北师大版八年级数学下册解题技巧专题:等腰三角形中辅助线的作法
北师大版八年级数学下册期末复习专题训练(三) 三角形证明中的四种辅助线作法
2.如图3-ZT-2,在△ABC中,AB=AC,点E在AC上,且AD =AE,DE的延长线与BC相交于点F.求证:DF⊥BC.
图3-ZT-2
证明:如图,过点A作AM⊥BC于点M. ∵AB=AC,∴∠BAC=2∠BAM. ∵AD=AE, ∴∠D=∠AED, ∴∠BAC=∠D+∠AED=2∠D, ∴∠BAM=∠D, ∴DF∥AM. ∵AM⊥BC,∴DF⊥BC.
3.如图3-ZT-3,在△ABC中,AB=AC,D是BC边上的中点, DE,DF分别垂直AB,AC于点E,F.求证:DE=DFD是BC边上的中点, ∴AD平分∠BAC. ∵DE,DF分别垂直AB,AC于点E,F, ∴DE=DF.
作法二 构造直角三角形(等腰三角形)
5.如图3-ZT-5,点E在△ABC的AC边的延长线上,点D在AB 边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰 三角形.
图3-ZT-5
证明:如图,过点D作DG∥AE交BC于点G, ∴∠GDF=∠CEF. 在△GDF和△CEF中, ∵∠GDF=∠CEF,DF=EF,∠DFG=∠EFC, ∴△GDF≌△CEF(ASA),∴DG=CE. 又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB. ∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB, ∴AB=AC,∴△ABC是等腰三角形.
7.如图3-ZT-7所示,在四边形ABCD中,E是边BC的中点,F 是边CD的中点,且AE⊥BC,AF⊥CD. (1)求证:AB=AD; (2)若∠BCD=114°,求∠BAD的度数.
图3-ZT-7
解:(1)证明:如图,连接AC. ∵E是边BC的中点,AE⊥BC,∴AB=AC. 同理可得AD=AC,∴AB=AD. (2)如图.∵AB=AC,AD=AC, ∴∠B=∠1,∠D=∠2, ∴∠B+∠D=∠1+∠2,即∠B+∠D=∠BCD. ∵∠BAD+(∠B+∠D)+∠BCD=360°,∠BCD=114°, ∴∠BAD=360°-114°-114°=132°.
等腰三角形中的常见辅助线
等腰三角形中做辅助线的八种常用方法几何图形中添加辅助线,往往能把分散的条件集中,使隐蔽的条件显露,将复杂的问题简单化.例如:作“三线”中的一线或平行线证线段相等,利用截长补短证线段和差关系或求角的度数,利用加倍折半法证线段的倍分关系等,将不在同一个三角形的线段转移到同一个三角形(或两个全等三角形)中,然后运用等腰(或全等三角形)的性质来解决问题.方法1 等腰三角形中有底边上的中点时常作底边上的中线1.如图,在三角形ABC中,∠A=90°,AB=AC,D为BC的中点,E,F分别是AB,AC上的点,且BE=AF,求证:(1)DE=DF.(2)DE⊥DF方法2 等腰三角形中没有底边上的中点时常作底边上的高2.如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.方法3 等腰三角形中证与腰有关联的线段时常作腰的平行线或垂线3.如图,在△ABC中,AB=AC ,点P从点B出发沿线段BA移动(点P与A,B不重合),同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,PQ与直线BC相交于点D.(1)试说明:PD=QD(2)过点P作直线BC的垂线,垂足为E,P,Q在移动的过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.方法4 等腰三角形证与底有关的线段时常作底的平行线4.如图,等边三角形ABC中,D是边AC延长线上一点,延长BC至E,使CE=AD,DG⊥BE于G,求证:BG=EG.方法5补形法构造等腰三角形5.如图,AB∥CD,∠1=∠2,AD=AB+CD,求证:(1)BE=CE;(2)AE⊥DE;(3)AE平分∠BAD.方法6 倍长中线法构造等腰三角形6.如图,△ABC中,AD为中线,点E为AB上一点,AD,CE交于点F,且CE=EF,求证:AB=CF方法7 延长(或截长)法构造等腰三角形7.如图,在△ABC中,∠BAC=2∠B,CD平分∠ACB交AB于D,求证:AC+AD=BC.方法8 截长补短法构造等腰三角形8.如图,在△ABC中,∠BAC=120°,AD⊥BC于点D,且AB+BD=DC,求∠C的度数.。
等腰三角形时常用的辅助线作法
