等边三角形的性质和判定
等边三角形性质与判定
![等边三角形性质与判定](https://img.taocdn.com/s3/m/af6c4d05842458fb770bf78a6529647d26283455.png)
等边三角形性质与判定等边三角形是指三条边都相等的三角形。
在几何中,等边三角形具有一些特殊的性质和判定方法。
本文将介绍等边三角形的性质以及如何判定一个三角形是等边三角形。
一、等边三角形的性质1.三边相等:等边三角形的三条边长度相等,即AB=AC=BC。
2.内角相等:等边三角形的三个内角都相等,每个角都是60度。
3.内角和为180度:等边三角形的三个内角和为180度,因为三个角都是60度,所以它们的和为180度。
4.等边三角形是等腰三角形:等腰三角形是指两边长度相等的三角形。
等边三角形的三边都相等,因此也是等腰三角形。
5.等边三角形是等角三角形:等角三角形是指三个角度都相等的三角形。
等边三角形的三个内角都是60度,因此也是等角三角形。
二、判定一个三角形是否为等边三角形判定一个三角形是否为等边三角形可以通过以下方法进行:1.测量三条边的长度:通过使用测量仪器(例如尺子)或计算方法,测量三条边的长度,如果它们长度相等,则可以判定为等边三角形。
2.判定三个角度是否相等:通过使用角度测量器或计算方法,测量三个角度的大小,如果它们都是60度,则可以判定为等边三角形。
3.判定两边是否相等:通过测量任意两条边的长度,如果它们长度相等,则可以判定为等边三角形。
需要注意的是,在实际应用中,我们常常会结合多种判定方法来确定一个三角形是否为等边三角形,以增加判定结果的准确性。
三、等边三角形的应用等边三角形在几何学中有广泛的应用,下面列举了其中一些常见的应用:1.建筑与设计:等边三角形在建筑和设计中常常作为参考图形,用于规划和设计各种建筑结构。
2.三角函数:等边三角形是三角函数的重要基础。
在三角函数中,等边三角形通常用作基本的参考图形,用于推导和分析各种三角函数的性质和关系。
3.几何证明:等边三角形作为一种特殊的三角形,常常被用于几何证明中。
通过研究等边三角形的性质,可以推导和证明各种几何定理和命题。
4.图形构造:等边三角形是一种基本的图形构造元素,可以用于构造其他形状和图形。
等边三角形的性质及判定方法
![等边三角形的性质及判定方法](https://img.taocdn.com/s3/m/28ed41610622192e453610661ed9ad51f11d5411.png)
等边三角形的性质及判定方法等边三角形是指三条边相等的三角形,本文将介绍等边三角形的性质及判定方法。
首先,我将简要介绍等边三角形的定义,然后论述它的性质,最后探讨判定等边三角形的方法。
等边三角形的定义是指三条边的长度相等,三个角的度数也相等的三角形。
在等边三角形中,每个角都是60度,因此等边三角形也是等角三角形。
接下来,我们来探讨等边三角形的性质。
首先,等边三角形的内角均为60度。
这是因为等边三角形的三边相等,每个角的对边也相等,故三个角的度数均为60度。
其次,等边三角形的高、中线、角平分线都是重合的。
这是因为等边三角形具有三个对称轴,它们互相重合。
这意味着等边三角形的高、中线、角平分线在三角形内部互相重合。
另外,等边三角形的面积可以通过以下公式计算:面积 = (边长^2 * √3) / 4在讨论了等边三角形的性质后,我们来探讨如何判定一个三角形是否为等边三角形。
判定一个三角形是否为等边三角形有几种方法。
首先,我们可以通过测量三角形的三边的长度来判断。
如果三条边的长度相等,那么这个三角形就是等边三角形。
其次,等边三角形的高、中线、角平分线都是重合的,我们可以通过绘制这些线来判定一个三角形是否为等边三角形。
如果这些线段重合,那么这个三角形就是等边三角形。
另外,我们还可以通过判断三角形的三个内角是否相等来确定是否为等边三角形。
如果三个内角的度数均为60度,那么这个三角形就是等边三角形。
小结:等边三角形是指三条边的长度和三个角的度数均相等的三角形。
等边三角形的性质包括内角均为60度,高、中线和角平分线重合等。
判定等边三角形可以通过测量边长,绘制重合线段或判断三个内角的度数是否相等来进行。
虽然等边三角形的性质和判定方法已经介绍完毕,但值得一提的是,等边三角形在几何学中有着重要的应用。
例如,在建筑设计中,等边三角形常用于规划对称结构;在计算机图形学中,等边三角形可用于生成复杂的几何形状等。
因此,对等边三角形的性质和判定方法的了解对于实际应用具有一定的意义。
专题07 等边三角形的判定与性质(解析版)
![专题07 等边三角形的判定与性质(解析版)](https://img.taocdn.com/s3/m/2bb3083f86c24028915f804d2b160b4e767f816d.png)
1专题07 等边三角形的判定与性质知识对接考点一、等边三角形的判定与性质 1、性质: (1)三边相等.(2)三个内角相等,每一个内角都等于60°. (3)是轴对称图形,有三条对称轴. (4)面积:S=43a 2(a 为等边三角形的边长). 2、判定:(1)三边相等的三角形是等边三角形. (2)三个角都相等的三角形是等边三角形. (3)有一个角是60°的等腰三角形是等边三角形.专项训练一、单选题1.(2021·陕西西安·交大附中分校九年级)如图,点A ,B ,C ,D 在⊙O 上,其中四边形OBCD 为平行四边形,连接AB ,AC ,则⊙A 的度数为( )A .20°B .25°C .30°D .35°【答案】A 【分析】连接OC ,先证明⊙OBC 是等边三角形,得到⊙BOC =60°,然后利用圆周角定理求解即可. 【详解】 解:连接OC .⊙四边形OBCD为平行四边形,⊙OD=BC,⊙OB=OC=OD,⊙OB=OC=BC,⊙⊙OBC是等边三角形,⊙⊙BOC=60°,⊙BOC=30°,⊙⊙BAC=12故选A.【点睛】本题主要考查了平行四边形的性质,等边三角形的性质与判定,圆周角定理,解题的关键在于能够熟练掌握相关知识进行求解.2.(2021·绍兴市柯桥区杨汛桥镇中学九年级二模)如图,正方形ABCD的顶点A、B在⊙O 上,顶点C、D在⊙O内,将正方形ABCD绕点B顺时针旋转α度,使点C落在⊙O上.若正方形ABCD的边长和⊙O的半径相等,则旋转角度α等于()A.36°B.30°C.25°D.22.5°【答案】B【分析】连接OA,OB,OG,由旋转的性质可得,AB=BG,⊙ABE=⊙CBG=α,先证明⊙OAB和⊙OBG 都是等边三角形,得到⊙OBA=⊙OBG=60°,再由⊙ABO+⊙OBG=⊙ABC+⊙CBG=120°,求解即可.【详解】解:如图所示,连接OA,OB,OG,由旋转的性质可得,AB=BG,⊙ABE=⊙CBG=α⊙正方形ABCD的边长和⊙O的半径相等,⊙OA=OB=OG=BG=AB,⊙⊙OAB和⊙OBG都是等边三角形,3⊙⊙OBA =⊙OBG =60°,⊙⊙ABO +⊙OBG =⊙ABC +⊙CBG =120°,⊙ABC =90°(正方形的性质), ⊙⊙CBG =30°, ⊙α=30°, 故选B .【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,正方形的性质,解题的关键在于能够熟练掌握相关知识进行求解.3.(2021·西安市铁一中学)如图,在矩形ABCD 中,DAB ∠的平分线交BD 于点F ,CD 于点E ,15EAC ∠=︒,AB =EF 的长为( )A.2 BC.2 D1【答案】B 【分析】过点F 作FG AD ⊥于点G ,根据矩形性质证明OAD ∆是等边三角形,利用tan60=︒GF DG ,求出GF 的长,再根据勾股定理即可求出结果. 【详解】解:如图,过点F 作FG AD ⊥于点G ,在矩形ABCD 中,EA 是DAB ∠的平分线, ⊙45DAE EAB AED ∠=∠=∠=︒, ⊙AD DE =,AG GF =, ⊙15EAC ∠=︒,⊙60=︒∠DAC ,⊙OAD ∆是等边三角形, ⊙60ADB ∠=︒, ⊙AB = ⊙2AD =,4BD =, ⊙2AD DE ==, ⊙AE =⊙60GDF ∠=︒,2=-=-DG AD AG GF , ⊙tan60=︒GF DG ,⊙()2=-GF GF解得3=GF⊙==AF⊙(=-=EF AE AF . 故选B . 【点睛】本题主要考查了矩形的性质,角平分线的性质,勾股定理,等边三角形的性质与判定,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.4.(2021·海南三亚·九年级一模)如图,在Rt ABC △中,90ABC ∠=︒,AB BC ==ABC 绕点C 逆时针转60︒,得到MNC ,则BM 的长是( )A .1B .1C D .2+【答案】B 【分析】连接AM ,BM 交AC 于D ,如图,利用等腰直角三角形的性质得到AC ==2,再根据旋转的性质得CM =CA =2,⊙ACM =60°,则可判断⊙ACM 为等边三角形,直接证BM 垂直平分AC ,然后利用等腰直角三角形和等边三角形的性质计算出BD 和MD ,从而得到BM 的长. 【详解】5解:连接AM ,BM 交AC 于D ,如图,⊙⊙ABC =90°,AB =BC = ⊙AC ===2,⊙⊙ABC 绕点C 逆时针转60°,得到⊙MNC , ⊙CM =CA =2,⊙ACM =60°, ⊙⊙ACM 为等边三角形, ⊙MA =MC , 而BA =BC , ⊙BM 垂直平分AC , ⊙BD 12=AC =1,MD ==2 ⊙BM =1 故选:B . 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形和等边三角形的性质. 5.(2021·河北九年级)如图,直线AB 、CD 交于点O ,若AB 、CD 是等边MNP △的两条对称轴,且点P 在直线CD 上(不与点O 重合),则点M 、N 中必有一个在( )A .AOD ∠的内部B .BOD ∠的内部PC .BOC ∠的内部D .直线AB 上【答案】D 【分析】根据等边三角形是轴对称图形,利用轴对称图形的性质解决问题即可. 