最新4.1单项式课件ppt
合集下载
4.1.1单项式 考点梳理及难点突破(课件)人教版(2024)数学七年级上册
求出 a,b的值,再把 a,b 的值代入计算即可.
[答案] 解:因为(a-3)x2y
+(b+2)是五次单项
式,所以 a =3 且 a-3 不能为 0,b+2=0,则 a=-3,b=-2
,所以 a2-ab+b2=(-3)2-(-3)×(-2)+(-2)2=96+4=7.
变式衍生
若代数式 4x
+(m-3)x 是关于 x 的三
中的式子,一定不是单项式
续表
(2)单项式的系数包括它前面的符号,且只与
数字因数有关
深层
解读
(3)单项式的次数只与字母的指数有关
(4)如果一个单项式的次数是 n,那么称这个
单项式是 n 次单项式,如
2 3
- xy
是五次单项式
归纳总结
(1)圆周率 π 是常数,单项式中出现 π 时,要将其
看成系数;
的系数是-2,次数是 2+1+2=5.
返回目录
易
错
易
混
分
析
[答案] (1)9 8 (2)-π 5 (3)
[易错] (1)3 10
(3)
3 (4)-2 5
6
[错因] 误认为求单项式的次数也要加上系数的指数.
返回目录
易错警示
确定单项式的次数时,容易误加上系数的
易
错
易 指数,容易误认为 π 是字母.
______.
返回目录
[解析](1)单项式 32m2n6 的数字因数是 32,所以它
易
错
2y3 的数字
的系数是
9,次数是
[答案] 解:因为(a-3)x2y
+(b+2)是五次单项
式,所以 a =3 且 a-3 不能为 0,b+2=0,则 a=-3,b=-2
,所以 a2-ab+b2=(-3)2-(-3)×(-2)+(-2)2=96+4=7.
变式衍生
若代数式 4x
+(m-3)x 是关于 x 的三
中的式子,一定不是单项式
续表
(2)单项式的系数包括它前面的符号,且只与
数字因数有关
深层
解读
(3)单项式的次数只与字母的指数有关
(4)如果一个单项式的次数是 n,那么称这个
单项式是 n 次单项式,如
2 3
- xy
是五次单项式
归纳总结
(1)圆周率 π 是常数,单项式中出现 π 时,要将其
看成系数;
的系数是-2,次数是 2+1+2=5.
返回目录
易
错
易
混
分
析
[答案] (1)9 8 (2)-π 5 (3)
[易错] (1)3 10
(3)
3 (4)-2 5
6
[错因] 误认为求单项式的次数也要加上系数的指数.
返回目录
易错警示
确定单项式的次数时,容易误加上系数的
易
错
易 指数,容易误认为 π 是字母.
______.
返回目录
[解析](1)单项式 32m2n6 的数字因数是 32,所以它
易
错
2y3 的数字
的系数是
9,次数是
冀教版(2024新版)七年级数学上册《4.1.1 单项式》精品课件
(3)希腊字母π是一个特殊字母,它表示一个确定的常数(圆周率).
典型例题
例1 用代数式表示,并指出它们的系数和次数.
(1)某商店8月份的营业额为m万元,9月份营业额比8月份增加
了25 %, 9月份的营业额为多少万元?
(2)某品牌的汽车原价为a元/辆,现按九折出售.如果一周内销
售了这种汽车b辆,那么这周的销售额为多少元?
所有字母的指数的和叫做这个单项式的次数..
做一做
单项式
-5ah3
2πR
-abc
(1+25%)m
系数
-5
2π
-1
1+25%
次数
4
1
3
1
注意: (1)系数包括前面的符号.
例如,-5xy的系数是-5,而不是5.
(2)当单项式的系数是1或-1时,“1”省略不写.
例如abc的系数是1;字母指数是1时,指数省略不写,如y的指数是1不是0.
新知探究
试说出下列各式的数字因数和字母:
mn
数字
字母
1
mn
a 2b
10%a
数字 字母
数字
字母
a2b
10 %
a
1
-n
数字 字母
-1
n
你发现了以上各式包含哪些运算?有什么共同运算?
新知探究
mn
数字
字母
1
mn
a 2b
10%a
数字 字母
数字
字母
a2b
10 %
a
1
-n
数字 字母
-1
n
上面这些式子都是数字与字母(或字母与字母)相乘积组成
(3)一个长方体形状的零件,它的底面边长分别是a cm和b cm,
典型例题
例1 用代数式表示,并指出它们的系数和次数.
(1)某商店8月份的营业额为m万元,9月份营业额比8月份增加
了25 %, 9月份的营业额为多少万元?
(2)某品牌的汽车原价为a元/辆,现按九折出售.如果一周内销
售了这种汽车b辆,那么这周的销售额为多少元?
所有字母的指数的和叫做这个单项式的次数..
做一做
单项式
-5ah3
2πR
-abc
(1+25%)m
系数
-5
2π
-1
1+25%
次数
4
1
3
1
注意: (1)系数包括前面的符号.
例如,-5xy的系数是-5,而不是5.
(2)当单项式的系数是1或-1时,“1”省略不写.
例如abc的系数是1;字母指数是1时,指数省略不写,如y的指数是1不是0.
新知探究
试说出下列各式的数字因数和字母:
mn
数字
字母
1
mn
a 2b
10%a
数字 字母
数字
字母
a2b
10 %
a
1
-n
数字 字母
-1
n
你发现了以上各式包含哪些运算?有什么共同运算?
