2016年山西省太原市数学中考二模试卷【答案】

合集下载

2016年山西省中考数学试卷(含答案解析)

2016年山西省中考数学试卷(含答案解析)

2016年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)﹣的相反数是()A.B.﹣6 C.6 D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:∵+(﹣)=0,∴﹣的相反数是:.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)不等式组解集是()A.x>﹣5 B.x<3 C.﹣5<x<3 D.x<5【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣5,解②得:x<3,则不等式的解集是:﹣5<x<3.故选:C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(3分)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查,故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1,据此可得出图形,从而求解.【解答】解:观察图形可知,该几何体的左视图是.故选:A.【点评】本题考查由三视图判断几何体,简单组合体的三视图.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.(3分)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5500万=5.5×107.故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.6.(3分)下列运算正确的是()A.(﹣)2=﹣B.(3a2)3=9a6C.5﹣3÷5﹣5=D.【分析】分别利用积的乘方运算法则以及二次根式的加减运算法则、同底数幂的除法运算法则分别化简求出答案.【解答】解:A、(﹣)2=,故此选项错误;B、(3a2)3=27a6,故此选项错误;C、5﹣3÷5﹣5=25,故此选项错误;D、﹣=2﹣5=﹣3,正确;故选:D.【点评】此题主要考查了积的乘方运算以及二次根式的加减运算、同底数幂的除法运算等知识,正确掌握相关运算法则是解题关键.7.(3分)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg 货物,则可列方程为()A.B.C.D.【分析】设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,根据甲搬运5000kg 所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【解答】解:设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,由题意得,故选B【点评】本题考查了列分时方程解实际问题的运用,分式方程的解法的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg所用时间相等建立方程是关键.8.(3分)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3 C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣3【分析】先把一般式配成顶点式得到抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),再利用点平移的规律得到把点(2,﹣8)平移后所得对应点的坐标为(﹣1,﹣3),然后利用顶点式写出平移后的抛物线的函数表达式.【解答】解:因为y=x2﹣4x﹣4=(x﹣2)2﹣8,所以抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),把点(2,﹣8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(﹣1,﹣3),所以平移后的抛物线的函数表达式为y=(x+1)2﹣3.故选D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.(3分)如图,在?ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为()A.B.C.πD.2π【分析】首先求出圆心角∠EOF的度数,再根据弧长公式l=,即可解决问题.【解答】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长==π.故选C.【点评】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式,属于中考常考题型.10.(3分)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC 的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH【分析】先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【解答】解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF中,DF==∴FG=∴CG=﹣1∴=∴矩形DCGH为黄金矩形故选D.【点评】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,﹣1),表示桃园路的点的坐标为(﹣1,0),则表示太原火车站的点(正好在网格点上)的坐标是(3,0).【分析】根据双塔西街点的坐标可知:1号线起点所在的直线为x轴,根据桃园路的点的坐标可知:2号线起点所在的直线为y轴,建立平面直角坐标系,确定太原火车站的点的坐标.【解答】解:由双塔西街点的坐标为(0,﹣1)与桃园路的点的坐标为(﹣1,0)得:平面直角坐标系,可知:太原火车站的点的坐标是(3,0);故答案为:(3,0)【点评】本题考查了利用坐标确定位置,解题的关键就是确定坐标原点和x、y轴的位置.12.(3分)已知点(m﹣1,y1),(m﹣3,y2)是反比例函数y=(m<0)图象上的两点,则y1>y2(填“>”或“=”或“<”)【分析】由反比例函数系数小于0,可得出该反比例函数在第二象限单增,结合m﹣1、m﹣3之间的大小关系即可得出结论.【解答】解:∵在反比例函数y=(m<0)中,k=m<0,∴该反比例函数在第二象限内y随x的增大而增大,∵m﹣3<m﹣1<0,∴y1>y2.故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是找出函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质找出其单调性是关键.13.(3分)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有4n+1个涂有阴影的小正方形(用含有n的代数式表示).【分析】观察不难发现,后一个图案比前一个图案多4个涂有阴影的小正方形,然后写出第n个图案的涂有阴影的小正方形的个数即可.【解答】解:由图可得,第1个图案涂有阴影的小正方形的个数为5,第2个图案涂有阴影的小正方形的个数为5×2﹣1=9,第3个图案涂有阴影的小正方形的个数为5×3﹣2=13,…,第n个图案涂有阴影的小正方形的个数为5n﹣(n﹣1)=4n+1.故答案为:4n+1.【点评】本题是对图形变化规律的考查,观察出“后一个图案比前一个图案多4个基础图形”是解题的关键.14.(3分)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与两次指针指向的数都是奇数的情况,再利用概率公式即可求得答案.【解答】解:列表得如下:12311、11、21、322、12、22、333、13、23、3∵由表可知共有9种等可能结果,其中两次指针指向的数都是奇数的有4种结果,∴两次指针指向的数都是奇数的概率为,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.15.(3分)如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是∠DAB 的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为3﹣.【分析】根据AB=CD=4、C为线段AB的中点可得BC=AC=2、AD=2,再根据EH⊥DC、CD⊥AB、BE ⊥AB得EH∥AC、四边形BCGE为矩形,BC=GE=2,继而由AE是∠DAB的平分线可得∠DAE=∠HEA即HA=HE,设GH=x得HA=2+x,由△DHG∽△DAC得=,列式即可求得x.【解答】解:∵AB=CD=4,C为线段AB的中点,∴BC=AC=2,∴AD=2,∵EH⊥DC,CD⊥AB,BE⊥AB,∴EH∥AC,四边形BCGE为矩形,∴∠HEA=∠EAB,BC=GE=2,又∵AE是∠DAB的平分线,∴∠EAB=∠DAE,∴∠DAE=∠HEA,∴HA=HE,设GH=x,则HA=HE=HG+GE=2+x,∵EH∥AC,∴△DHG∽△DAC,∴=,即=,解得:x=3﹣,即HG=3﹣,故答案为:3﹣.【点评】本题主要考查勾股定理、平行线的性质和判定、等腰三角形的判定与性质、矩形的判定与性质及相似三角形的判定与性质等知识点,根据相似三角形的性质得出对应边成比例且表示出各边长度是关键.三、解答题(本大题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.【分析】(1)根据实数的运算顺序,首先计算乘方和乘法,然后从左到右依次计算,求出算式(﹣3)2﹣()﹣1﹣×+(﹣2)0的值是多少即可.(2)先把﹣化简为最简分式,再把x=﹣2代入求值即可.【解答】解:(1)(﹣3)2﹣()﹣1﹣×+(﹣2)0=9﹣5﹣4+1=1(2)x=﹣2时,﹣=﹣=﹣===2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了分式的化简求值,要熟练掌握,解答此题的关键是要明确:一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.17.(7分)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.18.(8分)每年5月的第二周为“职业教育活动周”,今年我省开展了以“弘扬工匠精神,打造技能强国”为主题的系列活动.活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校教务处随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).请解答以下问题:(1)补全条形统计图和扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中,随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是0.13.【分析】(1)根据喜欢其它累的人数是18,所占的百分比是9%,据此即可求的调查的总人数,进而根据百分比的意义求得扇形统计图中每部分的百分比,补全统计图;(2)利用总人数乘以对应的百分比即可;(3)概率约等于对应的百分比.【解答】解:(1)调查的总人数是18÷9%=200(人),则喜欢工业设计的人数是200﹣16﹣26﹣80﹣18=60(人).喜欢工业设计的所占的百分比是=30%;喜欢机电维修的所占的百分比是=13%.;(2)估计该校对“工业设计”最感兴趣的学生数是:1800×30%=540(人);(3)正好抽到对“机电维修”最感兴趣的学生的概率是0.13.故答案是:0.13.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al﹣Binmi(973﹣1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al ﹣Binmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M 是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知等边△ABC内接于⊙O,AB=2,D为上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是2+2.【分析】(1)首先证明△MBA≌△MGC(SAS),进而得出MB=MG,再利用等腰三角形的性质得出BD=GD,即可得出答案;(2)首先证明△ABF≌ACD(SAS),进而得出AF=AD,以及CD+DE=BE,进而求出DE的长即可得出答案.【解答】(1)证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC.在△MBA和△MGC中∵,∴△MBA≌△MGC(SAS),∴MB=MG,又∵MD⊥BC,∴BD=GD,∴DC=GC+GD=AB+BD;(2)解:如图3,截取BF=CD,连接AF,AD,CD,由题意可得:AB=AC,∠ABF=∠ACD,在△ABF和△ACD中∵,∴△ABF≌ACD(SAS),∴AF=AD,∵AE⊥BD,∴FE=DE,则CD+DE=BE,∵∠ABD=45°,∴BE==,则△BDC的周长是2+2.故答案为:2+2.【点评】此题主要考查了全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.20.(7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg 和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克 5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.【分析】(1)根据题意确定出两种方案应付款y与购买量x之间的函数表达式即可;(2)根据A付款比B付款少列出不等式,求出不等式的解集确定出x的范围即可;(3)根据题意列出算式,计算比较即可得到结果.【解答】解:(1)方案A:函数表达式为y=5.8x;方案B:函数表达式为y=5x+2000;(2)由题意得:5.8x<5x+2000,解得:x<2500,则当购买量x的范围是2000≤x<2500时,选用方案A比方案B付款少;(3)他应选择方案B,理由为:方案A:苹果数量为20000÷5.8≈3448(kg);方案B:苹果数量为(20000﹣2000)÷5=3600(kg),∵3600>3448,∴方案B买的苹果多.【点评】此题考查了一次函数的应用,弄清题中的两种方案是解本题的关键.21.(10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F 到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号).【分析】过A作AG⊥CD于G,在Rt△ACG中,求得CG=25,连接FD并延长与BA的延长线交于H,在Rt△CDH中,根据三角函数的定义得到CH=90,在Rt△EFH中,根据三角函数的定义即可得到结论.【解答】解:过A作AG⊥CD于G,则∠CAG=30°,在Rt△ACG中,CG=ACsin30°=50×=25,∵GD=50﹣30=20,∴CD=CG+GD=25+20=45,连接FD并延长与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90,∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290,在Rt△EFH中,EF=EH?tan30°=290×=,答:支撑角钢CD和EF的长度各是45cm,cm.【点评】本题考查了解直角三角形的应用,解题的关键是将实际问题转化为数学问题,构造直角三角形并解直角三角形,难度适中.22.(12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是菱形;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图,得到四边形BCC′D,发现它是矩形,请你证明这个结论;3所示的△AC′D,连接DB,C′C实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:,连接BD′,CC′,使四边形BCC′D恰好为正方形,将△AC′D沿着射线DB方向平移acm,得到△A′C′D′求a的值,请你解答此问题;,在图4中画(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.【分析】(1)利用旋转的性质结合菱形的性质得出:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,进而利用菱形的判定方法得出答案;(2)利用旋转的性质结合菱形的性质得出,四边形BCC′D是平行四边形,进而得出四边形BCC′D是矩形;(3)首先求出CC′的长,分别利用①点C″在边C′C上,②点C″在C′C的延长线上,求出a的值;(4)利用平移的性质以及平行四边形的判定方法得出答案.【解答】解:(1)如图2,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,故AC′∥EC,AC∥C′E,则四边形ACEC′是平行四边形,故四边形ACEC′的形状是菱形;故答案为:菱形;(2)证明:如图3,作AE⊥CC′于点E,由旋转得:AC′=AC,则∠CAE=∠C′AE=α=∠BAC,∵四边形ABCD是菱形,∴BA=BC,∴∠BCA=∠BAC,∴∠CAE=∠BCA,∴AE∥BC,同理可得:AE∥DC′,,∴BC∥DC′,则∠BCC′=90°又∵BC=DC′,∴四边形BCC′D是平行四边形,,∵∠BCC′=90°∴四边形BCC′D是矩形;(3)如图3,过点B作BF⊥AC,垂足为F,∵BA=BC,∴CF=AF=AC=×10=5,在Rt△BCF中,BF===12,在△ACE和△CBF中,∵∠CAE=∠BCF,∠CEA=∠BFC=90°,∴△ACE∽△CBF,∴=,即=,解得:EC=,∵AC=AC′,AE⊥CC′,×=,∴CC′=2CE=2恰好为正方形时,分两种情况:当四边形BCC′D′①点C″在边C′C上,a=C′C﹣13=﹣13=,②点C″在C′C的延长线上,a=C′C+13=+13=,综上所述:a的值为:或;(4)答案不唯一,例:如图4,画出正确图形,平移及构图方法:将△ACD沿着射线CA方向平移,平移距离为AC的长度,,连接A′B,D′C,得到△A′C′D′,,BC∥A′D′结论:∵BC=A′D′是平行四边形.∴四边形A′BCD′【点评】此题主要考查了几何变换综合以及相似三角形的判定与性质、菱形的判定与性质以及矩形的判定方法等知识,正确利用相似三角形的判定与性质得出CC′的长是解题关键.23.(14分)综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.【分析】(1)根据待定系数法求出抛物线解析式即可求出点B坐标,求出直线OD解析式即可解决点E坐标.(2)抛物线上存在点F使得△FOE≌△FCE,此时点F纵坐标为﹣4,令y=﹣4即可解决问题.(3))①如图1中,当OP=OQ时,△OPQ是等腰三角形,过点E作直线ME∥PB,交y轴于点M,交x轴于点H,求出点M、H的坐标即可解决问题.②如图2中,当QO=QP时,△POQ是等腰三角形,先证明CE∥PQ,根据平行线的性质列出方程即可解决问题.【解答】解:(1)∵抛物线y=ax2+bx﹣8经过点A(﹣2,0),D(6,﹣8),∴,解得,∴抛物线解析式为y=x2﹣3x﹣8,∵y=x2﹣3x﹣8=(x﹣3)2﹣,∴抛物线对称轴为直线x=3,又∵抛物线与x轴交于点A、B两点,点A坐标(﹣2,0),∴点B坐标(8,0).设直线l的解析式为y=kx,∵经过点D(6,﹣8),∴6k=﹣8,∴k=﹣,∴直线l的解析式为y=﹣x,∵点E为直线l与抛物线的交点,∴点E的横坐标为3,纵坐标为﹣×3=﹣4,∴点E坐标(3,﹣4).(2)抛物线上存在点F使得△FOE≌△FCE,此时点F纵坐标为﹣4,∴x2﹣3x﹣8=﹣4,∴x2﹣6x﹣8=0,x=3,∴点F坐标(3+,﹣4)或(3﹣,﹣4).(3)①如图1中,当OP=OQ时,△OPQ是等腰三角形.∵点E坐标(3,﹣4),∴OE==5,过点E作直线ME∥PB,交y轴于点M,交x轴于点H.则=,∴OM=OE=5,∴点M坐标(0,﹣5).设直线ME的解析式为y=k1x﹣5,∴3k1﹣5=﹣4,∴k1=,∴直线ME解析式为y=x﹣5,令y=0,得x﹣5=0,解得x=15,∴点H坐标(15,0),∵MH∥PB,∴=,即=,∴m=﹣,②如图2中,当QO=QP时,△POQ是等腰三角形.∵当x=0时,y=x2﹣3x﹣8=﹣8,∴点C坐标(0,﹣8),∴CE==5,∴OE=CE,∴∠1=∠2,∵QO=QP,∴∠1=∠3,∴∠2=∠3,∴CE∥PB,设直线CE交x轴于N,解析式为y=k2x﹣8,∴3k2﹣8=﹣4,∴k2=,∴直线CE解析式为y=x﹣8,令y=0,得x﹣8=0,∴x=6,∴点N坐标(6,0),∵CN∥PB,∴=,∴=,∴m=﹣.③OP=PQ时,显然不可能,理由,∵D(6,﹣8),∴∠1<∠BOD,∵∠OQP=∠BOQ+∠ABP,∴∠PQO>∠1,∴OP≠PQ,综上所述,当m=﹣或﹣时,△OPQ是等腰三角形.【点评】本题考查二次函数综合题、一次函数的性质、待定系数法,等腰三角形的判定和性质等知识,解题的关键是学会分类讨论,不能漏解,学会用方程的思想思考问题,属于中考压轴题.。

山西省2016届九年级最新中考模拟示范考试(二)数学试题解析(解析版)

山西省2016届九年级最新中考模拟示范考试(二)数学试题解析(解析版)