等腰三角形时常用的辅助线作法-CAL-FENGHAI.-(YICAI)-Company One1有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,求证:∠BAC = 2∠DBC⑵有底边中点时,常作底边中线例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE = DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EF⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF2⑸常过一腰上的某一已知点做底的平行线例:已知,如图,△ABC中,AB =AC,F在AC上,E在BA延长线上,且AE = AF,连结DE求证:EF⊥BC⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形例:已知,如图,△ABC中,AB = AC,∠BAC = 80o ,P为形内一点,若∠PBC = 10o,∠PCB = 30o求∠PAB的度数.有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,求证:∠BAC = 2∠DBC证明:(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2= 12∠BAC又∵AB = AC∴AE⊥BC∴∠2+∠ACB = 90o∵BD⊥AC∴∠DBC+∠ACB = 90o∴∠2 = ∠DBC21EDCBA34∴∠BAC = 2∠DBC(方法二)过A 作AE ⊥BC 于E (过程略) (方法三)取BC 中点E ,连结AE (过程略)⑵有底边中点时,常作底边中线例:已知,如图,△ABC 中,AB = AC ,D 为BC 中点,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:DE = DF证明:连结AD.∵D 为BC 中点, ∴BD = CD又∵AB =AC∴AD 平分∠BAC ∵DE ⊥AB ,DF ⊥AC ∴DE = DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC 中,AB = AC ,在BA 延长线和AC 上各取一点E 、F ,使AE =AF , 求证:EF ⊥BC证明:延长BE 到N ,使AN = AB,连结CN,则AB = AN = AC∴∠B = ∠ACB, ∠ACN = ∠ANC∵∠B +∠ACB +∠ACN +∠ANC = 180o∴2∠BCA +2∠ACN = 180o∴∠BCA +∠ACN = 90o 即∠BCN = 90o∴NC ⊥BC ∵AE = AF ∴∠AEF = ∠AFE 又∵∠BAC = ∠AEF +∠AFE ∠BAC = ∠ACN +∠ANC ∴∠BAC =2∠AEF = 2∠ANC ∴∠AEF = ∠ANC ∴EF ∥NC ∴EF ⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC 中,AB = AC ,D 在AB 上,E 在AC 延长线上,且BD = CE ,连结DE 交BC 于F 求证:DF = EF证明:(证法一)过D 作DN ∥AE ,交BC 于N ,则∠DNB = ∠ACB ,∠NDE = ∠E , ∵AB = AC , ∴∠B = ∠ACB∴∠B =∠DNB∴BD = DN又∵BD = CE ∴DN = ECF E DC B AN F EC B A21N F ED C B A在△DNF和△ECF中∠1 = ∠2∠NDF =∠EDN = EC∴△DNF≌△ECF∴DF = EF(证法二)过E作EM∥AB交BC延长线于M,则∠EMB =∠B(过程略)⑸常过一腰上的某一已知点做底的平行线例:已知,如图,△ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE求证:DE⊥BC证明:(证法一)过点E作EF∥BC交AB于F,则∠AFE =∠B∠AEF =∠C∵AB = AC∴∠B =∠C∴∠AFE =∠AEF∵AD = AE∴∠AED =∠ADE又∵∠AFE+∠AEF+∠AED+∠ADE = 180o∴2∠AEF+2∠AED = 90o即∠FED = 90o∴DE⊥FE又∵EF∥BC∴DE⊥BC(证法二)过点D作DN∥BC交CA的延长线于N,(过程略)(证法三)过点A作AM∥BC交DE于M,(过程略)⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形例:已知,如图,△ABC中,AB = AC,∠BAC = 80o ,P为形内一点,若∠PBC = 10o∠PCB = 30o求∠PAB的度数.解法一:以AB为一边作等边三角形,连结CE则∠BAE =∠ABE = 60oAE = AB = BE∵AB = AC∴AE = AC ∠ABC =∠ACB∴∠AEC =∠ACE∵∠EAC =∠BAC-∠BAE= 80o-60o = 20o∴∠ACE = 12(180o-∠EAC)=80o∵∠ACB= 12(180o-∠BAC)=21MFEDCBANMF EDCBAPECBA550o∴∠BCE =∠ACE-∠ACB= 80o-50o = 30o∵∠PCB = 30o∴∠PCB = ∠BCE∵∠ABC =∠ACB = 50o, ∠ABE = 60o∴∠EBC =∠ABE-∠ABC = 60o-50o =10o ∵∠PBC = 10o∴∠PBC = ∠EBC在△PBC和△EBC中∠PBC = ∠EBCBC = BC∠PCB = ∠BCE∴△PBC≌△EBC∴BP = BE∵AB = BE∴AB = BP∴∠BAP =∠BPA∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o∴∠PAB = 12(180o-∠ABP)= 70o解法二:以AC为一边作等边三角形,证法同一。
等腰三角形辅助线添法,太经典了!