【详解】 解:如图,⊙⊙PMN是等边三角形,⊙⊙PMN的对称轴经过三角形的顶点,⊙直线CD,AB是⊙PMN的对称轴,又⊙直线CD经过点P,⊙直线AB一定经过点M或N,故选:D.【点睛】本题考查轴对称,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.6.(2021·四川绵阳·)如图,圆锥的左视图是边长为2的等边三角形,则此圆锥的高是()A.2B.3C D【答案】D【分析】如图所示,等边三角形ABC,BC边上的高AD即为所求.【详解】解:如图所示等边三角形ABC,AD是BC边上的高,由题意可知AD的长即为所求,AB=2,⊙B=60°,⊙sinAD AB B==故选D.7【点睛】本题主要考查了等边三角形的性质,三视图,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.7.(2021·四川雅安·)如图,四边形ABCD 为⊙O 的内接四边形,若四边形OBCD 为菱形,A ∠为( ).A .45°B .60°C .72°D .36°【答案】B 【分析】根据菱形性质,得OB OD BC CD ===;连接OC ,根据圆的对称性,得OB OC OD ==;根据等边三角形的性质,得BOD ∠,再根据圆周角和圆心角的性质计算,即可得到答案. 【详解】⊙四边形OBCD 为菱形 ⊙OB OD BC CD === 连接OC⊙四边形ABCD 为⊙O 的内接四边形 ⊙OB OC OD ==⊙OBC ,OCD 为等边三角形 ⊙60BOC COD ∠=∠=︒⊙120BOD BOC COD ∠=∠+∠=︒⊙1602A BOD ︒∠=∠=故选:B . 【点睛】本题考查了圆内接多边形、等边三角形、菱形的知识;解题的关键是熟练掌握圆的对称性、等边三角形、菱形、圆周角、圆心角的知识;从而完成求解.8.(2021·山东枣庄·中考真题)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,=AC 6BD =,点P 是AC 上一动点,点E 是AB 的中点,则PD PE +的最小值为( )A .B .C .3D .【答案】A 【分析】连接DE ,先根据两点之间线段最短可得当点,,D P E 共线时,PD PE +取得最小值DE ,再根据菱形的性质、勾股定理可得6AB =,然后根据等边三角形的判定与性质求出DE 的长即可得. 【详解】解:如图,连接DE ,由两点之间线段最短得:当点,,D P E 共线时,PD PE +取最小值,最小值为DE ,四边形ABCD 是菱形,=AC 6BD =, 11,3,22AB AD OB BD OA AC AC BD ∴=====⊥,6AB ∴=, 6AB AD BD ∴===,ABD ∴是等边三角形,9点E 是AB 的中点, 13,2AE AB DE AB ∴==⊥,DE ∴即PD PE +的最小值为 故选:A . 【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识点,熟练掌握菱形的性质是解题关键.9.(2021·天津)如图,在ABC 中,120BAC ∠=︒,将ABC 绕点C 逆时针旋转得到DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,下列结论一定正确的是( )A .ABC ADC ∠=∠B .CB CD =C .DE DC BC +=D .AB CD ∥【答案】D 【分析】由旋转可知120EDC BAC ∠=∠=︒,即可求出60ADC ∠=︒,由于60ABC ∠<︒,则可判断ABC ADC ∠≠∠,即A 选项错误;由旋转可知CB CE =,由于CE CD >,即推出CB CD >,即B 选项错误;由三角形三边关系可知DE DC CE +>,即可推出DE DC CB +>,即C 选项错误;由旋转可知DC AC =,再由60ADC ∠=︒,即可证明ADC 为等边三角形,即推出60ACD ∠=︒.即可求出180ACD BAC ∠+∠=︒,即证明//AB CD ,即D 选项正确;【详解】由旋转可知120EDC BAC ∠=∠=︒, ⊙点A ,D ,E 在同一条直线上, ⊙18060ADC EDC ∠=︒-∠=︒, ⊙60ABC ∠<︒,⊙ABC ADC ∠≠∠,故A 选项错误,不符合题意; 由旋转可知CB CE =,⊙120EDC ∠=︒为钝角, ⊙CE CD >,⊙CB CD >,故B 选项错误,不符合题意; ⊙DE DC CE +>,⊙DE DC CB +>,故C 选项错误,不符合题意; 由旋转可知DC AC =, ⊙60ADC ∠=︒, ⊙ADC 为等边三角形, ⊙60ACD ∠=︒. ⊙180ACD BAC ∠+∠=︒,⊙//AB CD ,故D 选项正确,符合题意; 故选D . 【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定.利用数形结合的思想是解答本题的关键.10.(2021·安徽)如图,在ABC 中,AB =BC =3,⊙ABC =30°,点P 为ABC 内一点,连接P A 、PB 、PC ,求P A +PB +PC 的最小值( )A .B .C .D .【答案】A 【分析】将⊙ABP 绕点B 逆时针旋转60°得到⊙BFE ,连接PF ,E C .易证P A +PB +PC =PC +PF +EF ,因为PC +PF +EF ≥EC ,推出当P ,F 在直线EC 上时,P A +PB +PC 的值最小,求出EC 的长即可解决问题. 【详解】解:将⊙ABP 绕点B 逆时针旋转60°得到⊙BFE ,连接PF ,E C .11由旋转的性质可知:⊙PBF 是等边三角形, ⊙PB =PF , ⊙P A =EF ,⊙P A +PB +PC =PC +PF +EF , ⊙PC +PF +EF ≥EC ,⊙当P ,F 在直线EC 上时,P A +PB +PC 的值最小, 由旋转可知:BC =BE =BA =3,⊙CBE =⊙ABC +⊙ABE =90°, ⊙EB ⊙BC , ⊙ECBC=⊙P A +PB +PC的最小值为 故选A . 【点睛】本题旋转变换,等边三角形的判定和性质,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题. 二、填空题11.(2021·杭州市十三中教育集团(总校))如图,点D 是等边⊙ABC 边BC 上一点,将等边⊙ABC 折叠,使点A 与点D 重合,折痕为EF (点E 在边AB 上). (1)当点D 为BC 的中点时,AE :EB =________; (2)当点D 为BC 的三等分点时,AE :EB =________.【答案】1:1 7:5或7:8 【分析】(1)连接AD ,然后根据折叠的性质和等边三角形的性质求解即可;(2)分当DC :BD =1:2时,当DC :BD =2:1时两种情况,利用相似三角形进行求解即可. 【详解】解:(1)如图,连接AD ,⊙D 为BC 的中点,⊙ABC 为等边三角形,折叠, ⊙AD ⊙BC ,⊙DAB =⊙DAC =1=2BAC ∠30°,⊙B =60°,⊙⊙EDB =90°﹣30°=60°=⊙B , ⊙⊙BED 为等边三角形,⊙AE =ED =BE ,即AE :EB =1:1, 故答案为:1:1;(2)当DC :BD =1:2时, 设CD =k ,BD =2k , ⊙AB =AC =3k , ⊙⊙ABC 为等边三角形, ⊙⊙EDF =⊙A =60°,⊙⊙EDB +⊙FDC =⊙BED +⊙EDB =120°, ⊙⊙BED =⊙FDC , ⊙⊙B =⊙C =60°, ⊙⊙BED ⊙⊙CDF , ⊙=BE BED DC CDF 的周长的周长, ⊙54BE kk k, ⊙BE =54k ,⊙AE =74k , ⊙AE :BE =7:5,13当DC :BD =2:1时, 设CD =2k ,BD =k , 同上一种情况得:=BE BED DC CDF 的周长的周长, ⊙425BE kk k⊙BE =85k , ⊙AE =75k, ⊙AE :BE =7:8, 故答案为:7:5或7:8.【点睛】本题主要考查了等边三角形的性质与判定,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.12.(2021·陕西西安·交大附中分校)如图,在边长为6cm 的正六边形中,点P 在边AB 上,连接PD 、PE .则PDE 的面积为______cm 2.【答案】【分析】首先求得正六边形的边心距,从而求得⊙PDE 边DE 上的高,利用三角形的面积公式求得答案即可.【详解】解:如图所示,连接OD 、OE ,此正六边形中DE=6,则⊙DOE=60°;⊙OD=OE,⊙⊙ODE是等边三角形,⊙OG⊙DE,⊙⊙DOG=30°,⊙OG=OD•cos30°=cm),⊙⊙PDE边DE上的高为2OG=cm),cm2),⊙S⊙PDE=12故答案为【点睛】此题考查了正六边形的性质,三角形面积的求法,解题的关键是根据题意作出辅助线.13.(2021·江苏九年级二模)若线段DE是等边⊙ABC的中位线,且DE=2,则⊙ABC的周长为____.【答案】12.【分析】根据三角形中位线定理求出BC,根据等边三角形的概念计算即可.【详解】解:如图,⊙DE是⊙ABC的中位线,⊙BC=2DE=4,⊙⊙ABC为等边三角形,15⊙AB =AC =BC =4, ⊙⊙ABC 的周长为12, 故答案为:12. 【点睛】本题考查的是三角形中位线定理、等边三角形的概念,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.(2021·山东滨州·)如图,在ABC 中,90ACB ∠=︒,30BAC ∠=︒,2AB =.若点P 是ABC 内一点,则PA PB PC ++的最小值为____________.