新知探究
mn
数字
字母
1
mn
a 2b
10%a
数字 字母
数字
字母
a2b
10 %
a
1
-n
数字 字母
-1
n
上面这些式子都是数字与字母(或字母与字母)相乘积组成
(3)一个长方体形状的零件,它的底面边长分别是a cm和b cm,
《单项式课件》课件
单项式是一个不可分割的整体, 其内部没有加减运算。
单项式的性质
01
02
03
系数
单项式前面的数字因数称 为单项式的系数。
次数
单项式中所有字母的指数 之和称为单项式的次数。
代数式中的字母
单项式可以包含一个或多 个字母,字母的取值范围 是全体实数。
单项式的运算
加减运算
相同字母的单项式可以直 接进行加减运算,系数相 加减。
03
CATALOGUE
单项式与其他数学知识的结合
单项式与方程
总结词
单项式在方程中的应用
详细描述
单项式在解一元一次方程中起到关键作用,通过合并同类项、移项 等步骤,将方程简化为标准形式,便于求解。
实例
解方程 $x - 2 = 3$,将 $-2$ 移到等号右边,得到 $x = 5$。
单项式与不等式
在函数表达式中,单项式可以表示常数项、线性 项等,是构成函数表达式的基本元素之一。
实例
函数 $f(x) = x^2 + 2x + 1$ 中,单项式 $2x$ 和 $1$ 分别表示线性项和常数项。
04
CATALOGUE
单项式的应用
代数运算中的应用
代数式简化
因式分解
通过合并同类项,将复杂的代数式简 化成更易于处理的形式。
乘法运算
单项式与单项式相乘时, 将它们的系数相乘,字母 部分直接相加。
除法运算
单项式相除时,将除数的 倒数与被除数相乘,即单 项式除以单项式等于单项 式乘以除数的倒数。
02
CATALOGUE
单项式的系数与次数
单项式的系数
总结词
单项式系数的定义与性质
详细描述
单项式的性质
01
02
03
系数
单项式前面的数字因数称 为单项式的系数。
次数
单项式中所有字母的指数 之和称为单项式的次数。
代数式中的字母
单项式可以包含一个或多 个字母,字母的取值范围 是全体实数。
单项式的运算
加减运算
相同字母的单项式可以直 接进行加减运算,系数相 加减。
03
CATALOGUE
单项式与其他数学知识的结合
单项式与方程
总结词
单项式在方程中的应用
详细描述
单项式在解一元一次方程中起到关键作用,通过合并同类项、移项 等步骤,将方程简化为标准形式,便于求解。
实例
解方程 $x - 2 = 3$,将 $-2$ 移到等号右边,得到 $x = 5$。
单项式与不等式
在函数表达式中,单项式可以表示常数项、线性 项等,是构成函数表达式的基本元素之一。
实例
函数 $f(x) = x^2 + 2x + 1$ 中,单项式 $2x$ 和 $1$ 分别表示线性项和常数项。
04
CATALOGUE
单项式的应用
代数运算中的应用
代数式简化
因式分解
通过合并同类项,将复杂的代数式简 化成更易于处理的形式。
乘法运算
单项式与单项式相乘时, 将它们的系数相乘,字母 部分直接相加。
除法运算
单项式相除时,将除数的 倒数与被除数相乘,即单 项式除以单项式等于单项 式乘以除数的倒数。
02
CATALOGUE
单项式的系数与次数
单项式的系数
总结词
单项式系数的定义与性质
详细描述
4.1整式单项式课件+2024-2025学年人教版数学七年级上册
七、课后作业 落实新知
课堂作业:教材P57练习第1、2题(10min) 家庭作业:基训P30 A组:基础巩固1.2(5min) B组:灵活应用3.4.5.6.7.8(10min) C组:能力提升9(5min)
八、心灵寄语 育人于心
把简单的事做好,就是不简单; 把平凡的事做好,就是不平凡!
依姐点评 浅显通俗的语言极富哲理性
4.1.2 单 项 式
一、创设情境 导入新知
用字母表示下列数量关系: (1)苹果原价为每千克p 元,按八折优惠出售,则苹 果的现价为 元; (2)某产品前年的产量是n件,去年的产量是前年产 量的m倍,那么去年的产量为 件mn; (3)一个长方体包装盒的长和宽都是a cm,高是h cm, 它的体积为 cm3;
;
3.棱长为 a cm的正方体的体积是
.
三、典例精析 应பைடு நூலகம்新知
例1.用单项式填空,并指出它们的系数和次数: 4.一台电视机原价是 b元,现按原价的9折出售,这台电视 机现在的售价是________元.
5.一个长方形的长是0.9 m,宽是b m,这个长方形的面积 是________
你能赋予0.9b一个含义吗?
(4)数n的相反数表示为 - n.
二、合作交流 探究新知
想一想
mn
-n
(1)这些式子包含哪些运算?有何共同的运 算特征?
数或字母的乘积组成的式子叫单项式.
二、合作交流 探究新知
思考
“9”是不是单项式? “a”是不是单项式? “O”是不是单项式?
