北师大版 必修1 函数单调性 第二课时《函数的最大(小)值》课件
合集下载
北师大版高中数学必修一《3函数的单调性和最值》新课件(69页)
答案:A
3. 函 数f(x)=—2x+1(x∈[ -2,2])的最小、最大值分别为( )
A.3,5 B.—3,5 C.1,5 D.—5,3
解析:因为f(x)=—2x+1(x∈ [-2,2])是单调递减函数,所以当 x=2 时,函数的最小值为一3.当x=—2 时,函数的最大值为5.
答案:B
4. 函数f(x)在[一2,2]上的图象如图所示,则此函数的最小值、
综上,函
间(Vk, 十一)上为增函数.
在区间(0, √k )上为减函数,在区
状元随笔 此题中函数f(x)是一种特殊函数(对勾函数),用
定 义法证明时通常需要进行因式分解,由于x₁x₂-k(k>0) 与0的大
小 关系是不明确的,因此要分类讨论.
方法归纳
利用定义证明函数单调性的步骤
取值 设 x₁,x₂ 是该区间内的任意两个值,且x₁<x₂
A. (一一,0)U[0,1]B.(—1,0)U[0,1]
C.(0, 十 一 )
D.[0,1]
解析:函数f(x)=—x²+4mx 的图象开口向下,且以直线x=2m 为对称轴,若在区间[2,4]上是减函数,则2m≤2, 解得m≤1,g(x)
的图象由
的图象向左平移一个单位长度得到的,若在
区间[2,4]上是减函数,则2m>0, 解得m>0.综上可得m 的取值范围
A.m>0
B.
C.—1<m<3
D.
解析:由题意知 答案:B
解得
状元随笔 利用单调性解不等式,就是根据单调性去掉函数 的对应法则,构造不等式(不等式组)求解,注意函数的定义域,所
有自变量都必须在函数的定义域内.
高数数学必修一《3.2.1.2函数的最大(小)值》教学课件
几何意义
f(x)图象上最高点的 ___纵_坐_标_____
f(x)图象上最低点的 ___纵_坐_标_____
微点拨❶
(1)最大(小)值必须是一个函数值,是值域中的一个元素,如函数y= x2(x∈R)的最小值是0,有f(0)=0.
(2)最大(小)值定义中的“任意”是说对于定义域内的每一个值都必 须满足不等式,即对于定义域内的全部元素,都有f(x)≤M(f(x)≥M)成 立,也就是说,函数y=f(x)的图象不能位于直线y=M的上(下)方.
①比较两个函数的图象,它们是否都有最高点? ②通过观察图1你能发现什么?
(2)观察下面两个函数的图象,回答下列问题.
①比较两个函数的图象,它们是否都有最低点? ②通过观察图3你能发现什么?
提示:①题图3中函数f(x)=x2的图象有一个最低点. 题图4中函数y=x的图象没有最低点. ②对任意x∈R,都有f(x)≥f(0).
M].( × )
2.函数f(x)在[-2,+∞)上的图象如图所示,则此函数的最大值和最
小值分别为( )
A.3,0
B.3,1
C.3,无最小值 D.3,2
答案:C 解析:由图可知,f(x)在[-2,+∞)上的最大值为3,最小值取不到.故选C.
3.已知函数y=2x,x∈[1,2],则此函数的最大值是____2____,最小 值是____1____.
课堂小结 1.函数最大值、最小值的定义. 2.求函数最值的方法.
提示:(1)最大值为f(b),最小值为f(a). (2)不一定,需要考虑函数的单调性.
例2 已知f(x)=2xx++11. (1)用定义证明f(x)在区间[1,+∞)上单调递增; (2)求该函数在区间[2,4]上的最大值.
新教材人教B版必修第一册 3.1.2.2 函数的最大值、最小值 课件(57张)
5 4a,a 2.
(2)当a≤1时,f(x)max=f(2)=5-4a;
当a>1时,f(x)max=f(0)=1,
所以f(x)max=
5 4a,a 1, 1,a 1.
