数学建模面试最优化问题
数学建模竞赛用到优化的赛题
数学建模竞赛中,优化问题是一个重要的赛题类型。
优化问题是指在一定的约束条件下,通过寻找最优解,使得目标函数达到最大值或最小值的问题。
在实际生活中,优化问题广泛应用于各个领域,如生产、运输、金融等。
在数学建模竞赛中,优化问题的赛题设计通常要求参赛队伍运用数学知识和建模技巧,对现实生活中的问题进行建模,并寻求最优解。
这类赛题的特点是问题背景真实、数据丰富,参赛队伍需要充分挖掘数据中的有用信息,建立合适的数学模型,并通过优化求解得到符合实际意义的解。
为了更好地解决优化问题,参赛队伍需要掌握以下几个关键步骤:1. 问题分析:在解决优化问题时,首先要明确问题的背景和目标,分析问题中的约束条件,确定目标函数。
这是解决优化问题的基础。
2. 建立模型:根据问题分析的结果,建立合适的数学模型。
常见的优化模型有线性规划、非线性规划、整数规划、动态规划等。
选择合适的模型有助于更高效地求解问题。
3. 求解算法:优化问题的求解方法有很多,如单纯形法、遗传算法、粒子群优化算法、模拟退火算法等。
选择合适的求解算法可以提高求解效率和精度。
4. 模型验证与优化:在得到优化解后,需要对模型进行验证,分析模型的可行性和有效性。
如有必要,可以对模型进行优化,以提高模型的性能。
5. 撰写论文:在完成优化问题的建模和求解后,需要将整个过程和结果撰写成论文。
论文应包括问题分析、模型建立、求解方法、结果分析等内容,并注重论文的结构和语言表达。
总之,在数学建模竞赛中,优化问题是一个具有挑战性的赛题类型。
通过解决优化问题,参赛队伍可以锻炼自己的数学建模能力、实践能力和团队协作能力,为未来的学术研究和职业发展打下坚实基础。
数学建模优化类问题例子
数学建模优化类问题例子数学建模是一种解决实际问题的方法,通过数学模型对问题进行描述,运用数学方法进行分析和求解。
在优化类问题中,数学建模的目标是通过最小化或最大化某个指标来找到问题的最优解。
在以下的例子中,我将介绍几个典型的优化问题。
1.生产计划优化假设一个公司生产两种不同的产品,每个产品的成本、销售价格和市场需求都不同。
公司希望通过合理调整两种产品的生产量,以最大化利润。
为了达到这个目标,我们可以建立一个数学模型,考虑到每种产品的成本、销售价格和市场需求,以及公司能够生产的总产量限制。
然后,可以使用线性规划等数学方法,求解出最优的生产计划,使得公司利润最大化。
2.路线规划优化考虑一个物流公司要在不同的城市之间进行货物运输,每个城市之间的距离不同,同时还考虑到交通拥堵情况。
公司希望通过合理规划运输路线,以最小化整体运输成本和时间。
为了达到这个目标,我们可以建立一个数学模型,考虑到每个城市之间的距离、交通拥堵情况以及运输成本。
然后,可以使用图论等数学工具,求解出最优的路线规划,使得运输成本和时间最小化。
3.资源分配优化考虑一个学校要为不同的课程安排教师以及教学资源,每个课程的需求和教学资源的供应不同。
学校希望通过合理分配教师和教学资源,以最大化学生的学习效果。
为了达到这个目标,我们可以建立一个数学模型,考虑到每个课程的需求和教学资源的供应,以及教师的专业能力。
然后,可以使用线性规划等数学方法,求解出最优的资源分配方案,使得学生的学习效果最大化。
4.物资库存优化考虑一个零售商要管理不同种类的商品库存,每个商品的销售量和订货周期不同,同时还考虑到库存成本和仓储空间的限制。
零售商希望通过合理管理库存,以最小化库存成本和避免缺货。
为了达到这个目标,我们可以建立一个数学模型,考虑到每个商品的销售量、订货周期以及库存成本和仓储空间的限制。
然后,可以使用动态规划等数学方法,求解出最优的库存管理方案,使得库存成本最小化同时避免缺货。
数学建模《最优化问题》
2c1 rc2
c2 c2 c3
2c1r Q rT c2
c2 c3 记 c3
不 允 许 缺 货
T T ,
Q
Q
1
T ' T , Q' Q
c3
c3 1
T T , Q Q
允许 缺货 模型
2c1 c2 c3 T rc2 c3
利润 Q=R-C=pw -C 求 t 使Q(t)最大 Q(10)=660 > 640
Q(t ) (8 gt)(80 rt ) 4t
4r 40g 2 t =10 rg
10天后出售,可多得利润20元
敏感性分析
4r 40g 2 t rg
研究 r, g变化时对模型结果的影响 • 设g=0.1不变
其中 c1,c2,c3, t1, ,为已知参数
模型求解
dC 0 dx
求 x使 C(x)最小
b 0
c1t12 2c2t1 x 2c32
dB dt
x
t1
t2 t
结果解释
• / 是火势不继续蔓延的最少队员数
结果 解释
c1t1 2c2t1 x 2c32
允许缺货的存贮模型
当贮存量降到零时仍有需求r, 出现缺货,造成损失.
