-新定义运算计算技巧

合集下载

小学数学定义新运算

小学数学定义新运算

小学数学定义新运算一.什么是定义新运算我们已经学过了加、减、乘、除运算。

在有些情况下,常把「有多步含加、减、乘、除的运算」用某种新的符号表示,这就是定义了新的运算。

见到了这种用新的符号所定义的运算后,就按它所规定的「运算程序」进行运算,直到得出最后结果。

例如,设A、B表示自然数,如果定义符号「※」表示的运算如下:A※B=3×A+4×B那么,根据新运算「※」的定义,就可以计算6※7如下:6※7=3×6+4×7=46。

如果定义符号「※」表示的运算为:A※B=A÷B×2+3×A-2,那么,按此定义去计算4※2的话,就有:4※2=4÷2×2+3×4-2=2×2+12-2=14。

二.定义新运算需要注意的几个问题按照新定义的运算求某个算式的结果,关键是要正确理解这种新运算的意义,如上面举例中的运算符号「※」所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。

需要注意的是:(1)有括号时,应当先算括号里的;(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算定律来解题。

(3)上面例举中所定义的运算使用了符号「※」来定义,但并不是说只有「※」才是规定运算的符号,可能用△,#,…等符号。

符号的种类是次要的,符号所定义的运算按照怎样的程序来进行才是主要的。

三.典型例题例1设a,b表示整数(包括0),规定「*」的运算为a*b=a÷b×2+3×a-b,计算:169*13。

分析与解答动手算之前,先让我们弄清「*」是怎么一种运算程序,按规定,a*b的值是用a除以b,把商数乘2之后,再加上a的3倍,最后减去b,这些运算有两个特点:(1)各步运算都是大家熟悉的四则运算;(2)各步运算的先后次序要按规定的顺序办。

那么,根据「*」的规定,我们可以计算得到:169*13=169÷13×2+3×169-13=520。

高中数学“新定义”题型的解题策略

高中数学“新定义”题型的解题策略

高中数学“新定义”题型的解题策略1.明确“新定义”题型的本质与特点“新定义”题型中所说的“新定义”其实是相对考纲、课本而言,在题目中定义了中学数学中没有学过的一些新概念、新运算、新符号,但是这种题型已在多年的高考甚至中考中出现,某种程度上讲“新定义”题并不是完全创新的题型,而是考生很常见的一种题型。

可以通过日常的教学及模拟训练让学生喜欢上这种较有特色的数学情景题,如果学生的情绪不紧张,很多“新定义”题是可以迎刃而解的,在解题中真正的障碍是理解与运算、信息的迁移能力。

“新定义”题型内容新颖,题目中常常伴随有“定义”“称”“规定”“记”等字眼,而题目一般都是用抽象简洁的语言给出新的定义,没有过多的解释说明,要求学生自己仔细揣摩、体会和理解定义的含义。

而“新定义”题学习新定义的时间短,阅读后就要求立即独立运用它解决有关问题,对学生的心理素质和思维敏捷性要求较高。

2.“新定义”题型解题步骤解题时可以分这样几步:(1)对新定义进行信息提取,明确新定义的名称和符号。

(2)细细品味新定义的概念、法则,对新定义所提取的信息进行加工,探求解决方法,有时可以寻求相近知识点,明确它们的共同点和不同点。

(3)对定义中提取的知识进行转换,有效的输出,其中对定义信息的提取和化归是解题的关键,也是解题的难点。

如果是新定义的运算、法则,直接按照运算法则计算即可;若是新定义的性质,一般就要判断性质的适用性,能否利用定义的外延,可用特值排除等方法。

3.“新定义”题型的讲评建议(1)通过熟悉的例子增强学生对这类题目的兴趣,也可以提高他们的解题信心。

(2)加强审题能力的培养。

现在学生的阅读能力差,所以在平时的教学中一定要训练学生的阅读、审题能力,如数学中常见的应该题就是对学生阅读能力的考查。

(3)拓宽学生的视野。

可以借助“新定义”题或是大纲内相关的知识点拓宽学生的视野,虽然“新定义”题特征是题目新颖较难猜测,但实际上高考中也有很多重复出现的例子。

新定义运算题型解题技巧

新定义运算题型解题技巧

新定义运算题型解题技巧
1. 定义解题原则:首先应明确运算题的计算步骤,根据题意明确运算时需要用哪些运算符及次数,用正确的运算公式处理问题,最后大胆推断解,检查答案是否正确。

2. 细节解题:只有考虑到运算题中的计算公式,才能确保答案正确。

因此,应仔细查看公式,从每一个细节出发,把公式应用到实际情况中,分析清楚,既能保证解答的正确性,又可以提高解题的效率。

3. 思考解题:一般情况下,考生应该仔细阅读问题,根据设定的实际情况把握问题,理解问题所需要解决的关键,现对运算题用简单表达,实现简单思考,有助于准确解答问题,可以培养孩子解题的能力。