【解题策略】一元二次函数的最值
(1)不含参数的一元二次函数的最值配方或利用公式求出对称轴,根据对称轴和定义域的关系确定最值
【思路导引】求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函 数,所以可以采用配方法和图像法求解.
【解题策略】 (1)函数y=ax2+bx+c(a>0)在区间 (, b ]上是减函数,在区间
2a
[ b , )上是增函数,当x=- b 时,函数取得最小值.
2a
2a
(2)函数y=ax2+bx+c(a<0)在区间 (, b ] 上是增函数,在区间 [ b , ) 上是
点,代入函数解析式求最值.
(2)含参数的一元二次函数的最值以一元二次函数图像开口向上、对称轴为x=m,区间[a,b]为例,
f a , m a,
①最小值:f(x)min=
f
m
,
a
m
b,
f b, m b.
②最大值:f(x)max=
f f
a, b,
m m
a a
2 2
b, b.
当开口向下、区间不是闭区间等时,类似方法进行讨论,其实质是讨论对称轴与区间的位置关系.
x1≠x2,记y1=f(x1),y2=f(x2), y y2 y1 (即 f ___x_2___x_1____),
x x2 x1 x
称 f f x2 f x1 为函数在区间[x1,x2](x1<x2时)或[x2,x1](x1>x2时)上的平均
(2)当a≤1时,f(x)max=f(2)=5-4a;
当a>1时,f(x)max=f(0)=1,
所以f(x)max=
5 4a,a 1, 1,a 1.
【解题策略】一元二次函数的最值
(1)不含参数的一元二次函数的最值配方或利用公式求出对称轴,根据对称轴和定义域的关系确定最值
【思路导引】求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函 数,所以可以采用配方法和图像法求解.
【解题策略】 (1)函数y=ax2+bx+c(a>0)在区间 (, b ]上是减函数,在区间
2a
[ b , )上是增函数,当x=- b 时,函数取得最小值.
2a
2a
(2)函数y=ax2+bx+c(a<0)在区间 (, b ] 上是增函数,在区间 [ b , ) 上是
点,代入函数解析式求最值.
(2)含参数的一元二次函数的最值以一元二次函数图像开口向上、对称轴为x=m,区间[a,b]为例,
f a , m a,
①最小值:f(x)min=
f
m
,
a
m
b,
f b, m b.
②最大值:f(x)max=
f f
a, b,
m m
a a
2 2
b, b.
当开口向下、区间不是闭区间等时,类似方法进行讨论,其实质是讨论对称轴与区间的位置关系.
x1≠x2,记y1=f(x1),y2=f(x2), y y2 y1 (即 f ___x_2___x_1____),
x x2 x1 x
称 f f x2 f x1 为函数在区间[x1,x2](x1<x2时)或[x2,x1](x1>x2时)上的平均
第02课函数的单调性与最大(小)值(课件)
【典例】(多选)下列函数在(0,+∞)上单调递增的是( )
A.y=ex-e-x
B.y=|x2-2x|
C.y=x+cos x
D.y= x2+x-2
【解析】∵y=ex 与 y=-e-x 为 R 上的增函数,∴y=ex-e-x 为 R 上的增函数,故 A 正确; 由 y=|x2-2x|的图象知,故 B 不正确;对于选项 C,y′=1-sin x≥0,∴y=x+cos x 在 R 上为增函数,故 C 正确; y= x2+x-2的定义域为(-∞,-2]∪[1,+∞),故 D 不正确.
【典例】已知二次函数 f(x)=x2-2x+3, 当 x∈[t,t+1]时,求 f(x)的最小值 g(t).
【解析】①当 t>1 时,f(x)在[t,t+1]上是增函数, 所以当 x=t 时,f(x)取得最小值,此时 g(t)=f(t)=t2-2t+3. ②当 t≤1≤t+1,即 0≤t≤1 时,f(x)在[t,t+1]上先递减后递增, 故当 x=1 时,f(x)取得最小值,此时 g(t)=f(1)=2. ③当 t+1<1,即 t<0 时,f(x)在[t,t+1]上是减函数,所以当 x=t+1 时,f(x)取得最小值,
函数 f(x)= x-1在其定义域内是增函数.