单独的一个数或一个字母也是单项式。
二、合作交流 探究新知
学习一定要打好基础 做好简单的事
做一做
随堂练习2.(教材P57练习1) 填一填
单项式课件(2023版ppt)
演讲人
单项式课件
目录
01 什么是单项式 02 单项式的运算 03 单项式的应用 04 单项式的拓展 05 单项式的总结
1
什么是单项式
单项式的定义
单项式是指由数字和字 母的乘积组成的代数式, 如3x、-2y、5z等。
单项式中的字母部分称 为字母部分,如3x中的 x、-2y中的y、5z中的z 等。
04
示温度、热容、热传导等物理量。
4
单项式的拓展
多项式的概念
多项式是由若干个单项 式相加组成的代数式
A
多项式的项是指多项式 中的每一个单项式
C
B
多项式的次数是指多项 式中最高次项的次数
D
多项式的系数是指多项 式中的常数项
多项式的运算
01
加法:多项式相加,系数相加, 相同字母的幂次相加
03
乘法:多项式相乘,系数相乘, 相同字母的幂次相加
05
幂运算:多项式进行幂运算,系 数进行幂运算,相同字母的幂次 进行幂运算
02
减法:多项式相减,系数相减, 相同字母的幂次相减
ห้องสมุดไป่ตู้04
除法:多项式相除,系数相除, 相同字母的幂次相减
06
开方运算:多项式进行开方运算, 系数进行开方运算,相同字母的 幂次进行开方运算
多项式与单项式的关系
● 多项式是由单项式组成的 ● 单项式是多项式的基本单位 ● 多项式与单项式之间可以进行加减运算 ● 多项式与单项式之间可以进行乘除运算 ● 多项式与单项式之间可以进行幂运算 ● 多项式与单项式之间可以进行开方运算 ● 多项式与单项式之间可以进行对数运算 ● 多项式与单项式之间可以进行三角函数运算 ● 多项式与单项式之间可以进行指数运算 ● 多项式与单项式之间可以进行微分运算 ● 多项式与单项式之间可以进行积分运算
单项式课件
目录
01 什么是单项式 02 单项式的运算 03 单项式的应用 04 单项式的拓展 05 单项式的总结
1
什么是单项式
单项式的定义
单项式是指由数字和字 母的乘积组成的代数式, 如3x、-2y、5z等。
单项式中的字母部分称 为字母部分,如3x中的 x、-2y中的y、5z中的z 等。
04
示温度、热容、热传导等物理量。
4
单项式的拓展
多项式的概念
多项式是由若干个单项 式相加组成的代数式
A
多项式的项是指多项式 中的每一个单项式
C
B
多项式的次数是指多项 式中最高次项的次数
D
多项式的系数是指多项 式中的常数项
多项式的运算
01
加法:多项式相加,系数相加, 相同字母的幂次相加
03
乘法:多项式相乘,系数相乘, 相同字母的幂次相加
05
幂运算:多项式进行幂运算,系 数进行幂运算,相同字母的幂次 进行幂运算
02
减法:多项式相减,系数相减, 相同字母的幂次相减
ห้องสมุดไป่ตู้04
除法:多项式相除,系数相除, 相同字母的幂次相减
06
开方运算:多项式进行开方运算, 系数进行开方运算,相同字母的 幂次进行开方运算
多项式与单项式的关系
● 多项式是由单项式组成的 ● 单项式是多项式的基本单位 ● 多项式与单项式之间可以进行加减运算 ● 多项式与单项式之间可以进行乘除运算 ● 多项式与单项式之间可以进行幂运算 ● 多项式与单项式之间可以进行开方运算 ● 多项式与单项式之间可以进行对数运算 ● 多项式与单项式之间可以进行三角函数运算 ● 多项式与单项式之间可以进行指数运算 ● 多项式与单项式之间可以进行微分运算 ● 多项式与单项式之间可以进行积分运算
《单项式课件》课件
乘法运算
总结词
系数相乘、同类项的指数相加
详细描述
在单项式乘法运算中,我们需要将两个单项式的系数相乘,并将同类项的指数相加。例如,单项式 $2x^2 times 3x^3$的结果为$6x^{5}$。
除法运算
总结词
系数相除、同类项的指数相减
详细描述
在单项式除法运算中,我们需要将第一个单项式的系数除以 第二个单项式的系数,并将同类项的指数相减。例如,单项 式$frac{2x^2}{3x^3}$的结果为$frac{2}{3}x^{-1}$。
运算关系
在分式的化简过程中,可以通过 因式分解或通分等手段将分式转 化为单项式的形式进行计算。
与根式的关系
定义关系
根式是单项式的另一种表现形式,当 单项式的指数为分数时,该单项式即 为根式。
运算关系
在根式的化简过程中,可以通过开方 运算将根式转化为单项式的形式进行 计算。
05
单项式的实际案例分析
日常生活问题解析
总结词
日常生活问题解析
详细描述
通过日常生活问题解析,了解单项式在解决 实际问题中的应用。例如,解析如何用单项 式表示日常生活中的数量关系,如购物、时 间管理等,以及在统计学中的应用。
THANKS
单项式是多项式的基本单元,一 个多项式可以看作由若干个单项
式通过加减运算组合而成。
系数与次数
单项式的系数和次数是多项式中 相应项的系数和次数的组成部分
。
运算关系
在多项式中,单项式之间的加减 运算对应着代数式的合并同类项
。
与分式的关系
定义关系
分式是单项式的扩展,当单项式 的分母为常数时,该单项式即为 分式。
在物理中的应用ຫໍສະໝຸດ 力学在力学中,单项式可以用 来表示物体的质量和加速 度等物理量,进而描述物 体的运动状态。