最新_新定义运算计算技巧

最新_新定义运算计算技巧

新定义运算解题技巧我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。

除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。

这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

一、定义1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。

(3)新定义的算式中,有括号的,要先算括号里面的。

2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

二、初步例题诠释例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32例2、假设a ★ b = ( a + b )÷ b 。

求 8 ★ 5 。

分析与解:该题的新运算被定义为: a ★ b等于两数之和除以后一个数的商。

这里要先算括号里面的和,再算后面的商。

这里a代表数字8,b代表数字5。

8 ★ 5 = (8 + 5)÷ 5 = 2.6例3、如果a◎b=a×b-(a+b)。

求6◎(9◎2)。

分析与解:根据定义,要先算括号里面的。

这里的符号“◎”就是一种新的运算符号。

6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。

定义新运算的解题诀窍

定义新运算的解题诀窍

定义新运算的解题诀窍
(原创版)
目录
1.新运算的定义和特点
2.解决新运算问题的常用方法
3.具体例题解析
4.总结和建议
正文
一、新运算的定义和特点
新运算是指在数学中,对已知的四则运算(加、减、乘、除)之外的运算。

新运算通常具有特定的定义和运算规则,这使得它们在某些问题中具有独特的优势。

新运算的特点在于它们的创新性和实用性,可以帮助我们更好地理解和解决某些实际问题。

二、解决新运算问题的常用方法
解决新运算问题的方法有很多,以下是一些常用的方法:
1.类比法:通过将新运算与已知的四则运算进行类比,从而理解新运算的运算规则和性质。

2.举例法:通过具体的例子来理解新运算的运算过程和结果,从而找到解决问题的思路。

3.画图法:对于一些复杂的新运算问题,可以通过画图来辅助理解问题,从而找到解决方法。

4.逻辑推理法:通过逻辑推理来证明新运算的正确性或错误性,从而确定问题的解决方案。

三、具体例题解析
例如,有一个新运算“⊕”,定义为:a ⊕ b = a^2 - b^2。

现在有一个问题:求解 3 ⊕ 4 的结果。

我们可以采用以下方法来解决这个问题:
1.根据新运算的定义,将 3 ⊕ 4 转换为数学表达式:3^2 - 4^2。

2.计算表达式的结果:9 - 16 = -7。

3.得出结论:3 ⊕ 4 = -7。

通过以上步骤,我们成功地解决了这个新运算问题。

四、总结和建议
解决新运算问题需要我们具备一定的创新思维和实际操作能力。

在解决这类问题时,我们应该充分利用已知的数学知识,结合新运算的特点,采用适当的方法来解决问题。

小学数学竞赛:定义新运算.教师版解题技巧 培优 易错 难

小学数学竞赛:定义新运算.教师版解题技巧 培优 易错 难
.
【考点】定义新运算之直接运算【难度】3星【题型】计算
【解析】原式
【答案】
【巩固】 表示
【考点】定义新运算之直接运算【难度】2星【题型】计算
【关键词】走美杯,3年级,初赛
【解析】原式
【答案】
【巩固】规定运算“☆”为:若a>b,则a☆b=a+b;若a=b,则a☆b=a-b+1;若a<b,则a☆b=a×b。那么,(2☆3)+(4☆4)+(7☆5)=。
【考点】定义新运算之直接运算【难度】2星【题型】计算
【关键词】希望杯,四年级,二试
【解析】19
【答案】
【例 2】“△”是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如5△7=5×c+7×d。如果1△2=5,2△3=8,那么6△1OOO的计算结果是________。
【考点】定义新运算之直接运算【难度】2星【题型】计算
【答案】
【巩固】设 △ ,那么,5△ ______,(5△2)△ _____.
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】
,
【答案】
【巩固】 、 表示数, 表示 ,求3 (6 8)
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】
【答案】
【巩固】已知a,b是任意自然数,我们规定:a⊕b=a+b-1, ,那么
可知:5*7=(5+3×7)×(5+7)=(5+21)×12=26×12=312
【答案】
【巩固】定义新运算为a△b=(a+1)÷b,求的值。6△(3△4)
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】所求算式是两重运算,先计算括号,所得结果再计算。由a△b=(a+1)÷b得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7

(完整版)小学奥数定义新运算

(完整版)小学奥数定义新运算

六年级数学讲义定义新运算教学目标: 1、在理解定义新运算的基础上,会灵活按照所给的规律对所给数字进行灵活的运算,2、培养学生对知识的运算能力和灵活运用能力。

一、 教学衔接414212115865.78+-+ )17281(1719+- 36×10.9+12×42.3(0.25×4-0.25×3)×40 119891988198719891988-⨯⨯+二、 教学内容(一)知识要点:所谓“定义新运算”是以学生熟知的四则运算为基础,以一种特殊的符号来表示的特别定义(规定)的运算。