q Q r
Q rT1
t
原模型假设3:贮存量降到零 T1 B T 时Q件立即生产出来(或立即到 0 货). 现假设3:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足. 一周期 c2 贮存费 一周期 c 3 缺货费
A
T1
0
7.1
存贮模型
数学建模学生面试问题(值得看)
单目标和多目标规划模型求解学生面式问题摘要随着高校自主招生规模的扩大,学生面试的公平性成为人们关注的焦点。
本文通过建立单目标和多目标规划模型,利用MATLAB软件和搜索算法,进行了有关招生面试问题的研究。
对于问题一,为表示面试学生和老师之间的相应关系,引入0-1变量x,ij 建立以老师数M最小为目标的0-1规划模型。
利用搜索算法,求解出考生数N 确定的情况下,满足其他约束条件的最小M值。
问题二中,将Y1、Y3、Y4看成基本约束条件下的目标函数,Y2作为约束条件,建立多目标规划模型。
运用MATLAB软件对模型进行求解,得到满足约束条件的近似最优分配方案。
问题三,增加每位学生的面试组中各有两位文理科老师的约束条件,假设前M/2个老师为文科老师,通过限制第i位学生“面试组”中前M/2个老师的个数来保证每位学生的文科和理科面试老师人数相等。
在新的约束条件下,分别对问题一、二进行重新求解,得到聘请老师数M以及老师和学生之间的面试分配方案的最优解。
最后,在问题一、二、三分析求解的基础上,本文对考生与面试老师之间分配的均匀性和面试的公平性进行了讨论,认为两者是对立统一的矛盾统一体。
为兼顾分配均匀和面试公平,本文讨论了其他影响因素,并提出了六条切实可行的建议。
另外,考虑将面试老师职称因素引入问题分析,建立新的模型。
关键词:公平师生匹配均匀分配方案1 问题重述高校自主招生是高考改革中的一项新生事物,2006年,全国具有自主招生资格的高校已由最初的22所增加到53所。
学生面试的公平性越来越引起人们和社会的高度重视。
某高校拟在全面衡量考生的高中学习成绩及综合表现后再采用专家面试的方式决定录取与否。
该校在今年自主招生中,经过初选合格进入面试的考生有N 人,拟聘请老师M人。
每位学生要分别接受4位老师的单独面试。
为了保证面试工作的公平性,组织者提出如下要求:Y1:每位老师面试的学生数量应尽量均衡;Y2:面试不同考生的“面试组”成员不能完全相同;Y3:两个考生的“面试组”中有两位或三位老师相同的情形尽量的少;Y4:被任意两位老师面试的两个学生集合中出现相同学生的人数尽量的少。
数学建模竞赛用到优化的赛题
数学建模竞赛用到优化的赛题摘要:1.数学建模竞赛的概述2.优化在数学建模竞赛中的应用3.数学建模竞赛中用到的优化赛题举例4.如何应对用到优化的赛题5.总结正文:一、数学建模竞赛的概述数学建模竞赛是一项面向全球高校大学生的竞技活动,旨在通过对现实问题进行抽象、建模和求解,培养学生的创新意识、团队协作精神和实际问题解决能力。
竞赛题目一般具有现实意义、跨学科特点,参赛选手需要运用自己所学的专业知识和数学方法,完成对题目的解析和求解。
二、优化在数学建模竞赛中的应用在数学建模竞赛中,优化问题是一个重要的类别,涉及到很多赛题。
优化问题主要是指寻找一个函数的最值或近似最值,从而解决实际问题。
这类问题在竞赛中具有很高的挑战性,需要参赛选手具备较强的数学基础、建模能力和创新思维。
三、数学建模竞赛中用到的优化赛题举例1.旅行商问题(Traveling Salesman Problem,TSP):给定一组城市和它们之间的距离,寻找一个访问每个城市一次并返回出发点的最短路径。