等腰三角形辅助线添法,太经典了!等腰三角形,是初中数学里的一个重点,和等腰三角形有关的考试题型,各种变式题也特别多。
如何快速解决好等腰三角形问题,做到孰能生巧?今天总结了以下四种和等腰三角形题型有关的常见辅助线添加方法,共5道例题,有详细讲解。
方法一:做三线合一中的一线三线合一,是等腰三角形里最重要的性质定理之一。
所谓三线,就是等腰三角形中,顶角的角平分线,底边的中线,底边的高线。
必然三线合一。
例题1,是三线合一的最基础的题型,D是BC的中点,那么连接AD,通过三线合一的性质,得出AD⊥BC.方法二:做平行线法这个一般是做一腰的平行线,得出两个角相等,从而得出三角形全等例题2中,这个题是非常常见的考试经典题型。
第①小题,得出三角形全等,得出PD=QD。
第②小题,过点P做PF∥AC,因为△PBF是等腰三角形,PE⊥BF,三线合一得出BE=EF。
又因为三角形全等,得出FD=CD。
所以,得出ED=BC的一半,即为定值。
方法三:截长补短法,或者叫截长取短法简单说,就是在某一条线段上截取一条线段,和已知线段相等。
或者,延长某一线段,使之等于某已知线段。
此解题方法常用,请大家细心钻研,平时多探索,勤学苦练。
例题3,就是一道延长某一线段,使之等于某已知线段,经典考试题型。
例题4,这就是一道在某一条线段上截取一条线段,和已知线段相等,通过等量转换,得出结论的经典考试题型。
方法四:加倍折半法,倍长中线法例题5,解析说过点B做BF∥AC,最后得出的还是线段相等。
其实,这个题还有一个更好的解题思路,就是倍长中线法先提示一下辅助线的添加方法。
因为CE是△ABC的中线,倍长中线CE。
延长CE至F,使EF=CE,连接BF。
倍长中线,必出三角形全等,最后得出,△DBC≌△FBC,所以DC=CF,所以CD=2CE。
看完这经典例题之后,不要认为自己就完全掌握了,这个时候要干什么?来源网络,侵删。
等腰三角形的常用辅助线
等腰三角形的常用辅助线等腰三角形的常用辅助线,这个话题一说到,很多小伙伴可能会皱起眉头,觉得“哎呀,又是数学的那些东西”!其实呢,没那么复杂,只要把它看成一块小蛋糕,我们就能轻松地吃掉它。
等腰三角形,顾名思义,就是两条边相等的三角形。
它的特性呢,大家都知道,底边两侧的角度相等。
可是呀,单纯的等腰三角形有时候看着不太显眼,搞不好就会错过一些隐藏的“玄机”。
这个时候,辅助线就派上用场了。
你可别小看这些不起眼的辅助线,它们可真是神奇的工具,让我们在解题时游刃有余。
那这些辅助线到底有哪些呢?今天我们就来聊聊这个。
最常见的辅助线,就是垂直平分线。
哎呀,这个名字一听就有点严肃是不是?不过其实呢,它就是把等腰三角形的底边“砍”成两段一样长的线。
如果你仔细看看,垂直平分线还跟三角形的顶点连在一起,那是有多神奇!它不仅能把底边分成两段一样长的部分,还能让顶点到这条线的距离是最短的。
更妙的是,它还能帮助你把三角形分割成两个完全对称的小三角形,哇,简直是像拆解拼图一样,一块一块的弄清楚,结果一下子问题就解决了。
所以啊,碰到等腰三角形,想要对称性好一点,垂直平分线一定得用起来!然后,还有个很重要的辅助线,那就是角平分线。
角平分线啊,说白了,就是把三角形的一个角一分为二,把两边分成对称的部分。
好家伙,你看,这个角平分线的作用可大了。
它不仅能帮助你把角度弄清楚,还能直接给出一些相等的比值。
简直是无敌的“妙招”,解题时能带来不小的帮助。
你知道吗?有时候你在一个等腰三角形里,角平分线不仅能告诉你角度之间的关系,还能帮助你计算一些线段的长度。
不管是在解几何题目,还是在日常的数学练习中,这个“神器”都能让你快速抓住关键,给出精准的答案。
所以呢,如果你遇到需要计算比例关系的题目,角平分线就是你最好的朋友。
不过,别以为只有垂直平分线和角平分线才厉害,还有一个秘密武器叫做中线。
中线呢,就是从顶点往下拉,连接底边的中点。
看起来像是个平凡无奇的小线段,可实际上它的功能不容小觑。
等腰三角形几种常见辅助线精典题型
等腰三角形几种常见辅助线精典题型
等腰三角形是指两边相等的三角形。
在解决等腰三角形相关题目时,常常使用辅助线来辅助推导和证明。
以下是几种常见的等腰三角形辅助线题型:
1. 画中线
对于一个等腰三角形ABC,如果我们画出边AC的中线DE,那么DE就会和边AB、边BC的中点F、G分别重合。
这是因为等腰三角形的两底角相等,所以边DE和边AB、边BC同样长度,且平行。
因此,边DE和边AB、边BC的中点会重合在一条直线上。
2. 画高线
另一个常见的辅助线是画出等腰三角形ABC的高线AD,垂直于底边BC。
根据等腰三角形的性质,高线AD会和底边BC的中点E重合。
这是因为高线AD与底边BC垂直,而等腰三角形的两底角相等,所以高线AD与边AB和边AC平行。
因此,高线AD 和底边BC的中点会重合在一条直线上。
3. 划分等腰三角形
我们还可以使用辅助线将等腰三角形划分为更小的等腰三角形。
例如,我们可以从等腰三角形ABC的顶点A开始,划分出三角形ABD和三角形ACD。
这样,我们就得到了两个与原等腰三角形相
似的等腰三角形。
通过划分等腰三角形,我们可以更方便地推导和
证明相关问题。
在解决等腰三角形的相关题目时,使用这些常见的辅助线题型
能够帮助我们更好地理解等腰三角形的性质,简化问题的处理过程,并得到准确的结论。
> 注意:以上内容仅供参考,具体问题具体分析。
【北师大版】初二数学下册《专训4 等腰三角形中四种常用作辅助线的方法》训练课件
由.
如图①,过点P作PF∥AC交BC于F. (1)证明: ∵点P和点Q同时出发,且速度相同, ∴BP=CQ.∵PF∥AQ,
∴∠PFB=∠ACB,
∠DPF=∠CQD. ∵AB=AC,∴∠B=∠ACB. ∴∠B=∠PFB.∴BP=FP.∴FP=CQ. 在△PFD和△QCD中,
∠DPF=∠DQC,∠PDF=∠QDC,Leabharlann P=CQ,3截长补短法
3.如图,在△ABC中,AB=AC,D是△ABC外 一点,且∠ABD=60°,∠ACD=60°. 求证:BD+DC=AB.