《单项式》课件
01
02
03
合并同类项
将相同字母和相同字母的 幂次进行合并,得到一个 单项式。
系数相加减
将单项式的系数进行相加 减,得到最终结果。
字母部分不变
在加减过程中,字母和字 母的幂次保持不变。
单项式加减法的实际应用
解决代数问题
通过单项式的加减法,可 以解决代数问题,如合并 同类项、化简代数式等。
简化多项式
单项式除法的实际应用
代数运算
01
单项式除法是代数运算中的基本运算之一,通过单项式除法可
以简化复杂的代数表达式。
物理问题
02
在物理问题中,单项式除法常常用于计算物理量的比值,例如
速度、密度等。
数学建模
03
在数学建模中,单项式除法可以用于建立数学模型,简化问题
并求解。
单项式法的注意事项
运算顺序
在进行单项式除法时,应先进行乘法和指数运算,再进行除法运 算。
将多项式中的单项式进行 加减法运算,可以简化多 项式,使其更易于理解和 计算。
数学建模
在数学建模中,单项式的 加减法可以用于表示和解 决实际问题,如物理量之 间的关系等。
单项式加减法的注意事项
细心检查
在进行单项式的加减法时,需要 细心检查每个单项式是否为同类
项,避免出现错误。
遵循运算顺序
在进行单项式的加减法时,需要遵 循运算的优先级,先进行乘除运算 ,再进行加减运算。
特殊单项式的系数和次数
总结词
特殊情况下单项式的系数和次数的特 性。
详细描述
对于一些特殊情况,如常数项、负数 系数、字母因子的指数为0等,单项 式的系数和次数具有特定的性质和特 点。例如,常数项的次数为0,负数 系数的单项式次数的计算不受影响。
4.1 第1课时 单项式 课件(共20张PPT)
3.5 ,n= 3 .
2
2
2
.
Hale Waihona Puke (2)一个长方体包装盒的长、宽、高分别为x cm,y cm,z cm,则这个长方体包装盒
的体积为
cm3.
xyz 它的系数是1
(3)有理数n的相反数是
,次数是 3
.
n
它的系数是-1
,次数是 1
理解应用
探
究
与
应
用
例1.
用单项式填空,并指出它们的系数和次数.
(4)《北京2022年冬奥会---冰上运动》是为了纪念北京
则k=
,n=
.
课
堂
小
结
与
检
测
+ 1
1.下列代数式:, ,- ab,3a2b,x2-3x+1中,单项式有(
2 2
A.4个
B.3个
C.2个
D.1个
2.下列说法中,正确的是 ( D
3 2
3
A.- x 的系数是
4
4
C.3ab2的系数是3a
)
3 2
3
B. πa 的系数是
2
2
2 2
2
D. xy 的系数是
5
的国旗旗面的面积为
cm2.
2 2
2
a 它的系数是
,次数是 2
3
3
拓展迁移
探
究
与
应
用
例3
若-6xyn+1是五次单项式,则n=
.
解:由题意可列:1+n+1=5,∴n=3.
例4
若(m-2)x2yn是关于x,y的四次单项式,则m,n应满足什么条件?
4.1单项式PPT课件
1、(1) y+x (2)abc (3)a (4)-5ab2 (5)-xy2 (6) -5
不是
是
是
是
是
是
x1
(7) 2 y (8) x/6 (9) 6/x
是
是
不是
(1. 0) 2
不是
5
探究二:单项式的系数和次数
所有字母指数的和叫做单项式次数
-3x2y3
单项式中的数字因数叫做系数
尝试练习: (1) 100t的系数是__1_0_0__,次数是__1____;
西走的路程是小明的y倍。则花花走了 米。
⑸体重由b千克减了5千克之后是
千克。
.
14
3、填空:
(1)单项式-5y的系数是_-___5_,次数是__1___
(2) 单项式a3b的系数是__1___,次数是__4___
3 ab
(3) 单项式 2
的系数是___23 __,次数是__2__
(4) 单项式 -5πR² 的系数是_-_5_π,次数是__2 _
4.1整式
--------单项式
一实 李丽霞
.
1
1、a²的指数是__2___, a的指数是_1____, a³的指数__3___.
2、用含有字母的式子填空
(1)边长为a的正方体的表面积为(6a2 ),体积( a3)。
(2)铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍,圆珠笔的单价
是(2.5x)元。
面积是( ).
.
13
2.用代数式填空,并判断其是否是单项式。如不是, 请说明理由;如果是,请指出它的系数和次数。
⑴长方形的面积为s,宽为a,则其长为
.
⑵我国去年一户农民平均收入为m万元,今年比去
4.1 整式(第1课时 单项式)(课件)七年级数学上册(人教版2024)
问:按这两种方案调价结果是否一样?最后是不是都恢复了原价?请通过计
算进行说明.
解: 按这两种方案调价结果一样,但最后都没有恢复原价.
15
按方案一调价,售价为(1+25%)×(1-25%) p =
p (元);
按方案二调价,售价为(1-25%)×(1+25%) p =
16
15
16
p (元).
所以按这两种方案调价结果一样,最后的价格与原价不一致,故都没
(2)这组单项式的次数的规律是什么?
解: (2)这组单项式的次数依次是从 1开始的连续自然数.
(3)根据上面的归纳,你可以猜想出第 n ( n 为正整数)个单项式是
什么吗?