【分析】根据题意,首先以点A 为旋转中心,顺时针旋转⊙APB 到⊙AP ′B ′,旋转角是60°,作出图形,然后根据旋转的性质和全等三角形的性质、等边三角形的性质,可以得到P A +PB +PC =PP ′+P ′B ′+PC ,再根据两点之间线段最短,可以得到P A +PB +PC 的最小值就是CB ′的值,然后根据勾股定理可以求得CB ′的值,从而可以解答本题. 【详解】解:以点A 为旋转中心,顺时针旋转⊙APB 到⊙AP ′B ′,旋转角是60°,连接BB ′、PP ′,CB ',如图所示,则⊙P AP ′=60°,AP =AP ′,PB =P ′B ′, ⊙⊙APP ′是等边三角形, ⊙AP =PP ′,⊙P A +PB +PC =PP ′+P ′B ′+PC ,⊙PP ′+P ′B ′+PC ≥CB ′,⊙PP ′+P ′B ′+PC 的最小值就是CB ′的值, 即P A +PB +PC 的最小值就是CB ′的值, ⊙⊙BAC =30°,⊙BAB ′=60°,AB =AB '=2,⊙⊙CAB ′=90°,AB ′=2,AC =AB •cos ⊙BAC =2×cos 30°=2= ⊙CB=【点睛】本题考查旋转的性质、等边三角形的性质、最短路径问题、勾股定理,解答本题的关键是作出合适的辅助线,得出P A +PB +PC 的最小值就是CB ′的值,其中用到的数学思想是数形结合的思想.15.(2021·四川达州·中考真题)如图,在边长为6的等边ABC ∆中,点E ,F 分别是边AC ,BC 上的动点,且AE CF =,连接BE ,AF 交于点P ,连接CP ,则CP 的最小值为___________.【答案】 【分析】首先证明120APB ∠=︒,推出点P 的运动轨迹是以O 为圆心,OA 为半径的弧.连接CO 交⊙O 于P',当点P 运动到P'时,CP 取到最小值. 【详解】如图所示,⊙边长为6的等边ABC ∆,17⊙6AC AB ==,60ACB CAB ∠=∠=︒ 又⊙AE CF = ⊙()ACF BAE SAS ≅ ⊙CAP PBA ∠=∠⊙60EPA PBA PAB CAP PAB CAB ∠=∠+∠=∠+∠=∠=︒ ⊙120APB ∠=︒⊙点P 的运动轨迹是以O 为圆心,OA 为半径的弧 此时120AOB ∠=︒连接CO 交⊙O 于P',当点P 运动到P'时,CP 取到最小值 ⊙CA CB =,CO CO =,OA OB = ⊙()ACO BCO SSS ≅⊙30ACO BCO ∠=∠=︒,60AOC BOC ∠=∠=︒ ⊙90CAO CBO ∠=∠=︒ 又⊙6AC =⊙'tan 306OP OA AB ==⋅︒==cos30AB OC =⋅==︒⊙''CP OC OP =-==即min CP =故答案为:【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、圆、特殊角的三角函数等相关知识.关键是学会添加辅助线,该题综合性较强. 三、解答题16.(2021·广东广州·中考真题)如图,在四边形ABCD 中,90ABC ∠=︒,点E 是AC 的中点,且AC AD =(1)尺规作图:作CAD ∠的平分线AF ,交CD 于点F ,连结EF 、BF (保留作图痕迹,不写作法);(2)在(1)所作的图中,若45BAD ∠=︒,且2CAD BAC ∠=∠,证明:BEF 为等边三角形.【答案】(1)图见解析;(2)证明见解析. 【分析】(1)根据基本作图—角平分线作法,作出CAD ∠的平分线AF 即可解答;(2)根据直角三角形斜边中线性质得到12BE AC =并求出30BEC BAC ABE ∠=∠+∠=︒,再根据等腰三角形三线合一性质得出CF DF =,从而得到EF 为中位线,进而可证BE EF =,60BEF ∠=︒,从而由有一个角是60°的等腰三角形是等边三角形得出结论.【详解】解:(1)如图,AF 平分CAD ∠,(2)⊙45BAD ∠=︒,且2CAD BAC ∠=∠, ⊙30CAD ∠=︒,15BAC ∠=︒, ⊙AE EC =,90ABC ∠=︒, ⊙12BE AE AC ==, ⊙15ABE BAC ∠=∠=︒, ⊙30BEC BAC ABE ∠=∠+∠=︒, 又⊙AF 平分CAD ∠,AC AD =, ⊙CF DF =, 又⊙AE EC =, ⊙1122EF AD AC ==,//EF AD ,19⊙30CEF CAD ∠=∠=︒, ⊙60BEF BEC CEF ∠=∠+∠=︒ 又⊙12BE EF AC ==⊙BEF 为等边三角形. 【点睛】本题主要考查了基本作图和等腰三角形性质以及与三角形中点有关的两个定理,解题关键是掌握等腰三角形三线合一定理、直角三角形斜边中线等于斜边一半以及三角形中位线定理. 17.(2021·南山实验教育集团南海中学九年级三模)如图,BC 是O 的直径,点A 是O 上一点,点D 是BC 延长线上一点,AB AD =,AE 是O 的弦,30AEC ∠=.(1)求证:直线AD 是O 的切线; (2)若3CD =,求O 的半径;(3)若AE BC ⊥于点F ,点P 为ABE 上一点,连接AP ,CP ,EP ,请找出AP ,CP ,EP 之间的关系,并证明.【答案】(1)见解析;(2)3;(3)EP AP +=,理由见解析 【分析】(1)先求出⊙BAD =120°,再求出⊙OAB ,进而得出⊙OAD =90°,即可得出结论; (2)先判断出⊙AOC 是等边三角形,得出AC =OC ,再判断出AC =CD ,即可得出结论; (3)先判断出⊙CAP =⊙CEM ,进而得出⊙ACP ⊙⊙ECM (SAS ),进而得出CM =CP ,⊙APC =⊙M =30°,再判断出MN =,即可得出结论. 【详解】(1)证明:如图,连接AC OA ,,30AEC ∠=︒, 30ABC AEC ∴∠∠︒==,AB AD =,30D ABC ∴∠∠︒==,120BAD ∴∠=︒,OA OB =,,30OAB ABC ∴∠=∠=︒,90OAD BAD OAB ∴∠∠∠︒=-=,点A 在O 上, ⊙直线AD 是的切线; (2)解:如图1,连接AC ,由(1)知,30D ∠=︒,90OAD ∠=︒,9060AOC D ∴∠︒∠︒=-=,∴AOC △是等边三角形,OC AC ∴=,60OAC ∠=︒,30CAD OAD OAC D ∴∠∠-∠︒∠===, 3AC CD ∴==,3OC ∴=,即O 的半径为3;(3)EP AP +=, 理由:如图, 30AEC ︒∠=, 30APC AEC ︒∴∠=∠=,连接AC ,延长PE 至M ,使EM AP =,连接CM ,AE BC ⊥,BC 为O 的直径,AC EC ∴=,四边形APEC 是O 的内接四边形,CAP CEM ∴∠=∠,∴()ACP ECM SAS ≅,21CM CP ∴=,30APC M ︒∠=∠=,过点C 作CN PM ⊥于N ,2PM MN ∴=,在Rt CNM △中,MNcos CMM =,MN cos30CM ∴︒=MN ∴=,2PM MN ∴===,PM PE EM PE AP =+=+,PE AP ∴+=,即EP AP +=. 【点睛】此题是圆的综合题,主要考查了切线的判定和性质,等边三角形的判定和勾股定理,构造出直角三角形是解本题的关键.18.(2021·广州市八一实验学校九年级)如图,在⊙P AB 中,点C 、D 在AB 上,PC =PD =CD ,⊙A =⊙BPD ,求证:⊙APC ⊙⊙BPD .【答案】见解析 【分析】根据PC =PD =CD ,可得出PCD 为等边三角形,即可得出PCD PDC ∠=∠,进而得出ACP PDB ∠=∠,再根据相似三角形的判定推出即可.【详解】证明:⊙PC =PD =CD , ⊙PCD 为等边三角形, ⊙⊙PCD =⊙PDC 60=︒, ⊙120ACP PDC ∠=∠=︒, ⊙⊙A =⊙BPD , ⊙⊙APC ⊙⊙PBD . 【点睛】本题考查了等边三角形的判定与性质,相似三角形的判定等知识点,注意:如果两个三角形的两个角分别对应相等,那么这两个三角形相似.19.(2021·黄石市有色中学九年级)如图,在ABC 中,AB AC =,120BAC ∠=︒,AD BC ⊥,垂足为G ,且AD AB =,60EDF ∠=︒,其两边分别交AB ,AC 于点E ,F .(1)若2DG =,求AC 的长; (2)求证:AB AE AF =+. 【答案】(1)4;(2)见解析 【分析】(1)连接BD 由等腰三角形的性质和已知条件得出⊙BAD =⊙DAC =12×120°=60°,再由AD =AB ,可得⊙ABD 是等边三角形,由等边三角形的性质得出DG =AG =12AD =2,,即可求解; (2)由⊙ABD 是等边三角形,得出BD =AD ,⊙ABD =⊙ADB =60°,证出⊙BDE =⊙ADF ,由ASA 证明⊙BDE ⊙⊙ADF ,得出AF =BE ,即可求解. 【详解】解:(1)证明:⊙AB =AC ,AD BC ⊥, ⊙⊙BAD =⊙DAC =12⊙BAC , ⊙⊙BAC =120°,⊙⊙BAD =⊙DAC =12×120°=60°,⊙AD =AB ,⊙⊙ABD 是等边三角形, ⊙AD =AB =BD , ⊙AD BC ⊥, ⊙DG =AG =12AD =2, ⊙AD =AB =AC =4, 即AC =4;(2)⊙⊙ABD 是等边三角形, ⊙⊙ABD =⊙ADB =60°,BD =AD , ⊙AB AC =,120BAC ∠=︒,AD BC ⊥,⊙⊙BAD=⊙DAC=12×120°=60°,⊙⊙ABD=⊙DAC,⊙⊙EDF=60°,⊙⊙ADB-⊙ADE=⊙EDF-⊙ADE,即⊙BDE=⊙ADF,⊙⊙BDE⊙⊙ADF(ASA),⊙BE=AF,⊙AB=AE+BE,⊙AB=AE+AF.【点睛】本题主要考查了三角形综合题,考查了全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.20.(2021·合肥市五十中学东校九年级三模)如图1,已知等腰直角ΔABC,⊙ACB=90°,在直角边BC上取一点D,使⊙DAC=15°,以AD为一边作等边ΔADE,且AB与DE相交.(1)求证:AB垂直平分DE;(2)连接BE,判断EB与AC的位置关系,并说明理由;(3)如图2,若F为线段AE上一点,且FC=AC,求EFAF的值.