运算时要严格按照新运算的定义(规定)进行代换,再进新计算。

具体程序如下:1.代换.即按照定义符号的运算方法,进行代换,注意此过程不能轻易改变原有的运算顺序。

2.计算.把代换后的算式准确地计算出来。

(二)例题讲解:例1、 对于任意数a ,b ,定义运算“*”: a*b=a ×b-a-b 。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32例2、设45e。

a b a b=⨯-⨯(1)求(64)2e e的值;(2)若(2)18e e,则x等于多少?x x=3,x>=2,求x的值。

分析与解:按照定义的运算,<1,2,3,x>=2,x=6。

分析与解:按新运算的定义,符号“⊙”表示求两个数的平均数。

四则运算中的意义相同,即先进行小括号中的运算,再进行小括号外面的运算。

按通常的规则从左至右进行运算。

分析与解:从已知的三式来看,运算“”表示几个数相加,每个加数各数位上的数都是符号前面的那个数,而符号后面的数是几,就表示几个数之和,其中第1个数是1位数,第2个数是2位数,第3个数是3位数……按此规定,得35=3+33+333+3333+33333=37035。

例6有一个数学运算符号⊗,使下列算式成立:9=7⊗,25⊗,求?3⊗7=3=2=48⊗,133⊗,115=5三、教学练习1、若A*B 表示(A +3B )×(A +B ),求5*7的值。

高考数学考前冲刺:压轴大题中“新定义题”的解题策略

高考数学考前冲刺:压轴大题中“新定义题”的解题策略

高考数学考前冲刺:压轴大题中“新定义题”的解题策略新信息题是指题目通过给出一个新概念和约定一个新运算法则,要求学生在阅读理解的基础上,根据具体情境结合题目给出的定义或者算法来解决实际问题。

新信息题主要考察学生的学习能力和信息迁移能力,在考试中具有很好的区分效果,也受到了命题人的青睐。

近几年的高考题中在选择填空题和大题压轴题中都出现了这类题目,下面将这类题的解题模式和方法总结如下。

遇到新定义问题一定要准确理解题目的定义,按照新定义交代的性质或者运算规律来解题。

第一,准确转化。

解决新信息问题,一定要理解题目定义的本质含义。

紧扣题目所给的定义、运算法则对所求问题进行恰当的转化。

第二,方法的选取。

对新信息题可以采取一般到特殊的特例法,从逻辑推理的。

角度进行转化。

理解题目定义的本质苹并进行推广、运算。

第三,应该仔细审读题目。

严格按新信息的要求运用算。

解答问题时要避免课本知识或者已有知识对新信息问题的干扰。

经典例题[2019江苏卷20]定义首项为1且公比为正数的等比数列为“M-数列”.【分析】(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{bn}是等差数列,据此即可确定其通项公式;②由①确定的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得m的最大值.【解析】所以q不存在.因此所求m的最大值小于6.综上,所求m的最大值为5.【总结】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.经典例题:[2018江苏卷]【分析】(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a 的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.【解析】此时,x0满足方程组(**),即x0是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【总结】涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.。

小学六年级数学 奥数 第1讲 定义新运算

小学六年级数学 奥数  第1讲 定义新运算

小学六年级数学奥数第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2、设a*b=a2+2b,那么求10*6和5*(2*8)。

【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6)。

练习2:1、设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。

2、设p、q是两个数,规定p△q=p2+(p-q)×2。

求30△(5△3)。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。

2、规定,那么8*5=________。

【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?练习4:1、规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么A=________。