【解析】函数 f(x)= x-1的定义域是[1,+∞),
设∀x1,x2∈[1,+∞),且 x1<x2,则 f(x2)-f(x1)= x2-1- x1-1
=
x2-1- x1-1 x2-1+ x2-1+ x1-1
x1-1=
x2-x12-+x1x1-1.
因为 x1,x2∈[1,+∞),且 x1<x2,所以 x2-1+ x1-1>0,x2-x1>0.
函数的单调性 ppt课件
•上是减少的. [思路分析] 利用函数增减性的定义来证明,其关键是对 f(x1)-f(x2)进行变形,尽量化成几个最简单因式的乘积的形式.
[规范解答] 设 0<x1<x2≤3,则有 y1-y2=(x1+x91)-(x2+x92) =(x1-x2)-9xx11-x2x2
• [规律总结] 1.熟记运用函数单调性求最值的 步骤:
• (1)判断:先判断函数的单调性.
• (2)求值:利用单调性代入自变量的值求得最 值.
• 2.明确利用单调性求最大值、最小值易出错 的几点:
• (1)写出最值时要写最高(低)点的纵坐标,而 不是横坐标.
• (2)求最值忘记求定义域.
• (3)求最值,尤其是闭区间上的最值,不判断 单调性而直接将两端点值代入.
• [规律总结] 证明函数在某个区间上的单调性 的步骤:
• (1)取值:在给定区间上任取两个值x1,x2, 且x1<x2;
• (2)作差变形:计算f(x1)-f(x2),通过因式分 解、通分、配方、分母(分子)有理化等方法 变形;
• (3)定号:判断上式的符号,若不能确定,则 分区间讨论;
• (4)结论:根据差的符号,得出单调性的结 论.
• (2)函数y=3x2+6x-12在区间________上 为增函数,在区间________上为减函数.
• [答案] [-1,+∞) (-∞,-1]
• [解析] ∵y=3x2+6x-12=3(x+1)2-15,
• ∴它的图像开口向上,对称轴为x=-1.
• ∴在[-1,+∞)上为增函数,在(-∞,-1] 上为减函数.
• “太阳当空照,花儿对我笑,小鸟说早早早……”
精品资料
第二章 §3 函数的单调性
《函数的单调性与极值》课件2 (北师大版选修2-2)
例 9 求函数
f ( x) x 3 (6 x 7) 2的单调区间和极值
解 f(x)的一阶导数为
4x 10 x 7 f ( x) (6 x 7) 3 3 6x 7 6x 7 7 / 令f ( x) 0, 得驻点x1 . 10 7 7 又x2 时,f ( x)不可导,即x2 是不可导点。 6 6
b a
推论1: 若函数
在区间 I 上满足
则
在 I 上必为常数.
推论2:如果函数 f ( x)和g ( x) 在区间(a,b)内可导, x 有 f / ( x) g / ( x) 则在(a,b)内 且对于(a,b)中任意 f ( x)与g ( x)仅相差一个常数,即f ( x) g ( x) c , 其中c为常数。
经验: 欲证 x I 时 f ( x) C0 , 只需证在 I 上 f ( x) 0,
且 x0 I , 使 f ( x0 ) C0 . 自证: arctan x arc cot x , x ( , ) 2
x ln(1 x) x ( x 0) . 例6. 证明不等式 1 x 证法1: 设 f (t ) ln(1 t ) ,
解: 1) 求导数 f ( x) x 2) 求极值可疑点 3) 列表判别
2 3
的极值 .
1 ( x 1) 2 x 3 3
2 x 5 5 3 3 x
2 令 f ( x) 0 , 得 x1 5 ;
令 f ( x) , 得 x2 0
2 5 2 ( 5 , )
f ( x0 ) 0, 即方程有小于 1 的正根
2) 唯一性 .
f (x) 在以 x0 , x1 为端点的区间满足罗尔定理条件 , 在 x0 , x1 之间
单调性与最大(小)值——单调性 课件
函数单调性与单调区间的定义
一般地,设函数 f(x)的定义域为 I ,区间 D I :
如果x1, x2 D,当x1 x2时,都有f (x1) f (x2 ), 那么就称函数f (x)在区间D上单调递增(如图(1)).