山西省2016届九年级最新中考模拟示范考试(二)数学试题一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请将正确答案的字母号填入下表相应的空格内)1.下列各数中,小于﹣2的数是().A.2 B.1 C.﹣1 D.﹣4【答案】D.【解析】试题分析:根据题意,结合有理数大小比较的法则,从符号和绝对值两个方面分析可得答案.比﹣2小的数应该是负数,且绝对值大于2的数,分析选项可得,只有D符合.故选D.考点:有理数大小比较.2.若将两个立方体图形按如图所示的方式放置,则所构成的几何体的左视图可能是().A.B.C.D.【答案】C.【解析】试题分析:根据左视图就是从物体的左边进行观察得到的图形.左视图是上面两个长方形,下面是一个长方形,中间是实线,故选C.考点:简单组合体的三视图.3.下列各式计算结果正确的是().A.x+x=x2B.(2x)2=4x C.(x+1)2=x2+1 D.x•x=x2【答案】D.【解析】试题分析:根据合并同类项的法则,积的乘方的性质,完全平方公式,同底数幂的乘法的性质,对各选项计算后利用排除法求解.A 、应为x+x=2x ,故本选项错误;B 、应为(2x )2=4x 2,故本选项错误;C 、应为(x+1)2=x 2+2x+1,故本选项错误;D 、x •x=x 2,正确;故选D .考点:1.完全平方公式;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.4.太行山又名五行山、王母山、女娲山,是中国东部地区的重要山脉和地理分界线,绵延400余公里,400公里可以用科学记数法表示为( ). A .4×104米 B .4×105米C .0.4×106米D .4×106米【答案】B . 【解析】试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.400公里=400000米=4×105米,故选:B . 考点:科学记数法—表示较大的数. 5.化简:211()(3)31x x x x +-∙---的结果是( ). A .2 B .21x - C .23x - D .41x x -- 【答案】B . 【解析】试题分析:先把括号中的第二个分式约分,再利用乘法分配律把(x ﹣3)分别与括号中的式子相乘可使计算简便.原式211()(3)31x x x x +-∙---=(13x -﹣11x -)•(x ﹣3)=13x -•(x ﹣3)﹣11x -•(x ﹣3)=1﹣31x x --=21x -.故选B . 考点:分式的混合运算.6.在两个不透明的口袋中分别装有三个颜色分别为红色、白色、绿色的小球,这三个小球除颜色外其余都相同,若分别从两个口袋中随机取出一个小球,则取出的两个小球颜色相同的概率为( ). A .19 B .29 C .13 D .49【答案】C . 【解析】试题分析:首先根据题意画出表格,然后由表格即可求得所有等可能的结果与取出的两个小球颜色相同的情况,再利用概率公式求解即可求得答案.根据题意列表如下:所有的等可能有9种情况,颜色相同的占了3种,则P 颜色相同=39=13.故选C . 考点:列表法与树状图法.7.将2×2的正方形网格如图所示的放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD 的顶点都在格点上,若直线y=kx (k ≠0)与正方形ABCD 有公共点,则k 不可能是( ).A .3B .2C .1D .12【答案】A . 【解析】试题分析:先求出A 、C 两点的坐标,再求出直线过A 、C 两点时k 的值,进而可得出结论.∵由图可知,A (1,2),C (2,1),∴当直线y=kx 过点A 时,k=2;当直线过点C 时,2k=1,即k=12,∴12≤k ≤2,∴k 不可能是3.故选A .考点:一次函数图象上点的坐标特征.8.有这样的一列数,第一个数为x 1=﹣1,第二个数为x 2=﹣3,从第三个数开始,每个数都等于它相邻两个数之和的一半(如:x 2=132x x),则x 2015等于( ).A.﹣2015 B.﹣4027 C.﹣4029 D.﹣4031【答案】C.考点:规律型:数字的变化类.9.如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为().A.5a B.4a C.3a D.2a【答案】B.【解析】试题分析:如图所示可将正六边形分为6个全等的三角形,阴影部分由两个三角形组成,剩余部分由4个三角形组成,故此可求得剩余部分的面积.如图所示:将正六边形可分为6个全等的三角形,∵阴影部分的面积为2a,∴每一个三角形的面积为a,∵剩余部分可分割为4个三角形,∴剩余部分的面积为4a.故选:B.考点:图形的剪拼.10.若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1<x2,则下列结论中错误的是(). A.当m=0时,x1=2,x2=3B.m>﹣1 4C.当m>0时,2<x1<x2<3D.二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0)【答案】C.【解析】试题分析:根据方程的解的定义可以判定A正确;根据二次函数的最值问题,且结合题意可以判定B正确;根据二次函数与x轴交点的有关性质可以判定C错误;根据二次函数的定义可以判定D正确.①∵m=0时,方程为(x﹣2)(x﹣3)=0,∴x1=2,x2=3,故A正确;②设y=(x﹣2)(x﹣3)=x2﹣5x+6=(x﹣52)2﹣14,∴y的最小值为﹣14,∵一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1<x2,∴m>﹣14,故B正确;③∵m>O时,y=(x﹣2)(x﹣3)>0,函数y′=(x﹣2)(x﹣3)﹣m与x轴交于(x1,0),(x2,0),∴x1<2<3<X2,故C错误;④∵y=(x﹣x1)(x﹣x2)+m=(x﹣2)(x﹣3)﹣m+m=(x﹣2)(x﹣3),∴函数与x轴交于点(2,0),(3,0).故D正确.故选C.考点:1.抛物线与x轴的交点;2.解一元二次方程-因式分解法;3.根的判别式;4.根与系数的关系.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2﹣7= .【答案】﹣5.【解析】试题分析:利用减去一个数等于加上这个数的相反数将减法运算化为加法运算,计算即可得到结果.2﹣7=2+(﹣7)=﹣(7﹣2)=﹣5.故答案为:﹣5.考点:有理数的减法.12.如图,点B是AD延长线上的一点,DE∥AC,AE平分∠CAB,∠C=50°,∠E=30°,则∠CDA的度数等于.【答案】70°.【解析】试题分析:先根据平行线的性质得出∠CAE的度数,再由角平分线的性质求出∠CAD的度数,根据三角形内角和定理即可得出结论.∵DE ∥AC ,∠E=30°,∴∠CAE=∠E=30°.∵AE 平分∠CAB ,∴∠CAD=2∠CAE=60°.在△ACD 中,∵∠C=50°,∠CAD=60°,∴∠CDA=180°﹣∠C ﹣∠CAD=180°﹣50°﹣60°=70°.故答案为:70°.考点:平行线的性质.13.若a 、b 是一元二次方程x 2+2x ﹣1=0的两个根,则2a bab+的值是 . 【答案】1. 【解析】试题分析:根据一元二次方程的根与系数的关系求得a+b 、ab 的值,然后将其代入所求的代数式并求值.∵a ,b 是一元二次方程x 2+2x ﹣1=0的两个根,∴由韦达定理,得a+b=﹣2,ab=﹣1,∴2a bab+=1.故答案为:1.考点:根与系数的关系.14.如果实数x 、y 满足方程组12225x y x y ⎧-=-⎪⎨⎪+=⎩,那么x 2﹣y 2的值为 .【答案】﹣54. 【解析】试题分析:方程组中第二个方程整理后求出x+y 的值,原式利用平方差公式变形,将各自的值代入计算即可求出值.方程组整理得:1252x y x y ⎧-=-⎪⎪⎨⎪+=⎪⎩,则原式左右两边分别相乘,即(x+y )(x ﹣y )=x 2﹣y 2=﹣54,故答案为:﹣54. 考点:二元一次方程组的解.15.如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,∠BCD=25°,则∠AOD 的度数为 .【答案】130°.【解析】试题分析:由∠BCD=25°,根据圆周角定理得出∠BOD=50°,再利用邻补角的性质即可得出∠AOD的度数.∵∠BCD=25°,∴∠BOD=50°,∴∠BCD=180°﹣50°=130°.故答案为130°.考点:圆周角定理.16.如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP= .【答案】1.【解析】试题分析:根据旋转性质可得∠APB=∠CP'B=135°、∠ABP=∠CBP'、BP=BP'、AP=CP',由∠ABP+∠PBC=90°知△BPP'是等腰直角三角形,进而根据∠CP'B=135°可得∠PP'C=90°,由此可利用勾股定理即可CP的值,则AP的长也可求出.∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,∵BP=2,∴PP′,∵PC=3,∴=1,∴AP=CP′=1,故答案为:1.考点:1.旋转的性质;2.正方形的性质.三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤)17.(1)计算:|(π﹣3)0+(12)﹣1﹣2cos45°(2)解不等式组211841x xx x⎧->+⎨+>-⎩,并把它的解集在数轴上表示出来.【答案】(1)3;(2)2<x<3.在数轴上表示参见解析.【解析】试题分析:(1)先去掉绝对值,用零指数幂,负指数幂,三角函数,化简,最后用实数的运算法则计算即可.(2)分别解出不等式①,②的解集,确定出公共部分,并在数轴上表示即可.试题解析:(1)先去掉绝对值,用零指数幂,负指数幂,三角函数,化简,原式||+(π﹣3)0+(12)﹣1﹣2cos45°﹣2=3;(2)分别解出两个不等式,解不等式①,得,x>2,解不等式②,得,x<3,∴原不等式组的解集为2<x<3.∴原不等式组的解集在数轴上表示如下:.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.在数轴上表示不等式的解集;5.解一元一次不等式组;6.特殊角的三角函数值.18.如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.【答案】(1)作图参见解析;(2π.【解析】试题分析:(1)先找到圆心,作线段AB 的垂直平分线交AB 于O 点,然后以O 为圆心,OA 为半径画圆即可;(2)先利用等腰直角三角形的性质求出AB 的长,那么OB=OA=12AB ,又∠BOC=90°,将它们代入弧长公式计算即可.考点:1.弧长的计算;2.作图—复杂作图.19.如图,直线AB 与反比例函数的图象交于A (﹣4,m )、B (2,n )两点,点C 在x 轴上,AO=AC ,△OAC 的面积为8.(1)求反比例函数的解析式. (2)求cos ∠OBA 的值.【答案】(1)y=﹣8x;(2. 【解析】试题分析:(1)因为△ACO是等腰三角形,根据三角形面积公式即可求出m,得点A坐标,用待定系数法可以求出反比例函数的解析式.(2)作OE⊥AB于E,欲求cos∠OBA,因为cos∠OBA=BEOB,只要求出OB、BE即可,利用两点间距离公式可求出OB、BE.试题解析:(1)设反比例函数为y=kx,∵△OAC的面积为8,AO=AC,A(﹣4,m),∴点C(﹣8,0),12•8•m=8,∴m=2,∴点A(﹣4,2),∵反比例函数的图象经过A(﹣4,2)、B(2,n)两点,∴k=﹣8,n=﹣4,∴点B坐标(2,﹣4),∴反比例函数解析式为y=﹣8x;(2)如图作OE⊥AB于E,由(1)可利用勾股定理求得,OA=OB,OE⊥AB,∴cos∠OBA=BEOB.考点:反比例函数与一次函数的交点问题.20.某大型超市的采购人员先后购进两批晋祠大米,购进第一批大米共花费5400元,进货单价为m元/千克,该超市将其中3000千克优等品以进货单价的两倍对外出售,余下的二等品则以1.5元/千克的价格出售.当第一批大米全部售出后,花费5000元购进了第二批大米,这一次的进货单价比第一批少了0.2元.其中优等品占总重量的一半,超市以2元/千克的单价出售优等品,余下的二等品在这批进货单价的基础上每千克加价0.6元后全部卖完,若不计其他成本,则售完第二批大米获得的总利润是4000元(总售价﹣总进价=总利润)(1)用含m的代数式表示第一批大米的总利润.(2)求第一批大米中优等品的售价.【答案】(1)6000m+8100m﹣9900;(2)2.4元.【解析】试题分析:(1)用总销售额减去成本即可求出毛利润;(2)设第一批进货单价为m元/千克,则第二批的进货单价为(m﹣2)元/千克,根据第二批大米获得的毛利润是4000元,列方程求解.试题解析:(1)由题意得,总利润为:3000×2m+1.5×(5400m﹣3000)﹣5400=6000m+8100m﹣9900;(2)设第一批进货单价为m元/千克,由题意得,50000.2m-×12×2+50000.2m-×12×(m﹣0.2+0.6)﹣5000=4000,解得:m=1.2,经检验:m=1.2是原分式方程的解,且符合题意.则优等品的售价为:2m=2.4.所以第一批大米中优等品的售价是2.4元.考点:1.一元一次方程的应用;2.列代数式.21.2015年10月29日,党的十八届五种全会胜利闭幕,某中学七、八年级各选派10名选手参加“党的十八届五中全会知识竞赛”计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m= ,n= ;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.【答案】(1)a=5,b=1;(2)5,20%;(3)①八年总成绩比七年级的总成绩好. ②八年级半数以上的学生比七年级半数以上的成绩好.【解析】试题分析:(1)根据题意可以得到关于a、b的方程组,从而求得a、b的值;(2)根据表格可以得到m的值和n的值;(3)说明理由根据表格中的平均数和中位数进行说明即可解答本题.试题解析:(1)由题意和表格中的数据可得,101111316718191106.710a ba b⎧+=----⎪⎨⨯++⨯+⨯+⨯+=⎪⎩,解得,51ab⎧=⎨=⎩,即a的值是5,b的值是1;(2)∵a的值是5,b的值是1,参与调查的七年级学生10人,∴中位数m=6,优秀率n=1110+×100%=20%,故答案为:5,20%;(3)八年级队成绩好的理由:①平均分八年级比七年级高,说明八年总成绩比七年级的总成绩好;②中位数七年是6,八年级是7.5,说明八年级半数以上的学生比七年级半数以上的成绩好.考点:1.条形统计图;2.中位数;3.方差.22.如图1所示的是一种置于桌面上的简易台灯,将其结构简化成图2,灯杆AB与CD交于点O(点O固定),灯罩连杆CE始终保持与AB平行,灯罩下方FG处于水平位置,测得OC=20cm,∠COB=70°,∠F=40°,EF=EG,点G到OB的距离为12cm.(1)求∠CEG的度数.(2)求灯罩的宽度(FG的长;结果精确到0.1cm,可用科学计算器).(参考数据:sin40°≈0.643,cos40°≈0.766,sin70°≈0.940,cos70°≈0.342)【答案】(1)130°;(2)13.6cm.【解析】试题分析:(1)由EF=EG可知∠G=∠F=40°,由三角形的内角和为180°可求出∠FEG的大小,根据已知条件可得知∠CEF=∠CEG,由∠CEF+∠FEG+∠GEC为周角可得出结论;(2)延长FG交AB于点N,过点C作CM ⊥AB于点M,延长CE交FG于点H,可知四边形CHNM为长方形,在Rt△CMO中由三角函数值求出CM的长度,再结合点G到OB的距离为12cm可求出HG的长度,由△EFG为等腰三角形可得知FG=2HG,从而得出结论.试题解析:(1)如上图2:∵EF=EG,∠F=40°,∴∠G=40°,∠FEG=180°﹣∠F﹣∠G=100°,∵灯罩连杆CE始终保持与AB平行,灯罩下方FG处于水平位置,∴∠CEG=∠CEF=3602FEG︒-∠=3601002︒-︒=130°;(2)如图所示.延长FG交AB于点N,过点C作CM⊥AB于点M,延长CE交FG于点H,∵CE∥AB,FG处于水平位置,CM⊥AB,∴四边形CHNM为长方形,CH⊥FG,∴CM=HN.在Rt △OMC中,OC=20cm,∠COM=70°,∠OMC=90°,∴CM=OC•sin∠COM≈20×0.940=18.8(cm),∵GN=12cm,HN=CM,∴HG=CM﹣GN=6.8(cm).∵EF=EG,CH⊥FG,∴FH=HG=12FG,∴FG=2×6.8=13.6(cm).所以灯罩的宽度为13.6cm.考点:解直角三角形的应用.23.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.24.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13.(1)求抛物线的对称轴和点P的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D的坐标;如果不存在,请说明理由.【答案】(1)对称轴是直线x=-2,P点坐标为(﹣2,﹣1);(2)存在,D1(﹣2,13),D2(﹣2,2),D3(﹣2,1);D4(﹣2,113).【解析】试题分析:(1)根据自变量与函数值的对应关系,可得B点坐标,根据正切函数,可得A点坐标,根据待定系数法,可得函数解析式,根据配方法,可得抛物线的对称轴和顶点坐标;(2)根据勾股定理,可得AD2=1+m2,AB2=12+32=10,BD2=4+(m﹣3)2,根据勾股定理的逆定理,可得关于m的方程,根据解方程,可得答案.试题解析:(1)当x=0时,y=3,即B(0,3).tan∠ABO=AOBO=3AO=13,AO=1,即A点坐标为(﹣1,3).将A点坐标代入,得1﹣b+3=0,解得b=4.抛物线的解析式为y=x2+4x+3,y=(x+2)2﹣1,即P点坐标为(﹣2,﹣1);(2)在抛物线的对称轴上存在这样的点D,使△ABD为直角三角形.设D点坐标为D(﹣2,m),因为A(﹣1,0),B(0,3).由勾股定理,得AD2=1+m2,AB2=12+32=10,BD2=4+(m﹣3)2.①当AD2+AB2=BD2时,即1+m2+10=4+(m﹣3)2,解得m=13,即D1(﹣2,13);②当AD2+BD2=AB2时,即1+m2+4+(m﹣3)2=10,解得m=2或m=1,即D2(﹣2,2),D3(﹣2,1);③当AB2+BD2=AD2时,即10+4+(m﹣3)2=1+m2,解得m=113,即D4(﹣2,113),综上所述:在抛物线的对称轴上存在这样的点D,使△ABD为直角三角形.其坐标为D1(﹣2,13),D2(﹣2,2),D3(﹣2,1);D4(﹣2,113).考点:1.二次函数性质;2.勾股定理及逆定理.。

山西省太原市中考数学二模试卷

山西省太原市中考数学二模试卷

山西省太原市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列计算结果为负数的是()A . (﹣1)2B . ﹣1+2C . ﹣1﹣2D . 0÷(﹣1)2. (2分)(2014·宿迁) 若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A . 15πB . 20πC . 24πD . 30π3. (2分)(2020·平遥模拟) 窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计,下列表示我国古代窗棂样式结构图案中,是中心对称图形但不是轴对称图形的是()A .B .C .D .4. (2分) (2019七下·温州期末) 下列调查中,适宜采用全面调查的是()A . 对现代大学生零用钱使用情况的调查B . 对某班学生制作校服前身高的调查C . 对温州市市民去年阅读量的调查D . 对某品牌灯管寿命的调查5. (2分)如图,以点D为位似中心,作△ABC的一个位似三角形A1B1C1 , A,B,C的对应点分别为A1 ,B1 , C1 , DA1与DA的比值为k,若两个三角形的顶点及点D均在如图所示的格点上,则k的值和点C1的坐标分别为()A . 2,(2,8)B . 4,(2,8)C . 2,(2,4)D . 2,(4,4)6. (2分)(2020·河北模拟) 甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是()甲组12户家庭用水量统计表用水量(吨)4569户数4521A . 甲组比乙组大B . 甲、乙两组相同C . 乙组比甲组大D . 无法判断7. (2分)(2016·永州) 圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A . 0.324πm2B . 0.288πm2C . 1.08πm2D . 0.72πm28. (2分)(2018·龙东) 如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y= (x>0)、y= (x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A . ﹣1B . 1C .D .二、填空题 (共10题;共11分)9. (1分)(2017·慈溪模拟) 若式子在实数范围内有意义,则x的取值范围是________.10. (1分) (2019七下·宜兴期中) 某种物体的长度为0.000000023m,用科学记数法表示为________m.11. (1分)写一个以为解的二元一次方程组是________.12. (2分) (2019九上·桥东月考) 定义:几个全等的正多边形依次有一边重合,排成一圈,中间可以围成一个正多边形,我们称作正多边形的环状连接。

山西省太原市2016届高三第二次模拟考试理数试题解析(解析版)含解斩

山西省太原市2016届高三第二次模拟考试理数试题解析(解析版)含解斩

山西省太原市2016届高三第二次模拟考试理数试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1。

已知集合2{log (1)2}A x x =-<,{6}B x a x =<<,且{2}A B x x b =<<,则a b +=( )A .7B .6C .5D .4 【答案】A考点:集合的运算.2。

如图,在复平面内,表示复数的点为A ,则复数12z i -的共轭复数是( )A .B .i -C .35i D .35i -【答案】A 【解析】试题分析:由图可知,iz +=2,所以()()()()i ii i i i i i i z -=-=---+=-+=-552212221221,故其共轭复数为,选项为A 。

考点:(1)复数的几何意义;(2)复数的运算。

3.下列函数中,在其定义域内既是奇函数又单调递增的函数是( )A .1y x=- B .33xx y -=-C .y x x =D .3y x x =-【答案】C 【解析】试题分析:对于1y x=-,在其定义域内不具有单调性,故A 错误;对于33xx y -=-为减函数,故B 错误;对于y x x=即为增函数又为奇函数,故C 正确;对于3y x x =-不满足增函数,故D 错误.故选项为C. 考点:函数的奇偶性与单调性。

14.若某几何体的三视图如图所示,则此几何体的体积等于()A.30 B.24C.12 D.4【答案】B考点:几何体的体积。

5.若函数()f x同时满足以下三个性质:①()f x的最小正周期为π;②对任意的x R∈,都有()()04f x f x π-+-=;③()f x 在(,)42ππ上是减函数,则()f x 的解析式可能是( )A .()sin 2f x x =B .()sin 2cos 2f x x x =+C .()sin()8f x x π=+D .3()cos(2)4f x x π=+【答案】B考点:由()ϕω+=x A y sin 的部分图象确定其解析式。

山西省太原市中考数学二模试卷

山西省太原市中考数学二模试卷

山西省太原市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)(2012·苏州) 2的相反数是()A . ﹣2B . 2C . ﹣D .2. (2分)如图是由6个相同的小正方体搭成的几何体,那么这个几何体从左边看到的形状图是()A .B .C .D .3. (2分)下列运算正确的是()A . 3﹣a2=3B . ()3=a5C . •=a9D . a(a﹣2)=﹣24. (2分)(2017·淳安模拟) 如图,AB∥CD,∠D=30°,∠E=35°,则∠B的度数为()A . 60°B . 65°C . 70°D . 75°5. (2分)如图,数轴上点A表示的数可能是()A .B .C .D .6. (2分)(2018·资阳) 如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A . 12厘米B . 16厘米C . 20厘米D . 28厘米7. (2分)计算(﹣)3的结果是()A . -B . -C . -D .8. (2分)如图,已知△ABC中,AB= AC,∠ABC=70°,点I是△ABC的内心,则∠BIC的度数为()A . 40°B . 70°C . 110°D . 140°9. (2分) (2019八下·遂宁期中) 一次函数的图象过点(0,2),且随的增大而增大,则m=()A . -1B . 3C . 1D . -1或310. (2分)将一张边长分别为a,b(a>b)的矩形纸片ABCD折叠,使点C与点A重合,则折痕的长为()A .B .C .D .11. (2分)在半径为4cm的圆中,挖去一个半径为xcm 的圆面,剩下一个圆环的面积为ycm2 ,则y与x 的函数关系式为()A . y=πx2-4B . y=π(2-x)2C . y=-(x2+4)D . y=-πx2+16π12. (2分)(2016·自贡) 如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A . 15°B . 25°C . 30°D . 75°13. (2分)(2018·郴州) 如图,A,B是反比例函数y= 在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A . 4B . 3C . 2D . 114. (2分)如果关于x的方程ax2+4x﹣2=0有两个不相等的实数根,且关于x的分式方程﹣=2有正数解,则符合条件的整数a的值是()A . -1B . 0C . 1D . 215. (2分)在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A . ①③B . ①④C . ②③D . ②④16. (2分)如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A .B .C .D .二、填空题 (共3题;共3分)17. (1分) (2016八上·东港期中) 若,则x+y=________.18. (1分)(2012·义乌) 正n边形的一个外角的度数为60°,则n的值为________.19. (1分) (2019九上·凤山期末) 如图,在Rt△ABC中,∠ABC=90°,AB=BC=4,将△ABC绕点A顺时针旋转60°,得到△ADE,连结BE,则BE的长为________三、解答题 (共7题;共77分)20. (10分)解分式方程:(1)﹣ =1(2)﹣ = .21. (10分) (2019八上·苍南期中) 如图,在中,,垂直平分线段交于点,交于点,在射线上取一点,使得,过点作,垂足为 .(1)求证:(2)若,,求的长.22. (10分) (2019九上·开州月考) 今年上半年,住房和城乡建设等9部门决定在全国地级以上城市全面启动生活垃分类工作.圾分类有利于对垃圾进行分流处理,势在必行.为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,西街中学团委对七年级一,二两班各69名学生进行了垃极分类相关知识的测试,并分别抽取了15份成绩,整理分析过程如下,请补充完整.(收集数据)一班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80二班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(1)【整理数据】按如下分数段整理、描述这两组样本数据组别65.5~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5频数一224511二11a b20在表中,a=________,b=________.(2)【分析数据】份两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差一80x8047.6二8080y z在表中:x=________,y=________.(3)若规定得分在80分及以上(含80分)为合格,请估计二班69名学生中垃极分类及投放相关知识合格的学生有________人.(4)你认为哪个班的学生掌握垃圾分类相关知识的整体水平较好,说明理由.23. (15分) (2016八上·县月考) 为支持地方,大庆市萨尔图区、让胡路区、红岗区三地现分别有物资100吨、100吨、80吨,需全部运往肇东和肇源两地,根据需要情况,这批物资运往肇东的数量比运往肇源的数量的2倍少20吨。