解: (3)第 n ( n 为正整数)个单项式是(-1) n (2 n -1) xn .
(4)根据你的猜想,请写出第2 025,2 026个单项式.
3
r
h
分层练习-基础
1. 在下列式子中,次数为3的单项式是(
A. xy2
B. x3- y3
C. x3 y
D. 3 xy
A
)
2. [2024上海青浦区模拟]下列式子: , x +1, -2,- , 0.72
xy ,其中单项式有( B
)
A. 2个
B. 3个
C. 4个
D. 5个
3. [2024泰安期中]某商品打七折后价格为 a 元,则原价为( B
面我们学习一类
基本的代数式
用字母表示数,字母和数一样可以参与运算,可以用字母把数量关
系简明地表示出来,更适合一般规律的表达
新知探究
1.单项式的概念
我们来看本章引言中的问题(1).汽车在主桥上行驶的平均速度为92km/h,根据
4.1整式(第1课时单项式)(课件)七年级数学上册课件(人教版2024)
,则这种尺度的国旗旗面的面积为_______cm².
解: (1) ah,它的系数是 ,次数是2;
(2) xyz, 它的系数是1,次数是3;
(3) -n, 它的系数是-1,次数是1;
(4) 12n,它的系数是12,次数是1;
(5)
2
a ,它的系数是 ,次数是2.
针对练习
2.用单项式填空,并指出它们的次数和系数:
xy ,
2
1
3
2
2, -13a,
- , 2 a b,
a+b,
2
2 3
1 2
2
3
2
解:2,-13a, xy ,2 a b,x,是单项式.
2
3
2.单项式-8ab的系数是( B )
A.8
B.-8
C.8a
D.-8a
1
3.单项式- πa3b的系数和次数分别是(
16
1
A.- ,5
16
1
B. ,5
16
1
第四章 整式的加减
4.1 整式
单
项
|
第 1 课 时
式
|
学习内容
学习目标
1.能判断单项式,会找单项式的系数和次数的概念.
2.会用单项式表示简单的数量关系,体会数式的一致性
学习重点
单项式的系数和次数
学习难点
特殊单项式的系数和次数
知识回顾
✓ 什么叫做单项式,你想知道单项式哪些知识?
知识准备
用代数式填空:
6a7
-5a6
6.(1)找规律填空:-a2,2a3,-3a4,4a5,______,______;
解: (1) ah,它的系数是 ,次数是2;
(2) xyz, 它的系数是1,次数是3;
(3) -n, 它的系数是-1,次数是1;
(4) 12n,它的系数是12,次数是1;
(5)
2
a ,它的系数是 ,次数是2.
针对练习
2.用单项式填空,并指出它们的次数和系数:
xy ,
2
1
3
2
2, -13a,
- , 2 a b,
a+b,
2
2 3
1 2
2
3
2
解:2,-13a, xy ,2 a b,x,是单项式.
2
3
2.单项式-8ab的系数是( B )
A.8
B.-8
C.8a
D.-8a
1
3.单项式- πa3b的系数和次数分别是(
16
1
A.- ,5
16
1
B. ,5
16
1
第四章 整式的加减
4.1 整式
单
项
|
第 1 课 时
式
|
学习内容
学习目标
1.能判断单项式,会找单项式的系数和次数的概念.
2.会用单项式表示简单的数量关系,体会数式的一致性
学习重点
单项式的系数和次数
学习难点
特殊单项式的系数和次数
知识回顾
✓ 什么叫做单项式,你想知道单项式哪些知识?
知识准备
用代数式填空:
6a7
-5a6
6.(1)找规律填空:-a2,2a3,-3a4,4a5,______,______;
4.1 .1整式(单项式)(课件)2004-2025学年-人教版(2024)七年级上册
任务三:师生互动,探究新知
归纳
整式的化简与求值是以整式的加减运算为基础的,具体步骤为:
化
通过去括号、合并同类项化简整式.
代
把已知的字母或某个整体的取值代入化简后的整式.
算
依据有理数的混合运算法则进行计算.
任务四:课堂小结,形成体系
实质
整式的加减
合并同类项
步骤
去括号(有括号时),
合并同类项
结果
整式(单项式或
多项式)
=4a-2b.
任务三、师生互动,合作探究
3.做大小两个长方体纸盒,尺寸如下(单位:cm):
项目
长
宽
高
小纸盒
a
b
c
大纸盒
1.5a
2b
2c
(1)做这两个纸盒共用料多少平方厘米?
(2)做大纸盒比做小纸盒多用料多少平方厘米?
实质是求两个长方体的表面积的和与差.
任务三、师生互动,合作探究
项目
长
宽
高
小纸盒
a
2.5x,
6v ,
0.6a,
解:2.5x 的次数是 1;
6v 的次数是 1;
0.6a 的次数是 1;
100t的次数是1;
100t,
0.8p,
mn, a2h ,
0.8p的次数是1;
mn的次数是2;
a2h的次数是3;
-n的次数是1.
一个单项式中,所有字母的指数的和,叫做这
个单项式的次数.
-n.
对于单独一个
2.5x,
6v ,
0.6a,
100t,
解: 2.5x 的系数是 2.5;
6v 的系数是 6;
4.1 第1课时 单项式 课件(共19张PPT) 人教版七年级数学上册
都是数或字母的积,像这样的代数式叫作单项式
单项式中的数字因数
单项式中所有字母的指数的和
系数是-5,次数是5
可以根据单项式的次数来命名,比如-5a2b3叫作五次单项式
2.判断下列式子哪些是单项式: -15,2x2y, xy,3a+2b,0,m,
3.请同学们完成下表:
单项式
-xy
32m
4m
m2
2.5x
vt
2πr
πr2
注意:π是圆周率的代号,不是字母.