如图,延长BD至E,使BE=AB,连接CE,AE. 证明: ∵∠ABE=60°,BE=AB,
∴△ABE为等边三角形.
∴∠AEB=60°,AE=AB. 又∵∠ACD=60°,
∴△PFD≌△QCD(AAS).∴PD=QD.
(2)解:ED的长度保持不变. 理由如下:如图②,过点P作PF∥AC交BC于F. 由(1)知PB=PF.
∵PE⊥BF,
∴BE=EF.由(1)知△PFD≌△QCD, ∴FD=CD.
1 ∴ED=EF+FD=BE+CD= BC. 2 ∴ED的长度为定值.
方法
∴△BEF≌△AEC(SAS).
∴∠EBF=∠A,BF=AC.
又∵AB=AC,∴∠ABC=∠ACB. ∴∠CBD=∠A+∠ACB=∠EBF+∠ABC=∠CBF. ∵CB是△ADC的中线,∴AB=BD. 又∵AB=AC,AC=BF,∴BF=BD. 在△CBF与△CBD中,
ì CB=CB, ï ï ï ï CBF= CBD, í行 ï ï ï ï î BF=BD,
方法
2
作平行线法
2.如图,在△ABC中,AB=AC,点P从点B出 发沿线段BA移动,同时,已知点Q从点C出发 沿线段AC的延长线移动,点P,Q移动的速度 相同,PQ与直线BC相交于点D.
北师大版八年级下册数学:等腰三角形常见辅助线作法总结(超详细,经典!!!)
等腰三角形常见辅助线做法总结一、常见辅助线添加方法Ⅰ利用等腰三角形“底边上的高、底边上的中线、顶角的平分线”相互重合解题.1.有底边中点时常连接底边上的中线⑴如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF.求证:DE=DF.⑵如图,△ABC中,AB=AC,D是BC的中点,过A的直线EF∥BC,且AE=AF.求证:DE=DF.⑶如图,△ABC中,AB=AC,D、E、F分别在BC、AB、AC上,且BD=CF,BE=CD,G是EF的中点,求证:DG⊥EF.2.遇到等腰常作高⑷如图,△ABC中,2AB=AC,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.⑸如图,点D、E分别在BA、AC的延长线上,且AB=AC、AD=AE,求证:DE⊥BC.Ⅱ利用平行线构造等腰三角形3.遇到等腰常平移腰构造等腰三角形⑹如图,△ABC中,AB=AC,D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:DF=EF.4.遇到等腰常平移底构造等腰三角形⑺如图,△ABC中,AB=AC,E在AC上,点D在BA的延长线上,且AD=AE,连DE,求证:DE⊥BC.5.利用“角平分线+平行线”构造等腰三角形⑻如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F,求证:AB=EF.Ⅲ折半加倍方法处理二倍角问题6.作二倍角的平分线构造筀等腰三角形7.将小角加倍成和大角相等构造等腰三角形8.构造等腰三角形,使二倍角是这个等腰三角形顶角的外角(9) 如图,在△ABC中,∠ACB=2∠ABC,求证:2AC>AB.(10)如图,在△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC (用两方法).Ⅳ线段的截长补短法9.当已知或求证中有一条线段大于另一条线段时可考虑截长补短法(11) 如图,在△ABC中,AB>AC,求证:∠ACB>∠B.10.当已知线段或求证中涉及线段的和(差)问题时可考虑截长补短法(12) 如图,△ABC是等边三角形,D是△ABC外一点,且∠BDA=∠ADC=60°,求证:BD+CD=AD.(13) 如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠D AB的度数.(用两种方法)(14) 如图在△ABC中,∠BAC=108°,AB=AC,BD平分∠ABC,交AC于D,求证:BC=CD+AB.(用两种方法)二、等腰三角形综合训练1.如图,点E为△ABC边AB上一点,AC=BC=BE,AE=EC,BD⊥AC于D,则∠CBD= 度.2.如图,已知等边△ABC,D在BC延长线上,CE平分∠ACD,且CE=BD,求证:△ADE是等边三角形.3.如图,已知AD 平分∠BAC ,CE ⊥AD 交AB 于D , EF ∥BC 交AC 于F ,求证:EC 平分∠DEF .4.如图,∠AOB =30°,OC 平分∠AOB ,P 为OC 上任一点,PD ∥OA 交OB 于D ,PE ⊥OA 于E ,OD =6,求PE 的长.5.如图,AB =AC ,AB 的垂直平分线交AC 于D 点,若AD =BC ,(1)求∠A BC ;(2)若点E 在BC 的延长线上,且CE=CD ,连AE ,求∠CAE .6.如图,已知等边△ABC ,D 在AC ,延长BC 至E ,使CE =CD ,若 DE =BD ,给出下列结论:①BD 平分∠ABC ;②AB AD 21=;③BC CE 21=;④∠A =2∠E .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个7.已知,AB =BC ,BD =BE ,∠ABC =∠DBE =α,M 、N 分别是AD 、CE 的中点.(1)如图①,若α=60°,求∠BMN ;(2)如图②,若α=90°,求∠BMN= ;(3)将图②的绕B 点逆时针旋转一锐角,在图③中完成作图,则∠BMN= .。