2016年山西中考数学真题卷含答案解析

2016年山西中考数学真题卷含答案解析

山西省2016年高中阶段教育学校招生统一考试数学试题(含答案全解全析)(满分:120分 时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求) 1.-16的相反数是( )A.16B.-6C.6D.-162.不等式组{x +5>0,2x <6的解集是( )A.x>-5B.x<3C.-5<x<3D.x<53.以下问题不适合全面调查的是( ) A.调查某班学生每周课前预习的时间 B.调查某中学在职教师的身体健康状况 C.调查全国中小学生课外阅读情况 D.调查某校篮球队员的身高4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则该几何体的左视图是( )5.我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5 500万千米,这个数据用科学记数法可表示为( )A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米6.下列运算正确的是( ) A.(-32)2=-94 B.(3a 2)3=9a 6 C.5-3÷5-5=125D.√8-√50=-3√27.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg,甲搬运5 000 kg 所用时间与乙搬运8 000 kg 所用时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运x kg 货物,则可列方程为( ) A.5 000x -600=8 000xB.5 000x=8 000x+600C.5 000x+600=8 000xD.5 000x=8 000x -6008.将抛物线y=x 2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( ) A.y=(x+1)2-13 B.y=(x-5)2-3 C.y=(x-5)2-13 D.y=(x+1)2-39.如图,在▱ABCD 中,AB 为☉O 的直径,☉O 与DC 相切于点E,与AD 相交于点F,已知AB=12, ∠C=60°,则FE⏜的长为( )A.π3B.π2C.πD.2π10.宽与长的比是√5-12(约0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H.则图中下列矩形是黄金矩形的是( )A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH第Ⅱ卷(非选择题,共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街的点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是.12.已知点(m-1,y1),(m-3,y2)是反比例函数y=mx(m<0)图象上的两点,则y1y2(填“>”或“=”或“<”).13.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).14.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为 .15.如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD=AB=4,连接AD,BE ⊥AB,AE 是∠DAB 的平分线,与DC 相交于点F,EH ⊥DC 于点G,交AD 于点H,则HG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本题共2个小题,每小题5分,共10分) (1)计算:(-3)2-(15)-1-√8×√2+(-2)0; (2)先化简,再求值:2x 2-2x x 2-1-xx+1,其中x=-2.17.(本题7分)解方程:2(x-3)2=x2-9.18.(本题8分)每年5月的第二周为“职业教育活动周”,今年我省开展了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校教务处随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了如图所示的统计图(均不完整).请解答以下问题:(1)补全条形统计图和扇形统计图;(2)若该校共有1 800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人;(3)要从这些被调查的学生中,随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是.19.(本题7分)请阅读下列材料,并完成相应的任务:任务:(1)请按照上面的证明思路,写出该证明的剩余部分;⏜上一点,∠ABD=45°,AE⊥BD于点E,则△(2)填空:如图3,已知等边△ABC内接于☉O,AB=2,D为ACBDC的周长是.图320.(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2 000 kg~5 000 kg(含2 000 kg和5 000 kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2 000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20 000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接..写出他应选择哪种方案.21.(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300 cm,AB的倾斜角为30°,BE=CA=50 cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30 cm,点A到地面的垂直距离为50 cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号).22.(本题12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC'D,分别延长BC和DC'交于点E,则四边形ACEC'的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC'D,连接DB,C'C,得到四边形BCC'D,发现它是矩形.请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13 cm,AC=10 cm,然后提出一个问题:将△AC'D沿着射线DB方向平移a cm,得到△A'C″D',连接BD',CC″,使四边形BCC″D'恰好为正方形,求a的值.请你解答此问题;(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A'C'D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.图423.(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8),(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE,若存在,请直接写出....点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,△OPQ是等腰三角形.答案全解全析:一、选择题1.A 只有符号不同的两个数互为相反数,所以-16的相反数是-(-16)=16.评析 相反数、倒数、绝对值等是山西中考数学第1题通常考查的内容,所以这些知识简单却很重要.2.C 解不等式x+5>0得x>-5,解不等式2x<6得x<3,所以不等式组的解集为-5<x<3.故选C. 评析 解不等式(组)是中考必考内容之一,解这类题的关键是正确运用不等式的性质准确求出不等式(组)的解集.3.C A.班级学生人数较少,适合全面调查;B.某中学在职教师身体健康状况适合全面调查;C.全国中小学生课外阅读情况不适合全面调查;D.某校篮球队员的身高适合全面调查.故选C.4.A 由左视图的定义知选A.5.B 5 500万千米=55 000 000千米=5.5×107千米,故选B.6.D (-32)2=94,故A 选项不正确;(3a 2)3=27a 6,故B 选项不正确;5-3÷5-5=25,故C 选项不正确;√8-√50=2√2-5√2=-3√2,故D 选项正确.故选D.评析 本题考查了实数的运算,掌握幂的乘方、同底数幂的运算法则,二次根式的运算是解题的关键. 7.B 甲每小时搬运x kg 货物,则乙每小时搬运(x+600)kg 货物,根据时间相等可列方程为5 000x=8 000x+600,故选B.评析 本题的关键是找出等量关系,并把其中的量用含有未知数的代数式表示出来.8.D y=x 2-4x-4=(x-2)2-8,抛物线的顶点坐标为(2,-8),平移后的顶点坐标为(-1,-3),根据顶点式得平移后抛物线的表达式是y=(x+1)2-3,故选D.评析 先求顶点坐标,再根据平移确定新顶点坐标,最后由顶点式求出函数关系式,这是解决此类题的方法.9.C 连接EO,FO,∵CD 与☉O 相切于点E,∴EO ⊥CD, ∵CD ∥AB,∴∠AOE=90°,∵∠A=∠C=60°,AO=OF, ∴∠AOF=60°,∴∠EOF=90°-60°=30°, ∵AB 为☉O 的直径,AB=12,∴OE=6. ∴FE⏜的长为30×π×6180=π,故选C.评析 本题考查了平行四边形、切线和圆的有关知识,求弧长的关键是求出圆心角和半径. 10.D A.AE AB =12,不符合. B.ED EF =12,不符合.C.设正方形ABCD 的边长为a,则EF=a,FG=√a 2+(a 2)2=√5a 2,∴EF FG=√5a 2=2√55,不符合.D.由C 可得GC=√52a-a2, 则CGDC =√52a -a 2a=√5-12,符合,故选D.二、填空题 11.答案 (3,0)解析 先通过双塔西街对应的点的坐标(0,-1)和桃园路对应的点的坐标(-1,0)确定坐标轴,再根据网格中表示太原火车站的点的位置确定出其坐标是(3,0).评析 用网格图确定坐标的关键是要正确理解坐标系和点的坐标的意义. 12.答案 >解析反比例函数y=m中m<0,所以在每一个象限内,y随x的增大而增大,∵m-1<0,m-3<0,m-1>m-3,x∴y1>y2.评析本题考查反比例函数的性质,属容易题.13.答案(4n+1)解析第1个图案,阴影正方形有5=(4×1+1)个,第2个图案,阴影正方形有9=(4×2+1)个,第3个图案,阴影正方形有13=(4×3+1)个,……故第n个图案,阴影正方形有(4n+1)个.评析本题考查学生探索规律的能力.14.答案49解析画树状图如图:∴共有9种等可能的结果,都是奇数有4种结果,.∴P(都是奇数)=49评析本题考查概率问题,正确地画出树状图或列出表格是解题的关键.)15.答案3-√5(√5-√5+1解析∵CD⊥AB,CD=AB=4,C为AB的中点,AB=2,∴AC=12在Rt△DAC中,AD2=AC2+CD2,可得AD=2√5.∵AE 平分∠DAB,∴∠EAB=∠DAE.∵EH ⊥CD,∴EH ∥AB,∴∠EAB=∠AEH=∠EAH,∴AH=EH, 易证四边形BCGE 是矩形,∴CB=GE=2, 设HG=x,则HE=HA=x+2,∵HG ∥AC, ∴△DHG ∽△DAC,∴DH DA =GH AC,即√5-2√5=x2, 解得x=√5-√5+1=3-√5. 评析 本题是一道几何综合题,考查学生综合应用知识的能力,解题的关键是把比较复杂的图形分成等腰三角形,矩形和直角三角形,运用其性质找出未知量与已知量的关系,用方程的思想解决问题. 三、解答题16.解析 (1)原式=9-5-4+1=1.(2)原式=2x (x -1)(x -1)(x+1)-xx+1=2xx+1-xx+1=xx+1.当x=-2时,原式=xx+1=-2-2+1=2. 17.解析 解法一:原方程可化为2(x-3)2=(x+3)(x-3), 2(x-3)2-(x+3)(x-3)=0, (x-3)[2(x-3)-(x+3)]=0, (x-3)(x-9)=0, 解得x 1=3,x 2=9.解法二:原方程可化为x 2-12x+27=0. a=1,b=-12,c=27.∵b 2-4ac=(-12)2-4×1×27=36>0, ∴x=12±√362×1=12±62=6±3. 因此,原方程的根为x 1=3,x 2=9.18.解析(1)如图:(2)1 800×30%=540(人).∴估计该校对“工业设计”最感兴趣的学生人数是540人.).(3)0.13(或13%或1310019.解析(1)证明:又∵∠A=∠C,∴△MBA≌△MGC.∴MB=MG.又∵MD⊥BC,∴BD=GD.∴CD=CG+GD=AB+BD.(2)2+2√2.评析本题把圆的知识放到数学文化背景上考查,既普及了数学文化又考查了圆的知识,还有助于提高学生的阅读能力.20.解析(1)方案A:函数表达式为y=5.8x.方案B:函数表达式为y=5x+2 000.(2)由题意,得5.8x<5x+2 000.解不等式,得x<2 500.∴当购买量x 的取值范围为2 000≤x<2 500时,选用方案A 比方案B 付款少. (3)他应选择方案B.评析 本题考查了一次函数的应用,根据题意准确地建立数学模型是解决问题的关键. 21.解析 如图,设G 为射线AG 与线段CD 的交点. 则∠CAG=30°.在Rt △ACG 中,CG=AC ·sin 30°=50×12=25(cm). 由题意,得GD=50-30=20(cm), ∴CD=CG+GD=25+20=45(cm).连接FD 并延长与BA 的延长线交于点H. 由题意,得∠H=30°.在Rt △CDH 中, CH=CD sin30°=2CD=90(cm),∴EH=EC+CH=AB-BE-AC+CH=300-50-50+90=290(cm). 在Rt △EFH 中,EF=EH ·tan 30°=290×√33=290√33(cm). 答:支撑角钢CD 的长为45 cm,EF 的长为290√33cm. 评析 把解直角三角形问题与现代绿色能源的建设结合在一起,是数学应用的一个方向,引导了学生在学习中要多关注现实生活.22.解析 (1)菱形.(2)证明:如图,作AE ⊥CC'于点E.由旋转得AC'=AC,∴∠CAE=∠C'AE=12α=∠BAC. 由题意知BA=BC,∴∠BCA=∠BAC. ∴∠CAE=∠BCA,∴AE ∥BC. 同理,AE ∥DC',∴BC ∥DC'.又∵BC=DC',∴四边形BCC'D 是平行四边形. 又∵AE ∥BC,∠CEA=90°, ∴∠BCC'=180°-∠CEA=90°, ∴四边形BCC'D 是矩形. (3)过点B 作BF ⊥AC,垂足为F. ∵BA=BC,∴CF=AF=12AC=12×10=5(cm).在Rt △BCF 中,BF=√BC 2-CF 2=√132-52=12(cm).在△ACE 和△CBF 中,∵∠CAE=∠BCF,∠CEA=∠BFC=90°,∴△ACE ∽△CBF. ∴CE BF =ACBC,即CE 12=1013,解得CE=12013.当四边形BCC ″D'恰好为正方形时,分两种情况: ①点C ″在边C'C 上,a=C'C-13=24013-13=7113. ②点C ″在C'C 的延长线上,a=C'C+13=24013+13=40913.综上所述,a 的值为7113或40913. (4)答案不唯一. 例:如图.平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A'C'D,连接A'B,DC.结论:四边形A'BCD 是平行四边形.23.解析 (1)∵抛物线y=ax 2+bx-8经过点A(-2,0),D(6,-8), ∴{4a -2b -8=0,36a +6b -8=-8.解得{a =12,b =-3. ∴抛物线的函数表达式为y=12x 2-3x-8.∵y=12x 2-3x-8=12(x-3)2-252, ∴抛物线的对称轴为直线x=3.又∵抛物线与x 轴交于A,B 两点,点A 的坐标为(-2,0), ∴点B 的坐标为(8,0).设直线l 的函数表达式为y=kx(k ≠0). ∵点D(6,-8)在直线l 上, ∴6k=-8,解得k=-43.∴直线l 的函数表达式为y=-43x. ∵点E 为直线l 和抛物线对称轴的交点, ∴点E 的横坐标为3,纵坐标为-43×3=-4, 即点E 的坐标为(3,-4).(2)抛物线上存在点F,使△FOE≌△FCE.点F的坐标为(3-√17,-4)或(3+√17,-4).(3)解法一:分两种情况:①当OP=OQ时,△OPQ是等腰三角形.∵点E的坐标为(3,-4),∴OE=√32+42=5.过点E作直线ME∥PB,交y轴于点M,交x轴于点H,则OMOP =OEOQ.∴OM=OE=5.∴点M的坐标为(0,-5).设直线ME的函数表达式为y=k1x-5(k1≠0).∴3k1-5=-4,解得k1=13.∴ME的函数表达式为y=13x-5.令y=0,得13x-5=0,解得x=15.∴点H的坐标为(15,0).又∵MH∥PB,∴OPOM =OBOH,即-m5=815,∴m=-83.②当QO=QP时,△OPQ是等腰三角形.∵当x=0时,y=12x 2-3x-8=-8, ∴点C 的坐标为(0,-8).∴CE=√32+(8-4)2=5.∴OE=CE.∴∠1=∠2.又∵QO=QP,∴∠1=∠3.∴∠2=∠3,∴CE ∥PB.设直线CE 交x 轴于点N,其函数表达式为y=k 2x-8(k 2≠0),∴3k 2-8=-4,解得k 2=43. ∴CE 的函数表达式为y=43x-8. 令y=0,得43x-8=0.∴x=6.∴点N 的坐标为(6,0).∵CN ∥PB,∴OP OC =OB ON ,∴-m 8=86,解得m=-323. 综上所述,当m 的值为-83或-323时,△OPQ 是等腰三角形.解法二:设抛物线的对称轴交直线PB 于点M,与x 轴交于点H.分两种情况:①当QO=QP 时,△OPQ 为等腰三角形.当x=0时,y=12x 2-3x-8=-8,∴点C 的坐标为(0,-8).∵点E 的坐标为(3,-4),∴OE=√32+42=5,CE=√(8-4)2+32=5,∴OE=CE,∴∠1=∠2.∴∠1=∠3,∴∠2=∠3,∴PB∥CE.又∵HM∥y轴,∴四边形PMEC是平行四边形.∴EM=CP=-8-m.∴HM=HE+EM=4+(-8-m)=-4-m,BH=8-3=5. ∵HM∥y轴,∴△BHM∽△BOP,∴HM OP =BH BO,∴-4-m-m =5 8 ,∴m=-323.②当OP=OQ时,△OPQ为等腰三角形.∵EH∥y轴,∴△OPQ∽△EMQ,∴EQ OQ =EMOP,∴EQ=EM.∴EM=EQ=OE-OQ=OE-OP=5-(-m)=5+m. ∴HM=4-(5+m)=-1-m.∵EH ∥y 轴,∴△BHM ∽△BOP.∴HM OP =BH BO.∴-1-m -m =58, ∴m=-83.∴当m 的值为-83或-323时,△OPQ 为等腰三角形. 评析 本题考查学生的综合探究能力,通过对存在性和结论开放性问题的探究,考查学生综合运用所学知识的能力.第(3)问考查学生运用分类讨论的思想方法解决问题的能力.。