【答案】(1)见解析;(2)互相平行;见解析;(3)1【分析】(1)根据⊙DAC=15°及等腰直角三角形的性质,可得⊙DAB=30°,根据等边三角形的性质可得⊙EAB=30°,由等腰三角形的性质可得结论;(2)由(1)的结论易得BD=BE,⊙EBA=⊙CBA=45°,即BE⊙BC,从而可得BE与AC的位置关系;(3)延长CF,与BE的延长线交于点G.易得CF=BF;其次由(2)的结论易得⊙G=30°,从而CG=2BC=2FC,即CF=GF,然后可证明⊙CAF⊙⊙GEF,从而得AF=EF,即可得结果.【详解】(1)⊙⊙ABC是等腰直角三角形,⊙ACB=90°⊙AC=BC,⊙CAB=⊙CBA=45°⊙⊙DAC=15°⊙⊙DAB=⊙CAB-⊙DAC=30°23⊙⊙ADE 是等边三角形 ⊙⊙DAE =60°⊙⊙EAB =⊙DAE -⊙DAB =30° ⊙⊙DAB =⊙EAB ⊙⊙ADE 是等边三角形 ⊙AB 垂直平分DE (2)互相平行 理由如下: ⊙AB 垂直平分DE ⊙BD =BE⊙⊙EBA =⊙CBA =45° ⊙⊙EBC =⊙EBA +⊙CBA =90° 即⊙EBC +⊙ACB =180° ⊙BE ⊙AC(3)延长CF ,与BE 的延长线交于点G ,如图所示⊙⊙F AC =⊙DAE +⊙DAC =75°,FC =AC ⊙⊙CF A =⊙F AC =75° ⊙⊙FCA =180°-2×75°=30° ⊙AC =BC ,AC =FC ⊙BC =FC由(2)知:BE ⊙AC ⊙⊙G =⊙FCA =30° ⊙⊙EBC =90° ⊙CG =2BC =2FC ⊙CF =GF在⊙CAF 和⊙GEF 中 FCA G CF GFCFA GFE ∠=∠⎧⎪=⎨⎪∠=∠⎩⊙⊙CAF ⊙⊙GEF (ASA ) ⊙AF =EF ⊙1EFAF=25【点睛】本题考查了等腰直角三角形的性质、等边三角形的性质、直角三角形的性质、全等三角形的判定与性质等知识,第(3)问的关键是作辅助线,构造三角形全等.21.(2021·广西柳州市·)如图,已知ABC 中,AC BC =,以BC 为直径的O 交AB 于E ,过点E 作EG AC ⊥于G ,交BC 的延长线于点F .(1)求证:FE 是O 的切线;(2)若30F ∠=︒,求证:24FG FC FB =⋅; (3)当6BC =,4EF =时,求AG 的长. 【答案】(1)见解析;(2)见解析;(3)245【分析】(1)连接EC ,OE ,由BC 为O 的直径,可得90BEC ∠=︒,由AC BC =,可得E 为AB 中点,由O 为BC 中点,利用中位线性质可得OE∥AC ,由EG AC ⊥,可得OE EG ⊥即可; (2)由OE OC =,可得OEC OCE ∠=∠,由EF 为圆的切线,可得90FEC OEC ∠+∠=︒,由90BEC ∠=︒,可得90B BCE ∠+∠=︒,可证FEC FBE △∽△,可得2FE FC FB =⋅,当30F ∠=︒时,可求60FOE ∠=︒,可证OEC △为等边三角形,可得30FEC F ∠=︒=∠,可证2FE FG =即可;(3)由(2)得2FE FC FB =⋅,可得()246FC FC =⋅+,解得2FC =或FC =-8舍去,可证FCG FOE △∽△,可得253CG=,可求65CG =即可. 【详解】解:(1)证明:连接EC ,OE , ⊙BC 为O 的直径, ⊙90BEC ∠=︒, ⊙CE AB ⊥, 又⊙AC BC =, ⊙E 为AB 中点, 又⊙O 为BC 中点, ⊙OE∥AC ,又⊙EG AC ⊥, ⊙OE EG ⊥, 又OE 为O 的半径, ⊙FE 是O 的切线.(2)⊙OE OC =, ⊙OEC OCE ∠=∠, ⊙EF 为圆的切线, ⊙90FEC OEC ∠+∠=︒, ⊙90BEC ∠=︒ ⊙90B BCE ∠+∠=︒, ⊙FEC B ∠=∠, 又⊙F F ∠=∠, ⊙FEC FBE △∽△, ⊙FE FCFB FE=, ⊙2FE FC FB =⋅,当30F ∠=︒时,60FOE ∠=︒, 又OE OC =,⊙OEC △为等边三角形, ⊙60OEC ∠=︒, ⊙30FEC F ∠=︒=∠, ⊙CE CF =, 又CG FE ⊥, ⊙2FE FG =, ⊙()22FG FC FB =⋅, 即24FG FC FB =⋅.(3)由(2)得2FE FC FB =⋅, 又6BC =,4FE =,FB=BC +FC =6+FC ,27⊙()246FC FC =⋅+,因式分解得(FC +8)(FC -2)=0, 解得2FC =或FC =-8舍去, ⊙6BC =, ⊙132OE OC BC ===,6AC BC ==, ⊙235FO FC CO =+=+=, ⊙CG∥OE ,⊙⊙GCF =⊙EOF ,⊙FGC =⊙FEO , ⊙FCG FOE △∽△, ⊙FC CG FO OE =,即253CG=, ⊙65CG =, ⊙624655AG AC CG =-=-=. 【点睛】本题考查圆的切线判定,直径所对圆周角性质,等腰三角形性质,中位线性质,三角形相似判定与性质,等边三角形判定与性质,掌握圆的切线判断,直径所对圆周角性质,等腰三角形性质,中位线性质,三角形相似判定与性质,等边三角形判定与性质是解题关键. 22.(2021·江苏九年级)如图,⊙ABC 为等边三角形,AB =6,将边AB 绕点A 顺时针旋转θ(0°<θ<120°)得到线段AD ,连接CD ,CD 与AB 交于点G ,⊙BAD 的平分线交CD 于点E ,F 为CD 上一点,且DF =2CF . (1)当⊙EAB =30°时,求⊙AEC 的度数;(2)当线段BF 的长取最小值时,求线段AG 的长; (3)请直接写出⊙ADE 的周长的最大值.【答案】(1)60°;(2)AG =12;(3)6+【分析】(1)用角平分线的性质和旋转性质即可;(2)作FM ⊙AD ,连接BM ,FM =2,点F 的运动轨迹是以M 为圆心、2为半径的圆,当B、F 、M 共线时,BF 取最小值; 由⊙ADG ⊙⊙BFG 可求AG ;(3)连接BE ,设BAE α∠=,AE 平分BAD ∠,可得,DAE ED EB α==∠,得到A E B C 、、、四点共圆,作ABC 的外接圆O ,CAB △是等边三角形,可将CAB △绕点C 顺时针旋转60︒得到CAN △,得E 、A 、N 三点共线,求出AE DE +的最大值,即可求出ADE 的周长. 【详解】(1)⊙AD 由AB 旋转得到AD =AB ⊙AE 平分BAD ∠ ⊙30DAE EAB ∠=∠=︒ ⊙120DAC ∠=︒ ⊙30D ∠=︒⊙=AEC D DAE ∠+∠∠ ⊙⊙AEC =60°; (2)如图,⊙CA =AB =6 ⊙2163CM CD ==,⊙13CM CA =,13FM AD =, 又DF 2CF = ⊙13CF CD = ⊙13CF CM CD CA == 又MCF ACD =∠∠ ⊙MCF ACD ∽∠∠ ⊙12,3MF AD CFM D ====∠∠ ⊙FM =2,⊙点F 的运动轨迹是以M 为圆心、2为半径的圆, ⊙当B 、F 、M 共线时,BF 取最小值 即min 2BM BM MF BM =-=- ⊙2,6,60CM BC ACB ===︒∠⊙BM =29⊙min 22BM BM MF BM -=-== ⊙CFM D =∠∠ ⊙FH ⊙AD又BF 取最小值点F 在BM 上, ⊙BFAD⊙⊙ADG ⊙⊙BFG ⊙AD AGBF BG=,6AGAG=-,⊙12AG =;⊙当BF取最小值时,12AG = (3)如图,连接BE ,设BAE α∠= ⊙AE 平分BAD ∠ ⊙,DAE ED EB α==∠ ⊙602DAC α=︒+∠ 又60ABC ∠=︒ ⊙A E B C 、、、四点共圆作ABC 的外接圆O ,则点F 在O 上, 180CBE CAE +=︒∠∠又CAB △是等边三角形,⊙可将CBF 绕点C 顺时针旋转60︒得到CAN △ 由旋转的性质得:,,60CN CE AN EB ECN ===︒∠,CAN CBE =∠∠ ⊙180CAN CAE +=︒∠∠ ⊙E 、A 、N 三点共线 ⊙ECN 为等边三角形,⊙,AE ED AE EB AE AN EN CE +=+=+== ⊙6AB =⊙ABC 的外接圆O 的半径R ==R⊙CE 的最大值为2R =即AE DE +的最大值为⊙ADE 的周长是AD AE DE ++⊙ADE 的周长是6+ 【点睛】本题考查了三角形相似的性质和判定,等边三角形的性质等知识,解题的关键是学会构建辅助圆来确定线段的最值问题.23.(2021·甘肃庆阳·九年级二模)如图,等边三角形ABC 的外部有一点P ,且30BPA ∠=︒,将AP 绕点B 逆时针旋转60°得到CQ ,连接BQ .(1)求证:ABP CBQ ≌△△.(2)若4AP =,3BP =,求P ,C 两点之间的距离. 【答案】(1)见解析(2)5 【分析】(1)由旋转的性质可知,对应边相等,旋转角相等,用“边角边”证明三角形全等即可 (2)连接,PQ PC ,根据已知条件构造直角三角形,用勾股定理求得P C ,的距离 【详解】(1)由旋转的性质可知,,,60AB CB PB QB PBQ ABC ==∠=∠=︒PBA PBQ QBA ABC QBA QBC ∴∠=∠+∠=∠+∠=∠ABP CBQ ∴≌(SAS )(2)连接,PQ PC,60PB BQ PBQ=∠=︒PBQ∴为等边三角形60PQB∴∠=︒,3PQ BQ==ABP CBQ≌△△∴30BPA BQC∠=∠=︒,4QC AP==603090PQB PQB BQC∴∠=∠+∠=︒+︒=︒222PC PQ QC∴=+5PC∴==【点睛】本题考查了旋转的性质,勾股定理,全等三角形的性质与判定,找到旋转角是解题的关键.31。
等边三角形性质和判定
![等边三角形性质和判定](https://img.taocdn.com/s3/m/b21bc8b2551810a6f524866b.png)
A
A
A
D
E
D 600 E
D
E
B ①
CB
CB
C
②
③
2.如图,等边三角形ABC中,AD是BC上的高, ∠ BDE=∠CDF=60 °,图中有哪些与BD相 等的线段?