新定义运算知识点总结

新定义运算知识点总结

新定义运算知识点总结在初等数学中,我们接触到的主要运算有加法、减法、乘法和除法。

这些运算经常通过各种实际问题来应用。

在更高级的数学中,我们还会接触到其他类型的运算,比如绝对值、指数、对数、乘方、开方等。

在这篇总结中,我们将对基本运算和一些常见的数学概念进行梳理和总结,帮助读者更好地理解和掌握运算这一数学知识点。

一、加法加法是最基本的运算之一,它表示的是将两个或多个数值相加的过程。

在加法中,我们通常使用“+”号来表示。

例如,计算2+3的结果是5。

加法有一些基本性质,比如交换律、结合律和零元素等。

1. 交换律:a+b=b+a。

即加法的顺序不影响结果。

2. 结合律:(a+b)+c=a+(b+c)。

即加法的括号分组不影响结果。

3. 零元素:对于任意数a,a+0=a。

即任何数加0都等于它本身。

二、减法减法是加法的逆运算,它表示的是将一个数值从另一个数值中减去的过程。

在减法中,我们通常使用“-”号来表示。

例如,计算5-3的结果是2。

减法也具有一些基本性质,比如a-b=c,可以等价为a=c+b;减法的运算顺序不能乱。

三、乘法乘法是另一个基本的运算,它表示的是将两个或多个数值相乘的过程。

在乘法中,我们通常使用“×”号来表示。

例如,计算2×3的结果是6。

乘法也具有一些基本性质,比如乘法交换律和结合律。

1. 交换律:a×b=b×a。

即乘法的顺序不影响结果。

2. 结合律:(a×b)×c=a×(b×c)。

即乘法的括号分组不影响结果。

除法除法是乘法的逆运算,它表示的是将一个数值被另一个数值除的过程。

在除法中,我们通常使用“÷”号来表示。

例如,计算6÷3的结果是2。

除法也具有一些性质,比如除法的运算顺序不能乱。

绝对值绝对值是数学中的一个重要概念,表示一个数的不考虑其正负号的大小。

我们用符号“|x|”来表示数x的绝对值。

指数指数是表示一个数以自身为底的多次相乘的运算。

39第三十九章 定义新运算

39第三十九章 定义新运算

第三十九章定义新运算概念定义新运算是指用一个符号和已知运算表达式表示一种新的运算。

解答定义新运算,关键是要正确地理解新定义运算的算式含义。

然后严格按照新定义运算的计算程序,将数值代入,转化为常规的四则运算进行计算。

定义新运算是一种特别设计的计算形式,它使用一些特殊的运算符号,这是与四则运算中的加减乘除符号是不一样的。

新定义的算式中有括号的,要先算括号里的。

但它在没有转化前,是不适合于各种运算的。

定义新运算是一种特殊设计的运算形式,它使用的是一些特殊的运算符号,如:*、Δ等,这是与四则运算中的加减乘除不同的。

[1]如:当a≥b=b时 ab=bxb 当a<b=a时 ab=a 当x=2时,求: (1x)-(3x)的值3▣2=3+2+6=115▣5=5+5+25=35设a*b=﹙a+b﹚÷36*﹙5*4﹚=3(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符号,如:*、▢、★、◎、、Δ、▤、■等来表示的一种运算。

(3)新定义的算式中,有括号的,要先算括号里面的。

例题1.规定:a※b=(b+a)×b,那么(2※3)※5= .2.如果a▣b表示(a﹣2)×b,例如3▣4=(3﹣2)×4=4,那么,当a▣5=30时,a= .3.定义运算“▣”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a▣b.例如:4▣6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18▣12= .4.已知a,b是任意有理数,我们规定:a⊕b=a+b﹣1,a⊗b=ab﹣2,那么4⊗[(6⊕8)⊕(3⊗5)]= .5.x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是.6.如果a⊙b表示3a﹣2b,例如4⊙5=3×4﹣2×5=2,那么,当x⊙5比5⊙x大5时,x= .7.如果1※4=1234,2※3=234,7※2=78,那么4※5= .8.我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5,符号▣表示选择两数中较小数的运算,例如:5▣3=3▣5=3.请计算:= .9.规定一种新运算“※”:a※b=a×(a+1)×…×(a+b﹣1).如果(x※3)※4=421200,那么x= .10.对于任意有理数x,y,定义一种运算“※”,规定:x※y=ax+by﹣cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x※m=x(m≠0),则m的数值是.11.设a,b为自然数,定义a▣b=a2+b2﹣ab.(1)计算(4▣3)+(8▣5)的值;(2)计算(2▣3)▣4;(3)计算(2▣5)▣(3▣4).12.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a ﹣b ,如果a <b ,则定义a ※b=b ﹣a .(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a ※b=b ※a ;②(a ※b )※c=a ※(b ※c ).13.设a ,b 是两个非零的数,定义a ※b=.(1)计算(2※3)※4与2※(3※4).(2)如果已知a 是一个自然数,且a ※3=2,试求出a 的值.14.定义运算“⊙”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的差记为a ⊙b .比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70﹣2=68.(1)求12⊙21,5⊙15;(2)说明,如果c 整除a 和b ,则c 也整除a ⊙b ;如果c 整除a 和a ⊙b ,则c 也整除b ;(3)已知6⊙x=27,求x 的值.15、 对于任意数a ,b ,定义运算“*”: a*b=a ×b-a-b 。

定义新运算考察知识点

定义新运算考察知识点

定义新运算考察知识点
新运算是指在数学中引入的一种不同于传统四则运算的运算法则。

它可以拓展数学运算的范围,使得我们能够对更加复杂的问题进行处理和分析。

新运算通常在特定的领域或者问题中应用,在这些领域中,使用新运算可以更加方便地进行计算和推理。

在定义新运算时,我们需要明确以下几个方面的内容:
1.运算符号:新运算的运算符号通常是用一个特定的符号来表示的,例如“⊕”、“⊗”等。

这个符号应该具有良好的可读性和易于书写的特点,以方便在计算过程中的使用和表示。

2.运算法则:新运算的运算法则表示了这个运算在特定的数字或对象之间的操作规则。

这些规则应该能够明确地描述出运算的结果,并且能够使得运算符合数学的基本性质,例如结合律、交换律、分配律等。

3.运算对象:新运算可以作用于哪些数或者对象之上是需要明确的。

有的新运算可能只能在有限的数集合上定义,有的可能是可以在更广泛的数学对象上进行计算。

4.运算性质:新运算的性质是指这个运算在不同的情况下具有怎样的特点和规律。

例如,是否满足消去律、是否满足单位元等。

需要注意的是,在定义新运算时,我们需要尽可能满足数学的基本性质和规律,以保证运算的合理性和可靠性。

此外,新运算的引入也应该有一定的实际应用意义,能够解决实际问题或者推动数学理论的发展。

第一讲 定义新运算

第一讲  定义新运算

第一讲定义新运算学法指导数的运算是指给出几个数,再给出一个对应规则,从而产生出一个新的结果。

比如,给你两个数8和4,用“+”的规则就产生一个数12,用“-”的规则就产生一个数4,用“×”的规则就产生一个数32,用“÷”的规则就产生一个数2.以上的四种对应的规则只是一种人为的约定,定义了我们熟悉的四种运算“加,减,乘,除”。