特别地,函数 f(x)在它的定义域上单调递增时,我们就称它是增函数.
如果x1, x2 D,当x1 x2时,都有f (x1) f (x2 ), 那么就称函数f (x)在区间D上单调递减(如图(2)).
你能说明为什么 f (x1) f (x2 ) 吗?
x1 x2 0,x1 x2 0.
由不等式性质7可得:( x1)2 ( x2)2.
即x12 x22 , f (x1) f (x2 ).
在初中,我们利用函数图象研究过函数值随自变量的增大而增大(或减小)的性质,这一性质叫 做函数的单调性. 下面进一步用符号语言刻画这种性质.
1)
由x1, x2 (1, ),得x1 1, x2 1.
所以x1x2 1, x1x2 1 0.
又由x1 x2 , 得x1 x2 0.
于是 x1 x2 x1x2
所以,函数
(
y
x1x2
x
1)
1
0,即y1 y2.
在区间(1, )上单调递增.
x
总结:虽然我们可以通过函数的图象判断函数的单调性,但证明函数在某个区间上单调递增(减)
图象在 y 轴左侧部分从左到右是下降的,也就是说当x≤0时, y 随 x 的增大而减小.
用符号语言描述就是:
任意取x1, x2 (,0],得到f (x1) x12 , f (x2 ) x22 ,
那么当x1 x2时,有f (x1) f (x2 ).
这时我们就说,函数 f (x) x2在区间 (,0] 上是单调递减的.
函数的单调性与最大(小)值PPT课件
∴f(x)在[-1,0]上是增函数,在(-∞,-1]上是减函数. 又x∈[0,1],u∈[-1,0]时,恒有f(x)≥f(u),等号只在x=u=0时取到,故
f(x)在[-1,1]上是增函数. (3)由(2)知函数f(x)在(0,1)上递增,在[1,+∞)上递减,则f(x)在x=1处
可取得最大值. ∴f(1)=, ∴函数的最大值为 ,无最小值.
x≤1,
.是
,
上的减函数, 那么a的取值范围是(
)
A.(0,1)
C.
1 7
,
1 3
B.
0,
1 3
D.
1 7
,1
[错解]依题意应有
3a 1 0, 0 a 1,
解得0
a
1 3
,
选B.
[剖析] 本题的错误在于没有注意分段函数的特点,只保证了函数
在每一段上是单调递减的,没有使函数f(x)在(-∞,1]上的最小值
【典例2】利用定义判断函数f x x x2 1在区间
R上的单调性.
[错解]设x1, x2 R,且x1 x2 ,则f x2 f x1
(x2 x22 1) (x1 x12 1)
x2 x1 ( x22 1 x12 1),
因为x1 x2 ,则x2 x1 0,且 x22 1 x12 1 0,
(2)在解答过程中易出现不能正确构造f(x2-x1)的形式或不能将不 等式右边3转化为f(2)从而不能应用函数的单调性求解,导致此 种错误的原因是没有熟练掌握单调性的含义及没弄清如何利 用题目中的已知条件或者不能正确地将抽象不等式进行转化.
错源一不注意分段函数的特点
【典例1】已知f
x
(3a 1)x 4a, logax, x 1
北师大版数学必修一《函数的单调性》【第2课时】参考课件
结论:复合函数y=f(g(x))的单调性的判断 ⑴当内层函数与外层函数单调性相同时为增函数; ⑵当内层函数与外层函数单调性相反时为增函数.
可简记为口诀: “同增异减” .
★判定复合函数单调区间的四个步骤: ⑴确定内、外层函数的定义域; ⑵将复合函数分解成基本初等函数;
⑶分别判定基本初等函数的单调区间;
⑷利用“同增异减”法则判断复合函数的单调性 .
例4. 求函数 y x 2 2 x 3 的单调区间.
ax 作业: 讨论函数ຫໍສະໝຸດ f ( x ) 2 在(-1,1)上的 x 1
单调性.