初中数学等腰三角形,7种常用辅助线的添加方法,技巧归纳专题
初中数学等腰三角形,7种常用辅助线的添加方法,技巧归纳专
题
初中数学:等腰三角形,7种常用辅助线的添加方法,技巧归纳专题 -
八年级数学,等腰三角形和等边三角形是几何试题中最常见的考查要素之一。
时间过得真快,转眼又到周末。
这个周末,和大家一起分享,这套《技巧专题,等腰三角形,7种常用辅助线添加方法》,一起讲一些简单的技巧招式归纳在一起,助力练就解题神功。
前面有9个例子,有详细的分析步骤。
课后练习10个,暂时没有打和分析过程。
这些问题并不难。
你可以把它们打印下来,适当地研究一下。
方法一。
三线融合法。
三条线的组合是等腰三角形的一个非常重要的性质,也是一个非常基本的性质定理。
方法二。
用一条腰的平行线构成一个等腰三角形。
方法三,取长补短,构造等腰三角形。
截取互补,三角形解题技巧中很常见的一种添加辅助线的方法。
方法四。
在证明存在与底部相关的线段时,通常是与底部平行的直线。
这个例子不是一个好主意。
当然,用切掉长点的方法更容易互补。
方法五。
双倍长度中线法。
在三角题型中,当我们遇到中线时,要经常思考是否可以用中线翻倍的方法。
方法六。
以底边或腰为边做一个等边三角形,这样会有三角形的全等。
这种方法在解决某些求角问题时非常实用。
这个例子后面有一个类比,可以试试。
方法七,旋转。
说到等腰三角形,就必须提到旋转的方法。
换句话说,任何与旋转有关的东西都应该有一个等腰元素。
八年级数学等腰三角形辅助线添加方法,赶快收藏!
八年级数学等腰三角形辅助线添加方法,赶快收藏!
成才路上
奥数国家级教练与四名特级
教师联手执教。
等腰三角形,是初中数学里的一个重点,和等腰三角形有关的考试题型,各种变式题也特别多。
方法一:做“三线合一”中的一线
三线合一,是等腰三角形里最重要的性质定理之一。
所谓三线,就是等腰三角形中,顶角的角平分线、底边的中线、底边的高线。
在等腰三角形中,如果做其中一线,必然三线合一。
方法二:做平行线法
在等腰三角形中,如果做一腰的平行线,马上得出两个角相等,从而得出全等三角形。
方法三:截长补短法
简单说,就是在某一条线段上截取一条线段,和已知线段相等,或者,延长某一线段,使之等于某已知线段。
此解题方法常用,需要大家多做多练,确实掌握截长补短法的解题技巧。
方法四:倍长中线法
如果题目中出现三角形的中线或者中点,我们可以将中线加倍,从而得到等腰三角形。
八年级数学下册2.解题技巧专题:等腰三角形中辅助线的作法 (2)(附答案)
解题技巧专题:等腰三角形中辅助线的作法——形成精准思维模式,快速解题◆类型一利用“三线合一”作辅助线一、已知等腰作垂线(或中线、角平分线)1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=2,则BC =________.2.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE =AF.求证:DE=DF.3.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于点D,E是AD上一点,且EA =EC,连接EB.求证:EB⊥AB.二、构造等腰三角形4.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为( )A.3 B.4 C.5 D.65.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE.◆类型二巧用等腰直角三角形构造全等6.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上.求证:DE=DF.◆类型三等腰(边)三角形中截长补短或作平行线构造全等7.如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于点D.求证:BC =AB+CD.8.如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.【方法8】参考答案与解析1.42.证明:连接AD.∵AB=AC ,D 是BC 的中点,∴∠EAD=∠FAD.在△AED 和△AFD 中,⎩⎨⎧AE =AF ,∠EAD=∠FAD,AD =AD ,∴△AED≌△AFD,∴DE=DF.3.证明:过点E 作EF⊥AC 于点F.∵EA=EC ,∴AF=FC =12AC.∵AC=2AB ,∴AF=AB.∵AD 平分∠BAC,∴∠BAE=∠FAE.又∵AE=AE ,∴△ABE≌△AFE(SAS),∴∠ABE=∠AFE=90°,∴EB⊥AB.4.B5.证明:如图,延长BA 和CE 交于点M.∵CE⊥BD,∴∠BEC=∠BEM=90°.∵BD 平分∠ABC,∴∠MBE =∠CBE.又∵BE=BE ,∴△MBE≌△CBE,∴EM=EC =12MC.∵△ABC 是等腰直角三角形,∴∠BAC=∠MAC=90°,BA =AC ,∴∠ABD+∠BDA=90°.∵∠BEC=90°,∴∠ACM+∠CDE=90°.∵∠BDA=∠E DC ,∴∠ABE=∠ACM.又∵AB=AC ,∴△ABD≌△ACM(ASA),∴DB=MC ,∴BD=2CE.6.证明:连接CD.∵AC=BC ,∠C=90°,D 是AB 的中点,∴CD 平分∠ACB,CD⊥AB,∴∠CDB=90°,∴∠BCD=∠ACD=45°,∠B=∠C=45°,∴∠ACD=∠B=∠BCD,∴CD =BD.