A
E
F
B
C
D
3.△ABC中,D、E是BC边上的三等分点, △AED是等边三角形,则∠BAC为( )度.
A
B
D
E
C
4.在△ABC中,AB=AC,以AB、AC为边在△ABC的
等边三角形
教学目标
▪ 知识目标:了解等边三角形的概念. ▪ 等边三角形判定定理证明. ▪ 等边三角形判定定理的发现和证明.
A
等腰三角形有什么性质?
从边看: 两腰相等 AB=AC
从角看: 两底角相等 ∠B=∠C
B
D
C
从重要线段看:
ቤተ መጻሕፍቲ ባይዱ
等腰三角形顶角的平分线、底边上的中线和底边上 的高线互相重合
从对称性看: 等腰三角形是轴对称图形
等边三角形是轴对称图形,有三条对称轴.
A
B
C
对称轴是:顶角平分线或底边上的中线或底边上的高 所在的直线
等边三角形的判定:
1.三边都相等的三角形是等边三角形.(定义)
∵AB=BC=AC ∴ △ABC是等边三角形
2. 三个角都相等的三角形是等边三角形.
∵ ∠A= ∠ B=∠C ∴ △ABC是等边三角形
外侧作两个等边三角形△ABE和△ACD,且
∠EDC=40°,则∠ABC=(
)度.
A
E
D
B
C
等边三角形各边上中线,高和所对角的平分线都三 线合一.
等边三角形的性质和判定
![等边三角形的性质和判定](https://img.taocdn.com/s3/m/6bd4976ab5daa58da0116c175f0e7cd18525186c.png)
等边三角形的中线、高线 和角平分线重合
相等
等边三角形的三个内角相等,每 个角都是60度。
等边三角形的中位线与底边平行, 且等于底边的一半。
添加标题
添加标题
添加标题
添加标题
等边三角形的外角和等于360度, 每个外角都是120度。
等边三角形的高、中线、角平分 线三线合一,且都等于底边的一 半。
对称性
等边三角形的高、中线、角 平分线三线合一,且都垂直 于底边。
等边三角形三边相等,三个 角相等,具有轴对称性。
等边三角形的重心、内心、 外心、垂心四心合一,且都
位于等边三角形的内部。
等边三角形是特殊的等腰三 角形,具有等腰三角形的所
有性质。
高等性质
边长相等:三边 长度相等
内角相等:三个 内角均为60度
添加标题
中世纪:阿拉伯数学家开始对等边三角形进行更深入 的研究,进一步发展了相关理论
添加标题
近现代:随着数学的发展,等边三角形在各个领域的 应用越来越广泛,如物理学、工程学和计算机科学等
添加标题
古希腊时期:欧几里德在《几何原本》中详细阐述了 等边三角形的性质和定理,为后续研究奠定了基础
添加标题
文艺复兴时期:欧洲数学家如笛卡尔和费马开始使用 解析几何方法研究等边三角形,推动了三角学的发展
轴对称:具有三 条对称轴
重心、内心、外 心重合:重心、 内心、外心三点 共线
等边三角形的判定
边判定法
添加标题 添加标题 添加标题 添加标题
定义:三边相等的三角形是等边三角形
判定定理:如果一个三角形的三边长度相等,则这个三角形是等边三角 形。
证明:由三角形的性质,任意两边之和大于第三边,如果三边长度相等, 则三边之和都等于第三边,满足三角形的定义。
等边三角形的认识与性质
![等边三角形的认识与性质](https://img.taocdn.com/s3/m/f0cd049527fff705cc1755270722192e44365862.png)
等边三角形的认识与性质等边三角形是一种特殊的三角形,其在几何学中有着重要的地位和意义。
本文将就等边三角形的定义、性质和相关定理进行详细讨论,以深入认识等边三角形。
一、等边三角形的定义等边三角形是指三条边的长度都相等的三角形。
简单来说,等边三角形就是具有三条边相等的三角形。
二、等边三角形的性质1. 角度性质等边三角形每个角都是60度。
由于三角形的内角和等于180度,因此等边三角形的每个角都等于180度/3 = 60度。
2. 边长性质等边三角形的三条边长度都相等,因此可以用一个边长来表示,例如:若三角形三边的长度都是a,则可表示为△ABC(AB=BC=AC=a)。
3. 对称性质等边三角形具有三个对称轴,分别是三条边,即通过任意一边的中垂线可以把等边三角形分成两个对称的等腰三角形。
4. 高线性质等边三角形的高线、中位线和角平分线都重合,且高线也就是对边的中线。
这意味着等边三角形的高线、中位线和角平分线都是同一条线段。
5. 面积性质等边三角形的面积可以通过以下公式计算:面积 = (边长^2 * √3) / 4。
等边三角形的面积公式中的√3是一个常数,边长的平方是面积与边长的关系。
三、等边三角形的相关定理1. 等边三角形的高等边三角形的高等于边长乘以sin60度,即高 = 边长* √3/2。
2. 等边三角形的中线等边三角形的中线等于边长乘以√3/2,即中线 = 边长* √3/2。
3. 等边三角形的外接圆等边三角形的外接圆半径等于边长的1/√3倍,即外接圆半径 = 边长/√3。
4. 等边三角形的内切圆等边三角形的内切圆半径等于边长的1/√3倍,即内切圆半径 = 边长/√3。
以上定理可以通过推导和几何性质的证明得出,可以帮助我们计算等边三角形的相关参数或构造等边三角形。
总结:等边三角形是三边相等的特殊三角形,具有独特的性质和特点。
其每个角都为60度,边长相等,有三个对称轴、高线与对边中线重合,面积和边长有特殊的关系。
等边三角形性质与判定
![等边三角形性质与判定](https://img.taocdn.com/s3/m/d490752567ec102de2bd89d9.png)
等边三角形性质与判定等边三角形的定义:三条边都相等三角形叫做等边三角形;等边三角形的性质:①等边三角形的三个内角都相等,都是60°;三边都相等②等边三角形是轴对称图形,有3条对称轴。
等边三角形的判定1.三边都相等的三角形是等边三角形2.三个角都相等的三角形是等边三角形。
3.有一个角等于60°的等腰三角形是等边三角形。
题型1 等边三角形的判定三角形的三边相等的三角形是等边三角形三角形的三个内角相等的三角形是等边三角形例1. 如图:在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,EA=EC.试判断△ABC的形状,并证明你的结论.例3. 如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.例4.如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.课堂练习等边三角形的性质应用及判定【例8】如图,在等边△ABC中,点D,E分别在边BC,AB上,BD=AE,AD与CE交于点F.求证:(1)AD=CE;(2)求∠DFC的度数。
【例9】如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF。
求证:BE=AF例10】(天津中考)如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACD≌△DCB; ②CM=CN; ③AC=DN.其中正确结论的个数是A.3个B.2个C.1个D.0个【例11】(常州中考)如图,已知△ABC为等边三角形,D、E、F分别在边BC、AC、AB上,且△DEF也是等边三角形。
等边三角形的性质和判定
![等边三角形的性质和判定](https://img.taocdn.com/s3/m/84bfabd5900ef12d2af90242a8956bec0975a538.png)
等边三角形的性质和判定
等边三角形也称为等腰三角形,是三角形中最基本的一种形状,
它的三个边都是等长的。
因为只有三条边,一般只需要判断三个边长
是否相等就可以是否是等边三角形。
等边三角形有着独特的性质,其中最重要的是它的三个内角都是
相等的,这代表等边三角形的三条边的本质是等边的,即它的三个角
都是相等的。
另外,等边三角形只有两个外角是相等的,而另外一个
外角则是一个直角。
根据上述性质,可以通过测量等边三角形的3边长度,来判断它
是否是一个等边三角形。
如果三边形长度都相等,则这个三角形就是
一个等边三角形。
同时,我们可以求出等边三角形的其它性质,比如它的三角形角
度和周长。
此外,我们还可以通过以上方法计算出等边三角形的面积:将三角形三边长度分别记为a,b,c,那么根据海伦-克拉斯定理可以
得出等边三角形的面积为:面积=〖△〗√=〖a*b*c〗√,3s其中s为三边的一半周长。
由以上性质可以看出,等边三角形的相关性质十分简单,只需要
测量三边长度就可以判断它是否是一个等边三角形,同时也可以计算
出它的其它性质,如内外角和周长面积等,用来研究三角形在实际应
用中的特性和特点。
等边三角形的性质与判定
![等边三角形的性质与判定](https://img.taocdn.com/s3/m/d0e591fd6e1aff00bed5b9f3f90f76c660374c4f.png)
轴对称性
特殊性 判定
三边法 三角法
三边相等
三个角都等于60 °
轴对称图形, 每条边上都具 有“三线合一”
性质
等腰三角形法
角形是等腰三角形
等边三角形 三条边都相等的三角形 是等边三角形
三个角都相等的三角形 是等边三角形
★小等明边认三为角还形有的第判三定种方方法法:“两条边相等且有一个角是60°的三角 形也有是一等个边角三是角6形0°”的,等你腰同三意角吗形?是等边三角形.
