 12分图10。
益阳市2019年中考数学试卷及答案(Word版)
益阳市2019年中考数学试卷及答案(Word版)益阳市2019年普通初中毕业学业考试试卷数学注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上;3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上⽆效; 4.本学科为闭卷考试,考试时量为90分钟,卷⾯满分为120分; 5.考试结束后,请将试题卷和答题卡⼀并交回.试题卷⼀、选择题(本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.四个实数2-,0,1中,最⼤的实数是A .2-B .0C. D .12.下列式⼦化简后的结果为6x 的是A .33x x +B .33x x ?C .33()xD . 122x x ÷3.⼩玲在⼀次班会中参与知识抢答活动,现有语⽂题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是 A .120 B .15C .14 D .13BCD5.⼀元⼆次⽅程220x x m -+=总有实数根,则m 应满⾜的条件是A .1m >B .1m =C .1m <D .1m ≤6.正⽐例函数6y x =的图象与反⽐例函数6y x=的图象的交点位于 A .第⼀象限 B .第⼆象限C .第三象限D .第⼀、三象限姓名准考证号7.如图1,平⾏四边形ABCD 中,,E F 是对⾓线BD 上的两点,如果添加⼀个条件使ABE ?≌CDF ?,则添加的条件不能..是 A .AE CF =B .BE FD =C .D .2∠8.如图2,在平⾯直⾓坐标系xOy 中,半径为2的⊙P 的圆⼼P 的坐标为(3,0)-,将⊙P 沿x 轴正⽅向平移,使⊙P 与y 轴相切,则平移的距离为A .1B .1或5C .3D .5⼆、填空题(本⼤题共5⼩题,每⼩题4分,共20分.把答案填在答题卡...中对应题号后的横线上)9.若29(3)()x x x a -=-+,则a = . 10.分式⽅程2332x x=-的解为. 11.⼩斌所在的课外活动⼩组在⼤课间活动中练习⽴定跳远,成绩如下(单位:⽶):1.96,⽰,则他步⾏回家的平均速度是⽶/分钟.13.如图4,将等边ABC ?绕顶点A 顺时针⽅向旋转,使边AB 与AC 重合得ACD ?,BC的中点E 的对应点为F ,则EAF ∠的度数是.三、解答题(本⼤题共2⼩题,每⼩题6分,共12分)14.计算:0|3|3-+15.如图5,EF ∥BC ,AC 平分BAF ∠,80B ∠=?.求C ∠的度数.四、解答题(本⼤题共3⼩题,每⼩题8分,共24分)图112 ABCDE F图4A80° EB CF图5C AFED16.先化简,再求值:21(2)(2)(1)2x x x +-+--,其中x = 17.某校为了开阔学⽣的视野,积极组织学⽣参加课外读书活动.“放飞梦想”读书⼩组协助⽼师随机抽取本校的部分学⽣,调查他们最喜爱的图书类别(图书分为⽂学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图(图6),请你结合图中的信息解答下列问题:(1)求被调查的学⽣⼈数;(2)补(3)已知该校有1200名学⽣,估计全校最喜爱⽂学类图书的学⽣有多少⼈?18.“中国?益阳”⽹上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新⼤桥.如图7,新⼤桥的两端位于A B 、两点,⼩张为了测量A B 、之间的河宽,在垂直于新⼤桥AB 的直线型道路l 上测得如下数据:76.1BDA ∠=?,68.2BCA ∠=?,82CD =⽶.求AB 的长(精确到0.1⽶).参考数据:sin76.10.97?≈,cos76.10.24?≈,tan76.1 4.0?≈; sin68.20.93?≈,cos68.20.37?≈,tan68.2 2.5?≈.五、解答题(本⼤题共2⼩题,每⼩题10分,共20分)19.某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是图7图64 8类别科普其他最喜爱的各类图书的⼈数最喜爱的各类图书的⼈数占总⼈数的百分⽐近两周的销售情况:(进价、售价均保持不变,利润=销售收⼊-进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备⽤不多于5400元的⾦额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的⽬标,若能,请给出相应的采购⽅案;若不能,请说明理由.20.如图8,直线33y x =-+与x 轴、y 轴分别交于点A 、B ,抛物线2(2)y a x k =-+经过点A 、B ,并与x 轴交于另⼀点C ,其顶点为P .(1)求a ,k 的值;(2)抛物线的对称轴上有⼀点Q ,使ABQ ?是以AB为底边的等腰三⾓形,求Q 点的坐标.