2.装载问题(Knapsack Problem):给定一组物品,每种物品有固定的重量和价值,背包的总容量为限,求如何选取物品放入背包,使得背包内物品的总价值最大。
3.生产调度问题(Production Planning Problem):在给定的生产条件下,如何合理安排生产计划,使得生产成本最低或生产效益最大。
四、如何应对用到优化的赛题1.熟悉优化问题的基本概念和方法:掌握线性规划、整数规划、动态规划等常用的优化方法,了解它们的适用范围和特点。
2.学会根据题目特点选择合适的方法:分析题目的实际背景,找到问题的关键所在,灵活运用优化方法。
3.提高编程和计算能力:掌握一定的编程技巧,熟练使用计算机软件(如MATLAB、Python 等)进行计算和模拟。
4.加强团队协作:数学建模竞赛是一个团队赛,需要队员之间保持良好的沟通,共同分析问题、探讨解决方案。
五、总结数学建模竞赛中,优化问题是一个具有挑战性的赛题类别。
研究生数学建模优化问题
研究生数学建模优化问题
研究生数学建模优化问题可以涉及各种不同的学科和领域。
以下是一些常见的研究生数学建模优化问题的例子:
1. 生产优化问题:如何最大化生产效率,同时最小化生产成本和资源使用。
这包括生产线排程问题、物流和供应链管理等。
2. 资源分配问题:如何最优地分配有限的资源,以满足不同需求。
例如,如何在一所学校中分配教师、教室和学生资源,以实现最佳的学习效果。
3. 运输路径问题:如何找到最短路径或最优路径来满足特定的要求。
这包括最短路径问题、旅行商问题等。
4. 网络优化问题:如何设计最优的网络结构,以实现最大的性能和容量。
例如,如何在一个电信网络中设计最佳的数据传输路由。
5. 风险管理问题:如何评估和管理风险,以保护资产和最小化损失。
这包括投资组合优化、保险精算等问题。
6. 环境优化问题:如何最小化对环境的影响,同时最大化资源保护和可持续发展。
例如,如何设计最优的城市公共交通系统,以减少交通拥堵和空气污染。
以上只是一些研究生数学建模优化问题的例子,实际上,优化问题几乎可以应用于任何领域。
研究生在解决这些问题时,通常需要使用数学模型和优化算法,以寻找最优的解决方案。
数学建模竞赛中的部分优化问题
路、公路运输,铺设一条
火车站 公路 管道
450 里程(km)
A1
钢管管道 A1 A2 A15 (沿管道建有公路)
优化建模
钢厂的产量和销价(1单位钢管=1km管道钢管)
钢厂i
1
2
3
4
产量上限 si 销价 pi (万元)
800 800 160 155
1000 155
2000 160
钢厂产量的下限:500单位钢管 1单位钢管的铁路运价
, tani
D yi0 xi0
or
i
3
2
, tani
yi0 xi0
,
,
yi0
v sin i
, if
i
3
2
, tani
yi0 xi0
or 3
2
i
2 , tani
yi0 D xi0
整理: 其中:
fij (t) zij 2 bij zij cij .
290 30 S7
S2
1200
S3
690 720
S4
690
170 520
160 130 88
A18
160
320 A20
100 70 30
70 260
A21
S6
A19
110
190
62
20 20
A15
500
1100
202
S1
A16
42
20
12
A17
462
70 10
S5 10
220
420
数学建模竞赛中的优化问题
个单位物资的运价x ij ;问应该怎样调运物资才能使总
运费最省。 令 x ij 表示由产地A i 向销地B j 的运量
运输问题的数学模型为:
min z cij xij
i 1 j 1
m
n
s.t.