2016年山西省中考数学真题含答案解析

2016年山西省中考数学真题含答案解析

山西省2016年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.16-的相反数是( )A .16B .6-C .6D .16- 2.不等式组50,26x x +⎧⎨⎩><的解集是( )A .5x ->B .3x <C .53x -<<D .5x < 3.以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某校篮球队员的身高4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则该几何体的左视图是( )ABC D5.我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( ) A .65.510⨯千米 B .75.510⨯千米 C .65510⨯千米 D .80.5510⨯千米6.下列运算正确的是( )A .239()24-=-B .236(3)9a a =C .3515525--÷=D .85032-=-7.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运kg x 货物,则可列方程为( )A .50008000600x x =- B .50008000600x x =+ C .50008000600x x=+D .50008000600x x =- 8.将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( )A .2(1)13y x =+-B .2(5)3y x =--C .2(5)13y x =--D .2(1)3y x =+-9.如图,在□ABCD 中,AB 为O e 的直径,O e 与DC 相切于点E ,与AD 相交于点F ,已知12AB =,60C ∠=o ,则»FE的长为( ) A .π3B .π2C .πD .2π10.宽与长的比是51-(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点,,E F 连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作GH AD ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填写在题中的横线上)11.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,)1-,表示桃园路的点的坐标为()1,0-,则表示太原火车站的点(正好在网格点上)的坐标是 .12.已知点1(1,)m y -,2(3,)m y -是反比例函数(0)my m x=<图象上的两点,则1y 2y (填“>”或“=”或“<”).13.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).第1个 第2个 第3个14.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为 . 15.如图,已知点C 为线段AB 的中点,CD AB ⊥且4CD AB ==,连接AD ,BE AB ⊥,AE 是DAB ∠的平分线,与DC 相交于点F ,EH DC ⊥于点G ,交AD 于点H ,则HG 的长为 .三、解答题(本大题共8小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分) (1)计算:2101(3)()82(2)5----⨯+-;(2)先化简,再求值:222211x x xx x ---+,其中2x =-.17.(本小题满分7分) 解方程:222(3)9x x -=-.18.(本小题满分8分)每年5月的第二周为“职业教育活动周”,2016年山西省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校教务处随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).请解答以下问题:(1)补全条形统计图和扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中,随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 .________________ _____________19.(本小题满分7分)阿基米德折弦定理阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al Biruni-(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al Biruni-译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,AB和BC是Oe的两条弦(即折线ABC是圆的一条折弦),BC AB>,M是¼ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD AB BD=+.下面是运用“截长法”证明CD AB BD=+的部分证明过程.证明:如图2,在CB上截取CG ABMA MB MC和MG.∵M是=,连接,,¼=.ABC的中点,∴MA MC……任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于Oe,AB= 2,D为»AC上一点,∠=o,AE BD45ABD⊥与点E,则△BDC的周长是.20.(本小题满分7分)山西省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg (含2000kg 和5000kg )的客户有两种销售方案(客户只能选择其中一种方案):方案A :每千克5.8元,由基地免费送货. 方案B :每千克5元,客户需支付运费2000元.(1)请分别写出按方案A ,方案B 购买这种苹果的应付款y (元)与购买量x (kg )之间的函数表达式;(2)求购买量x 在什么范围时,选用方案A 比方案B 付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.21.(本小题满分10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300 cm ,AB 的倾斜角为30o ,50cm BE CA ==,支撑角钢,CD EF 与底座地基台面接触点分别为,,D F CD 垂直于地面,FE AB ⊥于点E .两个底座地基高度相同(即点,D F 到地面的垂直距离相同),均为30 cm ,点A 到地面的垂直距离为50 cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号).22.(本小题满分12分) 综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图1,将一张菱形纸片ABCD (90BAD ∠o >)沿对角线AC 剪开,得到△ABC 和△ACD .图1图2图3图4操作发现(1)将图1中的△ACD 以A 为旋转中心,按逆时针方向旋转角α,使BAC α=∠,得到如图2所示的△'AC D ,分别延长BC 和C D '交于点E ,则四边形C ACE '的形状是 ;(2)创新小组将图1中的△ACD 以A 为旋转中心,按逆时针方向旋转角α,使2BAC α=∠,得到如图3所示的△'AC D ,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个结论; 实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中13cm BC =,10cm AC =,然后提出一个问题:将△'AC D 沿着射线DB 方向平移cm a ,得到△''''A C D ,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的△ACD 在同一平面内进行一次平移,得到△'''A C D ,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.23.(本小题满分14分) 探究与实践如图,在平面直角坐标系中,已知抛物线28y ax bx =+-与x 轴交于,A B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点,A D 的坐标分别为2,0,6()(,8)--. (1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使FOE FCE △≌△,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,)m ,直线PB 与直线l 交于点Q .试探究:当m 为何值时,△OPQ 是等腰三角形.山西省2016年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】因为()0a a +-=,所以16-的相反数是16,故选A. 【提示】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案. 【考点】相反数 2.【答案】C【解析】解502 6 x x +>⎧⎨<⎩①②,由①得5x >-,由②得3x <,所以不等式组的解集是53x -<<,故选C.【提示】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可. 【考点】解一元一次不等式组 3.【答案】C【解析】A.调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查; B.调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查; C.调查全国中小学生课外阅读情况,中学生的人数比较多,适合采取抽样调查; D.调查某篮球队员的身高,此种情况数量不是很大,故必须普查.【提示】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查. 【考点】全面调查与抽样调查 4.【答案】A【解析】从左面看第一列可看到3个小正方形,第二列有1个小正方形,故选A. 【提示】根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定. 【考点】简单几何体的三视图 5.【答案】B【解析】将55 000 000用科学记数法表示为:75.510⨯,故选B.【提示】科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【考点】科学记数法表示较大的数 6.【答案】D 【解析】A.239()24-=,故A 错误; B.236(3)27a a =,故B 错误; C.3552353111555525555--÷=÷=⨯==,故C 错误;=- D.【提示】根据实数的运算可判断A ;根据幂的乘方可判断B ;根据同底数幂的除法可判断C ;根据实数的运算可判断D .【考点】实数的运算,幂的乘方,同底数幂的除法 7.【答案】B【解析】甲搬运5 000 kg 所用的时间与乙搬运8 000 kg 所用的时间相等,所以50008000600x x =+,故选B.【提示】设甲每小时搬运kg x 货物,则甲搬运5000kg 所用的时间是:x , 根据题意乙每小时搬运的货物为600x +,乙搬运8 000 kg 所用的时间为8000600x +;再根据甲搬运5 000 kg 所用的时间与乙搬运8 000 kg 所用的时间相等列方程. 【考点】分式方程的应用 8.【答案】D【解析】将抛物线化为顶点式为:2(2)8y x =--,左平移3个单位,再向上平移5个单位,得到抛物线的表达式为2(1)3y x =+-.故选D.【提示】先将一般式化为顶点式,根据左加右减,上加下减来平移. 【考点】抛物线的平移 9.【答案】C 【解析】18023180609030EOF ∠=︒-∠-∠=︒-︒-︒=︒,1226r =÷=,∴»2π30π6π180180n r F x E===g g ,故选C. 【提示】如图连接OF ,OE ,由切线可知490∠=︒,故由平行可知390∠=︒;由OF OA =,且60C ∠=︒,所以160C ∠=∠=︒,所以OFA △为等边三角形,∴260∠=︒,从而可以得出»FE所对的圆心角然后根据弧长公式即可求出.【考点】切线的性质,求弧长10.【答案】D【解析】(51)CG CF =-,2GH CF =, ∴(51)51CG CF GH --==, ∴矩形DCGH 是黄金矩形,故选D.【提示】由作图方法可知5DF CF =,所以(51)CG CF =-,且2GH CD CF ==,从而得出黄金矩形.【考点】黄金分割的识别第Ⅱ卷二、填空题 11.【答案】(3,0)【解析】根据双塔西街点的坐标为(0,1)-和桃园路的点的坐标为(0,1)-,可知大南门为坐标原点,从而求出太原火车站的点(正好在网格点上)的坐标. 【提示】确定坐标原点是解题的关键. 【考点】坐标的确定 12.【答案】>【解析】在反比函数my x=中,0m <,10m -<,30m -<,在第四象限y 随着x 的增大而增大,且13m m ->-,所以12y y >.【提示】由反比函数0m <,则图象在第二四象限分别都是y 随着x 的增大而增大,∵0m <,【解析】如图(1)由勾股定理可得DA ==;由AE 是DAB ∠的平分线可知12∠=∠;由CD AB ⊥,BE AB ⊥,EH DC ⊥可知四边形GEBC 为矩形, ∴HE AB ∥,∴23∠=∠, ∴13∠=∠,故EH HA =,设EH HA x ==,则2GH x =-,DH x =,∵HE AC ∥,∴DGH DCA △∽△,∴DH HGDA AC =22x -=, 解得55x =-,故55235HG EH EG =-=--=-.【提示】由勾股定理求出DA ;由平行得出12∠=∠,由角平分得出23∠=∠,从而得出13∠=∠,所以HE HA =.再利用DGH DCA △∽△即可求出HE ,从而求出HG.【考点】实数的运算,负指数幂,零次幂;分式的化简求值 17.【答案】13x =,29x =【解析】解法一:原方程可化为22(3)(3)(3)x x x -=+-,∴22(3)(3)(3)0x x x --+-=, ∴(3)[2(3)(3)]0x x x ---+=,∴(3)(-9)0x x -=,∴3090x x -=-=或,∴13x =,29x =. 解法二:原方程可化为212270x x -+=,这里1a =,12b =-,27c =, ∵224(12)4127360b ac -=--⨯⨯=>,∴1236126212x ±±==⨯,因此原方程的根为13x =,29x =.【提示】方法一:观察方程,可先分解因式,然后提取3x -,利用公式法求解; 方法二:将方程化为一般式,利用公式法求解. 【考点】解一元二次方程 18.【答案】(1)见解析(2)该校对“工业设计”最感兴趣的学生约是540人 (3)0.13(或13%或13100) 【解析】(1)补全的扇形统计图和条形统计图如图所示:(2)180030%540⨯=(人),∴估计该校对“工业设计”最感兴趣的学生是540人.(3)140%30%8%9%13%----=,∴正好抽到对“机电维修”最感兴趣的学生的概率13%. 【提示】(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可;(2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1 800乘以30%; (3)通过对扇形的观察可知.【考点】条形统计图,扇形统计图,用样本估计总体,简单概率 19.【答案】(1)证明:又∵A C ∠=∠, ∴MBA MGC △≌△, ∴MB MG =.又∵MD BC ⊥,BD GD =, ∴CD CG GD AB BD =+=+.(2)由(1)的证明方法可证BE ED DC =+,【提示】(1)已截取CG AB =,∴只需证明BD DG =;且MD BC ⊥,所以需证明MB MG =,故证明MBA MGC △≌△即可;(2)因为2AB =,故利用三角函数可得BE ;由阿基米德正弦定理可得BE DE DC =+,则BDC △周长BC CD BD BC DC DE BE =++=+++BC DC DE BE =+++()BC BE BE =++2BC BE =+,然后代入计算可得答案.【提示】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD ,连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF .当四边形BCC D '''恰好为正方形时,分两种情况:①点C ''在边C C '上,2407113131313a C C ='-=-=; ②点C ''在边C C '的延长线上,24040913131313a C C ='+=+=.综上所述,a的值为7113或40913.(4)本小题答案不唯一.例:画出正确图形(如下图所示),平移及构图方法:将ACD△沿着射线CA方向平移,平移距离为12AC的长度,得到A C D''△,连接A B',C D',如图4.结论:四边形是平行四边形.【提示】(1)利用旋转的性质和菱形的判定证明;(2)利用旋转的性质以及矩形的判定证明;(3)利用平移的性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情况当点C''在边C C'上和点C''在边C C'的延长线上时;(4)开放型题目,答对即可.【考点】几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定,23.【答案】(1)抛物线的函数表达式为21382y x x=--,点B的坐标为(8,0),点E的坐标为(3,4)-(2)抛物线上存在点F,使FOE FCE∆∆≌,点F的坐标为(317,4)--或(317,4)+-(3)当m的值为83-或323-时,OPQ∆是等腰三角形【解析】(1)∵抛物线28y ax bx=+-经过点(2,0)A-,(6,8)D-,∴428036688a ba b--=⎧⎨+-=-⎩,解得123ab⎧=⎪⎨⎪=-⎩,∴抛物线的函数表达式为21382y x x=--.∵22112538(3)222y x x x=--=--,∴抛物线的对称轴为直线3x=.又∵抛物线与x轴交于A,B两点,点A的坐标为(2,0)-,∴点B的坐标为(8,0).设直线l的函数表达式为y kx=,∵点(6,8)D-在直线l上∴68k=-,解得43k=-,当0x =时,2388y x x =--=-,∴点C 的坐标为(0,8)-,设直线CE 交x 轴于点N ,其函数表达式为238y k x =-,∴2384k -=-,解得243k =, ∴CE 的函数表达式为483y x =-,令0y =,得4803x -=,∴6x =,∴点N 的坐标为(6,0). ∵CN PB ∥,∴OP OB =,∴8m -=,解得32m =-.解法二: 当0x =时,213882y x x =--=-,∴点C 的坐标为(0,8)-,∴点E 的坐标为(3,4)-, ∴22345OE =+=,223(84)5CE =+-=,∴OE CE =,∴12∠=∠, 设抛物线的对称轴交直线PB 于点M ,交x 轴于点H .分两种情况: ①当QO QP =时,OPQ △是等腰三角形. ∴13∠=∠,∴23∠=∠,∴CE PB ∥又∵HM y ∥轴,∴四边形PMEC 是平行四边形,∴8EM CP m ==--, ∴4(8)4HM HE EM m m =+=+--=--,835BH =-=, ∵HM y ∥轴,∴BHM BOP ~△△,∴HM BHOP BO=∴458m m --=-,∴323m =- ②当OP OQ =时,OPQ △是等腰三角形. ∵HM y ∥轴,∴OPQ EMQ ~△△,∴EQ EMOQ OP=,∴EQ EM =, ∴5()5EM EQ OE OQ OE OP m m ==-=-=--=+,∴4(5)HM m =-+ ∵HM y ∥轴,∴BHM BOP ~△△,∴HM BH OP BO =,∴158m m --=-,∴83m =-.∴综上所述,当m 的值为83-或323-时,OPQ △是等腰三角形.【提示】(1)将A ,D 的坐标代入函数解析式,解二元一次方程即可求出函数表达式; 点B 坐标:利用抛物线对称性,求出对称轴结合A 点坐标即可求出B 点坐标;点E 坐标:E 为直线l 和抛物线对称轴的交点,利用D 点坐标求出l 表达式,令其横坐标为3x=,即可求出点E的坐标;=,所以点F肯定在OC的垂直平分线上,所以点F (2)利用全等对应边相等,可知FO FC-,带入抛物线表达式,即可求出横坐标;的纵坐标为4(3)根据点P在y轴负半轴上运动,∴分两种情况讨论,再结合相似求解.【考点】求抛物线的解析式,求点坐标,全等构成,等腰三角形的构成。

山西省太原市2016届中考数学二模试卷(含解析)

山西省太原市2016届中考数学二模试卷(含解析)