§3
函数的单调性
第2课时
例1. 画出下列函数的图像,并指出函数的单调区间. ⑴y=-x2+2|x|+3 ⑵y=|x2-2x-3|
a 例2. 讨论函数 f ( x) x (a 0) 在(0, +∞) x
上的单调性.
例3. 已知函数f(x)在(0,+∞)上单调递增, 求函数f(1-x2)的单调区间.
高中数学北师大版必修一《函数的单调性》课件
间 D 上是递减的.
• 单击此处编辑母版文本样式
– 二级
• 三级
– 四级 » 五级
9
判断单题 击你认此为处下列编说辑法是母否正版确标,请题说样明理式由(举
• 单击此例处或编者画辑图母)版. 文本样式
– 二级(1) 设函数 y f (x) 的定义域为 [a, ),若对任意x a ,都 • 三有级 [a, ) ,则 f (x) f (a)在区间 y f (x) 上递增.
– 四级 » 五级
(2)函数 f (x) x 1 在区间 (0, +)上有何单调性?
x
5
问题单3 (击1)此如何处用编数学辑符母号描版述标函数题图象样的式“上升”
• 单击此特征处,编即辑“母y随版x文的本增大样而式增大” ?
– 二级例如 函数 f (x) x2 在区间 [0, )上递增的.
• 三级
– 二级
• 三级
– 四级 » 五级
11
单击此处编辑母版标题样式
例题 判断并证明函数 f (x) 0.001x 1 的单调性.
•
单击此处编辑母版文本样式
– 二级练习 证明函数 f (x) x
1 x
(
x
0)
的单调性:
• 三, ) 上递增.
» 五级
单击此处编辑母版标题样式
• 单北击师大此版处高编中数辑学母版文本样式
– 二级
谢谢大家 • 三级 – 四级 » 五级
15
13
课堂单作击业 此处编辑母版标题样式
(1)第38页 习题2-3 A组:3,5
• 单击此(处2)编判辑断母并版证文明本函数样式f (x) x 1 在 (, 0)
– 二级上的单调性.
x
• 单击此处编辑母版文本样式
– 二级
• 三级
– 四级 » 五级
9
判断单题 击你认此为处下列编说辑法是母否正版确标,请题说样明理式由(举
• 单击此例处或编者画辑图母)版. 文本样式
– 二级(1) 设函数 y f (x) 的定义域为 [a, ),若对任意x a ,都 • 三有级 [a, ) ,则 f (x) f (a)在区间 y f (x) 上递增.
– 四级 » 五级
(2)函数 f (x) x 1 在区间 (0, +)上有何单调性?
x
5
问题单3 (击1)此如何处用编数学辑符母号描版述标函数题图象样的式“上升”
• 单击此特征处,编即辑“母y随版x文的本增大样而式增大” ?
– 二级例如 函数 f (x) x2 在区间 [0, )上递增的.
• 三级
– 二级
• 三级
– 四级 » 五级
11
单击此处编辑母版标题样式
例题 判断并证明函数 f (x) 0.001x 1 的单调性.
•
单击此处编辑母版文本样式
– 二级练习 证明函数 f (x) x
1 x
(
x
0)
的单调性:
• 三, ) 上递增.
» 五级
单击此处编辑母版标题样式
• 单北击师大此版处高编中数辑学母版文本样式
– 二级
谢谢大家 • 三级 – 四级 » 五级
15
13
课堂单作击业 此处编辑母版标题样式
(1)第38页 习题2-3 A组:3,5
• 单击此(处2)编判辑断母并版证文明本函数样式f (x) x 1 在 (, 0)
– 二级上的单调性.
x
函数的单调性与最值 课件(共20张PPT)
最值. 三.对于较复杂函数,可用换元法化归为简单函数、或者运用导数,
求出在给定区间上的极值,最后结合端点值,求出最值.
课堂小结
单调性
定义
图象特征 判断方法
应用
定义法 图象变换 求导法 求最值 求参数范围 解不等式
祝同学们前程似锦!