(3)在抛物线及其对称轴上分别取点M 、N ,使以,,,A C M N 为顶点的四边形为正⽅形,求此正⽅形的边长.六、解答题(本题满分12分)21.如图9,在直⾓梯形ABCD 中,AB ∥CD ,AD ⊥AB ,60B ∠=?,10AB =,4BC =,点P 沿线段AB 从点A 向点B 运动,设AP x =.(1)求AD 的长;(2)点P 在运动过程中,是否存在以A P D 、、为顶点的三⾓形与以P C B 、、为顶点的三⾓形相似?若存在,求出x 的值;若不存在,请说明理由;A图9P60°1S 、2S ,若12S S S =+,求S 的最⼩值.益阳市2019年普通初中毕业学业考试试卷数学参考答案及评分标准⼆、填空题(本⼤题共5⼩题,每⼩题4分,共20分)9.3; 10.9x =-;11.2.16; 12.80; 13.60?.三、解答题(本⼤题共2⼩题,每⼩题6分,共12分)14.解:原式3131=+-=.…………………………………………………………………6分 15.解:∵EF ∥BC ,∴180100BAF B ∠=?-∠=?.……………………………………………………2分∵AC 平分BAF ∠,∴1502CAF BAF ∠=∠=?,………………………………………………………4分∵EF ∥BC ,∴50C CAF ∠=∠=?.……………………………………………………………6分四、解答题(本⼤题共3⼩题,每⼩题8分,共24分)16.解:21(2)(2)(1)2x x x +-+-- 212421x x x =+-+-+22x =-……………………………………………………………………………6分当x =22=-1=.…………………………………………………8分 17.解:(1)被调查的学⽣⼈数为:1220%60÷=(⼈);……………………………2分(2)如图……………………5分第17题解图(3)全校最喜爱⽂学类图书的学⽣约有24120048060=(⼈).………………8分 18.解:设AD x =⽶,则(82)AC x =+⽶.在Rt ABC ?中,tan ABBCA AC∠=,∴tan 2.5(82)AB AC BCA x =?∠=+.…………2分在Rt ABD ?中,tan ABBDA AD∠=,∴tan 4AB AD BDA x =?∠=.……………………4分∴2.5(82)4x x +=,∴4103x =.………………………………………………………6分∴41044546.73AB x ==≈. 答:AB 的长约为546.7⽶. …………………………………………………………8分五、解答题(本⼤题共2⼩题,每⼩题10分,共20分)19.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元.依题意得:351800,4103100;x y x y +=??+=?解得250,210.x y =??=? 答:A 、B 两种型号电风扇的销售单价分别为250元、210元.……………4分(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30)a -台. 依题意得:200170(30)a a +-≤5400, 解得:10a ≤.答:超市最多采购A 种型号电风扇10台时,采购⾦额不多于5400元.………7分(3)依题意有:(250200)(210170)(30)1400a a -+--=, 解得:20,a =此时,10a >.所以在(2)的条件下超市不能实现利润1400元的⽬标. …………………10分20. 解:(1)∵直线33y x =-+与x 轴、y 轴分别交于点A 、B ,∴(1,0)A ,(0,3)B .⼜抛物线2(2)y a x k =-+经过点(1,0)A ,(0,3)B ,∴0,43;a k a k +=??+=?解得1,1.a k =??=-? 即a ,k 的值分别为1,1-.………………………………………………3分(2)设Q 点的坐标为(2,)m ,对称轴2x =交x 轴于点F ,过点B 作BE 垂直于直线2x = 于点E .在Rt AQF ?中,22221AQ AF QF m =+=+,在Rt BQE ?中,22224(3)BQ BE EQ m =+=+-. ∵AQ BQ =,∴2214(3)m m+=+-,∴2m =.∴Q点的坐标为(2,2).………………………………………………………6分(3)当点N在对称轴上时,NC与AC不垂直.所以ACx=是AC的中垂线,所以,M点与顶点(2,1)P-重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,1MF NF AF CF====,且AC MN⊥,∴四边形AMCN为正⽅形.在Rt……10分六、解答题(本题满分12分)21.解:(1)过点C作CE AB⊥于E.在Rt BCE中,60B∠=?,4BC=.∴sin4CE BC B=?∠==∴AD CE==. ………………………………………………………………2分(2)存在.若以A、P、D为顶点的三⾓形与以P、C、B为顶点的三⾓形相似,则PCB必有⼀个⾓是直⾓.……………………………………………………3分∠=?