我们还可以作其他不同的约定,定义一些新的运算。

按照新定义的运算计算算式的结果,一定要掌握解题的关键和注意点。

1.解题关键。

关键是要正确理解新运算的意义,并严格按新定义的要求,将数值代入新定义的式子进行计算。

2.注意点。

一是新定义的运算不一定符合交换律,结合律和分配率,二是新定义的运算所采用的符号是任意的,而不是确定的,通用的,在具体的题目中使用,到另一题中将失去原题中特定的意义。

例题 1“▽”表示一种新的运算,规定A▽B=3A+4B,求2▽3.[分析与解答]根据规定,这种新运算的意义就是:A的3倍加上B的4倍,所以 2▽3=3×2+4×3=6+12=18试一试1“▽”表示一种新的运算,定义同例1,求3▽2.比较一下,与2▽3的得数相等吗?例题2“⊕”表示一种新的运算,它是这样定义的:a⊕b=a×b-a÷b求6⊕3和(6⊕3)⊕2。

[分析与解答]根据规定,这种新运算的意义就是:求两个数的积,减去这两个数的商。

对于(6⊕3)⊕2,只要先算出括号里面的结果x,然后算出x⊕2的结果。

6⊕3=6×3-6÷3=18-2=16利用这个结果,(6⊕3)⊕2=16⊕2=16×2-16÷2=32-8=24试一试2“*”表示一种新的运算,a*b=a×b-(a+b),求4*5和(4*5)*6.例题3将新运算“⊙”定义为:a⊙b=a²-b²,求7⊙(3⊙2)。

[分析与解答] 按照新运算的意义,就是求两个数的平方差。

新三第23讲-定义新运算

新三第23讲-定义新运算

定义新运算古时候没有乘号,一天,一个数学家在计算2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2时,觉得算式太长、太烦琐了,心想:既然是9个2相加,就先写出一个相同加数“2”,再写出相同加数的个数“9”,然后在2和9之间加上一个符号。

表示9个2相加用什么符号呢? 既然这个符号与加法有关系,不如就把“+”号倾斜45度,于是一种新的运算符号——“×”就诞生了。

所谓定义新运算,就是给出新定义的运算符号,规定新的运算顺序,按照新定义用新的运算方法进行运算的一种运算问题。

解决这一类问题,关键有三点:第一是正确理解新运算的意义,第二是严格按照新运算的定义所指定的计算程序进行计算,不得随意改变运算顺序,有括号时,先计算括号内的部分;第三是许多新定义的运算里往往不一定具备交换律和结合律,不能随便套用这条定律来解题。

【例1】定义a △ b = a × b + a – b,例如1 △ 2 = 1 × 2 + 1 – 2 = 1,2 △ 3 = 2 × 3 + 2 – 3 = 5,那么5 △ 8是多少?分析根据题目定义的运算要求,直接代入后用四则运算即可。

〖即学即练1〗(1)假若:a □ = a x(a + 1),a □□= a □×(a □ + 1))…那么1□□□ = ____________。

(2)定义f(1)= 1,f(2) = 1 + 2 = 3,f(3)= 1 + 2 + 3 = 6,…,那么,(100)的结果是_____________。

【例2】设a △ b = a × a – 2 × b,那么,(1)5 △ 6 = ?(2)(5 △ 2)△ 3 = ? 分析根据运算规则:(1)5 △ 6 = 5 × 5–2 × 6 = 13;(2)括号里的5 △ 2作为一个整体与3进行新的运算,所以应先算小括号里的。

小学数学竞赛:定义新运算.学生版解题技巧 培优 易错 难

小学数学竞赛:定义新运算.学生版解题技巧 培优 易错 难

定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

一 定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等. 如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

6△(3△4) 例题精讲知识点拨教学目标定义新运算【巩固】 设a △2b a a b =⨯-⨯,那么,5△6=______,(5△2) △3=_____.【巩固】 P 、Q 表示数,*P Q 表示2P Q+,求3*(6*8)【巩固】 已知a ,b 是任意自然数,我们规定: a ⊕b = a +b -1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗= .【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【巩固】 规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。

奥数专题_定义新运算(带答案完美排版)

奥数专题_定义新运算(带答案完美排版)