n xij ai i 1,2, , m j 1 m xij b j j 1,2, , n i 1 xij 0
c
i 1 j 1
n
n
ij
xij
n xij 1 j 1 m s.t . xij 1 i 1 xij 0,1
例4 物资运输问题
某公司要运销一种物资。该物资有甲、乙两个产地,
产量分别是2000吨、1000吨;另有A、B、C三个销
地,销量分别是1700吨、1100吨、200吨。已知该物
x11 x21 1700 x12 x22 1100 x x 200 13 23
由于x ij 是运量,不能是负数: 调运方案的总运费为: xij 0
i 1,2; j 1,2,3
z 21x11 25x12 7 x13 51x21 51x22 37x23
某企业要在计划期内安排生产甲、乙两种产
品,这个企业现有的生产资料是:设备18台时,
原材料A 4吨,原材料 B 12吨;已知单位产品所
需消耗生产资料及利润如下表。问应如何确定生
产计划使企业获利最多。
表1 产品 资源 设备/台时 原料A/吨 原料B/吨 甲 3 1 0 乙 2 0 2 资源量 18 4 12
数学规划
线性规划(linear programming) 是康托洛维奇1939年提出 的, 1947年(G.B.Dantzig)提出求线性规划的单纯
数学建模-面试最优化问题
C题面试时间问题有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。
由于4名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟):这4名同学约定他们全部面试完以后一起离开公司.假定现在时间是早晨8:00问他们最早何时能离开公司?面试时间最优化问题摘要:面试者各自的学历、专业背景等因素的差异,每个面试者在每个阶段的面试时间有所不同,这样就造成了按某种顺序进入各面试阶段时不能紧邻顺序完成,即当面试正式开始后,在某个面试阶段,某个面试者会因为前面的面试者所需时间长而等待,也可能会因为自己所需时间短而提前完成。
因此本问题实质上是求面试时间总和的最小值问题,其中一个面试时间总和就是指在一个确定面试顺序下所有面试者按序完成面试所花费的时间之和,这样的面试时间总和的所有可能情况则取决于n 位面试者的面试顺序的所有排列数根据列出来的时间矩阵,然后列出单个学生面试时间先后次序的约束和学生间的面试先后次序保持不变的约束,并将非线性的优化问题转换成线性优化目标,最后利用优化软件lingo变成求解。
关键词:排列排序0-1非线性规划模型线性优化(1)(一)问题的提出根据题意,本文应解决的问题有:1、这4名同学约定他们全部面试完以后一起离开公司。
假定现在的时间是早晨8:00,求他们最早离开公司的时间;2、试着给出此类问题的一般描述,并试着分析问题的一般解法。
(二)问题的分析问题的约束条件主要有两个:一是每个面试者必须完成前一阶段的面试才能进入下一阶段的面试(同一个面试者的阶段次序或时间先后次序约束),二是每个阶段同一时间只能有一位面试者(不同面试者在同一个面试阶段只能逐一进行 )。
对于任意两名求职者P、Q,不妨设按P在前,Q在后的顺序进行面试,可能存在以下两情况:(一)、当P进行完一个阶段j的面试后,Q还未完成前一阶段j-1的面试,所以j阶段的考官必须等待Q完成j-1阶段的面试后,才可对Q进行j阶段的面试,这样就出现了考官等待求职者的情况。
数学建模优化问题
•使用fminunc和 fminsearch可能会得到局部最优解.
无约束最优化问题 求解无约束最优化问题的的基本思想 *无约束最优化问题的基本算法 返回
求解无约束最优化问题的基本思想
标准形式:
m f X in
X E n
其 中 f : E n E 1
m f X = m [ f X ] a i
X E n X E n
求解的基本思想 ( 以二元函数为例 )
其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。 函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部 最优解。
例 1 求 f = 2 e x s x 在 0 < x < 8 中 的 i 最 小 值 与 最 大 n 值
主程序为wliti1.m:
数学建模优化问题
一般优化问题概述
离散优化discrete optimization 或组合优化combinatorial optimization
整数规划(IP) 决策变量(全部或部分)为整数 Integer programming
✓ 整数线性规划(ILP),整数非线性规划(INLP) ✓ 纯整数规划(PIP), 混合整数规划(MIP) Pure (mixed) Integer programming 一般整数规划,0-1(整数)规划 Zero-one programming
数学建模---最优化的有效切割问题
钢管下料问题2
增加一种需求:5米10根;切割模式不超过3种。
现有4种需求:4米50根,5米10根,6米20根,8米 15根,用枚举法确定合理切割模式,过于复杂。 对大规模问题,用模型的约束条件界定合理模式
决策变量
xi ~按第i 种模式切割的原料钢管根数(i=1,2,3)
r1i, r2i, r3i, r4i ~ 第i 种切割模式下,每根原料钢管 生产4米、5米、6米和8米长的钢管的数量