∵ED⊥DF,∴∠EDF=∠EDC+∠CDF=90°.又∵∠CDF+∠BDF=90°,∴∠EDC=∠FDB,∴△ECD≌△FBD,∴DE=DF.7.证明:如图,在线段BC 上截取BE =BA ,连接DE.∵BD 平分∠ABC,∴∠ABD=∠EBD.又∵BD=BD ,∴△ABD≌△EBD(SAS),∴∠BED=∠A=108°,∴∠CED=180°-∠BED=72°.又∵AB=AC ,∠A=108°,∴∠ACB=∠ABC=12×(180°-108°)=36°,∴∠CDE =180°-∠ACB-∠CED=180°-36°-72°=72°.∴∠CDE=∠DEC,∴CD=CE ,∴BC=BE+EC=AB+CD.8.(1)证明:过点P作PF∥BC交AC于点F,∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD =∠QCD.∵△ABC为等边三角形,∴∠A=∠ACB=60°,∴∠AFP=60°,∴△APF是等边三角形,∴PF=PA=CQ,∴△PFD≌△QCD,∴PD=DQ.(2)解:由(1)知△APF是等边三角形,∵PE⊥AC,∴AE=EF.由(1)知△PFD≌△QCD,∴DF=CD,∴DE=EF+DF=12AF+12CF=12AC.又∵AC=1,∴DE=12.。
中考数学复习指导:解等腰三角形问题时常用的辅助线
解等腰三角形问题时常用的辅助线等腰三角形是平面几何中的一种重要图形,等腰三角形问题大多需要添加适当的辅助线.下面谈谈等腰三角形问题中的几种常用的辅助线.一、作底边上的中线或高或顶角的平分线例1 如图1,在△ABC中,AB=AC,∠A=90°,点D是BC的中点,点E,F分别在AB.AC上,且AE=CF.求证:△DEF是等腰直角三角形.分析由点D是等腰三角形底边BC的中点,容易联想作底边上的中线,利用等腰三角形的“三线合一”的性质证明.证明如图1,连接AD.∵AB=AC,∠A=900,∴∠B=∠C=45°.∵AB=AC,点D是BC的中点,∴AD⊥BC,∠BAD=∠CAD=∠A=45°.∴∠EAD=∠C,∠CAD=∠C.∴AD=CD.又AE=CF,∴△AED≌△CFD,∴DE=DF,∠1=∠2.∵AD⊥BC,∴∠ADC=∠2+∠3=90°.∴∠1+∠3=90°,即∠EDF=90°.∴△DEF是等腰直角三角形.二、作腰或底的平行线例2 如图2,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于点E,判断△ADE的形状,并证明你的结论.分析猜想△ADE是等边三角形.由∠CDE+∠ADE=∠ADC=∠BAD+∠B可得∠CDE=∠BAD.要证DE=AD,可先证DE所在的△DEC与AD所在的△ABD全等,而由已知可知,∠DCE=120°,∠ADB<120°,显然两个三角形不全等,而且△ABD比△DEC大,所以可以尝试在大△ABD中截出一个三角形和△DEC全等.过点D作DG∥AC,则可达到目的.解△ADE是等边三角形.如图2,过点D作DG∥AC交AB于点G,则∠BGD=∠BAC.∠BDG=∠BCA.∵△ABC是等边三角形,∴AB=BC.∠BAC=∠BCA=∠B=60°.∴∠BCD=∠BDG=60°,∴BG=BD.∴△ADE是等边三角形.三、作以底或腰为边的等边三角形例3如图3,在△ABC中,∠ABC=∠ACB=40°,点P为三角形内一点,且∠PCA=∠PAB=20°.求∠PBC的度数.分析由图中的40°+20°=60°,联想到等边三角形.于是以某一边为边作等边三角形.如图3,以等腰△CAP的底AP为边在点C一侧作等边△APD,连接CD,则AP=AD=PD.∠DAP=∠DPA=60°∴∠DAC=∠DPC=180°-60°=20°=∠PAB.注:例3还有以下作等边三角形的方法.①以底BC为边在点A一侧作等边△BCD,连接AD;②以腰AC为边在点B-侧作等边△ACD,连接BD.以等腰三角形的底或腰为边作等边三角形是常用的辅助线,练习中的第3题也可以用这两种方法求解.四、将以腰为边的一个三角形绕顶角的顶点旋转例4如图4,在△ABC中,点P是△ABC内一点,且∠APB>∠APC.求证:PC>PB.分析要证PC>PB,自然想到证∠PBC>∠PCB.但是“∠APB>∠APC”这个条件用不上,所以将∠APB所在的△ABP绕点A逆时针旋转,使AB与AC重合.证明设∠BAC=n°.如图4,将△ABP绕点A逆时针旋转n°,得△ACQ,连接PQ.则。
等腰三角形中作辅助线的四种常用方法课件
证明: 如图,延长BD至点E,使BE=AB, 连接CE,AE. ∵∠ABE=60°,BE=AB, ∴△ABE为等边三角形. ∴∠AEB=60°,AB=AE. 又∵∠ACD=60°,∴∠ACD=∠AEB.
∵AB=AC,AB=AE,∴AC=AE. ∴∠ACE=∠AEC.∴∠DCE=∠DEC. ∴DC=DE. ∴AB=BE=BD+DE=BD+CD, 即BD+DC=AB.
1
2
3
4
5
方法 1 作“三线”中的“一线”
1.如图,在△ABC中,AB=AC,D是BC的中点,过点 A作EF∥BC,且AE=AF.
求证:DE=DF.
证明:如图,连接AD. ∵AB=AC,BD=CD,∴AD⊥BC. ∵EF∥BC,∴AD⊥EF. ∴∠DAE=∠DAF=90°. ∵AE=AF,AD=AD, ∴△ADE≌△ADF(SAS).