定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?解:① 6 ⊕2=6×2+6+2=20,2 ⊕6=2×6+2+6=20.②(1 ⊕2)⊕3=(1×2+1+2)⊕3=5 ⊕3=5×3+5+3=231 ⊕(2 ⊕3)=1 ⊕(2×3+2+3)=1 ⊕11=1×11+1+11=23.③先看“⊕”是否满足交换律:a ⊕b=a×b+a+bb ⊕a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕b=b ⊕a,因此“⊕”满足交换律.再看“⊕”是否满足结合律:(a ⊕b)⊕c=(a×b+a+b)⊕c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕b)⊕c=a ⊕(b ⊕c),因此“⊕”满足结合律.说明:“⊕”对于普通的加法不满足分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?解:通过对2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25这几个算式的观察,找到规律:a ⊗b =2a +b ,因此7⊗3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.m=1n =2 m=2 n =23(舍去)m=3 n =1课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a +, ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+⋯+9)=10x + 45 因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?例5、x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a , ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b ÷a ba +,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?。

-新定义运算计算技巧

-新定义运算计算技巧

新定义运算解题技巧我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知.除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。

这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

一、 定义1、 定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式.它是使用特殊的运算符号,如:*、▲、★、◎、⊗、Δ、◆、■等来表示的一种运算。

(3)新定义的算式中,有括号的,要先算括号里面的。

2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

二、初步例题诠释例1、 对于任意数a ,b ,定义运算“*”: a*b=a ×b-a —b 。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12—4=48—12—4=32 例2、假设a ★ b = ( a + b )÷ b 。

求 8 ★ 5 。

分析与解:该题的新运算被定义为: a ★ b 等于两数之和除以后一个数的商。

这里要先算括号里面的和,再算后面的商。

这里a 代表数字8,b 代表数字5。

8 ★ 5 = (8 + 5)÷ 5 = 2.6例3、如果a ◎b=a ×b-(a+b)。

求6◎(9◎2)。

分析与解:根据定义,要先算括号里面的.这里的符号“◎”就是一种新的运算符号。

6◎(9◎2)=6◎[9×2—(9+2)]=6◎7=6×7—(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。

定义新运算的解题诀窍

定义新运算的解题诀窍

定义新运算的解题诀窍摘要:一、引言二、新运算的定义及特点1.新运算的定义2.新运算的特点三、解题诀窍1.分析题目,理解新运算规则2.确定运算顺序3.举例说明新运算的计算过程4.总结解题步骤四、新运算在实际问题中的应用1.实际问题中的新运算案例2.新运算在解决问题中的优势五、结论正文:新运算在数学领域中是一个比较新的概念,很多同学在接触到新运算题目时可能会感到困惑。

其实,只要掌握了解题的诀窍,新运算题目并不难解决。

本文将为大家介绍新运算的定义以及解题诀窍。

首先,我们需要了解新运算的定义和特点。

新运算是指在原有四则运算的基础上,通过特定的符号、规则或方法进行拓展,形成的一种新的运算方式。

新运算的特点包括运算规则的复杂性、运算过程的特殊性等。

在解决新运算题目时,有三个诀窍可以帮助我们迅速找到解题思路。

第一,分析题目,理解新运算规则。

在解决新运算题目时,首先要认真阅读题目,理解题目所给出的新运算规则,明确运算的顺序和法则。

第二,确定运算顺序。

根据题目所给的新运算规则,确定各个运算步骤的顺序,遵循先乘除后加减的原则进行计算。

第三,举例说明新运算的计算过程。

通过具体的计算例子,加深对新运算过程的理解,总结出解题的一般步骤。

在实际问题中,新运算也有着广泛的应用。

例如,在计算机科学、密码学、经济学等领域,新运算被用来解决一些复杂数学问题。

通过新运算,我们可以更方便地解决实际问题,提高解决问题的效率。

总之,新运算是一种具有挑战性的数学概念,但只要掌握了解题的诀窍,新运算题目并不难解决。

定义新运算

定义新运算

定义新运算【名师解析】我们经常接触到的加法,减法,乘法和除法通常往往被称为传统运算,今天要介绍的一类运算是根据传统运算的法则所规定的一类新运算,它的运算法则不同于传统运算,而是建立在传统运算规律基础之上的。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:“△、#、*、●”等,这是与四则运算中的”+、一、×、÷”是不同的。