2016年山西省太原市中考数学二模试卷一、选择题:本大题共10小题,每小题3分,共30分1.计算﹣2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.52.如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于()A.80° B.70° C.60° D.50°3.如图是一个零件的立体图,该零件的俯视图是()A. B.C.D.4.一元二次方程x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.只有一个实数根5.国家统计局发布的数据显示,初步核算,一季度国内生产总值约159000亿元,按可比价格计算,同比增长6.7%,数据159000亿用科学记数法可表示为()A.1.59×108B.15.9×1012C.1.59×1013D.1.59×10146.若四边形的两条对角线分别平分两组对角,则该四边形一定是()A.平行四边形B.菱形 C.矩形 D.正方形7.某校举行“我爱我校”演讲比赛,由7名学生组成评委组.小明统计了每位评委对某参赛选手的评分并制成如下表格:如果以去掉一个最高分和一个最低分后其他5名评委的平均分记为选手的最后得分,那么表中的数据一定不发生变化的是()A.众数 B.中位数C.平均数D.方差8.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=2,点A在函数y=﹣(x <0)的图象上.将矩形向右平移6个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x >0)的图象上,边C1O1与此图象交于点P,则点P的纵坐标为()A.B.C.D.9.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的图象可能是()A.B.C.D.10.有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1 B.方案2 C.方案3 D.方案4二、填空题:本大题共6小题,每小题3分,共18分11.计算5a2b•3ab4的结果是.12.计算:﹣= .13.如图,在▱ABCD中,对角线AC,BD交于点O,OE∥DC交BC于点E,若△BEO的面积为1,则▱ABCD的面积等于.14.超市招聘一名收银员,下面是三名应聘者各项测试成绩:根据实际工作需要,该超市将计算机、商品知识和语言三项测试成绩按4:3:2的比例确定各人的素质测试成绩,三名应聘者中将被录用.15.如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D 逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于.16.建模是数学的核心素养之一,小明在计算+++…+时利用了如下的正方形模型.第1次分割,把正方形的面积三等分,阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…由此计算+++…+的结果是(用含n的代数式表示)三、解答题:本大题共8小题,共72分17.(1)计算:()﹣1+tan30°﹣|﹣2|﹣(π﹣2016)0(2)解方程: +=1.18.阅读与计算:对于任意实数a,b,规定运算@的运算过程为:a@b=a2+ab.根据运算符号的意义,解答下列问题.(1)计算(x﹣1)@(x+1);(2)当m@(m+2)=(m+2)@m时,求m的值.19.根据我国《环境空气质量指数AQI技术规定》(试行),AQI共分0﹣50,51﹣100,101﹣150,151﹣200,201﹣300和大于300六级,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于150时,可以户外运动;空气质量指数151及以上,不适合进行旅游等户外运动,如表是某市未来10天的空气质量指数预测:(1)该市市民在这10天内随机选取1天进行户外运动,求这10天该市市民不适合户外运动的概率;(2)一名外地游客计划在这10天内到该市旅游,随机选取连续2天游玩,求这10天中适合他旅游的概率.20.某开发公司研制出一种新型产品,该产品的成本价为每件2000元,批发价定为每件2600元,为了鼓励批发商经销该产品,公司决定:批发商一次批发这种产品不超过10件,每件按2600元批发;一次批发这种产品超过10件,每增加1件,所批发的产品每件均降低10元,但不低于成本价.(1)如果批发单价不低于每件2200元,求批发商一次最多能批发这种产品多少件;(2)如果公司在一次批发这种产品中可获利12000元,求这次批发出这种产品多少件.21.实践与操作:如图,在△ABC中,AB=3,∠C=30°.(1)尺规作图:作△ABC的外接圆⊙O;(要求:保留作图痕迹,不写作法)(2)在你按(1)中要求所作的图中,画⊙O的切线BF,BF与CA的延长线交于点F,若CF ⊥BF,求BC的长.22.综合与实践:制作礼品盒如图(1),小颖将边长为60cm的正方形硬纸片ABCD,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,如图(2),点A,B,C,D四点重合于点P,做成一个底面是正方形的长方体形状的礼品盒.设礼品盒的侧面积为Scm2,AE=FB=xcm.(1)求S与x之间的关系式及S的最大值;(2)小颖有一底面半径为15cm,高为15cm的圆柱体形状的礼品,该礼品能否底面朝下放入她做成的礼品盒?若能,求出x的值;若不能,请说明理由.23.数学活动:图形的变化问题情境:如图(1),△ABC为等腰直角三角形,∠ACB=90°,E是AC边上的一个动点(点E与A,C不重合),以CE为边在△ABC外作等腰直角△ECD,∠ECD=90°,连接BE,AD.猜想线段BE,AD之间的关系.(1)独立思考:请直接写出线段BE,AD之间的关系;(2)合作交流:“希望”小组受上述问题的启发,将图(1)中的等腰直角△ECD绕着点C 顺时针方向旋转至如图(2)的位置,BE交AC于点H,交AD于点O.(1)中的结论是否仍然成立,请说明理由.(3)拓展延伸:“科技”小组将(2)中的等腰直角△ABC改为Rt△ABC,∠ACB=90°,AC=8,BC=6,将等腰直角△ECD改为Rt△ECD,∠ECD=90°,CD=4,CE=3.试猜想BD2+AE2是否为定值,结合图(3)说明理由.24.综合与探究:如图,直线y=﹣x+3与y轴交于点A,与x轴交于点B,点P从点B出发以每秒1个单位长度的速度沿BA边向终点A运动,同时点Q以相同的速度从坐标原点O 出发沿OB边向终点B运动,设点P运动的时间为t秒.(1)求点A,B的坐标;(2)设△OPQ的面积为S,求S与运动时间t之间的函数关系式;(3)在点P,Q运动的过程中,是否存在点N,使得以点A,P,Q,N为顶点的四边形是矩形?若存在,求t的值并直接写出点N的坐标;若不存在,请说明理由.2016年山西省太原市中考数学二模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.计算﹣2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.5【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数即可求解.【解答】解:﹣2﹣3=﹣2+(﹣3)=﹣5.故选:A.2.如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于()A.80° B.70° C.60° D.50°【考点】平行线的判定与性质.【分析】先根据:∠1=70°,∠2=70°,判定AB∥CD,再根据平行线的性质,求得∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴AB∥CD,∴∠3=∠4,又∵∠3=60°,∴∠4的度数等于60°.故选(C)3.如图是一个零件的立体图,该零件的俯视图是()A. B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:该零件的俯视图为:故选D.4.一元二次方程x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.只有一个实数根【考点】根的判别式.【分析】首先求得△=b2﹣4ac的值,然后即可判定一元二次方程x2+3x+1=0的根的情况.【解答】解:∵a=1,b=3,c=1,∴△=b2﹣4ac=32﹣4×1×1=5>0,∴有两个不相等的实数根.故选A.5.国家统计局发布的数据显示,初步核算,一季度国内生产总值约159000亿元,按可比价格计算,同比增长6.7%,数据159000亿用科学记数法可表示为()A.1.59×108B.15.9×1012C.1.59×1013D.1.59×1014【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将159000亿用科学记数法表示为:1.59×1013.故选:C.6.若四边形的两条对角线分别平分两组对角,则该四边形一定是()A.平行四边形B.菱形 C.矩形 D.正方形【考点】菱形的判定.【分析】由题意得出∠1=∠2=∠ABC,∠3=∠4=∠ADC,由三角形内角和定理得出∠BAD=∠BCD,同理:∠ABC=∠ADC,证出四边形ABCD是平行四边形,证出∠1=∠3,得出AB=AD,即可得出结论.【解答】解:如图所示:∵BD平分∠ABC、∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC,∵∠BAD+∠1+∠3=180°,∠BCD+∠2+∠4=180°,∴∠BAD=∠BCD,同理:∠ABC=∠ADC,∴四边形ABCD是平行四边形,∠1=∠3,∴AB=AD,∴四边形ABCD是菱形.故选:B.7.某校举行“我爱我校”演讲比赛,由7名学生组成评委组.小明统计了每位评委对某参赛选手的评分并制成如下表格:如果以去掉一个最高分和一个最低分后其他5名评委的平均分记为选手的最后得分,那么表中的数据一定不发生变化的是()A.众数 B.中位数C.平均数D.方差【考点】方差;算术平均数;中位数;众数.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选B.8.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=2,点A在函数y=﹣(x <0)的图象上.将矩形向右平移6个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x >0)的图象上,边C1O1与此图象交于点P,则点P的纵坐标为()A.B.C.D.【考点】反比例函数图象上点的坐标特征;矩形的性质.【分析】先根据OB=2,点A在函数y=﹣(x<0)的图象上求出AB的长,再由平移的性质得出B1的坐标,进而得出反比例函数的解析式,求出O1的坐标,进而可得出结论.【解答】解:∵OB=2,点A在函数y=﹣(x<0)的图象上,∴AB=4.∵将矩形向右平移6个单位长度到A1B1O1C1的位置,∴(4,0),∴A1(4,4),∴k=16,即反比例函数的解析式为y=.∵OB=2,∴O1(6,0),∴当x=6时,y==,∴点P的纵坐标为.故选D.9.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据两个函数的交点坐标可以排除A、B,根据函数的性质可以判断C、D哪个是正确,本题得以解决.【解答】解:解得或即一次函数y=ax+b和二次函数y=ax2+bx的交点为(0,0)和(),故A、B错误;选项C中由一次函数的图象可知,a>0,b<0,则,由二次函数图象可知,a>0,b<0,故C正确;选项D中,由一次函数的图象可知,a>0,b>0,由二次函数的图象可知,a<0,b<0,故选项D错误.故选C.10.有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1 B.方案2 C.方案3 D.方案4【考点】作图—应用与设计作图.【分析】认真观察图形,分别利用锐角三角函数关系得出4个方案的管道长度进而比较得出答案.【解答】解:设等边三角形的边长为a,方案1:铺设路线的长为AB+AC=2a,方案2:△ABC中的高线=AB•sin60°=a,故铺设路线的长度为AB+AD+DC=a+a;方案3:△ABC中的高线=AB•sin60°=a,故铺设路线的长度为BC+a=a+a;方案4:如图所示:过点O作OD⊥BC于点D,∵BD=,则BO==a,铺设路线的长为AO+BO+CO=3×a=a;因为a+a>2a>a+a>a,所以方案4铺设路线最短.故选D.二、填空题:本大题共6小题,每小题3分,共18分11.计算5a2b•3ab4的结果是15a3b5.【考点】单项式乘单项式.【分析】依据单项式乘单项式法则进行计算即可.【解答】解;原式=5×3a2•a•b•b4=15a3b5.故答案为:15a3b5.12.计算:﹣= ﹣.【考点】分式的加减法.【分析】先通分,再把分子相加减即可.【解答】解:原式=﹣====﹣.故答案为:﹣.13.如图,在▱ABCD中,对角线AC,BD交于点O,OE∥DC交BC于点E,若△BEO的面积为1,则▱ABCD的面积等于8 .【考点】平行四边形的性质.【分析】由平行四边形的性质和相似三角形的性质得出△BCD 的面积=4△BEO 的面积=4,即可得出▱ABCD 的面积.【解答】解:∵四边形ABCD 是平行四边形,∴OA=OC=AC ,BCD 的面积=四边形ABCD 的面积, ∵OE ∥DC , ∴△BEO ∽△BCD ,∴△BEO 的面积:△BCD 的面积=1:4, ∴△BCD 的面积=4△BEO 的面积=4×1=4, ∴▱ABCD 的面积=4×2=8; 故答案为:8.14.超市招聘一名收银员,下面是三名应聘者各项测试成绩:根据实际工作需要,该超市将计算机、商品知识和语言三项测试成绩按4:3:2的比例确定各人的素质测试成绩,三名应聘者中 小赵 将被录用. 【考点】加权平均数.【分析】分别计算出三个人的加权平均数,然后比较即可.【解答】解:∵小李的平均数是: =,小张的平均数是: =,小赵的平均数是:=,∴小赵的得分最高,故小赵被录用.故答案为:小赵.15.如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D 逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120 .【考点】旋转的性质.【分析】根据题意画出符合的两种情况,①当B点落在AB上时,求出∠B=∠DB°,即可求出∠B′DB;②当B点落在AC上时,根据题意求出∠B′DC,即可求出∠B′DB的度数,即可得出答案.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′DB=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.16.建模是数学的核心素养之一,小明在计算+++…+时利用了如下的正方形模型.第1次分割,把正方形的面积三等分,阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…由此计算+++…+的结果是﹣(用含n的代数式表示)【考点】规律型:图形的变化类.【分析】由阴影部分面积=1﹣空白部分面积,可得第n次分割图中: =1﹣,两边除以2可得答案.【解答】解:第1次分割,阴影部分的面积为,空白部分面积为1﹣=;第2次分割,阴影部分的面积之和为+,空白部分面积为1﹣(+)=;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,所有阴影部分的面积之和为,最后空白部分的面积是.根据第n次分割图可得等式: =1﹣,两边同除以2,得+++…+=﹣.故答案为:﹣.三、解答题:本大题共8小题,共72分17.(1)计算:()﹣1+tan30°﹣|﹣2|﹣(π﹣2016)0(2)解方程: +=1.【考点】实数的运算;解分式方程;特殊角的三角函数值.【分析】(1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣2+﹣1=;(2)去分母得:1+6x=2x﹣4,解得:x=﹣,经检验x=﹣是分式方程的解.18.阅读与计算:对于任意实数a,b,规定运算@的运算过程为:a@b=a2+ab.根据运算符号的意义,解答下列问题.(1)计算(x﹣1)@(x+1);(2)当m@(m+2)=(m+2)@m时,求m的值.【考点】整式的混合运算;解一元一次方程.【分析】(1)根据题目中的新运算可以化简题目中的式子;(2)根据题目中的新运算可以对题目中的式子进行转化,从而可以求得m的值.【解答】解:(1)∵a@b=a2+ab,∴(x﹣1)@(x+1)=(x﹣1)2+(x﹣1)(x+1)=x2﹣2x+1+x2﹣1=2x2﹣2x;(2)∵a@b=a2+ab,∴m@(m+2)=(m+2)@m即m2+m(m+2)=(m+2)2+(m+2)m,化简,得4m+4=0,解得,m=﹣1,即m的值是﹣1.19.根据我国《环境空气质量指数AQI技术规定》(试行),AQI共分0﹣50,51﹣100,101﹣150,151﹣200,201﹣300和大于300六级,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于150时,可以户外运动;空气质量指数151及以上,不适合进行旅游等户外运动,如表是某市未来10天的空气质量指数预测:(1)该市市民在这10天内随机选取1天进行户外运动,求这10天该市市民不适合户外运动的概率;(2)一名外地游客计划在这10天内到该市旅游,随机选取连续2天游玩,求这10天中适合他旅游的概率.【考点】概率公式.【分析】(1)先找出市民不适合户外运动的天数,再根据概率公式即可得出结论;(2)列举出适合连续2天游玩的情况,再根据概率公式求解即可.【解答】解:(1)∵这10天该市市民户外运动的机会是相同的,其中不适合户外运动的天数分别是:13日,14日,19日,20日,∴这10天该市市民不适合户外运动的概率==;(2)∵这10天连续2天的组合共有9中可能情况,其中连续2天游玩的情况有4中,分别是(11,12),(15,16)(16,17),(17,18),∴适合他旅游的概率=.20.某开发公司研制出一种新型产品,该产品的成本价为每件2000元,批发价定为每件2600元,为了鼓励批发商经销该产品,公司决定:批发商一次批发这种产品不超过10件,每件按2600元批发;一次批发这种产品超过10件,每增加1件,所批发的产品每件均降低10元,但不低于成本价.(1)如果批发单价不低于每件2200元,求批发商一次最多能批发这种产品多少件;(2)如果公司在一次批发这种产品中可获利12000元,求这次批发出这种产品多少件.【考点】二次函数的应用.【分析】(1)设批发商一次最多能批发这种产品x件,根据题意得不等式即可得到结论;(2)设这次批发出这种产品y件,①当y=10时,通过计算得到y=10不成立,②当y>10时,根据题意得方程求得y1=30,y2=40,于是得到结论.【解答】解:(1)设批发商一次最多能批发这种产品x件,根据题意得:2600﹣10(x﹣10)≥2200,解得:x≤50,答:批发商一次最多能批发这种产品50件;(2)设这次批发出这种产品y件,①当y=10时,公司可获得利润:10=6000,∵6000<12000,∴y=10不成立,②当y>10时,根据题意得:y[2600﹣10(y﹣10)﹣2000]=12000,解得:y1=30,y2=40,答:这次批发出这种产品30件或40 件.21.实践与操作:如图,在△ABC中,AB=3,∠C=30°.(1)尺规作图:作△ABC的外接圆⊙O;(要求:保留作图痕迹,不写作法)(2)在你按(1)中要求所作的图中,画⊙O的切线BF,BF与CA的延长线交于点F,若CF ⊥BF,求BC的长.【考点】作图—复杂作图;切线的性质.【分析】(1)分别作AC和BC的垂直平分线,它们相交于点O,则以O为圆心,OA为半径作圆即可;(2)连接OA、OB,OA交BC于E,如图,根据切线的性质得OB⊥BF,再证明OB∥CF得到∠OBC=∠C=30°,利用圆周角定理得到∠AOB=2∠C=60°,于是可判定△OAB为等边三角形,所以∠ABC=30°,则可判断BC平分∠ABO,根据等边三角形的性质得AO⊥BC,利用垂径定理得到BE=CE,然后在Rt△ACE中,利用含30度的直角三角形三边的关系求出BE,从而得到BC的长.【解答】解:(1)如图,⊙O为所作;(2)连接OA、OB,OA交BC于E,如图,∵BF为切线,∴OB⊥BF,∵BF⊥CF,∴OB∥CF,∴∠OBC=∠C=30°,∵∠AOB=2∠C=60°,∵OA=OB,∴△OAB为等边三角形,∴∠ABC=30°,∴BC平分∠ABO,∴AO⊥BC,∴BE=CE,在Rt△ACE中,AE=AB=,BE=AE=,∴BC=2BE=3.22.综合与实践:制作礼品盒如图(1),小颖将边长为60cm的正方形硬纸片ABCD,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,如图(2),点A,B,C,D四点重合于点P,做成一个底面是正方形的长方体形状的礼品盒.设礼品盒的侧面积为Scm2,AE=FB=xcm.(1)求S与x之间的关系式及S的最大值;(2)小颖有一底面半径为15cm,高为15cm的圆柱体形状的礼品,该礼品能否底面朝下放入她做成的礼品盒?若能,求出x的值;若不能,请说明理由.【考点】二次函数的应用.【分析】(1)根据条件可以分别表示出阴影部分的面积,掀起的四个角上的四个等腰直角三角形的面积之和及底部正方形的面积就可以表示出S与x之间的函数关系式;将解析式化为顶点式就可以求出S的最大值;(2)设包装盒的底面正方形的边长为a,高为h,就可以得出AE=a,EF=60﹣2AE=60﹣a,h=EF=30﹣a,再三种情况讨论就可以得出结论.【解答】解:(1)∵AE=FB=xcm,∴EF的长为(60﹣2x)cm.图中阴影部分拼在一起是边长为EF的正方形,其面积为:(60﹣2x)2cm2,掀起的四个角上的四个等腰直角三角形的面积之和为:2x2cm2;盒底正方形的边长为x,其面积为2x2;∴S=602﹣(60﹣2x)2﹣4x2=240x﹣8x2∴S=﹣8(x2﹣30x)=﹣8(x﹣15)2+1800(0<x<30),∵a=﹣8<0.∴抛物线的开口向下,S有最大值.∴x=15cm时,侧面积最大为1800cm2,答:若包装盒侧面积S最大=1800cm2最大,x应取15cm.(2)包装盒的底面正方形的边长为a,高为h,∴AE=a,∴EF=60﹣2AE=60﹣a,∴h=EF=30﹣a,∴包装盒的高h随底面边长的增大而减小.①圆柱的底面朝下放入,此时包装盒高h不能小于15.∵圆柱的底面半径为15cm,∴盒底边长最小取30cm(放入如①图),∴h=30﹣a=30(﹣1)<15,故不能放下.②圆柱体侧面朝下放入,盒高h最小取30cm,此时底面边长最大为(30﹣30)cm.此时由两种特殊的防治方法:若按图1放置,此时盒底边长a取30cm,∴高为30﹣30.∵30>30﹣30,∴放不下;若按图2放置,此时盒底边长为a=30×+15×=cm,∵﹣(30﹣30)=30﹣>0,∴也不能放下.其他任意位置摆放,也不能放下,理由:实质上就是将边长为15和30的矩形放入另一矩形,如图3,此时矩形的面积S=(x+2y)(2x+y)=5xy+2(x2+y2),=5x=5,令x2=t(0<t<225),∴S=5+450,(x=0和15为图1情况,x=为图2情况)∴无论位置如何摆放,正方形的边长最小只能取到30cm,而30>30﹣30,不能放下.综上所述,不能放下这个几何体.23.数学活动:图形的变化问题情境:如图(1),△ABC为等腰直角三角形,∠ACB=90°,E是AC边上的一个动点(点E与A,C不重合),以CE为边在△ABC外作等腰直角△ECD,∠ECD=90°,连接BE,AD.猜想线段BE,AD之间的关系.(1)独立思考:请直接写出线段BE,AD之间的关系;(2)合作交流:“希望”小组受上述问题的启发,将图(1)中的等腰直角△ECD绕着点C 顺时针方向旋转至如图(2)的位置,BE交AC于点H,交AD于点O.(1)中的结论是否仍然成立,请说明理由.(3)拓展延伸:“科技”小组将(2)中的等腰直角△ABC改为Rt△ABC,∠ACB=90°,AC=8,BC=6,将等腰直角△ECD改为Rt△ECD,∠ECD=90°,CD=4,CE=3.试猜想BD2+AE2是否为定值,结合图(3)说明理由.【考点】几何变换综合题.【分析】(1)由△ABC和△CDE都是等腰直角三角形,得到的结论,直接判断出△BCE≌△ACD,再用互余判断出垂直;(2)由△ABC和△CDE都是等腰直角三角形,得到的结论,直接判断出△BCE≌△ACD,再用互余判断出垂直;(3)由条件用两边对应成比例,夹角相等判断出△BCE∽△ACD,再用勾股定理简单的计算即可.【解答】解:(1)∵△ABC和△CDE都是等腰直角三角形,∴BC=AC,CE=CD,∠BCE=∠ACD=90°,∴△BCE≌△ACD,∴BE=AD,∠CEB=∠CDA,∵∠CBE+∠CEB=90°,∴∠CBE+∠CDA=90°,∴BE⊥AD,(2)BE=CD,BE⊥AD,理由:∵△ABC是等腰直角三角形,∠ACB=90°∴AC=BC,∵△CDE是等腰直角三角形,∠ECD=90°,∴CD=CE,∴∠ACB+∠ACE=∠ECD+∠ACE,∴∠BCE=∠ACD,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠BHC=∠AHO,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AHO=90°,∴BE⊥AD;(3)是定值,理由:∵∠ECD=90°,∠ACB=90°,∴∠ACB=∠ECD,∴∠ACB+ACE=∠ECD+∠ACE=90°,∴∠BCE=ACD,∵AC=8,BC=6,CD=4,CE=3,∴=,∴△BCE∽△ACD,∴∠CBE=∠CAD,∵∠BHC=∠AHO,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BE⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AE2=OA2+OE2,AB2=OA2+OB2,DE2=OE2+OD2,∴BD2+AE2=OB2+OD2+OA2+OE2=AB2+DE2,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB2=100,在Rt△ECD中,∠ECD=90°,CD=4,CE=3,∴DE2=25,∴BD2+AE2=AB2+DE2=125.24.综合与探究:如图,直线y=﹣x+3与y轴交于点A,与x轴交于点B,点P从点B出发以每秒1个单位长度的速度沿BA边向终点A运动,同时点Q以相同的速度从坐标原点O 出发沿OB边向终点B运动,设点P运动的时间为t秒.(1)求点A,B的坐标;(2)设△OPQ的面积为S,求S与运动时间t之间的函数关系式;(3)在点P,Q运动的过程中,是否存在点N,使得以点A,P,Q,N为顶点的四边形是矩形?若存在,求t的值并直接写出点N的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)对于直线解析式,分别令x与y为0求出对应y与x的值,即可求出A与B 坐标;(2)如图1所示,过P作PH垂直于x轴,由题意求出OQ=BP=1,在直角三角形AOB中,利用勾股定理求出AB的长,进而求出sin∠ABO的值,根据BP=t表示出PH,分情况分类讨论表示出S与t的函数关系式即可;(3)存在点N,使得以点A,P,Q,N为顶点的四边形是矩形,分三种情况考虑:①如图2所示,当∠APQ=90°时,∠BPQ=∠AOB=90°;②如果∠PAQ=90°;③如果∠AQP=90°,当Q 与O重合时,t=0,此时N坐标为(4,3),分别求出t的值,进而相应求出N的坐标即可.【解答】解:(1)对于直线y=﹣x+3,令x=0,得到y=3;令y=0,得到x=4,∴A(0,3),B(4,0);(2)如图1所示,过P作PH⊥x轴于H,由题意得:OQ=BP=1,由题意得:OA=3,OB=4,在Rt△ABO中,∠AOB=90°,根据勾股定理得:AB===5,∴sin∠ABO=,在Rt△PHB中,∠PHB=90°,BP=t,∴PH=BPsin∠ABO=t,当0≤t<4时,S=×OQ×PH=×t×t=t2;当4≤t<5时,点Q与点B重合,OQ=OB=4,PH=t,∴S=×OQ×PH=×4×t=t,综上,S与t的函数解析式为S=;(3)存在以点A,P,Q,N为顶点的四边形是矩形,①如图2所示,当∠APQ=90°时,∠BPQ=∠AOB=90°,由(2)得:cos∠PBQ=,即=,解得:t=,此时N坐标为(﹣,);②如果∠PAQ=90°,∵∠OAB为锐角,∠PAQ<∠OAB,∴不成立,∠PAQ≠90°;③如果∠AQP=90°,当Q与O重合时,t=0,此时N坐标为(4,3),当0<t≤5时,如图3所示,过P作PM⊥x轴于点M,由①得:MB=t,∴QM=OB﹣OQ﹣BM=4﹣t,∵∠AOQ=∠QMP=∠AQP=90°,∴∠OAQ=∠MQP,∴Rt△AOQ∽Rt△QMP,∴=,即=,解得:t=,此时N坐标为(,),综上所述,当t的值为0,,时,以点A,P,Q,N为顶点的四边形是矩形,点N的坐标分别为(4,3),(﹣,),(,).。

山西省2016年中考模拟数学试题及答案

山西省2016年中考模拟数学试题及答案

山西省2016年中考模拟数学试题2015.12.10一、填空题(每小題3分,共计30分)1.下列四个数中绝对值最大的数是( )• (A)-3 (B)0 (C)l (D)22.下列计算正确的是( ).(A)931-2-=)( (B)6234)(-2a a = (C) 2)2(2-=-a (D)236a a a =÷ 3.“珍惜生命,注意安全”是一个永恒的话题.在现代化的城市,交通安全万万不能被忽视,下列四个图形是国际通用的四种交通标志,其中不是中心对称图形的是().4、已知A(x 1,y 1)、B(x 2,y 2)均在反比例函数xy 2=的图象上,若x 1<0 <x 2,则y 1、y 2 的大小关系为( )(A)y 1<0<y 2 (B)y 2<0<y 1 (C) y 1<y 2<0 (D) y 2<y 1<05.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是( )6.如图,为了测量河两岸A 、B 两点间的距离,只需在与AB 垂直方向的点C 处测得AC=a ,∠ACB=a,那么AB 等于( )(A)a.tana (B) a.sina (C)a.cosa(D)aatan7.如图,在平行四边形ABCD 中, E 是BC 延长线上一点, AE 交CD 于F.且CE=错误!未找到引用源。

BC ,则=∆∆EBAADFS S ( ) A 41 B 21 C 错误!未找到引用源。

D 94 8.某商品原价为200元,经过连续两次降价后售价为148元,禁止驶入F ED CBA设平均每次降价为a%,则下面所列方程正确的是(〉. (A) 200 (l+a%)2 =148 (B) 200 (l-a% )2=148(C) 200 (l-2a% ) =148 (D) 200 (1-a 2%)= l4B9.如图,△ABC 为等腰直角三角形,∠ACB=90°,将△ABC 绕点 A 逆时针 旋转75°,得到△AB ′C ′、过点B ′作B ′D ⊥CA,交CA 的延长线于点D, 若AC=6,则AD 的长为( ) (A) 2 (B) 3 (C)32(D) 2310、笔直的海岸线上依次有A 、B 、C 三个港口,甲船从A 港 口出发,沿海岸线勻速驶向C 港,1小时后乙船从B 港口 出发,沿海岸线匀速驶向A 港,两船同时到达目的地。

山西省太原市中考数学二模考试试卷

山西省太原市中考数学二模考试试卷

山西省太原市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题,每小题4分,共40分) (共10题;共38分)1. (2分) (2019九上·腾冲期末) ﹣|﹣3|的倒数是()A . 3B . ﹣3C .D .2. (4分) (2017八上·德惠期末) 下列计算正确的是()A . (4a)2=8a2B . 3a2•2a3=6a6C . (a3)8=(a6)4D . (﹣a)3÷(﹣a)2=a3. (4分)(2018·广东) 如图,由5个相同正方体组合而成的几何体,它的主视图是()A .B .C .D .4. (4分)一粒米的质量约是0.0000217千克,这个质量用科学记数法(保留两个有效数字)表示为()A . 2.2×10-5千克B . 2.2×10-6千克C . 2.17×10-5千克D . 2.17×10-6千克5. (4分) (2020九上·邓州期末) 如图,在4×4的正方形网格中,是相似三角形的是()A . ①③B . ①②C . ②③D . ②④6. (4分) (2019八下·宣州期中) 某电子产品经过11月、12月连续两次降价,售价由3900元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是()A . 3900(1+x)2=2500B . 3900(1﹣x)2=2500C . 3900(1﹣2x)=2500D . 2500(1﹣x)2=39007. (4分) (2016九上·婺城期末) 如果正比例函数y=ax(a≠0)与反比例函数y= (b≠0 )的图象有两个交点,其中一个交点的坐标为(﹣3,﹣2),那么另一个交点的坐标为()A . (2,3)B . (3,﹣2)C . (﹣2,3)D . (3,2)8. (4分)点P为⊙O内一点,且OP=4,若⊙O的半径为6,则过点P的弦长不可能为()A . 8B . 10.5C .D . 129. (4分)(2019·唐县模拟) 对于二次函数y=ax2+4x-1(a≠0)所具有的性质,下列描述正确的是()A . 图象与x轴的交点坐标是(-1,0)B . 对称轴是直线x=C . 图象经过点(,)D . 在对称轴的左侧y随x的增大而增大10. (4分)如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A . 1B . 2C . 3D . 4二、填空题(本大题共4小题,每小题5分,共20分) (共4题;共20分)11. (5分)分解因式=________。