钢管下料
切割模式
按照客户需要在一根原料钢管上安排切割的一种组合。 4米 1根 4米 1根 6米 1根 6米 1根 8米 1根 6米 1根 余料1米 余料3米 余料3米
8米 1根
8米 1根
合理切割模式的余料应小于客户需要钢管的最小尺寸
钢管下料问题1
模式 1 2 3 4 5 6 7 4米钢管根数 4 3 2 1 1 0 0
原料下料问题
生产中通过切割、剪裁、冲压等 手段,将原材料加工成所需大小 按照工艺要求,确定下料方案, 使所用材料最省,或利润最大
例1 钢管下料
客户需求
原料钢管:每根19米 6米20根 8米15根
节省的标准是什么? 5米10根
4米50根
问题1. 如何下料最节省 ? 问题2. 客户增加需求:
由于采用不同切割模式太多,会增加生产和管理成本, 规定切割模式不能超过3种。如何下料最i 为整数
按模式2切割15根, 按模式5切割5根, 按模式7切割5根, 共25根,余料35米
最优解:x2=15, x5=5, x7=5, 其余为0; 最优值:25。
与目标1的结果“共切割 27根,余料27米” 相比 虽余料增加8米,但减少了2根
当余料没有用处时,通常以总根数最少为目标
数学建模最优化模型例题
数学建模最优化模型例题好,咱们今天来聊聊数学建模和最优化模型这块儿。
数学建模,这名字听起来就挺高大上的,实际上,咱们日常生活中处处都是它的身影。
想象一下,早上起床,看到窗外阳光明媚,心里琢磨着今天去不去公园,顺便锻炼锻炼。
于是,你心里开始盘算,公园离家有多远,走路要多久,还是骑个单车比较快?这就是在用数学建模,算一算,看看哪个更划算。
再说说最优化模型,这就像是在挑选午饭一样。
你有一大堆选择,米饭、面条、快餐还是外卖,真是眼花缭乱。
你心里想,要是不吃太油腻的,又想吃得饱,还得好吃。
于是开始分析:今天外卖不如自己做,自己做的话,买啥材料比较好,怎么搭配更营养呢?这时候,你的脑子就像一个小计算机,开始进行各种选择。
想想,如果能把所有的选择变成一个数学问题,肯定能算出最优解,嘿,生活简直就像在解题一样,乐趣多多。
再说说商场里打折的那种,真是让人心痒痒的。
假如你打算买新鞋,满心期待。
可是一进商场,各种颜色、各种款式扑面而来,心里顿时就犯了选择困难症。
想要买的那双鞋打折了,可是另外一双颜色也不错,怎么办呢?这时候,最优化模型就可以帮你了。
想一想,你最看重什么,舒适、样式还是价格?用数学的眼光来审视,看看哪双鞋的性价比最高,没准儿就能找到那个最适合自己的了。
有些小伙伴可能会问了,数学建模到底有什么用呢?你知道吗,很多企业在决策的时候都离不开这些模型。
就拿快递公司来说,他们每天都要处理成千上万的包裹,怎么能保证包裹及时送到呢?他们需要用到最优化模型来安排路线,减少运输成本。
想象一下,如果没有这些模型,快递员可能跑了一大圈,最后才发现原来只需要直走就到了。
那可真是得不偿失,没准儿包裹还会晚到,这可就麻烦了。
数学建模的魅力就在于它能把复杂的问题简单化。
我们生活中遇到的各种难题,最终都可以转化为一个个数学问题。
你说这是不是挺神奇的?比如你要规划一次旅行,想去多少个地方,怎么安排最合适,住哪儿能便宜又舒服,这些全都可以用建模来解决。
数学建模优化类问题例子
数学建模优化类问题例子
1.最佳生产计划:有一家汽车零部件制造公司,需要决定该如何安排生产计划以最大化利润。
该公司需要考虑每个零部件的生产成本、供应链的延迟和运输成本等因素,以确定最佳的生产数量和交付时间。
2.最优投资组合:一位投资者有一定资金,希望通过合理的资产配置来最大化投资回报。
该投资者需要考虑不同资产类别的风险和回报率,并使用数学建模优化方法来确定最佳的资产配置比例。
3.旅行销售员问题:一位旅行销售员需要在多个城市之间进行访问,并希望以最小的总行驶距离完成所有访问任务。
通过使用数学建模和优化算法,销售员可以确定最佳的访问顺序,从而减少总行驶距离和时间。
4.最佳路径规划:在一个迷宫中,有一只小老鼠需要找到从起点到终点的最短路径。
通过将迷宫与数学模型相关联,可以使用图论和最短路径算法来确定小老鼠应该采取的最佳行动策略。
以上只是一些例子中的几个,实际上数学建模和优化方法可以应用于各种不同的问题领域,包括金融、物流、能源管理、医疗决策等。
通过数学建模和优化,可以帮助人们做出更明智的决策,提高效率和效果。
数学建模竞赛用到优化的赛题
数学建模竞赛用到优化的赛题摘要:一、数学建模竞赛简介1.数学建模竞赛的概念2.数学建模竞赛的意义和价值3.数学建模竞赛的分类二、优化问题的概述1.优化问题的定义2.优化问题的分类3.优化问题的应用领域三、数学建模竞赛中的优化赛题1.历届数学建模竞赛中的优化赛题举例2.优化赛题的解题思路和方法3.优化赛题的挑战和难点四、优化方法在数学建模竞赛中的应用1.优化方法的选择和运用2.优化方法在数学建模竞赛中的实际案例3.优化方法对竞赛结果的影响和意义五、数学建模竞赛中优化赛题的启示1.对优化问题的深入理解2.提高优化方法的应用能力3.团队合作和沟通的重要性正文:数学建模竞赛是面向全球范围内的高校大学生的一项重要赛事,旨在通过对现实世界中的问题进行抽象、建模和求解,培养学生的创新意识、团队协作精神和实际问题解决能力。
其中,优化问题是一类非常重要的赛题,涉及到众多领域的核心问题。
本文将围绕数学建模竞赛中的优化赛题展开讨论,分析优化问题在数学建模竞赛中的地位和作用,探讨优化方法在数学建模竞赛中的应用和挑战。