时,在Rt PCB中,4,60BC B=∠=?,8PB=,∴2AP AB PB=-=.⼜由(1)知AD=Rt ADP中 ,tanADDPAAP∠=∴60DPA∠=?,∴DPA B∠=∠.∴ADP∽CPB. ………………………………………………………………5分②当90CPB∠=?时,在Rt PCB中,60B∠=?,4BC=,∴2PB=,PC=,∴8AP=.则AD APAD APPB PC≠,此时PCB与ADP不相似.∴存在ADP与CPB相似,此时2x=.………………………………………7分(3)如图,因为Rt ADP ?外接圆的直径为斜边PD ,∴22112()24PD x S ππ+=?=?. ①当210x <<时,作BC 的垂直平分线交BC 于H ,交AB 于G ;作PB 的垂直平分线交PB 于N ,交GH 于M ,连结BM .则BM 为PCB ?外接圆的半径.在Rt GBH ?中,122BH BC ==,30MGB ∠=?,∴4BG =, ⼜111(10)5222BN PB x x ==-=-,∴112GN BG BN x =-=-.在Rt GMN ?中,∴1tan (1)2MN GN MGN x =?∠=-. 在Rt BMN ?中,222211676333BM MN BN x x =+=-+,∴22211676()333S BM x x ππ=?=-+.②当02x <≤时,2211676()333S x x π=-+也成⽴. …………………………10分∴22121211676()4333x S S S x x ππ+=+=?+-+2732113∴当327x =时,12S S S =+取得最⼩值113 7π. ………………………………12分DCBA第21题解图2P 60°NGMHDCBA第21题解图1P 60°E (P )。
湖南省益阳市2019年中考[数学]考试真题与答案解析
湖南省益阳市2019年中考[数学]考试真题与答案解析一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.四个实数,,中,最大的是( )103-A. B. C. D. 103-2.将不等式组的解集在数轴上表示,正确的是( )201x x +≥⎧⎨<⎩A. B.C. D.3.图所示的几何体的俯视图是( )A. B. C. D.4.一组数据由个数组成,其中个数分别为,,,且这组数据的平均数为43234,则这组数据的中位数为( )4A. B. C. D. 74 3.535.同时满足二元一次方程和的,的值为( )9x y -=431x y +=x y A. B. C. D. 45x y =⎧⎨=-⎩45x y =-⎧⎨=⎩23x y =-⎧⎨=⎩36x y =⎧⎨=-⎩6.下列因式分解正确的是( )A. ()()()()a ab b a b a b a b ---=-+B. 2229(3)a b a b -=-C. 22244(2)a ab b a b ++=+D. 2()a ab a a a b -+=-7.一次函数的图象如图所示,则下列结论正确的是( )y kx b =+A. B. k 0<1b =-C. 随的增大而减小 D. 当时,y x 2x >0kx b +<8.如图,的对角线,交于点,若,,则的长可能ABCD AC BD O 6AC =8BD =AB 是()A. B. C. D. 108769.如图,在中,的垂直平分线交于点,平分,若,ABC ∆AC AB D DC ACB ∠50A ∠=则的度数为( )B ÐA. B. C. D. 25 30 35 4010.如图,在矩形中,是上的一点,是等边三角形,交于ABCD E CD ABE ∆AC BE 点,则下列结论不成立的是( )FA. B. C. D. 30DAE ∠=o 45BAC ∠= 12EF FB =AD AB =二、填空题11.我国北斗全球导航系统最后一颗组网卫星于年月日成功定位于距离2020630地球千米的地球同步轨道,将用科学计数法表示为__________.36000"36000"12.如图,,,,则的度数为__________.//AB CD AB AE ⊥42CAE ∠= ACD ∠13.小明家有一个如图所示的闹钟,他观察圆心角,测得的长为AOB 90∠= ACB,则的长为__________.36cm ADB cm14.若反比例函数y=的图象经过点(﹣2,3),则k=_____.1k x -15.时光飞逝,十五六岁的我们,童年里都少不了“弹珠”。
2019年初中毕业升学考试(湖南益阳卷)数学【含答案及解析】