专题一:判断、证明函数的单调性
例 1:(3)已知 f x 2x , x 2,6. (1)判断 f x 的单调性,并加以证明;(2)求 f x 的最值.
x 1
专题一:判断、证明函数的单调性
变式 3:讨论 f x ax a 0, 的单调性.
x 1
小结: 确定函数单调性的四种方法 (1)定义法;(2)导数法;(3)图象法;(4)性质法.
【学习目标】
01
理解函数的单调性、最大值、最小值及其 几何意义;
02
会运用函数图象理解和研究函数的单调性, 并利用单调性求最值或者求参数范围;
03
培养抽象概括、逻辑推理、运算求解等能 力.
复习回顾 1.函数的单调性 (1)单调函数的定义
增函数
减函数
一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 定义 当x1<x2时,都有__f_(x_1_)_<_f(_x_2)_, 当x1<x2时,都有_f_(_x_1)_>_f_(x_2_),
自左向右看图象是下降的
复习回顾
(2)单调区间的定义 如果函数y=f(x)在区间D上_单__调__递__增__或_单__调__递__减__,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
复习回顾 2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
求出在给定区间上的极值,最后结合端点值,求出最值.
课堂小结
单调性
定义
图象特征 判断方法
应用
定义法 图象变换 求导法 求最值 求参数范围 解不等式
祝同学们前程似锦!
专题一:判断、证明函数的单调性
例 1:(3)已知 f x 2x , x 2,6. (1)判断 f x 的单调性,并加以证明;(2)求 f x 的最值.
x 1
专题一:判断、证明函数的单调性
变式 3:讨论 f x ax a 0, 的单调性.
x 1
小结: 确定函数单调性的四种方法 (1)定义法;(2)导数法;(3)图象法;(4)性质法.
【学习目标】
01
理解函数的单调性、最大值、最小值及其 几何意义;
02
会运用函数图象理解和研究函数的单调性, 并利用单调性求最值或者求参数范围;
03
培养抽象概括、逻辑推理、运算求解等能 力.
复习回顾 1.函数的单调性 (1)单调函数的定义
增函数
减函数
一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 定义 当x1<x2时,都有__f_(x_1_)_<_f(_x_2)_, 当x1<x2时,都有_f_(_x_1)_>_f_(x_2_),
自左向右看图象是下降的
复习回顾
(2)单调区间的定义 如果函数y=f(x)在区间D上_单__调__递__增__或_单__调__递__减__,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
复习回顾 2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
函数的最大(小)值课件
次函数y=ax2+bx+c(a>0)在定义域为实数集时适用.
正解:y=x2-2x=(x-1)2-1,x∈[-1,2].由图象知, 当-1≤x<1时,y随x的增大而减小; 当1≤x≤2时,y随x的增大而增大. 并且当x=-1时,y取最大值3; 当x=1时,y取最小值-1. 从而知-1≤y≤3, 即函数y=x2-2x,x∈[-1,2]的值域是[-1,3]. 纠错心得:函数的定义域是函数的灵魂,求函数的值域时,首先注意
函数的单调增区间为(-1.5,3],(5,6],
单调减区间为[-4,-1.5],(3,5],(6,7].
题型二 利用单调性求函数最值 【例 2】 已知函数 f(x)=x2+2xx+3(x∈[2,+∞)). (1)求 f(x)的最小值; (2)若 f(x)>a 恒成立,求 a 的取值范围.
思路点拨:本题可先求函数f(x)的单调性,再求最小值.
误区解密 因忽略函数的定义域而出错
【例4】 求函数y=x2-2x,x∈[-1,2]的值域. 错解:y=x2-2x=(x-1)2-1,因为(x-1)2≥0, 所以y=(x-1)2-1≥-1. 从而可知,函数y=x2-2x的值域为[-1,+∞). 错因分析:这里函数的定义域有限制,即-1≤x≤2,上述解法只对二
解:(1)任取 x1,x2∈[2,+∞)且 x1<x2,f(x)=x+3x+2, 则 f(x1)-f(x2)=(x1-x2)1-x13x2.