首先,我们需要了解什么是优化问题。
优化问题是指在给定一定约束条件下,寻找一个目标函数的最优解或次优解的问题。
它具有广泛的应用价值,涉及到诸如经济学、工程、管理、生物学等诸多领域。
根据优化问题的具体性质和特点,可以将其分为线性规划、非线性规划、动态规划、随机规划等多种类型。
在数学建模竞赛中,优化问题是一类具有挑战性的赛题。
以历届数学建模竞赛为例,我们可以发现许多涉及优化问题的赛题,如在“网络优化”、“生产调度”、“供应链管理”等题目中,都需要运用优化方法来求解。
解这类问题通常需要具备扎实的数学基础、丰富的建模经验和灵活的思维方式。
通过对优化问题的深入理解,能够找到问题的本质特征,从而选择合适的优化方法进行求解。
优化方法在数学建模竞赛中的应用具有重要意义。
在竞赛过程中,优化方法的选择和运用直接影响到建模成果的质量和水平。
数学建模课程设计-优化问题
在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。
本文针对现有的条件和题目的要求进行讨论。
在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。
对于问题一:我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=151jjj py=∑,根据题目要求建立约束条件,并用数学软件LINGO对其模型求解,得到最优解。
对于问题二:同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=151j jjkp上述模型得到最优解结果如下:关键字:基站; 0-1整数规划;lingo 软件1 问题的重述.........................32 问题的分析.........................43 模型的假设与符号的说明...................5 3.1模型的假设...................... 53.2符号的说明...................... 54 模型的建立及求解......................5 4.1模型的建立...................... 54.2 模型的求解...................... 65 模型结果的分析.......................76 优化方向..........................77 参考文献..........................88、附录........................... 91、问题的重述某手机运营商准备在一个目前尚未覆盖的区域开展业务,计划投资5000万元来建设基站。
该区域由15个社区组成,有7个位置可以建设基站,每个基站只能覆盖有限个社区。
图1是该区域的示意图,每个社区简化为一个多边形,每个可以建设基站的位置已用黑点标出。
几个优化问题的数学建模
几个优化问题的数学建模一、一个开放式基金投资问题6、模型的评价模型的主要优点是采用较为成熟的数学理论建立模型,利用数学软件计算,可信度比较高,便于推广。
主要缺点是建立的模型是确定的而不是更符合实际情况的随机型模型。
二、结合人员分配的生产规划问题1、问题某公司要对四种产品(P1,P2,P3,P4)在五条生产线(L1到L5)上的生产进行规划。
产品P1和P4的单位纯利润为7元,产品P2的单位纯利润为8元,产品P3的单位纯利润为9元。
在规划期内这五条生产线各自可以进行生产的时间长度各不相同。
L1到L5的最大可用生产时间分别为4500小时,5000小时,4500小时,1500小时和2500小时。
表1列出了在每条生产线上生产每种产品一个单位所需要的时间。
(1)、假设生产是流水线作业,产品P1到P4各应生产多少才能使总利润最大?(2)、如果在生产过程中允许在生产线之间进行人员转移(从而使工时也相应转移),如表2所示,则最大利润是多少?应转移多少个工时,如何转移?(3)、如果生产不是流水线作业,模型应如何修改?表1 单位生产时间表2 可以进行的人员转移2、假设(1)每条生产线可生产各种产品;(2)每个生产人员的工作效率相同,且熟练各条生产线的操作,可在各条生产线之间转移。
3、建模3.1、问题(1) 设每种产品必须经过5条生产线才能生产出来,产品P i 的产量为x i ,单位纯利润为r i ,在生产线L j 上的单位生产时间为d ij 。
生产线L j 的可用总工时数为c j ,则可得模型1:max 41i =∑r i x is.t.41i =∑d ij x i ≤c j ,j=1,2,3,4,5x i ≥0,i=1,2,3,43.2、问题(2) 设y jk 为从生产线L j 转移到生产线L k 的工时数,生产线L j 的最大可转移总工时数为b j ,j,k=1,2,3,4,5,j ≠k ,则可得模型2:max 41i =∑r i x is.t.3.3、问题(3) 设每种产品只需在任意一条生产线上即可生产出来,产品P i在生产线L j 上的产量为x ij , i=1,2,3,4;j=1,2,3,4,5,则只需在上述两个模型中,将目标函数修改为max 41i =∑51j =∑r i x ij ,将41i =∑d ij x i 修改为41i =∑d ij x ij ,其余不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C题面试时间问题有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。