新课讲解
辩一辩:根据条件判断下列三角形是否为等边三角形.
证明: ∵AB=AC. ∴∠B=∠C .(等边对等角) 同理 ∠A=∠C . ∴∠A=∠B=∠C. ∵ ∠A+∠B+∠C=180°, ∴ ∠A= ∠B= ∠C=60 °.
新课讲解
问题2 等边三角形有“三线合一”的性质吗?等边
三角形有几条对称轴?
顶角的平分线、 A
A
底边的高
底边的中线
三线合一
B
C
B
C
不 是
是
是
(1)
(2)
(3)
不
一 定
是
是
是
(4)
(5)
(6)
例
新课讲解
3
如图,在等边三角形ABC中,DE∥BC, 求证:△ADE
是等边三角形.
证明:∵ △ABC是等边三角形, ∴ ∠A= ∠B= ∠C. ∵ DE//BC, ∴ ∠ADE= ∠B, ∠ AED= ∠C, ∴ ∠A= ∠ADE= ∠ AED,
随堂即练
1.等边三角形的两条高线相交成钝角的度数是( B )
A.105°
B.120° C.135° D.150°
13.3.2.1等边三角形的性质与判定(教案)
![13.3.2.1等边三角形的性质与判定(教案)](https://img.taocdn.com/s3/m/62351656f68a6529647d27284b73f242326c317a.png)
(1)等边三角形性质的推导:引导学生从具体实例中抽象出等边三角形的性质,理解性质背后的几何原理。
-难点解析:学生需要通过观察、分析等边三角形的图形,推导出性质,如利用全等三角形的性质证明三角相等。
(2)等边三角形判定方法的应用:学会灵活运用判定方法判断一个三角形是否为等边三角形。
-难点解析:学生在应用判定方法时,容易忽视一些细节,如夹角为60度的条件,需要教师在教学中进行强调。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等边三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调等边三角形的性质和判定方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等边三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示等边三角形性质的基本原理。
2.等边三角形的判定:教授学生如何根据给定条件判断一个三角形是否为等边三角形,包括通过三边相等、三角相等和一边及其对角的判定方法。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.空间观念:通过等边三角形的性质与判定学习,提高学生对几何图形ห้องสมุดไป่ตู้认识,发展空间想象力和直观感知能力。
2.逻辑推理:培养学生运用逻辑思维进行等边三角形判定,提升分析问题和解决问题的能力。
等边三角形的性质与判定
![等边三角形的性质与判定](https://img.taocdn.com/s3/m/e59fb6c4d5d8d15abe23482fb4daa58da0111cb0.png)
等边三角形的性质与判定等边三角形是一种特殊的三角形,具备特定的性质和判定方法。
本文将介绍等边三角形的性质,并探讨如何判定一个三角形是否为等边三角形。
一、等边三角形的性质等边三角形具有以下几个显著的性质:1. 边长相等:等边三角形的三条边长度完全相等。
2. 角度相等:等边三角形的三个内角均为60度。
3. 对称性:等边三角形具有三条对称轴,每条轴都经过一个顶点和对边的中点。
4. 高度、中线、角平分线重合:等边三角形的高度、中线和角平分线都重合于一条直线。
二、判断三角形是否为等边三角形判定一个三角形是否为等边三角形有以下几种方法:1. 边长判定法:若一个三角形的三边长度均相等,则该三角形为等边三角形。
2. 角度判定法:若一个三角形的三个内角均为60度,则该三角形为等边三角形。
3. 对称性判定法:若一个三角形具有三条对称轴,每条轴都经过一个顶点和对边的中点,则该三角形为等边三角形。
4. 高度、中线、角平分线重合判定法:若一个三角形的高度、中线和角平分线都重合于一条直线,则该三角形为等边三角形。
请注意,这些判定方法不仅可以单独使用,也可以结合使用,以得出更准确的结果。
三、等边三角形的应用等边三角形在几何学和工程学中具有广泛的应用。
1. 建筑设计:等边三角形常用于设计正六边形的楼柱或柱子,使得建筑物更加稳定和均衡。
2. 航空航天:等边三角形的稳定性使得它在设计和制造飞行器的翼型中得到广泛应用。
3. 测量和定位:等边三角形在测量和定位领域也起到重要的作用,例如通过测量等边三角形的边长来判断距离等。
四、总结等边三角形是一种特殊的三角形,具有边长相等、角度相等、对称性以及高度、中线、角平分线重合等性质。
我们可以通过边长判定、角度判定、对称性判定和高度、中线、角平分线重合判定等方法来判断一个三角形是否为等边三角形。
此外,等边三角形在建筑设计、航空航天、测量和定位等领域有着广泛的应用。
通过了解等边三角形的性质和判定方法,我们能够更好地理解和应用这一特殊的几何形状,为相关领域的研究和实践提供帮助。
等边三角形的性质及判定
![等边三角形的性质及判定](https://img.taocdn.com/s3/m/a75d1c6dec630b1c59eef8c75fbfc77da26997a7.png)
探究:如图,等边三角形ABC,以下三种方法分别 得到的三角形ADE都是等边三角形吗?为什么? (1)在边AB,AC,分别截取AD=AE (2)∠ADE=60°,D,E分别在边AB,AC上 (3)过边AB上D点,作DE∥BC,交 A
A
你还能用其他
方法证明吗?
B
C
D
在直角三角形中,如果一个锐角等于30° 则它所对的直角边等于斜边的一半.
A
30°
在直角△ABC中
∵∠A=30°
B┓
C ∴AC=2BC
下图是屋架设计图的一部分,点D是 斜梁AB的中点,立柱BC、 DE垂直于 横梁AC,AB=7.4m,∠A=30°立柱 BC 、 DE要多长
资料整理
• 仅供参考,用药方面谨遵医嘱
A
B
C
等边三角形的性质
1 .三条边相等
2.等边三角形的内角都相等,且等于60 ° 3.等边三角形各边上中线,高和所对角的平 分线都三线合一. 4.等边三角形是轴对称图形,有三条对称轴.
探索星空:探究判定一
1、三个内角都等于60°的三角形是等边三角形
∵ ∠A=∠B=∠C=60° ∴ AB=AC=BC (在同一个 三角形中等角对等边) ∴ △ABC是等边三角形
三角形中等边对等角)
B
C
∵ ∠A+∠B+∠C=180° ∴ ∠A=∠B=∠C=60°
探索星空:探究性质二
2、等边三角形有“三线合一”的性质吗为什么
A
B
C
结论:等边三角形每条边上的中线,高和所对角的 平分线都三线合一。( 所有的高线,角平分线, 中线的长度相等。)
探索星空:探究性质三
3、等边三角形是轴对称图形吗有几条对称轴
等边三角形的性质与判定八年级数学
![等边三角形的性质与判定八年级数学](https://img.taocdn.com/s3/m/a1404567326c1eb91a37f111f18583d049640f08.png)
第06讲等边三角形的性质与判定【学习目标】1.了解等边三角形的有关概念,探索并掌握性质及判定方法。
【基础知识】一.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.二.等边三角形的判定(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.说明:在证明一个三角形是等边三角形时,若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明.三.等边三角形的判定与性质(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.【考点剖析】一.等边三角形的性质(共5小题)1.(2020秋•濮阳期末)三个等边三角形的摆放位置如图所示,若∠1+∠2=100°,则∠3的度数为( )A .80°B .70°C .45°D .30°2.(2022春•江都区月考)如图,△ABC 是等边三角形,P 是三角形内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为24,则PD +PE +PF =( )A .8B .9C .12D .153.(2022春•鼓楼区校级月考)如图,C 是线段AB 上一动点,△ACD ,△CBE 都是等边三角形,M ,N 分别是CD ,BE 的中点,若AB =4,则线段MN 的最小值为( )A .√32B .√3C .2√3D .3√324.(2021秋•无锡期末)如图,△ABC 是等边三角形,BC =BD ,∠BAD =20°,则∠BCD 的度数为 .5.(2021秋•宝应县期中)如图,△ABC 为等边三角形,BD 平分∠ABC ,BD 交AC 于点D ,DE ∥BC ,DE 交AB 于点E .(1)判断△ADE 的形状,并说明理由.(2)判断AE 与AB 的数量关系,并说明理由.二.等边三角形的判定(共4小题)6.(2021秋•淮安期末)三角形的三边长a,b,c满足(a﹣b)4+(b﹣c)2+|c﹣a|=0,那么这个三角形一定是()A.直角三角形B.等边三角形C.等腰非等边三角形D.钝角三角形7.(2021秋•渑池县期末)下列对△ABC的判断,错误的是()A.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.若AB=BC,∠C=50°,则∠B=50°C.若AB=BC,∠A=60°,则△ABC是等边三角形D.若∠A=20°,∠C=80°,则△ABC是等腰三角形8.(2017秋•兴化市期中)有一个角是的等腰三角形是等边三角形.9.(2019秋•鼓楼区校级期中)如图,点D在线段BC上,∠B=∠C=∠ADE=60°,AB=DC.求证:△ADE为等边三角形.三.等边三角形的判定与性质(共3小题)10.(2021秋•淮安区期末)已知△ABC中,AB=AC,∠A=60°,若BC=5cm,则AC=cm.11.(2020秋•河北区期末)如图,在等边△ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数.(2)求证:DC=CF.12.(2021春•龙口市期末)如图,在四边形ABCD中,AB=AD,CB=CD,∠A=60°,点E为AD上一点,连接BD,CE交于点F,CE∥AB.(1)判断△DEF的形状,并说明理由;(2)若AD=12,CE=8,求CF的长.【过关检测】一.选择题(共5小题)1.(2021秋•梁溪区校级期中)如图,△ABC是等边三角形,DE∥BC,若AB=12,BD=7,则△ADE的周长为()A.5B.36C.21D.152.(2021秋•鼓楼区月考)在等边三角形ABC中,AD是高,∠B的平分线交AD于E,下面判断中错误的是()A.点E在AB的垂直平分线上B.点E到AB、BC、AC的距离相等C.点E是AD的中点D.