2019年初中毕业升学考试(湖南益阳卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列实数中,是无理数的为()A. B. C.0 D.-32. 下列运算正确的是()A.x2•x3=x6 B.(x3)2=x5C.(xy2)3=x3y6 D.x6÷x3=x23. 某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()4. 劳动时间(小时)33.544.5人数1121td5. 一个几何体的三视图如图所示,则这个几何体是()A.三棱锥 B.三棱柱 C.圆柱 D.长方体6. 如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90° B.AC=BDC.OA=OB D.OA=AD7. 下列等式成立的是()A. B.C. D.8. 沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80 B.2×20(1+x)=80C.20(1+x2)=80 D.20(1+x)2=809. 若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0二、填空题10. 计算:= .11. 已知y是x的反比例函数,当x>0时,y随x的增大而减小.请写出一个满足以上条件的函数表达式.12. 甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.13. 如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为.14. 如图是用长度相等的小棒按一定规律摆成 1 的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有根小棒.三、解答题15. (8分)化简:(x+1)2﹣x(x+1).16. (10分)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.17. (10分)2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,如图表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题(1)2014年益阳市的地区生产总值为多少亿元?(2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.18. (10分)如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.19. (12分)大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?20. (12分)已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1,BP绕点B顺时针也旋转角α得到BP2,连接PP1、PP2.(1)如图1,当α=90°时,求∠P1PP2的度数;(2)如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2,l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.21. (15分)(2015•益阳)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】。
2019湖南益阳中考数学解析
2019年湖南省益阳市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019湖南益阳,1,4分)-6的倒数是( ) A.61- B.61 C.-6 D.6 【答案】A 【解析】-6的倒数是61-. 【知识点】倒数2.(2019湖南益阳,2,4分)下列运算正确的是( ) A.2)2(2-=- B.6)32(2= C.532=+ D.632=⨯【答案】D 【解析】∵2|2|)2(2=-=-,∴A 错误; ∵1234)3(2)32(222=⨯=⨯=,∴B 错误; ∵32与不是同类二次根式,无法合并,∴C 错误; ∵63232=⨯=⨯,∴D 正确.【知识点】二次根式的化简、同类二次根式、二次根式的乘法3.(2019湖南益阳,3,4分)下列几何体中,其侧面展开图为扇形的是( )A. B. C. D.【答案】C【解析】∵圆柱的侧面展开图是长方形、三棱柱的侧面展开图是长方形、圆锥的侧面展开图是扇形、三棱锥的侧面展开图是三块三角形,∴选C.【知识点】圆柱、三棱柱、圆锥、三棱锥的侧面展开图4.(2019湖南益阳,4,4分)解分式方程321212=-+-xx x 时,去分母化为一元一次方程,正确的是( ) A.x+2=3 B.x-2=3 C.x-2=3(2x-1) D.x+2=3(2x-1)【答案】C【解析】两边同时乘以(2x-1),得x-2=3(2x-1) .故选C.【知识点】分式方程的去分母5.(2019湖南益阳,5,4分)下列函数中,y 总随x 的增大面减小的是( )A.y=4xB.y=-4xC.y=x-4D.2x y =【答案】B【解析】∵y 总随x 的增大面减小,∴y=-4x.故选B.【知识点】一次函数、二次函数的增减性6.(2019湖南益阳6,4分)已知一组数据5,8,8,9,10,以下说法误的是( )A.平均数是8B.众数是8C.中位数是8D.方差是8【答案】D 【解析】∵85109885=++++=x , 众数为8,中位数为8, 514541095)810()89(2)88()85(22222=+++=-+-+⨯-+-=S , 故错误的是D.