由于4名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟):这4名同学约定他们全部面试完以后一起离开公司.假定现在时间是早晨8:00问他们最早何时能离开公司?面试时间最优化问题摘要:面试者各自的学历、专业背景等因素的差异,每个面试者在每个阶段的面试时间有所不同,这样就造成了按某种顺序进入各面试阶段时不能紧邻顺序完成,即当面试正式开始后,在某个面试阶段,某个面试者会因为前面的面试者所需时间长而等待,也可能会因为自己所需时间短而提前完成。
因此本问题实质上是求面试时间总和的最小值问题,其中一个面试时间总和就是指在一个确定面试顺序下所有面试者按序完成面试所花费的时间之和,这样的面试时间总和的所有可能情况则取决于n 位面试者的面试顺序的所有排列数根据列出来的时间矩阵,然后列出单个学生面试时间先后次序的约束和学生间的面试先后次序保持不变的约束,并将非线性的优化问题转换成线性优化目标,最后利用优化软件lingo变成求解。
关键词:排列排序0-1非线性规划模型线性优化(1)(一)问题的提出根据题意,本文应解决的问题有:1、这4名同学约定他们全部面试完以后一起离开公司。
假定现在的时间是早晨8:00,求他们最早离开公司的时间;2、试着给出此类问题的一般描述,并试着分析问题的一般解法。
(二)问题的分析问题的约束条件主要有两个:一是每个面试者必须完成前一阶段的面试才能进入下一阶段的面试(同一个面试者的阶段次序或时间先后次序约束),二是每个阶段同一时间只能有一位面试者(不同面试者在同一个面试阶段只能逐一进行)。
对于任意两名求职者P、Q,不妨设按P在前,Q在后的顺序进行面试,可能存在以下两情况:(一)、当P进行完一个阶段j的面试后,Q还未完成前一阶段j-1的面试,所以j阶段的考官必须等待Q完成j-1阶段的面试后,才可对Q进行j阶段的面试,这样就出现了考官等待求职者的情况。
这一段等待时间必将延长最终的总时间。
(二)、当Q完成j-1的面试后,P还未完成j阶段的面试,所以,Q必须等待P完成j阶段的面试后,才能进入j阶段的面试,这样就出现了求职者等待求职者的情况。
同样的,这个也会延长面试的总时间。
以上两种情况,必然都会延长整个面试过程。
所以要想使四个求职者能一起最早离开公司,即他们所用的面试时间最短,只要使考官等候求职者的时间和求职者等候求职者的时间之和最短,这样就使求职者和考官的时间利用率达到了最高。
他们就能以最短的时间完成面试一起离开公司。
这也是我们想要的结果。
(三)模型的假设1.我们假设参加面试的求职者都是平等且独立的,即他们面试的顺序与考官无关;2.面试者由一个阶段到下一个阶段参加面试,其间必有时间间隔,但我们在这里假定该时间间隔为0;3.参加面试的求职者事先没有约定他们面试的先后顺序;4.假定中途任何一位参加面试者均能通过面试,进入下一阶段的面试。
即:没有中途退出面试者;5.面试者及各考官都能在8:00准时到达面试地点。
(四)名词及符号约束1. aij (i=1,2,3,4;j=1,2,3)为求职者i在j阶段参加面试所需的时间甲乙丙丁分别对应序号i=1,2,3,42.xij (i=1,2,3,4;j=1,2,3) 表示第i名同学参加j阶段面试的开始时间(不妨把早上8:00记为面试的0时刻)(2)3. T为完成全部面试所花费的最少时间(五)模型的建立设{s1,s2,s3,s4}为4位面试者的一个面试顺序,面试者si参加第j个阶段面试所需时间为aij 根据问题的2个约束条件,可作出n位面试者在{s1,s2,s3,s4)面试顺序下参加3个面试阶段的进展过程表,4位面试者按序{s1,s2,s3,s4} 参加3个阶段的面试进展过程表试者s1在第3个面试场,s2在第2个面试场,s3,在第1个面试场、其余人员在等待的那一个时间段.根据顺序性可知整个面试过程的时间段数为3+4-1=6模式:以各面试者结束全部面试阶段的时间为基础(以表的行为基础)目标函数minT =max{xi3+ai3}约束条件(1)面试阶段约束,即必须先完成上一阶段面试才能进人下一阶段面试。
xij + aij ≤xi,j+1 i = l,2,3, 4;j = 1,2,3)(2) 同一阶段只能有一个面试者xij +aij-xki ≤Tyikxkj +akj-xij≤T(1-yik)(i,k = l,2, 3, 4,i<k ;j = l,2,3 )yik = {O,l}(3)整个面试总和时间大于等于各面试者结束全部阶段面试的时间T≥xi3+ai3;i = l,2,3,4其中y是O-1变量.表示第k个面试者是否排在第i个面试者的前面,O表示否,l 表示是.由此,就将问题中的约束条件“同一面试阶段只能有一个面试者”改用“面试者的先后次序”来表示解决了问题中难于表达的约束条件,反应的关系清楚,而且在模型求解的,T值就是最小总面试时间,根据全部y值就可以排出所有面试者使T最小的面试顺序。