同学们,数学世界举办了一场研讨会,邀请的成员都是“单项式”,已经进入会场的有:100t,6a2,a3,2.5x,-n,-3x3y等等,但是主持人8a却将和拒之门外,你知道为什么吗?什么是单项式呢?
活动导入
1.请同学们阅读课本89-90页,并思考:(1)89页“观察”中的式子有什么特点?并试着总结单项式的概念.(2)什么是单项式的系数?(3)什么是单项式的次数?(4)-5a2b3的系数和次数分别是多少?(5)单项式可以如何命名?
问题导入
同学们,老师这里有几个问题,希望你们帮忙解决一下:(1)边长为m的正方形的周长为_______,面积为______.(2)铅笔的单价为x元,圆珠笔的单价是铅笔单价的2.5倍,圆珠笔的单价是_____元.(3)一辆汽车的速度是v km/h,它t h的行驶路程为________km.(4)半径为r cm的圆的周长是_____cm,面积为_______cm2.请同学们观察列出的式子有什么共同特点呢?
1. 本节课我们学习了哪些知识?2.有哪些需要注意的地方?
单项式的定义、单项式的系数、单项式的次数
①单项式的定义需要注意:单独的一个数或一个字母也是单项式,如-3,0,m等;②单项式的系数需要注意:要包括其前面的符号,当系数为1或-1时,这个“1”省略不写;③单项式的次数需要注意:是所有字母的指数的和,单独一个非零数的次数是0
单项式中的数字因数
单项式中所有字母的指数的和
系数是-5,次数是5
可以根据单项式的次数来命名,比如-5a2b3叫作五次单项式
2.判断下列式子哪些是单项式: -15,2x2y, xy,3a+2b,0,m,
3.请同学们完成下表:
单项式
-xy
32m
4m
m2
2.5x
vt
2πr
πr2
注意:π是圆周率的代号,不是字母.
同学们,数学世界举办了一场研讨会,邀请的成员都是“单项式”,已经进入会场的有:100t,6a2,a3,2.5x,-n,-3x3y等等,但是主持人8a却将和拒之门外,你知道为什么吗?什么是单项式呢?
活动导入
1.请同学们阅读课本89-90页,并思考:(1)89页“观察”中的式子有什么特点?并试着总结单项式的概念.(2)什么是单项式的系数?(3)什么是单项式的次数?(4)-5a2b3的系数和次数分别是多少?(5)单项式可以如何命名?
问题导入
同学们,老师这里有几个问题,希望你们帮忙解决一下:(1)边长为m的正方形的周长为_______,面积为______.(2)铅笔的单价为x元,圆珠笔的单价是铅笔单价的2.5倍,圆珠笔的单价是_____元.(3)一辆汽车的速度是v km/h,它t h的行驶路程为________km.(4)半径为r cm的圆的周长是_____cm,面积为_______cm2.请同学们观察列出的式子有什么共同特点呢?
1. 本节课我们学习了哪些知识?2.有哪些需要注意的地方?
单项式的定义、单项式的系数、单项式的次数
①单项式的定义需要注意:单独的一个数或一个字母也是单项式,如-3,0,m等;②单项式的系数需要注意:要包括其前面的符号,当系数为1或-1时,这个“1”省略不写;③单项式的次数需要注意:是所有字母的指数的和,单独一个非零数的次数是0
4.1 整 式第1课时 单项式课件 2024—2025学年人教版数学七年级上册
学习目标
1.理解单项式、单项式的系数和单项式的次数;
2.能确定一个整式是否是单项式,能准确的说出单 项式的系数和次数,并解决学习中的实际问题。
6a2 a3
2. a2 a3 2.5 x V t -n
请你观察以上式子,它们有什么共同点?
6 a2 V t 2.5 x a3 -n
(5)一长方形的长是0.9,宽是a,它的面积 是 0.9a ;
成长的足迹 如果- 5xym 为4次单项式,则m=___. 因为1 + m = 4 , 所以 m=3
数与字母或字母与字母相乘组成的式子 叫做单项式。
系数:单项式中的数字因数。
次数:所有字母的指数的和。
复习巩固
•作业: 1.课本56页练习第一题和第二题;课本59 页习题2.1的第一题;
解剖单项式
指数的和称为次数
系数 -3x2y3
单项式中的数字因数叫做这个单项式的系数。
如-3x的系数是_-3__,-ab的系数是_-_1_。
一个单项式中的所有字母的指数的和叫做这个单项式的次数。
如-3x的次数是_1__, - ab的次数是_2__。
所以-3x是一次单项式, - ab是二次单项式.