【知识点】平均数、众数、中位数、方差7.(2019湖南益阳,7,4分)已知M 、N 是线段AB 上的两点,AM=MN=2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC 、BC ,则△ABC 一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】B【解析】如图所示,∵AM=MN=2,NB =1,∴AB=AM=MN+NB =2+2+1=5,AC=AN=AM+MN=2+2=4,BC=BM=BN+MN1+2=3,∴25522==AB ,16422==AC ,9322==BC ,∴222AB BC AC =+,∴△ABC 是直角三角形.【知识点】尺规作图、勾股定理的逆定理8.(2019湖南益阳,8,4分)南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图1,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )A. asin α+asin βB. acos α +a cos βC. atan α+atan βD.βαtan tan a a +第8题图【答案】C【思路分析】分别在Rt △ABD 和Rt △ABC 中,使用正切函数求BD 、 BC 的长度,再求和即可得到CD 的长度.【解题过程】解:在Rt △ABD 中,∵tan β=AB BD ,∴BD=atan β. 在Rt △ABD 中,∵tan α=ABBC ,∴BC=atan α. ∴CD=BD+BC=atan α+atan β.【知识点】锐角三角函数定义、仰角、俯角、解直角三角形9.(2019湖南益阳,9,4分)如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A. PA=PBB.∠BPD =∠APDC.AB ⊥PDD.AB 平分PD第9题图【答案】D【思路分析】利用切线的性质、切线长定理、等腰三角形的性质定理进行逐一证明.【解题过程】∵PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,∴PA=PB ,∠BPD =∠APD ,故A 、B 正确;∵PA=PB ,∠BPD =∠APD ,∴PD ⊥AB ,PD 平分AB ,但AB 不一定平分PD ,故C 正确,D 错误.【知识点】切线的性质、切线长定理、等腰三角形的性质定理10.(2019湖南益阳,10,4分)已知二次函数c bx ax y ++=2如图所示,下列结论:①ae <0,②b-2a <0,③ac b 42-<0,④a-b+c <0,正确的是( )A. ①②B.①④C.②③D.②④第10题图【答案】A【思路分析】利用二次函数图象的性质进行逐一判定.【解题过程】∵抛物线开口向下,且与y 的正半轴相交,∴a <0,c >0,∴ac <0,故①正确;∵对称轴在-1至-2之间,∴122---<<ab ,∴4a <b <2a ,∴b-2a <0,故②正确; ∵抛物线与x 轴有两个交点,∴△=ac b 42->0,∴③错误;∵当x=-1时,y=a-b+c >0,∴④错误.∴正确的说法是①②.故选A.【知识点】二次函数图象的性质、对称轴坐标、二次函数与二次方程的关系、二次函数的特殊函数值二、填空题:本大题共8小题,每小题4分,共32分.不需写出解答过程,请把最后结果填在题中横线上.11.(2019湖南益阳,11,4分)国家发改委发布信息,到2019年12月底,高速公路电子不停车快捷收费(ETC)用户数量将突破18亿,将180000000用科学记数法表示为 .【答案】8108.1⨯【解析】180000000=8108.1⨯【知识点】用科学记数法表示大于10的数12.(2019湖南益阳,12,4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 .【答案】5【解析】设多边形的边数为n ,由题意得(n-2)180°+360°=900°,解得n=5.【知识点】多边形的内角和、多边形的外角和13.(2019湖南益阳,13,4分)不等式组⎩⎨⎧--301><x x 的解集为 . 【答案】x <-3【解析】解:⎩⎨⎧--②>①<301x x ,解①得x <1;解②得x <-3.∴原不等式组的解集为x <-3.【知识点】一元一次不等式组的解法14.(2019湖南益阳,14,4分)如图,直线AB ∥CD ,OA ⊥OB ,若∠1=142°,则∠2= 度.第14题图【答案】52°【解析】∵OA ⊥OB ,∴∠O=90°.∵∠1=142°,∴∠OCD=∠1-∠O=142°=90°=52°.∵AB ∥CD ,∴∠2=∠OCD=52°.【知识点】垂直的定义、三角形外角的性质、平行线的性质15.(2019湖南益阳,15,4分)在如图所示的方格纸(1格长为1个单位长度)中,△ABC 的顶点都在格点上,将△ABC 绕点O 按顺时针方向旋转得到△A ′B ′C ′,使各顶点仍在格点上,则其旋转角的度数是 .