过点E且垂直于AB的直线必经过点C3.(2021秋•鼓楼区期中)已知三个城镇中心A、B、C恰好位于等边三角形的三个顶点,在A、B、C之间铺设光缆连接,实线为所铺的路线,四种方案中光缆铺设路线最短的是()A.B.C.D.4.(2020秋•东台市期中)一边上的中线等于这边的一半,此三角形一定是()A.等边三角形B.有一角为钝角的等腰三角形C.直角三角形D.顶角是36°的等腰三角形5.(2021春•罗湖区校级期末)已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC 是等边三角形;④AB=AO+AP.其中正确的是()A.①③④B.①②③C.①③D.①②③④二.填空题(共3小题)6.(2021秋•淅川县期末)如图,两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C.已知AC=4,则这两块直角三角板顶点A、A′之间的距离等于.7.(2020秋•韩城市期中)在△ABC中,∠A=∠B=60°,AB=3,则BC等于.8.(2020秋•饶平县校级期末)如图,已知△ABC中高AD恰好平分边BC,∠B=30°,点P是BA延长线上一点,点O是线段AD上一点且OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的为.(填序号)三.解答题(共6小题)9.如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)若BC=10,求△ODE的周长.10.(2018秋•盱眙县期中)已知:如图,△ABC中,AB=AC,D为BC上一点,过点D作DE∥AB交AC于点E.(1)求证:∠C=∠CDE.(2)若∠A=60°,试判断△DEC的形状,并说明理由.11.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D、E在BC上,且AE=BE.(1)求∠CAE的度数;(2)若点D为线段EC的中点,求证:△ADE是等边三角形.12.(2020秋•黄陂区期中)如图,已知点D、E在△ABC的边BC上,AB=AC,AD=AE.(1)求证:BD=CE;(2)若AD=BD=DE=CE,求∠BAE的度数.13.(2019秋•桐城市期末)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当α为多少度时,△AOD是等腰三角形?14.(2019秋•滨海县期中)如图,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D为EC中点.(1)求∠CAE的度数;(2)求证:△ADE是等边三角形.第06讲等边三角形的性质与判定【学习目标】1.了解等边三角形的有关概念,探索并掌握性质及判定方法。
等边三角形的判定和性质
![等边三角形的判定和性质](https://img.taocdn.com/s3/m/e7abf064ff4733687e21af45b307e87101f6f88e.png)
【变式】 直线AB,CD相交,求证:AB,CD只有一个交点.用反证法证明时,我们可先
假设AB,CD相交于两个交点O与O′, 那么过O,O′两点就有 两 条直线,这与
“过两点 有且只有一条直线
”矛盾,所以假设不成立,则原命题成立.
1.(2018福建)如图,在等边三角形ABC中,AD⊥BC,垂足为点D,点E在线段AD 上,∠EBC=45°,则∠ACE等于( A ) (A)15° (B)30° (C)45° (D)60°
等边三角形的判定方法的选择 (1)若已知三边关系,则考虑运用等边三角形的定义进行判定; (2)若已知三角关系,则根据“三个角都相等的三角形是等边三角形”进行判 定; (3)若已知该三角形是等腰三角形,则可再寻找一个内角等于60°即可.
【变式】如图,已知点D是等边三角形ABC的边BC延长线上的一点,∠EBC=∠DAC, CE∥AB. 求证:△CDE是等边三角形.
知识点二 等边三角形的有关性质 【例2】如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作 EF ⊥DE,交BC的延长线于点F. (1)求∠F的度数; (2)若CD=2,求DF的长.
解:(1)因为△ABC为等边三角形,所以∠B=60°.因为DE∥AB,所以∠EDC=∠B= 60°.因为EF⊥DE,所以∠DEF=90°,所以∠F=90°-∠EDC=30°. (2)因为∠ACB=60°,∠EDC=60°,所以△EDC为等边三角形.所以ED=DC=2,因 为∠DEF=90°,∠F=30°,所以DF=2DE=4.
第2课时 等边三角形的判定和性质
![第2课时 等边三角形的判定和性质](https://img.taocdn.com/s3/m/272d8da5d1d233d4b14e852458fb770bf78a3bb7.png)
证明:如图(3)所示,过点E作EF∥BC,交AC于点F.(请完成余下的证明过程)
解:(2)∵△ABC为等边三角形,且EF∥BC,
∴∠AEF=∠ABC=60°,
∠AFE=∠ACB=60°,∠FEC=∠ECB.
∴∠EFC=∠DBE=120°.
∵E 为 AB 边的中点,∴EA=BE= AB.∴BC=EA.
∵△DEB 是等边三角形,
∴DB=DE,∠DEB=∠DBE=60°.
∴∠DEA=∠DBC=120°.
∴△ADE≌△CDB(SAS).
(2)若 BC= ,在 AC 边上找一点 H,使得 BH+EH 最小,并求出这个最小值.
(2)解:如图所示,作点B关于AC的对称点B′,连接EB′交AC于点H,则点H即为所求.
∵PB≥PC,PB=CD,∴CD≥PC.∴∠CPD≥∠CDP.
∵AP=AD,∴∠APD=∠ADP.
∴∠APD+∠CPD≥∠ADP+∠CDP,即∠APC≥∠ADC.
∵∠APB=∠ADC,∴∠APC≥∠APB.
与∠APB>∠APC矛盾.
∴PB≥PC不成立.∴PB<PC.
11.数学课上,老师出示了如下题目:如图(1)所示,在等边三角形ABC中,点E在AB上,点D在CB的延长
A.4
B.3
C.2
D.1
3.如图所示,已知OA=a,点P是射线ON上一动点,∠AON=60°,当OP=a
时,△AOP为等边三角形.
4.如图所示,△ABC是等边三角形,AD∥BC,CD⊥AD.若AD=2 cm,则△ABC的周长为12
cm.
5.用反证法证明:任意三角形的三个外角中至多有一个直角.
等边三角形的性质和判定
![等边三角形的性质和判定](https://img.taocdn.com/s3/m/a18dd481d4bbfd0a79563c1ec5da50e2524dd1dc.png)
等边三角形的性质和判定等边三角形是指三条边相等的三角形。
它具有一些独特的性质和判定方法,本文将详细介绍等边三角形的性质以及如何判定一个三角形是否为等边三角形。
一、等边三角形的性质1. 边长相等:等边三角形的三条边长度相等,记为a=a=a。
2. 角度相等:等边三角形的三个内角相等,每个角为60度。
3. 高度、中线、角平分线:等边三角形的高度、中线以及角平分线均相等。
4. 对称性:等边三角形具有对称性,即以任意边为轴进行折叠,三角形的各部分完全重合。
二、等边三角形的判定1. 三边相等判定法:如果一个三角形的三边长度相等,那么它就是等边三角形。
2. 角度相等判定法:如果一个三角形的三个角度均为60度,那么它就是等边三角形。
3. 边长和角度判定法:如果一个三角形的两边边长相等且夹角为60度,那么它就是等边三角形。
三、等边三角形的应用等边三角形作为一种特殊的三角形,在几何学和实际生活中有着广泛的应用。
1. 建筑设计:等边三角形的稳定性和对称性使其成为建筑设计中常用的形状。
例如,蜂窝状的建筑结构常使用等边三角形。
2. 制作模型:等边三角形可以用于制作模型,特别是多面体模型。
例如,立方体的六个面均为等边三角形。
3. 计算几何:等边三角形的性质可用于计算几何中的推导和证明。
例如,通过等边三角形,我们可以推导出正六边形的面积和边长与半径的关系。
四、等边三角形的例题例题1:已知△ABC中,AB=BC=AC,且∠ABC=60度,求证△ABC为等边三角形。
证明:根据等边三角形的判定法,我们需要证明△ABC的三边相等。
已知AB=BC,再根据已知∠ABC=60度,可得到∠BAC=∠BCA=60度。
由此可知,△ABC的三个角度均为60度,即满足等边三角形的定义。
因此,可以得出结论,△ABC为等边三角形。
例题2:已知△PQR是等边三角形,且PR=6cm,求PQ的长度。
解析:由于△PQR是等边三角形,则QR=PR=6cm。
根据等边三角形的定义,三条边的长度均相等。
等边三角形的性质与判定解析
![等边三角形的性质与判定解析](https://img.taocdn.com/s3/m/d63a56743868011ca300a6c30c2259010202f300.png)
等边三角形的性质与判定解析等边三角形是指三条边的长度相等的三角形。
在本文中,我们将探讨等边三角形的性质以及如何判定一个三角形是否为等边三角形。
一、等边三角形的性质1. 三边相等:等边三角形的最显著特征是其三条边的长度相等。
三边均相等意味着等边三角形的内角也是相等的,每个角都是60度。
2. 内角相等:由于等边三角形的三边相等,根据三角形内角和的性质可知,等边三角形的每个内角都是60度。
3. 对称性:等边三角形具有一定的对称性质。
如果我们以其中一个顶点为中心,以该顶点与另外两个顶点连线的垂直平分线为轴进行旋转,等边三角形将重合于原位置。
二、判定等边三角形1. 通过边长判断:判定一个三角形是否为等边三角形最直观的方法是通过测量三条边的长度。
如果三边的长度均相等,则可以确定该三角形为等边三角形。
2. 通过角度判断:等边三角形的每个内角都是60度,因此我们可以通过测量三个内角来判断一个三角形是否为等边三角形。
如果三个内角的测量结果均为60度,则可以确定该三角形为等边三角形。
3. 通过对称性判断:根据等边三角形的对称性质,我们可以通过观察三角形的对称性来判断其是否为等边三角形。
如果三角形具有明显的对称性,并且边长相等,那么可以确定该三角形为等边三角形。
三、等边三角形的应用1. 建筑设计:等边三角形具有稳定性较好的特点,因此在建筑设计中经常使用等边三角形的原理来构建稳定的结构,如建筑物的支撑结构或者桥梁的支撑墩设计等。
2. 数学几何题:在解决一些数学几何问题时,等边三角形的性质常常被应用。
通过利用等边三角形的特点,可以简化问题的求解过程,提高解题效率。
3. 图形设计:等边三角形具有简洁美观的特点,常出现在图案、LOGO设计等各类艺术设计中,赋予作品一种稳定和和谐的感觉。
四、总结等边三角形是一种特殊的三角形,其三边长度相等,每个内角均为60度。
判断一个三角形是否为等边三角形可以通过测量边长、测量角度以及观察对称性来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
你还能用其他
方法证明吗?