山西省2016年中考数学模拟试题及答案

山西省2016年中考数学模拟试题及答案

山西省2016年中考数学模拟试题时间120分钟满分120分 2015.8.24一、选择题(每小题3分,共30分)1.下列四个有理数:1,﹣2,0,.其中最小的一个有理数是()A. 1 B.﹣2 C. 0 D.2.式子在实数范围内有意义,则x的取值范围是()A.x≥5B. x>﹣5 C.x≥﹣5 D. x>53.分解因式:ax2﹣a,正确的结果是()A. a(x2﹣1)B. a(x﹣1)2C. a(x+1)(x﹣1)D. ax24.某中学随机调查了15名学生一天在家里做作业的时间,列表如下:做作业时间(小时)0.5 1 2 2.5人数 3 5 4 3则这15名同学这一天在家里做作业时间的中位数与众数分别为()A. 1,1 B. 1,2 C. 1,3 D. 2,15.下列计算中,正确的是()A. a2+a3=a5B.(a+b)2=a2+b2C. ab﹣2ab=﹣ab D. a6÷a3=a26.如图,直角坐标系中,线段AB两端点坐标分别为A(4,2)、B(8,0),以原点O为位似中心,将线段AB缩小后得到对应线段A1B1,若B1的坐标为(﹣4,0),则A1的坐标为()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣4,﹣2)7.一机器零件如图,其主视图为()A.B.C.D.8.武汉市统计局统计了今年第一季度每月人均GDP的增长情况,并绘制了如图所示的统计图.下列结论:①1月份的人均GDP增长率最高;②2月份的人均GDP 比1月份低;③这三个月的人均GDP都在增长.其中正确的结论是()A.①②③B.①②C.①③D.②③ 10题图9.将大小相同的小正方体木块按如图方式摆放于一墙角,图①中摆放有1个小正方体,图②中摆放有4个小正方体,图③中摆有9个小正方体,…,按此规律,图⑥中摆放的小正方体个数为()A. 25 B. 36 C. 49 D. 5010.如图,直角坐标系中,P点坐标为(0,4),M为线段OP上(不含O、P)一动点,以OM为直径作⊙A,PN切⊙A于N,设PN﹣PM=m,则m的值()A.为定值1 B. 0<m≤1C. 0<m≤2D.≤m≤1二、填空题(每小题3分,共18分)11.计算:2﹣(﹣1)= .12.近年来,我国高速铁路建设发展迅猛,截止今年五月,全国高速铁路总长接近12000千米.12000这个数据用科学记数法表示为.13.掷一枚均匀的硬币,前两次抛掷的结果都是正面朝上,那么第三次抛掷的结果正面朝上的概率为.14.甲、乙两车从A地出发以各自的速度匀速开往450km外的B地,甲车先行0.5h后乙车出发,乙车到达B地后原地休息.甲、乙两车的距离s与乙车行驶的时间t之间的函数关系如图,则此次行程中,甲、乙两车两次相遇的时间间隔为h.14题图 15题图 16题图15.如图,点A、B在双曲线y=上,AB的延长线交x轴于C,连OA.若AB=2BC,S△OAC=12,则k= .16.如图,等腰Rt△ABC中,AC=BC,AB=2,将线段AB绕A点逆时针方向旋转,B点的对应点为D,若CD∥AB,则CD的长为.三、解答题(共8小题,共72分)17.已知直线y=x+b经过点(2,3),求不等式x+b<1的解集.18.如图1,▱ABCD中,点E、F在对角线BD上,且BE=DF.(1)求证:△AED≌△CFB;(2)如图2,连AF、CE,请你判断四边形AECF的形状,并证明你的结论.19.如图所示的两张图片形状完全相同,把两张图片全部从中间剪断,再把4张形状相同的小图片混合在一起.从4张图片中随机地摸取一张,接着再随机地摸取一张.(1)用树状图法或列表法求摸取的两张小图片恰好合成一张完整图片的概率;(2)老师将四张小图片洗均匀后先由小明随机抽出两张,剩下的给小亮,谁手中的两张图片恰好能合成一张完整图片谁就可获取老师发给的一张游戏卡,经过若干轮这样的游戏后,小明与小亮谁获得的游戏卡多?请直接写出结果.20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立了平面直角坐标系后,△ABC的三个顶点都在格点上,将△ABC绕(0,1)点逆时针方向旋转90°,得到△A′B′C′.(1)请画出△A′B′C′,并直接写出A′的坐标;(2)在旋转变换中,点A所经路径的长为;(3)在x轴上存在点P,使PA+PB′最小,请直接写出P点坐标.21.如图1,AB为⊙O的直径,C为⊙O上一点,AD与过C点的切线垂直,垂足为D,连AC.(1)求证:AC平分∠DAB;(2)如图2,延长AB,交直线DC于E,若=,求tan∠E.22.商场经营的某品牌童装,其成本为每件80元.4月的销售额(销售额=销售量×售价)为20000元,5月份商场对这种童装售价打9折销售,结果销售量增加了50件,销售额增加了7000元.(1)求该童装4月份的销售单价;(2)在“六一儿童节”商场在4月份售价基础上打折促销,在不亏本的前提条件下,销售的数量y(件)与打折的折数x满足一次函数y=﹣50x+600.试求商场打几折时利润最大,最大利润是多少?(3)在(2)的条件下,6月份商场市场调研发现打了m折销售时,其利润与原价销售的利润相同,求m的值.23.如图,△ABC中,AB=AC,AD∥BC,CD⊥AC,连BD,交AC于E.(1)如图(1),若∠BAC=60°,求的值;(2)如图(2),CF⊥AB于F,交BD于G,求证:CG=FG;(3)若AB=13,tan∠ABC=,直接写出EC的长为.24.已知如图1,抛物线y=ax2+4ax+交x轴于A、B(A在B的左侧),过A点的直线y=kx+3k(k>)交抛物线于另一点C(x1,y1),交y轴于M.(1)直接写出A点坐标,并求a的值;(2)连BC,作BD⊥BC交AC于D,若CB=5BD,求k的值;(3)设P(﹣1,﹣2),中图2连CP交抛物线于另一点E(x2,y2),连AE交y 轴于N.请你探究OM•ON的值的变化情况,若变化,求其变化范围;若不变,求其值.参考答案一、选择题1.故选B. 2.故选A. 3.故选C4.故选:A.5. C. 6. B. 7.A. 8. C. 9.B. 10. B.二、填空题11. 3 . 12. 1.2×104. 13..14. 6 h. 15.﹣6 . 16.+1或﹣1 .三、解答题17.解答:解:把(2,3)代入y=x+b中得:3=1+b,解得:b=2,把b=2代入x+b<1得:x<﹣2.18.解答:证明:(1)在▱ABCD中,AD∥CB,且AD=CB,∴∠ADB=∠CBD,∵BE=FD,∴BE+EF=DF+EF,∴BF=DE,在△AED和△CFB中,,∴△AED≌△CFB(SAS);(2)四边形AECF为平行四边形.理由如下:由(1)△AED≌△CFB,∴AE=CF,∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形.19.解答:解:(1)设:一张图片分为1和2两部分,列表如下:1 2 1 21 ﹣﹣﹣(1,2)(1,1)(1,2)2 (2,1)﹣﹣﹣(2,1)(2,2)1 (1,1)(1,2)﹣﹣﹣(1,2)2 (2,1)(2,2)(2,1)﹣﹣﹣由图表知共有12种等可能结果,其中能合成的有4种,∴P(合成)==;(2)∵两张小图片恰好合成一张完整图片的概率是,∴他们获得的游戏卡一样多,故答案为:一样多.20.解答:解:(1)所作图形如图所示:A′(﹣1,4);(2)点A所经路径的长==π;(3)P点如图所示,坐标为(﹣1,0).故答案为:(﹣1,4);π;(﹣1,0).21.解答:(1)证明:连结OC,如图1,∵CD为⊙O的切线,∴OC⊥CD,而AD⊥CD,∴OC∥AD,∴∠1=∠2,∵OA=OC,∴∠1=∠2,∴∠2=∠3,∴AC平分∠DAB;(2)解:连结OC,如图2,由=,可设AD=4x,AB=5x,则OC=OA=x,∵OC∥AD,∴△EOC∽△EAD,∴=,即=,解得EO=x,在Rt△OCE中,CE===x,∴tanE===.22.解答:解:(1)设四月份的销售单价为a元,销量为b件,则 ab=20000,a(b+50)=27000,解得a=200,b=100.答:四月份的销售单价为200元.(2)设利润为W,则W═(×200﹣80)(﹣50x+600),=﹣1000x2+16000x﹣48000=﹣1000(x﹣8)2+16000,∵﹣1000<0,∴当x=8时,W最大,值为16000,答:当商场打8折时,利润最大,最大利润为16000元,(3)由(1)知4月份利润为100(200﹣80)=12000元,依题意:(×200﹣80)(﹣50m+600)=12000,解得m1=10(舍) m2=6.23.解答:(1)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵AD∥BC,∴∠DAC=∠ACB=60°,∵CD⊥AC,∴∠ACD=90°,∴∠ADC=30°,∴AD=2AC,∴AD=2BC,∵AD∥BC,∴=2,∴=;(2)证明:作CQ∥AB于Q,如图1所示:则,,∵AD∥BC,∴,∠ACB=∠DAC,∴,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠DAC,∵CF⊥AB,∴∠BFC=90°=∠ACD,∴△CFB∽△DCA,∴,∴,∴CQ=BF,∴=1,∴CG=FG;(3)解:作AM⊥BC于M,如图2所示:∵AC=AB=13,∴BM=CM,∠ACB=∠ABC,∵tan∠ABC=,∴tan∠ACM=tan∠ABC==,设AM=3x,则CM=2x,根据勾股定理得:(2x)2+(3x)2=132,解得:x=,∴CM=2,∴BC=2CM=4,∵∠DAC=∠ACM,tan∠CAD==,∴CD=AC=,∴AD===,∵AD∥BC,∴,即,解得:EC=.故答案为:.24.解答:解:(1)∵直线y=kx+3k(k>)过点A,∴y=0时,0=kx+3k,解得:x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得:a=;(2)联立直线和抛物线解析式得:解得C(4k﹣1,4k2+2k),如图1,作DF⊥x轴于F,CG⊥x轴于G,则△BDF∽△CBG,∵CB=5BD,∴CG=5BF,BG=5DF,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k1=﹣(舍去),k2=1;(3)直线PC解析式为y=ax+a﹣2,与抛物线y=x2+x+联立消去y得:x2﹣4(a ﹣1)x+11﹣4a=0,∴x1+x2=4a﹣4,x1x2=11﹣4a,∵===(x1+1)(x2+1)=(11﹣4a+4a﹣4+1)=,∴OM•ON=OA2=.。

山西省2016年中考数学试题含答案解析

山西省2016年中考数学试题含答案解析

2016年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( ) A .61 B .-6 C .6 D .61-2.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( )A .x >5B .x <3C .-5<x <3D .x <53.(2016·山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( )A .6105.5⨯B .7105.5⨯C .61055⨯D .81055.0⨯6.(2016·山西)下列运算正确的是 ( ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y9.(2016·山西)如图,在Y ABCD 中,AB 为O e 的直径,O e 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则»FE的长为( )A .3π B .2πC .πD .π2 10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( ) A .矩形ABFE B .矩形EFCD C .矩形EFGH D .矩形DCGH二、填空题(本大题共5个小题,每小题3分,共15分)11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 .12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y 2y (填“>”或“=”或“<”)13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫⎝⎛---(2)先化简,在求值:112222+---x xx x x ,其中x =-2.17.(2016·山西)(本题7分)解方程:93222-=-x x )(18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).(1)补全条形统计图和扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB和BC是Oe的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是¼ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是¼ABC的中点,∴MA=MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于Oee,AB=2,D为O上一点, ︒∠45ABD,AE⊥BD与点E,则△BDC的长是.=20.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A ,方案B 购买这种苹果的应付款y (元)与购买量x (kg )之间的函数表达式;(2)求购买量x 在什么范围时,选用方案A 比方案B 付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)22.(2016·山西)(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的 状是 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角 α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.23.如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1) 求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2) 试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3) 若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.2016年山西省中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( A ) A .61B .-6C .6D .61-考点:相反数解析:利用相反数和为0计算 解答:因为a +(-a )=0∴61-的相反数是612.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( C )A .x >5B .x <3C .-5<x <3D .x <5考点: 解一元一次不等式组分析: 先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答: 解⎩⎨⎧<>+②①6205x x由①得x >-5 由②得x <3所以不等式组的解集是-5<x <33.(2016·山西)以下问题不适合全面调查的是( C )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高 考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选 择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.解答:A .调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查 B .调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C .调查全国中小学生课外阅读情况 ,中学生的人数比较多,适合采取抽样调查;D .调查某篮球队员的身高,此种情况数量不是很大,故必须普查;4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( A )考点:三视图分析:根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定. 解答:从左面看第一列可看到3个小正方形,第二列有1个小正方形 故选A .5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( B )A .6105.5⨯B .7105.5⨯C .61055⨯D .81055.0⨯考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时, 要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当 原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将55 000 000用科学记数法表示为:7105.5⨯.6.(2016·山西)下列运算正确的是 ( D ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 考点:实数的运算,幂的乘方,同底数幂的除法, 分析:根据实数的运算可判断A . 根据幂的乘方可判断B .根据同底数幂的除法可判断C . 根据实数的运算可判断D 解答:A .49232=⎪⎭⎫⎝⎛-,故A 错误B .632273a a =)(,故B 错误 C .255551515155253535-3-==⨯=÷=÷,故C 错误. D .23252250-8-=-=,故选D .7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x考点:分式方程的应用分析:设甲每小时搬运xkg 货物,则甲搬运5000kg 所用的时间是:x5000, 根据题意乙每小时搬运的货物为x +600,乙搬运8000kg 所用的时间为6008000+x再根据甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等列方程 解答:甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,所以60080005000+=x x 故选B .8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y考点:抛物线的平移分析:先将一般式化为顶点式,根据左加右减,上加下减来平移解答:将抛物线化为顶点式为:8)2(2--=x y ,左平移3个单位,再向上平移5个单位得到抛物线的表达式为()312-+=x y故选D .9.(2016·山西)如图,在Y ABCD 中,AB 为O e 的直径,O e 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则»FE的长为( C ) A .3π B .2πC .πD .π2 考点:切线的性质,求弧长 分析:如图连接OF ,OE由切线可知︒=∠904,故由平行可知︒=∠903由OF =OA ,且︒=∠60C ,所以︒=∠=∠601C 所以△OFA 为等 边三角形∴︒=∠602,从而可以得出»FE所对的圆心角然后根据弧长公式即可求出 解答:︒=︒︒︒=∠∠︒=∠3090-60-1803-2-180EOFr =12÷2=6∴»FE=πππ=⋅⋅=180630180r n 故选C10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( D ) A .矩形ABFE B .矩形EFCD C .矩形EFGH D .矩形DCGH考点:黄金分割的识别分析:由作图方法可知DF =5CF ,所以CG =CF )15(-,且GH =CD =2CF 从而得出黄金矩形 解答:CG =CF )15(-,GH =2CF∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形 选D .二、填空题(本大题共5个小题,每小题3分,共15分)11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 (3,0) .考点:坐标的确定分析:根据双塔西街点的坐标为(0,-1),可知大南 门为坐标原点,从而求出太原火车站的点(正 好在网格点上)的坐标解答:太原火车站的点(正好在网格点上)的坐标 (3,0)12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y > 2y (填“>”或“=”或“<”)考点:反比函数的增减性分析:由反比函数m <0,则图象在第二四象限分别都是y 随着x 的增大而增大 ∵m <0,∴m -1<0,m -3<0,且m -1>m -3,从而比较y 的大小解答:在反比函数x my =中,m <0,m -1<0,m -3<0,在第四象限y 随着x 的增大而增大且m -1>m -3,所以1y > 2y13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有(4n +1)个涂有阴影的小正方形(用含有n 的代数式表示).考点:找规律分析:由图可知,涂有阴影的正方形有5+4(n -1)=4n +1个 解答:(4n +1)14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 94考点:树状图或列表求概率 分析:列表如图:解答:由表可知指针指向的数都是奇数的概率为 9415.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 )(或152525-3+-考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA ,由平行得出21∠=∠,由角平分得出32∠=∠ 从而得出31∠=∠,所以HE =HA . 再利用△DGH ∽△DCA 即可求出HE , 从而求出HG解答:如图(1)由勾股定理可得 DA =52422222=+=+CD AC由 AE 是DAB ∠的平分线可知21∠=∠由CD ⊥AB ,BE ⊥AB ,EH ⊥DC 可知四边形GEBC 为矩 形,∴HE ∥AB ,∴32∠=∠ ∴31∠=∠ 故EH =HA 设EH =HA =x则GH =x -2,DH =x -521 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)∵HE ∥AC ∴△DGH ∽△DCA∴AC HG DA DH =即2252-52-=x x 解得x =5-5 故HG =EH -EG =5-5-2=53-三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2016·山西)(本题共2个小题,每小题5分,共10分)(1)计算:()01222851)3(-+⨯-⎪⎭⎫ ⎝⎛--- 考点:实数的运算,负指数幂,零次幂分析:根据实数的运算,负指数幂,零次幂三个考点.针对每个考点分别进行计算,然后根 据实数的运算法则求得计算结果.解答:原=9-5-4+1 ……………………………(4分)=1. ……………………………(5分)(2)先化简,在求值:112222+---x x x x x ,其中x =-2. 考点:分式的化简求值分析:先把分子分母因式分解,化简后进行减法运算解答:原式=1)1)(1()1(2+-+--x x x x x x ……………………………(2分) =112+-+x x x x ……………………………(3分) =1+x x ……………………………(4分) 当x =-2时,原式=21221=+--=+x x ……………………(5分)17.(2016·山西)(本题7分)解方程:93222-=-x x )(考点:解一元二次方程分析:方法一:观察方程,可先分解因式,然后提取x -3,利用公式法求解方法二:将方程化为一般式,利用公式法求解解答:解法一:原方程可化为)3)(3(322-+=-x x x )(……………………………(1分) 0)3)(3()3(22=-+--x x x . ……………………………(2分)0)]3()3(2)[3(=+---x x x . ……………………………(3分)0)9-)(3(=-x x . ……………………………(4分)∴ x -3=0或x -9=0. ……………………………(5分)∴ 31=x ,92=x . ……………………………(7分)解法二:原方程可化为027122=+-x x ……………………………(3分)这里a =1,b =-12,c =27. ∵0362714)12(422>=⨯⨯--=-ac b∴2612123612±=⨯±=x . ……………………………(5分) 因此原方程的根为 31=x ,92=x . ……………………………(7分)18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).(1)补全条形统计图和扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是考点:条形统计图,扇形统计图,用样本估计总体,简单概率分析:(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可(2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1800乘以 30%(3)由扇形统计图可知解答:(1)补全的扇形统计图和条形统计图如图所示(2)1800×30%=540(人)∴估计该校对“工业设计”最感兴趣的学生是540人(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 (或13%或10013)19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O e 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是¼ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD . 下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图2,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG .∵M 是¼ABC 的中点, ∴MA =MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC 内接于O e ,AB =2,D 为O e 上一点,︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC考点:圆的证明分析:(1)已截取CG =AB ∴只需证明BD =DG且MD ⊥BC ,所以需证明MB =MG故证明△MBA ≌△MGC 即可(2)AB =2,利用三角函数可得BE =2由阿基米德折弦定理可得BE =DE +DC则△BDC 周长=BC +CD +BD =BC +DC +DE +BE=BC +(DC +DE )+BE=BC +BE +BE=BC +2BE然后代入计算可得答案解答:(1)证明:又∵C A ∠=∠, …………………(1分)∴ △MBA ≌△MGC . …………………(2分)∴MB =MG . …………………(3分)又∵MD ⊥BC ,∵BD =GD . …………………(4分)∴CD =CG +GD =AB +BD . …………………(5分)(2)填空:如图(3),已知等边△ABC 内接于O e ,AB =2,D 为O e 上 一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC20.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg ~5000kg (含2000kg 和5000kg )的客户有两种销售方案(客户只能选择其中一种方案):方案A :每千克5.8元,由基地免费送货.方案B :每千克5元,客户需支付运费2000元.(1)请分别写出按方案A ,方案B 购买这种苹果的应付款y (元)与购买量x (kg )之间的函数表达式;(2)求购买量x 在什么范围时,选用方案A 比方案B 付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.考点: 一次函数的应用分析:(1)根据数量关系列出函数表达式即可(2)先求出方案A 应付款y 与购买量x 的函数关系为x y 8.5=方案B 应付款y 与购买量x 的函数关系为20005+=x y然后分段求出哪种方案付款少即可(3)令y =20000,分别代入A 方案和B 方案的函数关系式中,求出x ,比大小.解答:(1)方案A :函数表达式为x y 8.5=. ………………………(1分)方案B :函数表达式为20005+=x y ………………………(2分)(2)由题意,得200058.5+<x x . ………………………(3分)解不等式,得x <2500 ………………………(4分)∴当购买量x 的取值范围为25002000<≤x 时,选用方案A比方案B 付款少. ………………………(5分)(3)他应选择方案B . ………………………(7分)21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)考点:三角函数的应用分析:过点A 作CD AG ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF解答:过点A 作CD AG ⊥,垂足为G .…………(1分)则︒=∠30CAG ,在Rt ACG ∆中,25215030sin =⨯=︒⋅=AC CG .…………(2分) 由题意,得203050=-=GD .…………(3分)452025=+=+=∴GD CG CD (cm ).…(4分)连接FD 并延长与BA 的延长线交于点H .…(5分)由题意,得︒=∠30H .在Rt CDH ∆中,90230sin ==︒=CD CD CH .……………………(6分) 290905050300=+--=+--=+=∴CH AC BE AB CH EC EH .………(7分)在Rt EFH ∆中,332903329030tan =⨯=︒⋅=EH EF (cm ).……………(9分) 答:支撑角钢CD 的长为45cm ,EF 的长为33290cm .……………………(10分) 22.(2016·山西)(本题12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆.操作发现(1)将图1中的ACD ∆以A 为旋转中心,逆时针方向旋转角α,使 BAC ∠=α,得到如图2所示的D C A '∆,分别延长BC和C D '交于点E ,则四边形C ACE '的状是 菱形 ;……………(2分)(2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明. 考点:几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定, 矩形的判定正方形的判定分析:(1)利用旋转的性质和菱形的判定证明(2)利用旋转的性质以及矩形的判定证明(3)利用平移行性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情 况当点C ''在边C C '上和点C ''在边C C '的延长线上时.(4)开放型题目,答对即可解答:(1)菱形(2)证明:作C C AE '⊥于点E .…………………………………………(3分)由旋转得AC C A =',BAC AE C CAE ∠=='∠=∠∴α21. Θ四边形ABCD 是菱形,BC BA =∴,BAC BCA ∠=∠∴,BCA CAE ∠=∠∴,BC AE //∴,同理C D AE '//,C D BC '∴//,又C D BC '=Θ,∴ 四边形D C BC '是平行四边形,…………………(4分)又BC AE //Θ,︒=∠90CEA ,︒=∠-='∠∴90180CEA C BC ,∴四边形D C BC '是矩形…………………………………………(5分)(3)过点B 作AC BF ⊥,垂足为F ,BC BA =Θ, 5102121=⨯===∴AC AF CF . 在Rt BCF ∆ 中,125132222=-=-=CF BC BF ,在ACE ∆和CBF ∆中,BCF CAE ∠=∠Θ, ︒=∠=∠90BFC CEA .ACE ∆∴∽CBF ∆,BC AC BF CB =∴,即131012=CE ,解得13120=CE , C A AC '=Θ,C C AE '⊥,132401312022=⨯=='∴CE C C .…………………(7分) 当四边形D C BC '''恰好为正方形时,分两种情况:①点C ''在边C C '上.1371131324013a =-=-'=C C .…………………(8分) ②点C ''在边C C '的延长线上,13409131324013a =+=+'=C C .……………(9分) 综上所述,a 的值为1371或13409. (4):答案不唯一.例:画出正确图形.……………………………………(10分)平移及构图方法:将ACD ∆沿着射线CA 方向平移,平移距离为AC 21的长度,得到D C A ''∆, 连接DC B A ,'.………………………(11分)结论:四边形是平行四边形……(12分)23.(2016·山西)(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.考点:求抛物线的解析式,求点坐标,全等构成,等腰三角形的构成分析:(1)将A ,D 的坐标代入函数解析式,解二元一次方程即可求出函数表达式 点B 坐标:利用抛物线对称性,求出对称轴结合A 点坐标即可求出B 点坐标 点E 坐标:E 为直线l 和抛物线对称轴的交点,利用D 点坐标求出l 表达式,令 其横坐标为3=x ,即可求出点E 的坐标(2)利用全等对应边相等,可知FO =FC ,所以点F 肯定在OC 的垂直平分线上,所 以点F 的纵坐标为-4,带入抛物线表达式,即可求出横坐标(3)根据点P 在y 轴负半轴上运动,∴分两种情况讨论,再结合相似求解解答:(1)Θ抛物线8y 2-+=bx ax 经过点A (-2,0),D (6,-8),⎩⎨⎧-=-+=--∴88636082a 4b a b 解得⎪⎩⎪⎨⎧-==321b a …………………………………(1分) ∴抛物线的函数表达式为83212--=x x y ……………………………(2分) Θ()225321832122--=--=x x x y ,∴抛物线的对称轴为直线3=x .又Θ抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0).∴点B 的坐标为(8,0)…………………(4分)设直线l 的函数表达式为kx y =.Θ点D (6,-8)在直线l 上,∴6k =-8,解得34-=k . ∴直线l 的函数表达式为x y 34-=………………………………………………………(5分) Θ点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为4334-=⨯-,即点E 的坐标为(3,-4)……………………………………………………………………(6分)(2)抛物线上存在点F ,使FOE ∆≌FCE ∆.点F 的坐标为(4,173--)或(4,173-+).……………………………………(8分)(3)解法一:分两种情况:①当OQ OP =时,OPQ ∆是等腰三角形.Θ点E 的坐标为(3,-4),54322=+=∴OE ,过点E 作直线ME //PB ,交y 轴于点M ,交x 轴于点H ,则OQOE OP OM =,5==∴OE OM ……………………………………(9分) ∴点M 的坐标为(0,-5).设直线ME 的表达式为51-=x k y ,∴4531-=-k ,解得311=k ,∴ME 的函数表达式为531-=x y ,。