【例题精讲】例1、设a ,b 表示两个不同的数,规定a △b=5a+7b. 求(10△9)△7。

练习1、 定义运算◎为a ◎b=4×a ×b -(a +b). 求10◎12。

例2、a ,b 表示两个数,记为:a ※b=4×a ×b -41b. 求16※(8※32)。

练习2、 设x,y 为两个不同的数,规定x 口y=(x+y)÷4. 求a 口16=10中a 的值。

例3、 规定a*b=ba b a +⨯. 求2*12*10的值。

练习3. P.Q 表示两个数,P ※Q=2Q P +,如3※4=243+=3. 5。

求8※(12※16); 如果x ※(12※16)=12, 那么x=?例4、定义新运算yx y x 1+=⊕,求()423⊕⊕的值。

练习4、有一个数学运算符号“⊗”, 使下列算式成立:4⊗8=16, 10⊗6=26, 6⊗10=22, 18⊗14=50。

求7⊗3=?例5. “▽”表示一种新运算,它表示:x ▽y=()()8111+++y x xy 。

求6▽10的值。

练习5、a △b=b a b a ÷+,在x △(5△1)=6中。

求x 的值。

【综合精练】1、规定a*b=(b +a)×b, 求(4*5)*6。

2、定义运算“Δ”如下:对于两个自然数a和b, 它们的最大公约数与最小公倍数的和记为aΔb.例如:4Δ6=(4, 6)+[4, 6]=2+12=14。

奥数第四讲定义新运算

奥数第四讲定义新运算

奥数第四讲定义新运算定义新运算通常是用特殊的符号表示特定的运算意义。

它的符号不同于课本上明确定义或已经约定的符号,例如“+、-、×、÷、、>、<”等。

表示运算意义的表达式,通常是使用四则运算符号,例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。

正确解答定义新运算这类问题的关键是要确切理解新运算的意义,严格按照规定的法则进行运算。

如果没有给出用字母表示的规则,则应通过给出的具体的数字表达式,先求出表示定义规则的一般表达式,方可进行运算。

值得注意的是:定义新运算一般是不满足四则运算中的运算律和运算性质,所以,不能盲目地运用定律和运算性质解题。

一、例题与方法指导例1、设ab都表示数,规定a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b,试计算5△6,6△5。

解5△6=5×4-6×3=20-18=26△5=6×4-5×3=24-15=9说明例1定义的△没有交换律,计算中不得将△前后的数交换。

例2、对于两个数a、b,规定a☆b表示3×a+2×b,试计算(5☆6)☆7,5☆(6☆7)。

思路导航:先做括号内的运算。

解:(5☆6)☆7=(5×3+6×2)☆7=27☆7=27×3+7×2=955☆(6☆7)=5☆(6×3+7×2)=5☆32=5×3+32×2=79说明本题定义的运算不满足结合律。

这是与常规的运算有区别的。

例3、已知2△3=2×3×4,4△2=4×5,一般地,对自然数a、b,a△b 表示a×(a+1)×…(a+b-1).计算(6△3)-(5△2)。

思路导航:原式=6×7--5×6=336-30规定:a△=a+(a+1)+(a+2)+…+(a+b-1),其中a,b表示自然数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新定义运算解题技巧我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。

除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。

这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

一、定义1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。

(3)新定义的算式中,有括号的,要先算括号里面的。

2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

二、初步例题诠释例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32例2、假设a ★b = ( a + b )÷b 。

求8 ★5 。

分析与解:该题的新运算被定义为: a ★b等于两数之和除以后一个数的商。

这里要先算括号里面的和,再算后面的商。

这里a代表数字8,b代表数字5。

8 ★ 5 = (8 + 5)÷ 5 = 2.6例3、如果a ◎b=a ×b-(a+b)。

求6◎(9◎2)。

分析与解:根据定义,要先算括号里面的。

这里的符号“◎”就是一种新的运算符号。

6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。

求6Δ5。

分析与解:仔细观察发现“Δ”前面的数字是加数每个数位上的数字,而加数分别是一位数,二位数,三位数,……“Δ”后面的数字是几,就有几个加数。

因此可以按照这个规律进行解答。

6Δ5=6+66+666+6666+66666=74070例5、如果规定⊗2=1×2×3,⊗3=2×3×4,⊗4=3×4×5,……计算(21⊗-31⊗)×32⊗⊗。

分析与解:该题看上去比较复杂,但仔细观察,我们可以发现,该题被定义为⊗X=(X-1)×X ×(X+1)。

由于把数代入算式中计算比较麻烦,我们可以先化简算式后,再计算。

(21⊗-31⊗)×32⊗⊗ = 21⊗×32⊗⊗-31⊗×32⊗⊗ =31⊗-31⊗×32⊗⊗ =31⊗(1-32⊗⊗) = 4321⨯⨯×(1-432321⨯⨯⨯⨯) =4321⨯⨯×(1-41) =4321⨯⨯×43 =321 例6、规定a ▲b=5a+21ab-3b 。

求(8▲5)▲X=264中的未知数。

分析与解:根据新定义,应该先计算括号里面的,再计算括号外面的,然后解方程即可。

(8▲5)▲X=264(5×8 + 21×8×5-3×5)▲X=264 45▲X=2645×45+21×45×X-3X=264 225+245X-26X =264 225+239X=264239X=39 X=2三、边学边试【例1】A ,B 表示两个数,定义A △B 表示(A+B)÷2,求(1)(3△17) △29; (2)[(1△9) △9] △6。