(3)(六)模型的求解编写的lingo程序如下:model:title面试问题;sets:!person=被面试者集合,stage=面试阶段集合;person/1,2,3,4/;stage/1,2,3/;!a=面试所需时间,x面试开始时间;pxs(person,stage):a,x;!y(i,k)=1:k排在i前,0:否则;pxp(person,person)|&1 #lt# &2:y;endsetsdata:a=13 15 2010 20 1820 16 108 10 15;enddatamin=maxa;!maxa是面试最后结束时间;maxa>=@max(pxs(i,j)|j#eq#@size(stage):x(i,j)+a(i,j));!完成前一段才能进入下一段;@for(pxs(i,j)|j#lt#@size(stage):x(i,j)+a(i,j)<x(i,j+1));!同一时间只能面试一位同学;@for(stage(j):@for(pxp(i,k):x(i,j)+a(i,j)-x(k,j)<maxa*y(i,k));@for(pxp(i,k):x(k,j)+a(k,j)-x(i,j)<maxa*(1 -y(i,k))););@for(pxp(i,k):@bin(y(i,k)));endLingo结果如下:Local optimal solution found.Objective value: 84.00000Extended solver steps: 43Total solver iterations: 1681Model Title: 面试问题Variable Value Reduced CostMAXA 84.00000 0.000000A( 1, 1) 13.00000 0.000000(4)A( 1, 2) 15.00000 0.000000A( 1, 3) 20.00000 0.000000A( 2, 2) 20.00000 0.000000A( 2, 3) 18.00000 0.000000A( 3, 1) 20.00000 0.000000A( 3, 2) 16.00000 0.000000A( 3, 3) 10.00000 0.000000A( 4, 1) 8.000000 0.000000A( 4, 2) 10.00000 0.000000A( 4, 3) 15.00000 0.000000X( 1, 1) 8.000000 0.000000X( 1, 2) 21.00000 0.000000X( 1, 3) 36.00000 0.000000X( 2, 1) 26.00000 0.000000X( 2, 2) 36.00000 0.000000X( 2, 3) 56.00000 0.000000X( 3, 1) 38.00000 0.000000X( 3, 2) 58.00000 0.000000X( 3, 3) 74.00000 0.000000X( 4, 1) 0.000000 0.9999970X( 4, 2) 11.00000 0.000000X( 4, 3) 21.00000 0.000000Y( 1, 2) 0.000000 -83.99950Y( 1, 3) 0.000000 0.000000Y( 1, 4) 1.000000 83.99950Y( 2, 3) 0.000000 -83.99950Y( 2, 4) 1.000000 0.000000Y( 3, 4) 1.000000 0.000000Row Slack or Surplus Dual Price1 84.00000 -1.0000002 0.000000 -0.99999703 0.000000 0.99999704 0.000000 0.99999705 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 3.000000 0.00000010 0.000000 0.00000011 5.000000 0.00000012 17.00000 0.000000(5)14 2.000000 0.00000015 48.00000 0.00000016 26.00000 0.00000017 56.00000 0.00000018 34.00000 0.00000019 0.000000 0.999997020 52.00000 0.00000021 18.00000 0.00000022 30.00000 0.00000023 0.000000 0.00000024 22.00000 0.00000025 59.00000 0.00000026 2.000000 0.00000027 39.00000 0.00000028 21.00000 0.00000029 49.00000 0.00000030 31.00000 0.00000031 0.000000 0.00000032 46.00000 0.00000033 15.00000 0.00000034 37.00000 0.00000035 0.000000 0.999997036 18.00000 0.00000037 49.00000 0.00000038 0.000000 0.999997039 31.00000 0.00000040 21.00000 0.00000041 46.00000 0.00000042 36.00000 0.00000043 0.000000 0.00000044 56.00000 0.00000045 20.00000 0.00000046 38.00000 0.000000计算结果为:所有面试完成至少需要84min。