太原市中考数学二模试卷

太原市中考数学二模试卷

太原市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)下列计算正确的是()。

A .B .C .D .2. (2分)据2011年5月29日中央电视台报道,“限塑令”实施以来,全国每年大约少用塑料袋24 000 000 000个以上,将24 000 000 000用科学记数法表示为()A . 24×109B . 2.4×109C . 2.4×1010D . 0.24×10113. (2分)如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE与AD相交于点F,∠EDF=38°,则∠DBE的度数是()A . 25°B . 26°C . 27°D . 38°4. (2分) (2017七上·锡山期末) 如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图(1)变到图(2),不改变的是()A . 主视图B . 主视图和左视图C . 主视图和俯视图D . 左视图和俯视图5. (2分) (2017七上·杭州期中) 下列运算正确的是()A .B .C .D .6. (2分)如果小明将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为A .B .C .D .7. (2分)(2016·海南) 解分式方程,正确的结果是()A . x=0B . x=1C . x=2D . 无解8. (2分)如图,△ABC沿边BC所在直线向右平移得到△DEF,则下列结论中错误的是()A . △ABC≌△DEFB . AC=DFC . AB=DED . EC=FC9. (2分) (2019八下·武侯期末) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .10. (2分)(2020·永康模拟) 如图,将边长分别为10cm和4cm的矩形纸片沿着虚线剪成两个全等的梯形纸片.裁剪线与矩形较长边所夹的锐角是45°,则梯形纸片中较短的底边长为()A . 2cmB . 2.5cmC . 3cmD . 3.5cm11. (2分)若t是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式△=b2-4ac和完全平方式M=(2at+b)2的关系是()A . △=MB . △>MC . △<MD . 大小关系不能确定12. (2分)如图,已知平行四边形ABCD中,AB=5,BC=8,cosB= ,点E是BC边上的动点,当以CE为半径的⊙C与边AD不相交时,半径CE的取值范围是()A . 0<CE≤8B . 0<CE≤5C . 0<CE<3或5<CE≤8D . 3<CE≤513. (2分)以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是()A .B . 1.4C .D .14. (2分)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD的边长为()A . 4B . 5C . 6D . 915. (2分) (2019九上·南阳月考) 如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2 ,下面图象中能表示S与t之间的函数关系的是()A .B .C .D .二、填空题 (共6题;共6分)16. (1分) 5k﹣3=1,则k﹣2=________.17. (1分)(2016·阿坝) 分解因式:a2﹣b2=________.18. (1分)(2011·扬州) 数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是________题.答对题数78910人数41816719. (1分)(2017·宜宾) 经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是________.20. (1分)(2020·镇海模拟) 如图,平行四边形ABCD中,M,N分别为边BC,CD的中点,且∠MAN=∠ABC,则的值是________.21. (1分) (2015九上·南山期末) 如图,已知正方形ABCD的边长为4,点E、F分别在边AB,BC上,且AE=BF=1,则OC=________三、解答题 (共7题;共70分)22. (10分) (2019七下·隆昌期中) 解下列不等式(组),并把解集在数轴上表示出来:(1)(2)23. (10分) (2017八上·兴化期末) 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,M是AD 的中点,过点A作AN∥BC交BM的延长线于点N.(1)求证:△AMN≌△DMB;(2)求证:四边形ADCN是菱形.24. (5分)(2017·遵义) 为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a 的值.25. (10分)甲、乙两人在玩转盘游戏时,游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.26. (10分)(2019·祥云模拟) 如图,直线y=kx+b与双曲线(x﹤0)相交于A(-4,a)、B(-1,4)两点.(1)求直线和双曲线的解析式;(2)在y轴上存在一点P,使得PA+PB的值最小,求点P的坐标.27. (10分)在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:FA的值.28. (15分)(2016·常州) 如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2 的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1 ,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一、选择题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共6题;共6分)16-1、17-1、18-1、19-1、20-1、21-1、三、解答题 (共7题;共70分) 22-1、22-2、23-1、23-2、24-1、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。

2016年山西省中考数学试卷-答案

2016年山西省中考数学试卷-答案

山西省2016年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】因为()0a a +-=,所以16-的相反数是16,故选A. 【提示】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案. 【考点】相反数 2.【答案】C【解析】解502 6 x x +>⎧⎨<⎩①②,由①得5x >-,由②得3x <,所以不等式组的解集是53x -<<,故选C.【提示】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可. 【考点】解一元一次不等式组 3.【答案】C【解析】A.调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查; B.调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查; C.调查全国中小学生课外阅读情况,中学生的人数比较多,适合采取抽样调查; D.调查某篮球队员的身高,此种情况数量不是很大,故必须普查.【提示】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查. 【考点】全面调查与抽样调查 4.【答案】A【解析】从左面看第一列可看到3个小正方形,第二列有1个小正方形,故选A. 【提示】根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定. 【考点】简单几何体的三视图 5.【答案】B【解析】将55 000 000用科学记数法表示为:75.510⨯,故选B.【提示】科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【考点】科学记数法表示较大的数 6.【答案】D 【解析】A.239()24-=,故A 错误; B.236(3)27a a =,故B 错误; C.3552353111555525555--÷=÷=⨯==,故C 错误;=- D.【提示】设甲每小时搬运kg x 货物,则甲搬运5000kg 所用的时间是:5000x , 根据题意乙每小时搬运的货物为600x +,乙搬运8 000 kg 所用的时间为8000600x +;再根据甲搬运5 000 kg 所用的时间与乙搬运8 000 kg 所用的时间相等列方程. 【考点】分式方程的应用 8.【答案】D【解析】将抛物线化为顶点式为:2(2)8y x =--,左平移3个单位,再向上平移5个单位,得到抛物线的表达式为2(1)3y x =+-.故选D.【提示】先将一般式化为顶点式,根据左加右减,上加下减来平移. 【考点】抛物线的平移 9.【答案】C【解析】18023180609030EOF ∠=︒-∠-∠=︒-︒-︒=︒,1226r =÷=,∴2π30π6π180180n r F x E ===,故选C.【提示】如图连接OF ,OE ,由切线可知490∠=︒,故由平行可知390∠=︒;由OF OA =,且60C ∠=︒,所以160C ∠=∠=︒,所以OFA △为等边三角形,∴260∠=︒,从而可以得出FE 所对的圆心角然后根据弧长公式即可求出.【考点】切线的性质,求弧长 10.【答案】D【解析】1)CG CF =,2GH CF =,∴CG GH ==, ∴矩形DCGH 是黄金矩形,故选D.【提示】由作图方法可知DF ,所以1)CG CF =,且2GH CD CF ==,从而得出黄金矩形. 【考点】黄金分割的识别第Ⅱ卷二、填空题 11.【答案】(3,0)【解析】根据双塔西街点的坐标为(0,1)-和桃园路的点的坐标为(0,1)-,可知大南门为坐标原点,从而求出太原火车站的点(正好在网格点上)的坐标. 【提示】确定坐标原点是解题的关键. 【考点】坐标的确定 12.【答案】>【解析】在反比函数my x=中,0m <,10m -<,30m -<,在第四象限y 随着x 的增大而增大,且13m m ->-,所以12y y >.【提示】由反比函数0m <,则图象在第二四象限分别都是y 随着x 的增大而增大,∵0m <,∴10m -<,30m -<,且13m m ->-,从而比较y 的大小.【考点】反比函数的增减性 13.【答案】(41)n +【解析】第1个图形中有5个阴影小正方形,第2个图形中有9个阴影小正方形,第3个图形中有13个阴【解析】如图(1)由勾股定理可得DA ; 由AE 是DAB ∠的平分线可知12∠=∠;由CD AB ⊥,BE AB ⊥,EH DC ⊥可知四边形GEBC 为矩形, ∴HE AB ∥,∴23∠=∠, ∴13∠=∠,故EH HA =,设EH HA x ==,则2GH x =-,DH x =,∵HE AC ∥,∴DGH DCA △∽△,∴DH HG DA AC =22x -=,【提示】由勾股定理求出DA ;由平行得出12∠=∠,由角平分得出23∠=∠,从而得出13∠=∠,所以【解析】(1)补全的扇形统计图和条形统计图如图所示:(2)180030%540⨯=(人),∴估计该校对“工业设计”最感兴趣的学生是540人.(3)140%30%8%9%13%----=,∴正好抽到对“机电维修”最感兴趣的学生的概率13%. 【提示】(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可;(2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1 800乘以30%; (3)通过对扇形的观察可知.【提示】(1)已截取CG AB =,∴只需证明BD DG =;且MD BC ⊥,所以需证明MB MG =,故证明MBA MGC △≌△即可;(2)因为2AB =,故利用三角函数可得BE =;由阿基米德正弦定理可得BE DE DC =+,则BDC△周长BC CD BD BC DC DE BE =++=+++BC DC DE BE =+++()BC BE BE =++2BC BE =+,然后代=30,在Rt sin3050AC =⨯5030=-CG GD +=tan30290EH ︒=【提示】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD ,连接FD当四边形BCC D '''恰好为正方形时,分两种情况:①点C ''在边C C '上,2407113131313a C C ='-=-=; ②点C ''在边C C '的延长线上,24040913131313a C C ='+=+=. 综上所述,a 的值为7113或40913. (4)本小题答案不唯一.例:画出正确图形(如下图所示),平移及构图方法:将ACD △沿着射线CA 方向平移,平移距离为12AC 的长度,得到A C D ''△,连接A B ',C D ',如图4.结论:四边形是平行四边形.【提示】(1)利用旋转的性质和菱形的判定证明; (2)利用旋转的性质以及矩形的判定证明;(3)利用平移的性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情况当点C ''在边C C '上和点C ''在边C C '的延长线上时; (4)开放型题目,答对即可.【考点】几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定,矩形的判定【解析】(1)∵抛物线28y ax bx =+-经过点(2,0)A -,(6,8)D -,当0x =时,21388y x x =--=-,∴点C 的坐标为(0,8)-,设直线CE 交x 轴于点N ,其函数表达式为238y k x =-,∴2384k -=-,解得243k =, ∴CE 的函数表达式为483y x =-,令0y =,得4803x -=,∴6x =,∴点N 的坐标为(6,0). ∵CN PB ∥,∴OP OB =,∴8m -=,解得32m =-.解法二:当0x =时,213882y x x =--=-,∴点C 的坐标为(0,8)-,∴点E 的坐标为(3,4)-,∴5OE =,5CE =,∴OE CE =,∴12∠=∠,设抛物线的对称轴交直线PB 于点M ,交x 轴于点H .分两种情况:①当QO QP =时,OPQ △是等腰三角形.∴13∠=∠,∴23∠=∠,∴CE PB ∥又∵HM y ∥轴,∴四边形PMEC 是平行四边形,∴8EM CP m ==--,∴4(8)4HM HE EM m m =+=+--=--,835BH =-=,∵HM y ∥轴,∴BHM BOP ~△△,∴HM BH OP BO = ∴458m m --=-,∴323m =- ②当OP OQ =时,OPQ △是等腰三角形.∵HM y ∥轴,∴OPQ EMQ ~△△,∴EQ EM OQ OP=,∴EQ EM =, ∴5()5EM EQ OE OQ OE OP m m ==-=-=--=+,∴4(5)HM m =-+∵HM y ∥轴,∴BHM BOP ~△△,∴HM BH =,∴15m --=,∴8m =-. 33【提示】(1)将A,D的坐标代入函数解析式,解二元一次方程即可求出函数表达式;点B坐标:利用抛物线对称性,求出对称轴结合A点坐标即可求出B点坐标;x=,即可求点E坐标:E为直线l和抛物线对称轴的交点,利用D点坐标求出l表达式,令其横坐标为3出点E的坐标;=,所以点F肯定在OC的垂直平分线上,所以点F的纵坐标为(2)利用全等对应边相等,可知FO FC4-,带入抛物线表达式,即可求出横坐标;(3)根据点P在y轴负半轴上运动,∴分两种情况讨论,再结合相似求解.【考点】求抛物线的解析式,求点坐标,全等构成,等腰三角形的构成。

山西省太原市中考二模数学考试试卷

山西省太原市中考二模数学考试试卷

山西省太原市中考二模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017七上·兰陵期末) 实数,,,四个数中,最大的数是()A . 0B . 1C .D .2. (2分) (2019七上·潮安期末) 过度包装既浪费资源又污染环境,据测算如果全国每年减少的过度包装纸用量,那么可减排二氧化碳4280000吨,把数4280000用科学记数法表示为A .B .C .D .3. (2分)如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A .B .C .D .4. (2分)如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,则不等式x>kx+b>-2的解集为()A . x<2B . x>-1C . x<1或x>2D . -1<x<25. (2分)如图,直线,直线l与a,b分别交于点A,B,过点A作AC⊥b 于点C,若∠1=50°,则∠2的度数为()A .B .C .D .6. (2分)如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A . 25°B . 35°C . 55°D . 70°7. (2分)有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2 ,则s与x的关系式是()A . s=﹣3x2+24xB . s=﹣2x2﹣24xC . s=﹣3x2﹣24xD . s=﹣2x2+24x8. (2分) (2017九下·海宁开学考) 如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A . b2>4acB . ax2+bx+c≥﹣6C . 若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD . 关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1二、填空题 (共6题;共6分)9. (1分) (2015九下·义乌期中) 分解因式:x2+xy=________.10. (1分) (2018九上·潮南期末) 若|b-1|+=0,且一元二次方程kx2+ax+b=0有实数根,则k的取值范围是________.11. (1分)如图,⊙O是△ABC的外接圆,∠A=45°,BD为⊙O的直径,BD=,连结CD,则CD的长为________12. (1分)(2016·北区模拟) 如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,若ED:DC=2:3,△DEF的面积为8,则平行四边形ABCD的面积为________.13. (1分) (2019九上·阳东期末) 如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为________.14. (1分)(2017·贵港模拟) 如图,点A的坐标为(1,2),AB⊥x轴于点B,将△AOB绕点A逆时针旋转90°得到△ACD,双曲线y= (x>0)恰好经过点C,交AD于点E,则点E的坐标为________.三、解答题 (共10题;共91分)15. (5分)(2018·驻马店模拟) 先化简,再从有意义的范围内选取一个整数作为a的值代入求值.16. (5分)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x||x|=4|x|=31≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?17. (5分)如图,过▱ABCD的顶点A的直线交BD于点P,交CD于点Q,交BC的延长线于点R.求证:.18. (5分) (2018九下·潮阳月考) 热气球的探测器显示,从热气球底部A处看一栋高楼顶部B的仰角为30°,看这栋楼底部C的俯角为45°,已知楼高是120m,热气球若要飞越高楼,问至少要继续上升多少米?(结果保留根号)19. (13分)某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了如图尚未完成的表格和频数分布直方图(注:无50.5以下成绩)分组频数频数50.5~60.520.0460.5~70.580.1670.5~80.510CA~90.5B0.3290.5~100.5140.28合计(1)频数分布表中,A=________,B=________,C=________.(2)补全频数分布直方图.(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?20. (10分) (2015九下·武平期中) 为了美化学习环境,加强校园绿化建设,某校计划用不多于5200元的资金购买A、B两种树苗共60棵(可以是同一种树苗),加强校园绿化建设.若购买A种树苗x棵,所需总资金为y 元,A、B两种树苗的相关信息如表:项目品种单价(元/棵)成活率A10098%B6090%(1)求y与x之间的函数关系式;(2)若要使得所购买树苗的成活率不低于95%,有几种选购方案?所用的资金分别是多少?21. (15分) (2019八上·扬州期末) 已知y与x+2成正比例,且当x=1时,y=6;(1)求出y与x之间的函数关系式;(2)当x=﹣3时,求y的值;(3)当y <-1时,求x的取值范围.22. (5分) (2016八上·铜山期中) 如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.23. (15分)(2017·枝江模拟) 如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD 交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2 ,求BE的长.24. (13分)(2017·永嘉模拟) 如图,在矩形ABCD中,AD=10,E为AB上一点,且AE= AB=a,连结DE,F是DE中点,连结BF,以BF为直径作⊙O.(1)用a的代数式表示DE2=________,BF2=________;(2)求证:⊙O必过BC的中点;(3)若⊙O与矩形ABCD各边所在的直线相切时,求a的值;(4)作A关于直线BF的对称点A′,若A′落在矩形ABCD内部(不包括边界),则a的取值范围________.(直接写出答案)参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共91分)15-1、16-1、17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、24-3、24-4、。