(1)证明:如图,过点P作PF∥AC交BC于点F. ∵点P和点Q同时出发,且速度相同, ∴BP=CQ. ∵PF∥AQ, ∴∠PFB=∠ACB,∠DPF=∠CQD. 又∵AB=AC,∴∠B=∠ACB. ∴∠B=∠PFB.
返回
方法 3 截长补短法
3.如图,在△ABC中,AB=AC,D是△ABC外一 点,且∠ABD=60°,∠ACD=60°.
而CD=DE+EC,∴AB=EC. ∴AE=EC. ∴∠EAC=∠C. 设∠EAC=∠C=x,∵∠AEB为△AEC的外角, ∴∠AEB=∠EAC+∠C=2x. ∴∠B=2x,∠BAE=180°-2x-2x=180°-4x. ∵∠BAC=120°, ∴∠BAE+∠EAC=120°,
返回
即180°-4x+x=120°. 解得x=20°,则∠C=20°.
5.如图,CE,CB分别是△ABC,△ADC的中线,且 AB=AC.求证:CD=2CE.
等腰三角形常见的辅助线的做法
等腰三角形常见的辅助线的做法
如何快速解决好等腰三角形问题,做到孰能生巧?今天总结了以下四种和等腰三角形题型有关的常见辅助线添加方法
方法一:做三线合一中的一线
三线合一,是等腰三角形里最重要的性质定理之一。
所谓三线,就是等腰三角形中,顶角的角平分线,底边的中线,底边的高线。
必然三线合一。
方法二:做平行线法
这个一般是做一腰的平行线,得出两个角相等,从而得出三角形全等
方法三:截长补短法,或者叫截长取短法
简单说,就是在某一条线段上截取一条线段,和已知线段相等。
或者,延长某一线段,使之等于某已知线段。
此解题方法常用,请大家细心钻研
方法四:加倍折半法,倍长中线法。
等腰三角形时常用的辅助线作法
(证法三)过点 A 作 AM∥BC 交 DE 于 M,(过程略)
⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形 例:已知,如图,△ABC 中,AB = AC,∠BAC = 80o ,P 为形内一点,若∠PBC = 10o ∠PCB = 30o 求∠PAB 的度数.
解法一:以 AB 为一边作等边三角形,连结 CE 则∠BAE =∠ABE = 60o
∠EMB =∠B(过程略)
⑸常过一腰上的某一已知点做底的平行线
D
例:已知,如图,△ABC 中,AB =AC,E 在 AC 上,D 在 BA
延长线上,且 AD = AE,连结 DE
B
求证:DE⊥BC
证明:(证法一)过点 E 作 EF∥BC 交 AB 于 F,则
1
F
2
C
M
E
∠AFE =∠B
∠AEF =∠C
∴△ABE≌△PBC
∴AB = BP ∴∠BAP =∠BPA ∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o
∴∠PAB = 1 (180o-∠ABP) = 1 (180o-40o)= 70o
2
2
B
E A
P C5Biblioteka DE 交 BC 于 F 求证:DF = EF
1
⑸常过一腰上的某一已知点做底的平行线 例:已知,如图,△ABC 中,AB =AC,F 在 AC 上,E 在 BA 延长线上,且 AE = AF,连结 DE 求证:EF⊥BC
⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形 例:已知,如图,△ABC 中,AB = AC,∠BAC = 80o ,P 为形内一点,若∠PBC = 10o , ∠PCB = 30o 求∠PAB 的度数.
北师大版八年级数学下册 等腰三角形中作辅助线的九种常用方法
∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD. 又∵AB=AC,∴∠B=∠ACB. ∴∠B=∠PFB.∴BP=PF.∴PF=CQ. 在△PFD 和△QCD 中,∠DPF=∠DQC, ∠PDF=∠QDC,PF=CQ, ∴△PFD≌△QCD(AAS), ∴PD=QD.
3.如图,在△ABC 中,AB=AC,点 P 从点 B 出发沿线段 BA 移动(点 P 与 A,B 不重合),同时,点 Q 从点 C 出发沿线段 AC 的延长线移动,点 P,Q 移动的速度相同,PQ 与直线 BC 相交于点 D.
证明:由(1)知△DCE≌△FBE,AD=AF, ∴DE=EF,∴AE⊥DE.
6.如图,AB∥CD,∠1=∠2,AD=AB+CD. (3)求证:AE 平分∠DAB.
证明:∵DE=EF,AD=AF, ∴AE 平分∠DAB.
7.如图,△ABC 中,AD 为中线,点 E 为 AB 上一点,AD,CE 交于点 F,且 AE=EF.求证:AB=CF.
方法二:如图②,延长 DA 到点 E,使 AE=AC,则∠E=∠ACE. ∴∠BAC=∠E+∠ACE=2∠E. 又∵∠BAC=2∠B, ∴∠B=∠E,∴BC=EC. ∵∠ACD=∠BCD, ∴∠ADC=∠B+∠BCD=∠E+∠ACD=∠B+∠ACD. 又∵∠DCE=∠ACE+∠ACD=∠E+∠ACD=∠B+∠ACD, ∴∠ADC=∠DCE,∴DE=CE. ∴AC+AD=AE+AD=DE=CE=BC.