B
C
D
在直角三角形中,如果一个锐角等于30° 那么它所对的直角边等于斜边的一半.
A
30°
B┓ C
在直角△ABC中
∵∠A=30° ∴AC=2BC
下图是屋架设计图的一部分,点D是 斜梁AB的中点,立柱BC、 DE垂直于 横梁AC,AB=7.4m,∠A=30°立柱 BC 、 DE要多长?
E
∴ △ADE 是等边三角形.
追问 本题还有其他证法吗?B
C
动脑思考,变式训练
变式1 若点D、E 在边AB、AC 的延长线上,且 DE∥BC,结论还成立吗?
证明:∵ △ABC 是等边三角形, ∴ ∠A =∠ABC =∠ACB =60°. A
∵ DE∥BC,
∴ ∠ABC =∠ADE,
∠ACB =∠AED.
B
C
∴ ∠A =∠ADE =∠AED.
∴ △ADE 是等边三角形. D
E
动脑思考,变式训练
变式2 若点D、E 在边AB、AC 的反向延长线上, 且DE∥BC,结论依然成立吗?
证明: ∵ △ABC 是等边三角形, E D
∴ ∠BAC =∠B =∠C =60°.
∵ DE∥BC,
A
∴ ∠B =∠D,∠C =∠E.
是(三线合一)
(等边对等角)
一条对称轴
相等 每个角都等于60°
?
细心观察,探索性质
结合等腰三角形的性质,你能填出等边三角形对应 的结论吗?
图形
等腰 三角形
等边 三角形
边
两边相等 (定义)
三边相等 (定义)
角
轴对称图形
两底角相等
是(三线合一)
(等边对等角)
一条对称轴
相等
是(三线合一)
每个角都等于60° 三条对称轴
A
┓
C
B
请你说一说这节课的收获和体 验让大家与你一起分享 ?
教师寄语
愿你用勤奋的汗水 浇灌智慧的花朵
知识回顾 Knowledge Review
已知:△ABC 是等边三角形 求证:∠A =∠B =∠C
=60°.
证明:∵ △ABC 是等边三角形,
∴ BC =AC,BC =AB.
A
∴ ∠A =∠B,∠A =∠C .
∴ ∠A =∠B =∠C .
∵ ∠A +∠B +∠C =180°,
∴ ∠A =60°.
B
C
∴ ∠A =∠B =∠C =60°.
细心观察,探索性质
已知:在△ABC 中,∠A=∠B=∠C.求证:△ABC 是等边三角形.
证明:∵ ∠A =∠B,∠B =∠C ,
∴ BC =AC, AC =AB.
C
∴ AB =BC =AC.
∴ △ABC 是等边三角形.
A
B
探索星空:探究判定二
2、有一个内角等于60°的等腰三角形是等边三角形?
A
当顶角为60°时,两个底角各为60°.
等边三角形的性质: 等边三角形的三个内角都相等,并且每一个角都等 于60°.
A
符号语言: ∵ △ABC 是等边三角形, ∴ ∠A =∠B =∠C =60°.
B
C
探索星空:探究性质二
2、等边三角形有“三线合一”的性质吗?为什
么?
A
B
C
结论:等边三角形每条边上的中线,高和所对角 的平分线都三线合一。( 所有的高线,角平分 线,中线的长度相等。)
AC于E点
D
E
B
C
动脑思考,例题解析
例1 如图,△ABC 是等边三角形,DE∥BC, 分
别交AB,AC 于点D,E.求证:△ADE 是等边三角形.
证明: ∵ △ABC 是等边三角形,
∴ ∠A =∠B =∠C =60°.
A
∵ DE∥BC,
∴ ∠B =∠ADE,∠C =∠AED.
∴ ∠A=∠ADE =∠AED. D
解(1)由已知可求得
C
∠BCD= 30 °
于是在Rt△ADC 与Rt△BDC
A
中用本定理得BC=2,AB=4
DB
(2)在Rt△ADC 与Rt△BDC运用本定理
BD=1/2BC
BC=1/2AB
∴ BD=1/2BC=1/4AB
要把一块三角形的土地均匀分给甲 、 乙、 丙三家农户去种植,如果∠C=90°∠A= 30°,要使这三家农户所得土地的大小和 形状都相同,请你试着分一分,在图上画出 来.
例4 等边三角形ABC的周长等于21㎝, A
求:(1)各边的长;
(2)各角的度数。
B
C
解:(1)∵AB=BC=CA,
又 ∵AB+BC+CA=21㎝(已知)
∴AB=BC=CA=21/3=7(㎝)
(2)∵AB=BC=CA,(已知)
∴∠A =∠B=∠C=60°
(等边三角形的每个内角都等于60°)
(选择)
图形
等腰 三角形
等边 三角形
边
两边相等 (定义)
三边相等 (定义)
角 两底角相等 (等边对等角)
?
轴对称图形 是(三线合一)
一条对称轴
?
细心观察,探索性质
结合等腰三角形的性质,你能填出等边三角形对应 的结论吗?
图形
等腰 三角形
等边 三角形
边
两边相等 (定义)
三边相等 (定义)
角
轴对称图形
两底角相等
等边三角形的判定定理1: 三个角都相等的三角形是等边三角形. 等边三角形的判定定理2: 有一个角为60°的等腰三角形.
ቤተ መጻሕፍቲ ባይዱ
等边三角形的判定方法:
1.三边相等的三角形是等边三角形.
•2.三个内角都等于60 °(或三个内 角都相等)的三角形是等边三角形. •3.有一个内角等于60 °的等腰三角 形是等边三角形.
B
D
A EC
解:∵DE⊥AC, BC⊥AC, ∠A=30° 可得 2BC=AB, 2DE=AD
∴BC=1/2 ×7.4=3.7m 又 AD=1/2 AB ∴DE=1/2 AD=1/2 ×3.7=1.85m
答:立柱BC的长是3.7m,DE的长是 1.85m.
1 如图,在△ABC 中∠C=90°,∠B=15°,AB的垂直平分线 交BC于D,交AB于M,且BD=8㎝,求AC之长.
等边三角形的判定:
名 称
图形
判定
等
三条边都相等的三角形
边
A
三个角都等于60°的三角形
三
角 形B
C 有一个角等于60°的等腰 三角形
将两个含有30°的直角三角板如图摆放在 一起你能借助这个图形,找到Rt△ABC的直
角边BC与斜边AB之间的数量关系吗?
A
B
C
D
∵△ABC与△ADC关于AC轴对称 ∴AB=AD △ABD是等边三角形 又∵AC⊥BD∴BC=DC=1/2AB
∴ ∠EAD =∠D =∠E.
∴ △ADE 是等边三角形.
B
C
这是两个等边三角形,那么请移动三根火柴 ,将此图变成四个等边三角形.
提示:此题并不难,如果外部不能解决,那么 想想里面吧.
等边三角形的性质:
名 称
图形
性质
等
三条边都相等
边
A
三
三个角都相等,且都为60°
角 形B
C 三线合一
轴对称图形,有三条对称轴
3、等边三角形中,高、中线、角平分线共有(A) (A)3条(B)6条(C)9条(D)7条
探究:如图,等边三角形ABC,以下三种方法分别 得到的三角形ADE都是等边三角形吗?为什么? (1)在边AB,AC,分别截取AD=AE (2)∠ADE=60°,D,E分别在边AB,AC上 (3)过边AB上D点,作DE∥BC,交 A
∵ ∠A=∠B=∠C=60° ∴ AB=AC=BC (在同一个三 角形中等角对等边) ∴ △ABC是等边三角形
A
B
C
细心观察,探索性质
等边三角形的判定定理1: 三个角都相等的三角形是等边三角形.
符号语言:
C
在△ABC 中,
∵ ∠A=∠B =∠C ,
∴ △ABC 是等边三角形.
A
B
细心观察,探索性质
…
知识回顾
名 称
图形
性质
等
腰
A
两腰相等
三
等边对等角
角
形B
C 三线合一
轴对称图形
判定 两边相等 等角对等边
等边三角形: 三条边都相等的三角形. (正三角形) 等边三角形是特殊的等腰三角形.
创设情境,导入新知
请分别画出一个等腰三角形和等边三角形,结合
你画的图形说出它们有什么区别和联系?
A
A
B
CB
1、下列四个说法中,不正确的有(B ) (A)0个(B)1个(C)2个(D)3个
三个角都相等的三角形是等边三角形。 有两个角等于60°的三角形是等边三角形。 有一个角是60°的等腰三角形是等边三角形。 有两个角相等的等腰三角形是等边三角形。
2、等边三角形的对称轴有(C) (A)1条(B)2条(C)3条(D)4条
C
联系:等边三角形是特殊的等腰三角形;
区别:等边三角形有三条相等的边,而等腰三角形
只有两条.
探索星空:探究性质一
1、等边三角形的内角都相等吗?为什么?
∵ AB=AC=BC
A
∴ ∠A=∠B=∠C(在同一个
三角形中等边对等角)
B
C
∵ ∠A+∠B+∠C=180° ∴ ∠A=∠B=∠C=60°
细心观察,探索性质
A M