最新整理山西省太原市中考数第二次模拟试卷及答案.doc

最新整理山西省太原市中考数第二次模拟试卷及答案.doc

山西省太原市中考数学第二次模拟试卷(时间120分钟 总分120分 试卷形式:闭卷)一、选择题(每题3分)1、下列各组数中,互为相反数的一组是 A 、22-与 B 、112与)(- C 、112与- D 、22-与2、现有除图案外,其余完全相同的福娃卡片20张,其中贝贝6张,京京5张,欢欢4张,迎迎3张,妮妮2张,将画有福娃的一面朝下反扣在桌子上,洗匀后从中随机抽取一张,抽到欢欢的概率是 A 、101 B 、103 C 、41 D 、51 3、在下列命题中,真命题是A 、两条对角线相等的四边形是矩形B 、两条对角线互相垂直的四边形是菱形C 、两条对角线互相平分的四边形是平行四边形D 、两条对角线互相垂直且相等的四边形是正方形ABC Rt ∆绕直角边AB所在直线旋转一周,所得几何体的俯视图为ABC5、不等式组⎩⎨⎧≤->-048213x x 的解集在数轴上表示为AB C D6、电视台要在某地调查节目的收视率,下列调查中最合适的是 A 、当地每个看电视的人都问到B 、到当地所有中学,调查所有的中学生C 、调查当地的所有出租车司机D 、利用当地派出所的户籍网随机调查20%的人7、有一个数值转换机,原理如右图,当输入的x 为64时,输出的y 是A 、8B 、22C 、32D 、23BDA DC8、如图,若正方形1111D C B A 内接于正方形ABCD 的内切圆,则ABB A 11 的值等于A 、21 B 、22 C 、41D 、429、一次函数b ax y +=和二次函数c bx ax y ++=2在同一直角坐标系内的图象位置大致是10、如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB OP ,将线段OP 绕点O 逆时针旋转60°,得到线段OD ,要使点D 恰好落在BC 上,则AP 长为 A 、5 B 、6 C 、7 D 、8 二、填空题(每题2分)11、计算︒302sin 的结果是 12、在函数31-=x y 中,自变量x 的取值范围是 13、若点A (-2,3),B (1,m )都在反比例函数xky =的图象上,则m 的值等于14、例4.如图,AB 是⊙O 的直径,D C ,是⊙O 上的两点,若︒=∠50ABC ,则D ∠的度数为15、某青年排球队12名队员年龄情况如下表: 则这12名队员年龄的众数与中位数分别是16、如图,在等腰梯形ABCD 中,BC AD //, BC BD =,沿BD 折叠ABD ∆,点A 恰好落在BC 边上,则C ∠的度数为17、一般说,当一个人脚到肚脐的距离与身高的比约为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年山西省太原市中考数学二模试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)计算﹣2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.52.(3分)如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于()A.80°B.70°C.60°D.50°3.(3分)如图是一个零件的立体图,该零件的俯视图是()A.B.C.D.4.(3分)一元二次方程x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根5.(3分)国家统计局发布的数据显示,初步核算,一季度国内生产总值约159000亿元,按可比价格计算,同比增长6.7%,数据159000亿用科学记数法可表示为()A.1.59×108B.15.9×1012C.1.59×1013D.1.59×10146.(3分)若四边形的两条对角线分别平分两组对角,则该四边形一定是()A.平行四边形B.菱形C.矩形D.正方形7.(3分)某校举行“我爱我校”演讲比赛,由7名学生组成评委组.小明统计了每位评委对某参赛选手的评分并制成如下表格:如果以去掉一个最高分和一个最低分后其他5名评委的平均分记为选手的最后得分,那么表中的数据一定不发生变化的是()A.众数B.中位数C.平均数D.方差8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=2,点A在函数y=﹣(x<0)的图象上.将矩形向右平移6个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,边C1O1与此图象交于点P,则点P的纵坐标为()A.B.C.D.9.(3分)一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的图象可能是()A.B.C.D.10.(3分)有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1 B.方案2 C.方案3 D.方案4二、填空题:本大题共6小题,每小题3分,共18分11.(3分)计算5a2b•3ab4的结果是.12.(3分)计算:﹣=.13.(3分)如图,在▱ABCD中,对角线AC,BD交于点O,OE∥DC交BC于点E,若△BEO的面积为1,则▱ABCD的面积等于.14.(3分)超市招聘一名收银员,下面是三名应聘者各项测试成绩:根据实际工作需要,该超市将计算机、商品知识和语言三项测试成绩按4:3:2的比例确定各人的素质测试成绩,三名应聘者中将被录用.15.(3分)如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于.16.(3分)建模是数学的核心素养之一,小明在计算+++…+时利用了如下的正方形模型.第1次分割,把正方形的面积三等分,阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…由此计算+++…+的结果是(用含n的代数式表示)三、解答题:本大题共8小题,共72分17.(10分)(1)计算:()﹣1+tan30°﹣|﹣2|﹣(π﹣2016)0(2)解方程:+=1.18.(6分)阅读与计算:对于任意实数a,b,规定运算@的运算过程为:a@b=a2+ab.根据运算符号的意义,解答下列问题.(1)计算(x﹣1)@(x+1);(2)当m@(m+2)=(m+2)@m时,求m的值.19.(8分)根据我国《环境空气质量指数AQI技术规定》(试行),AQI共分0﹣50,51﹣100,101﹣150,151﹣200,201﹣300和大于300六级,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于150时,可以户外运动;空气质量指数151及以上,不适合进行旅游等户外运动,如表是某市未来10天的空气质量指数预测:(1)该市市民在这10天内随机选取1天进行户外运动,求这10天该市市民不适合户外运动的概率;(2)一名外地游客计划在这10天内到该市旅游,随机选取连续2天游玩,求这10天中适合他旅游的概率.20.(7分)某开发公司研制出一种新型产品,该产品的成本价为每件2000元,批发价定为每件2600元,为了鼓励批发商经销该产品,公司决定:批发商一次批发这种产品不超过10件,每件按2600元批发;一次批发这种产品超过10件,每增加1件,所批发的产品每件均降低10元,但不低于成本价.(1)如果批发单价不低于每件2200元,求批发商一次最多能批发这种产品多少件;(2)如果公司在一次批发这种产品中可获利12000元,求这次批发出这种产品多少件.21.(8分)实践与操作:如图,在△ABC中,AB=3,∠C=30°.(1)尺规作图:作△ABC的外接圆⊙O;(要求:保留作图痕迹,不写作法)(2)在你按(1)中要求所作的图中,画⊙O的切线BF,BF与CA的延长线交于点F,若CF⊥BF,求BC的长.22.(8分)综合与实践:制作礼品盒如图(1),小颖将边长为60cm的正方形硬纸片ABCD,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,如图(2),点A,B,C,D四点重合于点P,做成一个底面是正方形的长方体形状的礼品盒.设礼品盒的侧面积为Scm2,AE=FB=xcm.(1)求S与x之间的关系式及S的最大值;(2)小颖有一底面半径为15cm,高为15cm的圆柱体形状的礼品,该礼品能否底面朝下放入她做成的礼品盒?若能,求出x的值;若不能,请说明理由.23.(12分)数学活动:图形的变化问题情境:如图(1),△ABC为等腰直角三角形,∠ACB=90°,E是AC边上的一个动点(点E与A,C不重合),以CE为边在△ABC外作等腰直角△ECD,∠ECD=90°,连接BE,AD.猜想线段BE,AD之间的关系.(1)独立思考:请直接写出线段BE,AD之间的关系;(2)合作交流:“希望”小组受上述问题的启发,将图(1)中的等腰直角△ECD 绕着点C顺时针方向旋转至如图(2)的位置,BE交AC于点H,交AD于点O.(1)中的结论是否仍然成立,请说明理由.(3)拓展延伸:“科技”小组将(2)中的等腰直角△ABC改为Rt△ABC,∠ACB=90°,AC=8,BC=6,将等腰直角△ECD改为Rt△ECD,∠ECD=90°,CD=4,CE=3.试猜想BD2+AE2是否为定值,结合图(3)说明理由.24.(13分)综合与探究:如图,直线y=﹣x+3与y轴交于点A,与x轴交于点B,点P从点B出发以每秒1个单位长度的速度沿BA边向终点A运动,同时点Q以相同的速度从坐标原点O出发沿OB边向终点B运动,设点P运动的时间为t秒.(1)求点A,B的坐标;(2)设△OPQ的面积为S,求S与运动时间t之间的函数关系式;(3)在点P,Q运动的过程中,是否存在点N,使得以点A,P,Q,N为顶点的四边形是矩形?若存在,求t的值并直接写出点N的坐标;若不存在,请说明理由.2016年山西省太原市中考数学二模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(3分)计算﹣2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.5【解答】解:﹣2﹣3=﹣2+(﹣3)=﹣5.故选:A.2.(3分)如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于()A.80°B.70°C.60°D.50°【解答】解:∵∠1=70°,∠2=70°,∴AB∥CD,∴∠3=∠4,又∵∠3=60°,∴∠4的度数等于60°.故选(C)3.(3分)如图是一个零件的立体图,该零件的俯视图是()A.B.C.D.【解答】解:该零件的俯视图为:故选D.4.(3分)一元二次方程x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根【解答】解:∵a=1,b=3,c=1,∴△=b2﹣4ac=32﹣4×1×1=5>0,∴有两个不相等的实数根.故选A.5.(3分)国家统计局发布的数据显示,初步核算,一季度国内生产总值约159000亿元,按可比价格计算,同比增长6.7%,数据159000亿用科学记数法可表示为()A.1.59×108B.15.9×1012C.1.59×1013D.1.59×1014【解答】解:将159000亿用科学记数法表示为:1.59×1013.故选:C.6.(3分)若四边形的两条对角线分别平分两组对角,则该四边形一定是()A.平行四边形B.菱形C.矩形D.正方形【解答】解:如图所示:∵BD平分∠ABC、∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC,∵∠BAD+∠1+∠3=180°,∠BCD+∠2+∠4=180°,∴∠BAD=∠BCD,同理:∠ABC=∠ADC,∴四边形ABCD是平行四边形,∠1=∠3,∴AB=AD,∴四边形ABCD是菱形.故选:B.7.(3分)某校举行“我爱我校”演讲比赛,由7名学生组成评委组.小明统计了每位评委对某参赛选手的评分并制成如下表格:如果以去掉一个最高分和一个最低分后其他5名评委的平均分记为选手的最后得分,那么表中的数据一定不发生变化的是()A.众数B.中位数C.平均数D.方差【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选B.8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=2,点A在函数y=﹣(x<0)的图象上.将矩形向右平移6个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,边C1O1与此图象交于点P,则点P的纵坐标为()A.B.C.D.【解答】解:∵OB=2,点A在函数y=﹣(x<0)的图象上,∴AB=4.∵将矩形向右平移6个单位长度到A1B1O1C1的位置,∴(4,0),∴A1(4,4),∴k=16,即反比例函数的解析式为y=.∵OB=2,∴O1(6,0),∴当x=6时,y==,∴点P的纵坐标为.故选D.9.(3分)一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:解得,或即一次函数y=ax+b和二次函数y=ax2+bx的交点为(1,a+b)和(),故A、B错误;选项C中由一次函数的图象可知,a>0,b<0,则,由二次函数图象可知,a>0,b<0,故C正确;选项D中,由一次函数的图象可知,a>0,b>0,由二次函数的图象可知,a<0,b<0,故选项D错误.故选C.10.(3分)有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1 B.方案2 C.方案3 D.方案4【解答】解:设等边三角形的边长为a,方案1:铺设路线的长为AB+AC=2a,方案2:△ABC中的高线=AB•sin60°=a,故铺设路线的长度为AB+AD+DC=a+a;方案3:△ABC中的高线=AB•sin60°=a,故铺设路线的长度为BC+a=a+a;方案4:如图所示:过点O作OD⊥BC于点D,∵BD=,则BO==a,铺设路线的长为AO+BO+CO=3×a=a;因为a+a>2a>a+a>a,所以方案4铺设路线最短.故选D.二、填空题:本大题共6小题,每小题3分,共18分11.(3分)计算5a2b•3ab4的结果是15a3b5.【解答】解;原式=5×3a2•a•b•b4=15a3b5.故答案为:15a3b5.12.(3分)计算:﹣=﹣.【解答】解:原式=﹣====﹣.故答案为:﹣.13.(3分)如图,在▱ABCD中,对角线AC,BD交于点O,OE∥DC交BC于点E,若△BEO的面积为1,则▱ABCD的面积等于8.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=AC,BCD的面积=四边形ABCD的面积,∵OE∥DC,∴△BEO∽△BCD,∴△BEO的面积:△BCD的面积=1:4,∴△BCD的面积=4△BEO的面积=4×1=4,∴▱ABCD的面积=4×2=8;故答案为:8.14.(3分)超市招聘一名收银员,下面是三名应聘者各项测试成绩:根据实际工作需要,该超市将计算机、商品知识和语言三项测试成绩按4:3:2的比例确定各人的素质测试成绩,三名应聘者中小赵将被录用.【解答】解:∵小李的平均数是:=,小张的平均数是:=,小赵的平均数是:=,∴小赵的得分最高,故小赵被录用.故答案为:小赵.15.(3分)如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′D B=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.16.(3分)建模是数学的核心素养之一,小明在计算+++…+时利用了如下的正方形模型.第1次分割,把正方形的面积三等分,阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…由此计算+++…+的结果是﹣(用含n的代数式表示)【解答】解:第1次分割,阴影部分的面积为,空白部分面积为1﹣=;第2次分割,阴影部分的面积之和为+,空白部分面积为1﹣(+)=;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,所有阴影部分的面积之和为,最后空白部分的面积是.根据第n次分割图可得等式:=1﹣,两边同除以2,得+++…+=﹣.故答案为:﹣.三、解答题:本大题共8小题,共72分17.(10分)(1)计算:()﹣1+tan30°﹣|﹣2|﹣(π﹣2016)0(2)解方程:+=1.【解答】解:(1)原式=2+1﹣2+﹣1=;(2)去分母得:1+3x=x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解.18.(6分)阅读与计算:对于任意实数a,b,规定运算@的运算过程为:a@b=a2+ab.根据运算符号的意义,解答下列问题.(1)计算(x﹣1)@(x+1);(2)当m@(m+2)=(m+2)@m时,求m的值.【解答】解:(1)∵a@b=a2+ab,∴(x﹣1)@(x+1)=(x﹣1)2+(x﹣1)(x+1)=x2﹣2x+1+x2﹣1=2x2﹣2x;(2)∵a@b=a2+ab,∴m@(m+2)=(m+2)@m即m2+m(m+2)=(m+2)2+(m+2)m,化简,得4m+4=0,解得,m=﹣1,即m的值是﹣1.19.(8分)根据我国《环境空气质量指数AQI技术规定》(试行),AQI共分0﹣50,51﹣100,101﹣150,151﹣200,201﹣300和大于300六级,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于150时,可以户外运动;空气质量指数151及以上,不适合进行旅游等户外运动,如表是某市未来10天的空气质量指数预测:(1)该市市民在这10天内随机选取1天进行户外运动,求这10天该市市民不适合户外运动的概率;(2)一名外地游客计划在这10天内到该市旅游,随机选取连续2天游玩,求这10天中适合他旅游的概率.【解答】解:(1)∵这10天该市市民户外运动的机会是相同的,其中不适合户外运动的天数分别是:13日,14日,19日,20日,∴这10天该市市民不适合户外运动的概率==;(2)∵这10天连续2天的组合共有9中可能情况,其中连续2天游玩的情况有4中,分别是(11,12),(15,16)(16,17),(17,18),∴适合他旅游的概率=.20.(7分)某开发公司研制出一种新型产品,该产品的成本价为每件2000元,批发价定为每件2600元,为了鼓励批发商经销该产品,公司决定:批发商一次批发这种产品不超过10件,每件按2600元批发;一次批发这种产品超过10件,每增加1件,所批发的产品每件均降低10元,但不低于成本价.(1)如果批发单价不低于每件2200元,求批发商一次最多能批发这种产品多少件;(2)如果公司在一次批发这种产品中可获利12000元,求这次批发出这种产品多少件.【解答】解:(1)设批发商一次最多能批发这种产品x件,根据题意得:2600﹣10(x﹣10)≥2200,解得:x≤50,答:批发商一次最多能批发这种产品50件;(2)设这次批发出这种产品y件,①当y=10时,公司可获得利润:10(2600﹣2000)=6000,∵6000<12000,∴y=10不成立,②当y>10时,根据题意得:y[2600﹣10(y﹣10)﹣2000]=12000,解得:y1=30,y2=40,答:这次批发出这种产品30件或40 件.21.(8分)实践与操作:如图,在△ABC中,AB=3,∠C=30°.(1)尺规作图:作△ABC的外接圆⊙O;(要求:保留作图痕迹,不写作法)(2)在你按(1)中要求所作的图中,画⊙O的切线BF,BF与CA的延长线交于点F,若CF⊥BF,求BC的长.【解答】解:(1)如图,⊙O为所作;(2)连接OA、OB,OA交BC于E,如图,∵BF为切线,∴OB⊥BF,∵BF⊥CF,∴OB∥CF,∴∠OBC=∠C=30°,∵∠AOB=2∠C=60°,∵OA=OB,∴△OAB为等边三角形,∴∠ABC=30°,∴BC平分∠ABO,∴AO⊥BC,∴BE=CE,在Rt△ACE中,AE=AB=,BE=AE=,∴BC=2BE=3.22.(8分)综合与实践:制作礼品盒如图(1),小颖将边长为60cm的正方形硬纸片ABCD,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,如图(2),点A,B,C,D四点重合于点P,做成一个底面是正方形的长方体形状的礼品盒.设礼品盒的侧面积为Scm2,AE=FB=xcm.(1)求S与x之间的关系式及S的最大值;(2)小颖有一底面半径为15cm,高为15cm的圆柱体形状的礼品,该礼品能否底面朝下放入她做成的礼品盒?若能,求出x的值;若不能,请说明理由.【解答】解:(1)∵AE=FB=xcm,∴EF的长为(60﹣2x)cm.图中阴影部分拼在一起是边长为EF的正方形,其面积为:(60﹣2x)2cm2,掀起的四个角上的四个等腰直角三角形的面积之和为:2x2cm2;盒底正方形的边长为x,其面积为2x2;∴S=602﹣(60﹣2x)2﹣4x2=240x﹣8x2∴S=﹣8(x2﹣30x)=﹣8(x﹣15)2+1800(0<x<30),∵a=﹣8<0.∴抛物线的开口向下,S有最大值.∴x=15cm时,侧面积最大为1800cm2,答:若包装盒侧面积S=1800cm2最大,x应取15cm.最大(2)包装盒的底面正方形的边长为a,高为h,∴AE=a,∴EF=60﹣2AE=60﹣a,∴h=EF=30﹣a,∴包装盒的高h随底面边长的增大而减小.圆柱的底面朝下放入,此时包装盒高h不能小于15.∵圆柱的底面半径为15cm,∴盒底边长最小取30cm(放入如①图),∴h=30﹣a=30(﹣1)<15,故不能放下.23.(12分)数学活动:图形的变化问题情境:如图(1),△ABC为等腰直角三角形,∠ACB=90°,E是AC边上的一个动点(点E与A,C不重合),以CE为边在△ABC外作等腰直角△ECD,∠ECD=90°,连接BE,AD.猜想线段BE,AD之间的关系.(1)独立思考:请直接写出线段BE,AD之间的关系;(2)合作交流:“希望”小组受上述问题的启发,将图(1)中的等腰直角△ECD 绕着点C顺时针方向旋转至如图(2)的位置,BE交AC于点H,交AD于点O.(1)中的结论是否仍然成立,请说明理由.(3)拓展延伸:“科技”小组将(2)中的等腰直角△ABC改为Rt△ABC,∠ACB=90°,AC=8,BC=6,将等腰直角△ECD改为Rt△ECD,∠ECD=90°,CD=4,CE=3.试猜想BD2+AE2是否为定值,结合图(3)说明理由.【解答】解:(1)∵△ABC和△CDE都是等腰直角三角形,∴BC=AC,CE=CD,∠BCE=∠ACD=90°,∴△BCE≌△ACD,∴BE=AD,∠CEB=∠CDA,∵∠CBE+∠CEB=90°,∴∠CBE+∠CDA=90°,∴BE⊥AD,(2)BE=CD,BE⊥AD,理由:∵△ABC是等腰直角三角形,∠ACB=90°∴AC=BC,∵△CDE是等腰直角三角形,∠ECD=90°,∴CD=CE,∴∠ACB+∠ACE=∠ECD+∠ACE,∴∠BCE=∠ACD,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠BHC=∠AHO,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AHO=90°,∴BE⊥AD;即:BE=AD,BE⊥AD;(3)是定值,理由:∵∠ECD=90°,∠ACB=90°,∴∠ACB=∠ECD,∴∠ACB+ACE=∠ECD+∠ACE=90°,∴∠BCE=ACD,∵AC=8,BC=6,CD=4,CE=3,∴=,∴△BCE∽△ACD,∴∠CBE=∠CAD,∵∠BHC=∠AHO,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BE⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AE2=OA2+OE2,AB2=OA2+OB2,DE2=OE2+OD2,∴BD2+AE2=OB2+OD2+OA2+OE2=AB2+DE2,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB2=100,在Rt△ECD中,∠ECD=90°,CD=4,CE=3,∴DE2=25,∴BD2+AE2=AB2+DE2=125.24.(13分)综合与探究:如图,直线y=﹣x+3与y轴交于点A,与x轴交于点B,点P从点B出发以每秒1个单位长度的速度沿BA边向终点A运动,同时点Q以相同的速度从坐标原点O出发沿OB边向终点B运动,设点P运动的时间为t秒.(1)求点A,B的坐标;(2)设△OPQ的面积为S,求S与运动时间t之间的函数关系式;(3)在点P,Q运动的过程中,是否存在点N,使得以点A,P,Q,N为顶点的四边形是矩形?若存在,求t的值并直接写出点N的坐标;若不存在,请说明理由.【解答】解:(1)对于直线y=﹣x+3,令x=0,得到y=3;令y=0,得到x=4,∴A(0,3),B(4,0);(2)如图1所示,过P作PH⊥x轴于H,由题意得:OQ=BP=t,由题意得:OA=3,OB=4,在Rt△ABO中,∠AOB=90°,根据勾股定理得:AB===5,∴sin∠ABO=,在Rt△PHB中,∠PHB=90°,BP=t,∴PH=BPsin∠ABO=t,当0≤t<4时,S=×OQ×PH=×t×t=t2;当4≤t<5时,点Q与点B重合,OQ=OB=4,PH=t,∴S=×OQ×PH=×4×t=t,综上,S与t的函数解析式为S=;(3)存在以点A,P,Q,N为顶点的四边形是矩形,①如图2所示,当∠APQ=90°时,∠BPQ=∠AOB=90°,由(2)得:cos∠PBQ=,即=,解得:t=,此时N坐标为(﹣,);②如果∠PAQ=90°,∵∠OAB为锐角,∠PAQ<∠OAB,∴不成立,∠PAQ≠90°;③如果∠AQP=90°,当Q与O重合时,t=0,此时N坐标为(4,3),当0<t≤5时,如图3所示,过P作PM⊥x轴于点M,由①得:MB=t,∴QM=OB﹣OQ﹣BM=4﹣t,∵∠AOQ=∠QMP=∠AQP=90°,∴∠OAQ=∠MQP,∴Rt△AOQ∽Rt△QMP,∴=,即=,解得:t=,此时N坐标为(,),综上所述,当t的值为0,,时,以点A,P,Q,N为顶点的四边形是矩形,点N的坐标分别为(4,3),(﹣,),(,).。

相关文档
最新文档