举手回答
(1) 单项式-5y的系数是-5 ,次数是_1_。
(2) 单项式a3b的系数是1__,次数是_4__。 (3) 单项式 的系数是_32_,次数是_2_。 (4) 单项式 的系数是_,次数是_2_。
注意:
1.单项式表示数字与字母相乘时,通常把数字写 在字母前面;
2.单项式的系数包含符号,当系数为1或-1时, 这个“1”应省略不写。
3.单项式的次数是指所有字母指数之和,而不是 单个字母的指数。
例、请用单项式填空,并指出它们的系数与次数 (1)每包书有12册,n包书有 12n 册; (2)是底_a边2h_ 长;为 a,高为 h 的三角形的面积 (3)一长方体的长和宽都是a,高是h,它的体积 是 ;a2h
1.理解单项式、单项式的系数和单项式的次数;
2.能确定一个整式是否是单项式,能准确的说出单 项式的系数和次数,并解决学习中的实际问题。
6a2 a3
2. a2 a3 2.5 x V t -n
请你观察以上式子,它们有什么共同点?
6 a2 V t 2.5 x a3 -n
(5)一长方形的长是0.9,宽是a,它的面积 是 0.9a ;
成长的足迹 如果- 5xym 为4次单项式,则m=___. 因为1 + m = 4 , 所以 m=3
数与字母或字母与字母相乘组成的式子 叫做单项式。
系数:单项式中的数字因数。
次数:所有字母的指数的和。
复习巩固
•作业: 1.课本56页练习第一题和第二题;课本59 页习题2.1的第一题;
解剖单项式
指数的和称为次数
系数 -3x2y3
单项式中的数字因数叫做这个单项式的系数。
如-3x的系数是_-3__,-ab的系数是_-_1_。
一个单项式中的所有字母的指数的和叫做这个单项式的次数。
如-3x的次数是_1__, - ab的次数是_2__。
所以-3x是一次单项式, - ab是二次单项式.
举手回答
(1) 单项式-5y的系数是-5 ,次数是_1_。
(2) 单项式a3b的系数是1__,次数是_4__。 (3) 单项式 的系数是_32_,次数是_2_。 (4) 单项式 的系数是_,次数是_2_。
注意:
1.单项式表示数字与字母相乘时,通常把数字写 在字母前面;
2.单项式的系数包含符号,当系数为1或-1时, 这个“1”应省略不写。
3.单项式的次数是指所有字母指数之和,而不是 单个字母的指数。
例、请用单项式填空,并指出它们的系数与次数 (1)每包书有12册,n包书有 12n 册; (2)是底_a边2h_ 长;为 a,高为 h 的三角形的面积 (3)一长方体的长和宽都是a,高是h,它的体积 是 ;a2h
2024年秋季新人教版七年级上册数学教学课件 4.1 第1课时 单项式
是多少?
-0.25 x
2 x3
”的数系字数因数
-0.25
2
单项式的系数
单项式中的数字因数叫作这个单项式的_系__数__.
想一想 那么 练1 中: (1) 1 ;(7) x 的 系数是多少呢?
字母因式在单项式中, 也有别的含义吗?
问题4: ① 在乘方运算中, x3 的 3 代表的是? ② 练1 中“ (3) 2x3 ”的 3 代表的是?
2. 若 2x3ya+1 是关于 x,y 的六次单项式,求 a3 + 1 的值. 解:由题意知 x,y 的指数和为 6, 即:a + 1 + 3 = 6, 所以 a = 2, 所以 a3 + 1 = 9.
同学们,通过这节课的学习 ,你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
单项式中的_数__字__因数叫作 这个单项式的系数
一个单项式中,所有字母的指数 的_和__叫作单项式的_次__数__. 对于单独一个非零的数,规定它 的次数为_0__
当堂练习 1.填空. (1) 已知一直一个长方体的长、宽、高分别为 2x,y,z, 则长方体的体积是__2_x_yz_,这个式子的系数为__2___, 次数为___3__; (2) 一辆长途汽车从甲地出发,3 小时后到达距甲地 s km 的乙地,则这辆长途汽车的速度是_____,这个式子的系 数为_____,次数为___1__.
x 的指数 2x3 的次数
当单项式只有一个字母时,该字母的指数叫作 这个单项式的次数.
所以 2x3 的次数是__3__; 100t 的次数是__1__.
我们称 2x3 为三次单项式,100t 为 一次单项式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是同次单项式,求m的值。
3、如果 2mxn y 2 是关于x、y的5次单项式,
且系数是4,求m、n的值.
挑战自我,发挥你的潜力
规则:一个小组学生说出一个单 项式,然后指定另一个小组的学 生回答他的系数和次数;然后交 换,看两小组哪一组回答得快而 准。
1、这节课我们学到了什么? 2、你认为应该注意什么问题?