【分析与解】定义新运算符号“△”表示A △B=(A+B)÷2,即两个数做“△”运算就是求这两个数的平均值.如:3△17=(3+17)÷2=10,再用10与29做运算,10△29=(10+29)÷2=19.5(1)原式=[(3+17)÷2] △29 (2)原式={[(1+9)÷2] △9}△6=[20÷2] △29 =[5△9] △6=10△29 =[(5+9)÷2] △6=(10+29)÷2 =7△6=39÷2 =(7+6)÷2=19.5 =6.5【试一试】1、A ,B 表示两个数,定义A*B=2×A-B.试求:(1)(8.5×6.9)*5 (2)(119.8-29.8)*(13.65+12.35)2、设a ▽b=a ×b+a-2b ,按此规定计算:(1)8▽1.25 (2)(4▽2.5) ▽7【例2】已知2*3=2+22+222=246,3*4=3+33+333+3333=3702.求:(1)3*3;(2)4*5;(3)若1*x=123,求x.【分析与解】观察两个已知等式可以发现,“*”定义的是连加运算,第一个加数是“*”前边的数,且后一个加数都比前一个加数多一位,但数字相同,而“*”后边的数恰好是加数的个数。

(1)3*3=3+33+333=369(2)4*5=4+44+444+4444+44444=49380(3)提示:因为1* x=1+11+111+…=123所以倒着算:123-1=122 122-11=111 111-111=0即:1+11+111=1*3=123从而可知x=3【试一试】已知5△3=5×6×7,3△6=3×4×5×6×7×8,按此规定计算:(1)(4△3)+(6△2)(2)(3△2)×(4△3)【例3】设A⊕B=2×(A+B)-2×(A÷B),计算:(1)(12⊕4)⊕13;(2)70⊕(18⊕4)。

【分析与解】观察已知等式可知:“⊕”定义表示的是两个数和的2倍与商的2倍的差。

如:12⊕4=2×(12+4)-2×(12÷4)=26(1)原式=[2×(12+4)-2×(12÷4)] ⊕13=[2×16-2×3] ⊕13=26⊕13=2×(26+13)-2×(26÷13)=2×39-2×2=78-4=74(2)原式=70⊕[2×(18+4)-2×(18÷4)]=70⊕[2×22-2×4.5]=70⊕35=2×(70+35)-2×(70÷35)=206【试一试】1、规定a⊙b=(a+b)÷(a-b),按此规定计算:(1)21⊙5 (2)(18⊙9) ⊙22、设a#b=5a-2b,计算:(12.5#8)#19.72【例4】小辉用电脑设计了A,B,C,D四种装置,将一个数输入一种装置后,会输出另一个数.装置A:将输入的数加上5;装置B:将输入的数除以2;装置C:将输入的数减去4;装置D:将输入的数乘3.这些装置可以连接,如果装置A 后面连接装置B,就写成A·B,输入1后,经过A·B输出了3.那么,输入9,经过A·B·C·D输出几?【分析与解】A·B·C·D=[(9+5)÷2-4]×3=9所以输出的是9【试一试】同学们在做这样一个数字游戏:一张带有数字的卡片在A,B,C,D四位同学间传递,当传递给A时,A将该数字乘5传出,当传递给B时,B将该数字除以2传出,当传递给C时,C将该数字加18传出,当传递给D时,D将该数字减去9后交给主持人,如果一张卡片经过A传递给B记为A→B,那么一张带有18的数字卡片,经过A→B→C →D的传递后交给主持人时卡片上的数字是多少?【理一理】新定义运算注意的问题:(1)新定义运算一般不满足运算定律如:a△b≠b△a a△(b△c) ≠(a△b) △c(a*b) △c≠(a△c)*(b△c)(2)“+”“-”“×”“÷”仍然是通常的运算符号,完全符合四则运算顺序.四、练一练1、规定a*b=4a-3b,计算:(1.5*0.8)*0.52、设a,b都表示自然数,规定a☆b=3a+b÷2,计算:(1)5☆6 (2)6☆5(3)2☆(3☆5)(4)(2☆3)☆53、规定3*5=3+4+5+6+7,5*4=5+6+7+8,…按此规定计算:11*54、如果1=1!,1×2=2!,1×2×3=3!,…1×2×3×4×…×99×100=100!那么1!+2!+3!+4!+…+100!的个位数字是几?5、狼和羊在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号“△”表示:羊△羊=羊;羊△狼=狼;狼△狼=狼。

以上运算的意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了,小朋友总是希望羊能战胜狼。

所以我们规定另一种运算,用符号“☆”表示:羊☆羊=羊,羊☆狼=羊,狼☆羊=羊,狼☆狼=狼。

这个运算的意思是羊和羊在一起还是羊,狼和狼在一起还是狼,但由于羊能战胜狼,当狼和羊在一起时,它便被羊赶走而剩下羊了。

对羊和狼,可以用上面规定的运算做混合运算,混合运算的法则是从左到右,先算括号内的,运算的结果或是羊,或是狼。

求下列结果:羊△(狼☆羊)☆羊△(狼△狼)。

相关文档
最新文档