第14题图【答案】90°【解析】找到一组对应点A 、A ′,并将其与旋转中心连接起来,确定旋转角,进而得到旋转角的度数为90°.【知识点】旋转角16.(2019湖南益阳,16,4分)小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是 . 【答案】61 【思路分析】画树状图确定答案.【解题过程】画树状图如下:∵从上到下的顺序总共有种可能的结果,顺序恰好为“上册、中册、下册”的结果又1种, ∴从上到下的顺序恰好为“上册、中册、下册”的概率是61. 【知识点】概率17.(2019湖南益阳,17,4分)反比例函数xk y =的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单位得到点Q.若点Q 也在该函数的图象上,则k = .【答案】6【思路分析】利用坐标系中点的平移与周边变化的关系确定点Q 的坐标,再利用函数解析式列方程组求值.【解题过程】∵P(2,n)向右平移1个单位,再向下平移1个单位得到点Q (3,n-1),且点P 、Q 均在反比例函数x k y =的图象上,∴⎪⎪⎩⎪⎪⎨⎧=-=312kn k n ,∴312k k =-,解得k=6. 【知识点】坐标系中点的平移规律、反比例函数与方程组的关系18.(2019湖南益阳,18,4分)观察下列等式: ①2)12(223-=-, ②2)23(625-=-, ③2)34(1227-=-,…请你根据以上规律,写出第6个等式 . 【答案】2)67(42213-=-【思路分析】利用已知的三个特殊结论,确定等式中的每一部分与序号的关系,进而确定用序号表示的统一规律,进而得到第6个等式.【解题过程】解:∵①2)12(223-=-, ②2)23(625-=-, ③2)34(1227-=-,…∴第n 个等式为:2)1()1(2)12(n n n n n -+=+-+∴当n=6时,可以得到第6个等式为:2)67(42213-=-.【知识点】二次根式相关的规律探究三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19.(2019湖南益阳,19,8分)计算: |32|)21()2019(60sin 410----+︒-.【思路分析】利用三角函数值、0指数次幂、负指数次幂、绝对值的求法进行计算求值. 【解题过程】解:|32|)21()2019(60sin 410----+︒-3221234--+⨯=322132--+==-1. 【知识点】特殊角的三角函数、0指数次幂、负指数次幂、绝对值20.(2019湖南益阳,20,8分)化简:xx x x 24)44(22-÷-+. 【思路分析】先通分计算括号内的,再将除法转化为乘法,最后分解因式、约分相乘. 【解题过程】解:x x x x 24)44(22-÷-+x x x x x x 24)44(22-÷-+=424422-⋅+-=x x x x x )2)(2(2)2(2-+⋅-=x x x x x )2()2(2+-=x x 242+-=x x . 【知识点】分式的减法、除法、乘法、通分、分解因式、约分、整式的乘法21.(2019湖南益阳,21,8分)已知,如图,AB =AE ,AB ∥DE ,∠ECB=70°,∠D=110°,求证:△ABC ≌△EAD.第21题图【思路分析】利用平行线、邻补角的性质证明∠ACB=∠D ,∠CAB=∠E ,然后使用“AAS ”证明三角形全等.【解题过程】证明:由∠ECB=70°得∠ACB=110°.∵∠D=110°,∴∠ACB=∠D.∵AB ∥DE ,∴∠CAB=∠E.又∵AB=AE ,∴△ABC ≌△EAD.【知识点】平行线的性质、邻补角的性质、全等三角形的判定22.(2019湖南益阳,22,10分)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A 、B 、C 、D 、E ,由调查所得数据绘制了如图所示的不完整的统计图表.第22题图(1)求本次调查的小型汽车数量及m ,n 的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.【思路分析】(1)首先利用C 的辆数与频率求出本次调查的小型汽车数量,然后利用“频率=频数÷数据总数”求m 、n 的值;(2)先利用“频率=频数÷数据总数”求B 、D 对应的频数,再补全频数分布直方图;(3)利用“每车只乘坐1人的小型汽车”的频率估计总体中每车只乘坐1人的小型汽车数量.【解题过程】22.解:(1)本次调查的小型汽车数量:2.032=160(辆). m=16048=0.3, n=1-(0.3+0.35+0.2+0.05)=0.1.(2)B 类小型汽车的辆数:0.35×160=56,D 类小型汽车的辆数:0.1×160=16.∴补全频数分布直方图如下:第22题答图(3)某时段该路段每车只乘坐1人的小型汽车数量:0.3×5000=1500(辆).【知识点】频数、频率、统计表、条形统计图、样本估计总体23.