• 凉风虽然拂拂地吹动他斑白的短发,初冬的太阳却还是很 温和的来晒他。但他似乎被太阳晒得头晕了,脸色越加变 成灰白,从劳乏的红肿的两眼里,发出古怪的闪光。这时 他其实早已不看到什么墙上的榜文了,只见有许多乌黑的 圆圈,在眼前泛泛的游走。
• 体现人物心理变化。“凉风”与“温和的太阳”表示陈士 成由心情失落到头晕目眩直至疯癫的心理变化。
尝试应用:1、上面式子是单项式吗?如果是,指出它的系数和次数
① a3
√
系数: 1
次数: 3
② -y
√
③ 5x2 √ 6
④ vt
√
系数: -1
系数: 5 6
系数: 1
次数: 1 次数: 2 次数: 2
⑤ X+1
×
⑥ xy3z
√
⑦ R2h √
3
⑧
x
×
系数: 1
系数:
次数: 5 次数: 3
2、下面各题的判断是否正确。
白光
一、关于题目
• 题目的由来:在封建迷信中有一种说法,地下埋 藏着珠宝金银的地方,它在上方有时会有白光游 移飘忽。这便是小说题目的由来。
• 人物原型:陈士成这个人物原型为周子京,是鲁 迅祖父的同辈。曾当过鲁迅一年的塾师,是个老 同生,考了一辈子科举没考上,随着家中逐渐潦 倒。他精神失常,有一天,因为女佣病中说看见 眼前有一道白光,他竟叫人在家挖地三尺,寻找 宝藏。
概括内容
• 文章写了写陈士成十六次落榜科举后因为 受不了失败和钱财地位两空的悲痛,精神 异常失足落水。(人物、事件)
环境描写的作用
• 1.陈士成看过县考的榜,回到家里的时候,已经是下午了
。他去得本很早,一见榜,便先在这上面寻陈字。陈字也 不少,似乎也都争先恐后的跳进他眼睛里来,然而接着的 却全不是士成这两个字。他于是重新再在十二张榜的圆图 ⑵里细细地搜寻,看的人全已散尽了,而陈士成在榜上终 于没有见,单站在试院的照壁的面前。
2.用代数式填空,并判断其是否是单项式。如不是, 请说明理由;如果是,请指出它的系数和次数。
⑴长方形的面积为s,宽为a,则其长为
.
⑵我国去年一户农民平均收入为m万元,今年比去
年增长了20﹪,今年收入为
万元。
Hale Waihona Puke ⑶一圆形花坛半径为r,则其面积为 。
⑷规定向东为正方向,小明向东走了x米,花花向
西走的路程是小明的y倍。则花花走了 米。
①-7xy2的系数是7;(× )
②-x2y3与x3没有系数;(× )
③-ab3c2的次数是0+3+2;(× ) ④-a3的系数是-1; ( √ )
⑤-32x2y3的次数是7;(× )
⑥
1 3
πr2h的系数是
1 3
。( ×)
1、如果单项式 2 a n b 的次数是5,求n的值。
3
2、若
0.5xm 2y与2 xy3 5
( vt
)。
(4)数n的相反数是(- n )。
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款
(12x )元
3、请观察这些式子,想一想它们包含了 什么运算?
6a2 a3 2.5x vt - n 12x
数字 字母
(1× v•t)
-1×n
都是数或字母的乘积的式子
单项式
①圆周率π是常数。 ②当一个单项式的系数是1或-1时, “1”通常省略不写,如x2,-a2b等。 ③单项式次数只与字母指数有关。
环境描写是对人物所处的具体的社会环 境和自然环境的描写
1. 交代事情发生的地点或背景增加事情的 真实性 2. 渲染气氛烘托人物的心情或表现人物心 理变化 3. 寄托人物的思想感情 4. 反映人物的性格或品质 5. 推动情节的发展 6. 深化作品主题
通过以下描写看人物形象
• 隽了秀才,上省去乡试,一径联捷上去,……绅士 们既然千方百计的来攀亲,人们又都像看见神明似 的敬畏,深悔先前的轻薄,发昏,……赶走了租住 在自己破宅门里的杂姓——那是不劳说赶,自己就 搬的,——屋宇全新了,门口是旗竿和扁额,…… 要清高可以做京官,否则不如谋外放。……他平日 安排停当的前程,这时候又像受潮的糖塔一般,刹 时倒塌,只剩下一堆碎片了。他不自觉的旋转了觉 得涣散了身躯,惘惘的走向归家的路。
课堂检测
1、用单项式填空,并指出它们的系数和次数: (1)每包书有12册,n包书有( )册; (2)底边长为a,高为h的三角形的面积( ); (3)一个长方体的长和宽都是a,高是h,它的体积是
( ); (4 )一台电视机原价a元,现按原价的9折出售,这 台电视机现在的售价为( )元; (5)一个长方形的长是0.9,宽是a,这个长方形的 面积是( ).
⑸体重由b千克减了5千克之后是
千克。
3、填空:
(1)单项式-5y的系数是_-___5_,次数是__1___
(2) 单项式a3b的系数是__1___,次数是__4___
3 ab
(3) 单项式 2
的系数是___23 __,次数是__2__
(4) 单项式 -5πR² 的系数是_-_5_π,次数是__2 _
• 考取科举的目的纯属为了名利,因此他的学识本 身就值得怀疑,另外他一味学习“八股文”,受 到早已失去(选拔人才)效力的科举制的限制, 变得思想僵化,追名逐利,说明科举制内容僵化 ,已逐渐衰落。
4.1单项式
1、a²的指数是__2___, a的指数是_1____, a³的指数__3___.
2、用含有字母的式子填空
(1)边长为a的正方体的表面积为(6a2 ),体积( a3)。
(2)铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍,圆珠笔的单价
是(2.5x)元。
(3)一辆汽车的速度是v千米/时,它t小时行驶的路程为
• 参加科举实际是为了获得“敬畏”、“攀亲”,也 就是地位的提高。“不如谋外放”是得到地位后寻 求获利的最大化,中举的目的如此,实属腐败没落 。
• 他忽而举起一只手来,屈指计数着想,十一,十 三回,连今年是十六回,竟没有一个考官懂得文 章,有眼无珠,也是可怜的事,便不由嘻嘻的失 了笑。然而他愤然了,蓦地从书包布底下抽出誊 真的制艺和试帖来,拿着往外走,刚近房门,却 看见满眼都明亮,连一群鸡也正在笑他,便禁不 住心头突突的狂跳,只好缩回里面了。