∠A=∠BPE, 在△ABE 和△PBE 中,∠ABE=∠PBE,
BE=BE. ∴△ABE≌△PBE(AAS).∴BA=BP. ∴BC=CP+BP=CE+AB.
【点拨】本题运用了截长补短法. (1)BC 比 BE 长,在 BC 上截取 BD=BE,再通过相关证明得 BC =BE+AE. (2)BC 比 EC 长,在 BC 上截取 CP=CE,连接 EP,构造△ABE 与△PBE 全等,进而证线段关系到.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题技巧专题:等腰三角形中辅助线的作法
——形成精准思维模式,快速解题
◆类型一利用“三线合一”作辅助线
一、已知等腰作垂线(或中线、角平分线)
1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=2,则BC =________.
2.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF.求证:DE=DF.
3.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于点D,E是AD上一点,且EA=EC,连接EB.求证:EB⊥AB.
二、构造等腰三角形
4.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为()
A.3 B.4 C.5 D.6
5.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE.
◆类型二巧用等腰直角三角形构造全等
6.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上.求证:DE=DF.
◆类型三等腰(边)三角形中截长补短或作平行线构造全等
7.如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于点D.求证:BC
=AB+CD.
8.如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,且P A=CQ,连接PQ交AC于点D.
(1)求证:PD=DQ;
(2)若△ABC的边长为1,求DE的长.【方法8】
参考答案与解析
1.4
2.证明:连接AD.∵AB=AC,D是BC的中点,∴∠EAD=∠F AD.在△AED和△AFD
中,⎩⎪⎨⎪
⎧AE =AF ,∠EAD =∠F AD ,AD =AD ,
∴△AED ≌△AFD ,∴DE =DF .
3.证明:过点E 作EF ⊥AC 于点F .∵EA =EC ,∴AF =FC =1
2AC .∵AC =2AB ,∴AF
=AB .∵AD 平分∠BAC ,∴∠BAE =∠F AE .又∵AE =AE ,∴△ABE ≌△AFE (SAS),∴∠ABE =∠AFE =90°,∴EB ⊥AB .
4.B
5.证明:如图,延长BA 和CE 交于点M .∵CE ⊥BD ,∴∠BEC =∠BEM =90°.∵BD 平分∠ABC ,∴∠MBE =∠CBE .又∵BE =BE ,∴△MBE ≌△CBE ,∴EM =EC =
1
2
MC .∵△ABC 是等腰直角三角形,∴∠BAC =∠MAC =90°,BA =AC ,∴∠ABD +∠BDA =90°.∵∠BEC =90°,∴∠ACM +∠CDE =90°.∵∠BDA =∠EDC ,∴∠ABE =∠ACM .又∵AB =AC ,∴△ABD ≌△ACM (ASA),∴DB =MC ,∴BD =2CE .
6.证明:连接CD .∵AC =BC ,∠C =90°,D 是AB 的中点,∴CD 平分∠ACB ,CD ⊥AB ,∴∠CDB =90°,∴∠BCD =∠ACD =45°,∠B =∠C =45°,∴∠ACD =∠B =∠BCD ,∴CD =BD .∵ED ⊥DF ,∴∠EDF =∠EDC +∠CDF =90°.又∵∠CDF +∠BDF =90°,∴∠EDC =∠FDB ,∴△ECD ≌△FBD ,∴DE =DF .
7.证明:如图,在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD .又∵BD =BD ,∴△ABD ≌△EBD (SAS),∴∠BED =∠A =108°,∴∠CED =180°-∠BED =72°.又∵AB =AC ,∠A =108°,∴∠ACB =∠ABC =12×(180°-108°)=36°,∴∠CDE
=180°-∠ACB -∠CED =180°-36°-72°=72°.∴∠CDE =∠DEC ,∴CD =CE ,∴BC =BE +EC =AB +CD .
8.(1)证明:过点P 作PF ∥BC 交AC 于点F ,∴∠AFP =∠ACB ,∠FPD =∠Q ,∠PFD =∠QCD .∵△ABC 为等边三角形,∴∠A =∠ACB =60°,∴∠AFP =60°,∴△APF 是等边三角形,∴PF =P A =CQ ,∴△PFD ≌△QCD ,∴PD =DQ .
(2)解:由(1)知△APF 是等边三角形,∵PE ⊥AC ,∴AE =EF .由(1)知△PFD ≌△QCD ,∴DF =CD ,∴DE =EF +DF =12AF +12CF =12AC .又∵AC =1,∴DE =1
2
.
(赠品,不喜欢可以删除)
数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。
它要是给你讲起道理来,那可满满的都是人生啊。
1.人生的痛苦在于追求错误的东西。
所谓追求错误的东西,就是你在无限趋近于它的时候,便无限远离了原点,却永远无法和它产生交点。
2.人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在无理的隔阂。
3.人是不孤独的,正如数轴上有无限多个有理点,在你的任意一个小邻域内都可以找到你的伙伴。
但人又是寂寞的,正如把整个数轴的无理点标记上以后,就一个人都见不到了。
4.零点存在定理告诉我们,哪怕你和他站在对立面,只要你们的心还是连续的,你们就能找到你们的平衡点。
5.有限覆盖定理告诉我们,一件事情如果是可以实现的,那么你只要投入有限的时间和精力就一定可以实现。
至于那些在你能力范围之外的事情,就随他去吧。
6.幸福是可积的,有限的间断点并不影响它的积累。
所以,乐观地面对人生吧!。