(2019湖南益阳,23,10分)如图,在Rt △ABC 中,M 是斜边AB 的中点,以CM 为直径作⊙O 交AC 于点N ,延长MN 至D ,使ND =MN ,连接AD 、CD ,CD 交圆O 于点E.(1)判断四边形AMCD 的形状,并说明理由;(2)求证:ND =NE ;(3)若DE=2,EC =3,求BC 的长.第23题图【思路分析】(1)利用直角三角形斜边上的中线等于斜边的一半得到AM=CM ,利用直径所对的圆周角是90°和ND=MN 得到AC 是DM 的垂直平分线,再利用垂直平分线的性质证明四边形AMCD 的四条边都相等,进而得到四边形AMCD 是菱形;(2)利用圆圆内接四边形的性质、菱形的性质证明∠DEN=∠CDM ,进而得到ND=NE ;(3)通过证明△MDC ∽△EDN ,利用相似三角形的对应边成比例求出ND 的长度,再利用三角形的中位线求出BC 的长度.【解题过程】解:(1)四边形AMCD 是菱形,理由如下:∵M 是Rt △ABC 中AB 的中点,∴CM=AM.∵CM 为⊙O 的直径,∴∠CMM=90,∴MD ⊥AC ,∴AN=CN.又∵ND=MN ,∴四边形AMCD 是菱形.(2)∵四边形CEM 为⊙O 的圆内接四边形,∴∠CEN+∠CMN=180°.又∵∠CEN+∠DEN=180°,∴∠CMN=∠DEN.∵四边形AMCD 是菱形,∴CD=CM ,∴∠CDM=∠CMN.∴∠DEN=∠CDM ,∴ND=NE.(3)∵∠CMN=∠DEN ,∠MDC=∠EDN ,∴△MDC ∽△EDN , ∴DNDC DE MD =. 设ND=x ,则MD=2x , ∴x x 522=, 解得x=5或x=-5(不合题意,舍去),∵MN 为△ABC 的中位线,∴BC=2MN ,∴BC=25.【知识点】直角三角形斜边上的中线的性质、圆周角定理的推论、线段垂直平分线的判定和性质、菱形的判定和性质、圆圆内接四边形的性质、等腰三角形的判定和性质、相似三角形的判定和性质、比例的性质、三角形中位线的性质24.(2019湖南益阳,24,10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾·稻”轮作模式,某农户有农田20亩,去年开始实施“虾·稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价一成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为2.5元/千克,该农户估计今年可获得“虾·稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【思路分析】(1)设去年小龙虾的养殖成本与售价分别为每千克x 元、y 元,根据已知条件列方程组求解;(2)设今年稻谷的亩产量为z 千克,通过列不等式求解.【解题过程】解:(1)设去年小龙虾的养殖成本与售价分别为每千克x 元、y 元,由题意得⎩⎨⎧=---=-30%)251(%)101(32x y x y ,解得⎩⎨⎧==408y x . 答:去年小龙虾的养殖成本与售价分别为每千克8元、40元.(2)设今年稻谷的亩产量为z 千克,由题意得20×100×30+20×25z-20×600≥8000,解得;z ≥640.答:稻谷的亩产量至少会达到640千克.【知识点】二元一次方程组的解法和应用、一元一次不等式的解法和应用25.(2019湖南益阳,25,12分)在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P (m ,n )是抛物线在第四象限的图象上的点,且m+m=-1,连接PA 、PC ,在线段PC 上确定一点N ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(1x ,1y ),(2x ,2y ),则线段AB 的中点坐标为(221x x +,221y y +) .【思路分析】(1)利用待定系数法求抛物线的解析式;(2)利用“同底等高的两个三角形面积相等”、“三角形的中线平分三角形的面积”证明OM 将四边形OBAD 分成面积相等的两部分;(3)先利用点P(m ,n)是抛物线322++-=x x y 的图象上的点,求出点P 的坐标为(4,-5);再利用待定系数法求得直线CP 对应的函数表达式为y=-x-1,直线AC 对应的函数表达式为y=2x+2,直线DQ 对应的函数表达式为y=2x+3;然后通过解方程组⎩⎨⎧+=--=321x y x y 得点Q 的坐标为(3134,-),最后利用线段中点的坐标公式求出点N 的坐标为(3734-,). 【解题过程】解:(1)抛物线的顶点为A(1,4),设函数表达式为4)1(2+-=x a y ,∵抛物线经过点B(3,0),∴04)13(2=+-a ,解得a=-1.∴抛物线对应的二次函数表达式为4)1(2+--=x y ,即322++-=x x y .(2)OM 将四边形OBAD 分成面积相等的两部分.理由如下:∵DE ∥OA ,∴OEA ODA S S △△=(同底等高的两个三角形面积相等).∴AOM OEA AOM ODA S S S S △△△△+=+,即OME OMAD S S △四边形=.∵M 是BE 的中点,∴OBM OME S S △△=∴OBM OMAD S S △四边形=,即OM 将四边形OBAD 分成面积相等的两部分.(3)∵点P(m ,n)是抛物线322++-=x x y 的图象上的点,∴322++-=m m n .∵m+n=-1,∴n=-m-1,代入上式,得3212++-=--m m m ,解得m=4(m=1不合题意,舍去),∴点P 的坐标为(4,-5).如图,过点D 作DQ ∥CA 交PC 的延长线于点Q ,第25题答图由(2)知点N 为PQ 的中点,设经过点C(-1,0),P(4,-5)的直线对应的函数表达式为y=kx+b,则⎩⎨⎧-=+=+-540b k b k ,解得⎩⎨⎧-=-=11b k . ∴直线CP 对应的函数表达式为y=-x-1.同理,直线AC 对应的函数表达式为y=2x+2.∵直线DQ ∥CA ,故设直线DQ 对应的函数表达式为y=2x+b ,∵经过点D(0,3),∴直线DQ 对应的函数表达式为y=2x+3.解方程组⎩⎨⎧+=--=321x y x y 得⎪⎪⎩⎪⎪⎨⎧=-=3134y x , ∴点Q 的坐标为(3134,-).∵点N 为PQ 的中点, ∴点N 的横坐标为342434=+-,点N 的纵坐标为372531-=-, ∴点N 的坐标为(3734-,) 【知识点】待定系数法求函数解析式、同底等高的两个三角形面积相等、三角形的中线平分三角形的面积、函数与方程的关系、一元一次方程的解法、一元二次方程的解法、函数与方程组的关系、二元一次方程组的解法、一次函数图象平行的条件、线段中点的坐标公式26.(2019湖南益阳,26,12分)如图,在半面直角坐标系xOy 中,矩形ABCD 的边AB=4,BC=6.若不改变矩形ABCD 的形状和大小,当形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半上随之上下移动.(1)当∠OAD=30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形 OMCD 的面积为221时,求OA 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos ∠OAD 的值.第26题图 第26题备用图【思路分析】(1)通过作CE ⊥y 轴于点E 构造Rt △CED 和Rt △OAD 然后通过解直角三角形求出点C 的坐标;(2)由M 为AD 的中点求出6=DCM S △,再利用221=OMCD S 四边形,29=ODM S △,求出9=OAD S △.然后设OA=x ,OD=y ,列方程组⎪⎩⎪⎨⎧==+9213622xy y x ,求得OA 的长为23.(3)首先利用M 为AD 的中点确定出:当O 、M 、C 三点在同一直线时,OC 有最大值8.然后连接OC ,证明△CMD ∽△OMN ,再利用相似三角形的对应边成比例求出59=MN ,512=ON ,56=-=MN AM AN .最后在Rt △OAN 中,求出55cos ==∠OA AN OAD . 【解题过程】(1)如图1,过点C 作CE ⊥y 轴,垂足为E.第26题答图1∵矩形ABCD 中,CD ⊥AD ,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°.在Rt △CED 中,CE=21CD=2, ∴DE=32242222=-=-CE CD ;在Rt △OAD 中,∠OAD=30°,∴OD=21AD=3.∴点C 的坐标为(2,323+).(2)∵M 为AD 的中点,∴DM=3,6=DCM S △. 又∵221=OMCD S 四边形, ∴29=ODM S △, ∴9=OAD S △.设OA=x ,OD=y , 则⎪⎩⎪⎨⎧==+9213622xy y x ,∴xy y x 222=+,即0)(2=-y x ,∴x=y.将x=y 代入3622=+y x 得182=x , 解得23=x (23-不合题意,舍去),∴OA 的长为23.(3)OC 的最大值为8.理由如下:如图2,第26题答图2∵M 为AD 的中点,∴OM=3,522=+=DM CD CM .∴OC ≤OM+CM=8,当O 、M 、C 三点在同一直线时,OC 有最大值8.连接OC ,则此时OC 与AD 的交点为M ,过点O 作ON ⊥AD ,垂足为N.∵∠CDM=∠ONM=90°,∠CMD=∠OMN ,∴△CMD ∽△OMN ,∴OMCM MN DM ON CD ==, 即3534==MN ON , 解得59=MN ,512=ON , ∴56=-=MN AM AN . 在Rt △OAN 中, ∵55622=+=AN ON OA , ∴55cos ==∠OA AN OAD . 【知识点】矩形的性质、平角的定义、互余的性质、30°角所对直角边等于斜边的一半、勾股定理、解直角三角形、中线的性质、三角形的面积公式、组合图形的面积计算、二元二次方程组的解法、完全平方公式、一元二次方程的解法、最短路径问题、相似三角形的判定和性质、比例的性质、锐角三角函数的定义。