∵x1<x2,∴x1-x2<0. ∵x1≥2,x2>2,∴x1x2>4,1-x13x2>0, ∴f(x1)-f(x2)<0,即 f(x1)<f(x2). 故 f(x)在[2,+∞)上是增函数, ∴当 x=2 时,f(x)有最小值,即 f(2)=121.
正解:y=x2-2x=(x-1)2-1,x∈[-1,2].由图象知, 当-1≤x<1时,y随x的增大而减小; 当1≤x≤2时,y随x的增大而增大. 并且当x=-1时,y取最大值3; 当x=1时,y取最小值-1. 从而知-1≤y≤3, 即函数y=x2-2x,x∈[-1,2]的值域是[-1,3]. 纠错心得:函数的定义域是函数的灵魂,求函数的值域时,首先注意
函数的单调增区间为(-1.5,3],(5,6],
单调减区间为[-4,-1.5],(3,5],(6,7].
题型二 利用单调性求函数最值 【例 2】 已知函数 f(x)=x2+2xx+3(x∈[2,+∞)). (1)求 f(x)的最小值; (2)若 f(x)>a 恒成立,求 a 的取值范围.
思路点拨:本题可先求函数f(x)的单调性,再求最小值.
误区解密 因忽略函数的定义域而出错
【例4】 求函数y=x2-2x,x∈[-1,2]的值域. 错解:y=x2-2x=(x-1)2-1,因为(x-1)2≥0, 所以y=(x-1)2-1≥-1. 从而可知,函数y=x2-2x的值域为[-1,+∞). 错因分析:这里函数的定义域有限制,即-1≤x≤2,上述解法只对二
解:(1)任取 x1,x2∈[2,+∞)且 x1<x2,f(x)=x+3x+2, 则 f(x1)-f(x2)=(x1-x2)1-x13x2.
∵x1<x2,∴x1-x2<0. ∵x1≥2,x2>2,∴x1x2>4,1-x13x2>0, ∴f(x1)-f(x2)<0,即 f(x1)<f(x2). 故 f(x)在[2,+∞)上是增函数, ∴当 x=2 时,f(x)有最小值,即 f(2)=121.
函数的单调性和最值 高中数学北师大版必修第一册
结论
增
调递减
图象
自左向右图象逐渐上升
自左向右图象逐渐下降
特征
图
示
名师点析 x1,x2的三个特征:
(1)同区间性,即x1,x2∈I;
(2)任意性,即不可用区间I上的两个特殊值代替x1,x2;
(3)有序性,即需要区分大小,通常规定x1<x2.
微练习
若函数f(x)的定义域为(0,+∞),且满足f(1)<f(2)<f(3),则函数f(x)在(0,+∞)
+1
+2
变式训练 3 判断函数 f(x)=
≠
1
2
在(-2,+∞)上的单调性.
解任取x1,x2∈(-2,+∞),且x1<x2,
1-2
+2+1-2
=a+ +2 ,
∵f(x)=
+2
1
1-2
1-2
∴f(x2)-f(x1)= + +2 − + +2 =(1-2a)·( +2 −
=[2(x1+x2)-3](x1-x2).由 x1,x2∈
3
-∞,
4
且 x1<x2,得
3 3
x1+x2< +
4 4
=
3
,x1-x2<0,
2
则 2(x1+x2)<3,即 2(x1+x2)-3<0,
所以 f(x2)>f(x1),故函数
f(x)=-2x2+3x+3
在区间
3
-∞, 4
上单调递增.
反思感悟 利用定义法证明或判断函数的单调性的步骤
增
调递减
图象
自左向右图象逐渐上升
自左向右图象逐渐下降
特征
图
示
名师点析 x1,x2的三个特征:
(1)同区间性,即x1,x2∈I;
(2)任意性,即不可用区间I上的两个特殊值代替x1,x2;
(3)有序性,即需要区分大小,通常规定x1<x2.
微练习
若函数f(x)的定义域为(0,+∞),且满足f(1)<f(2)<f(3),则函数f(x)在(0,+∞)
+1
+2
变式训练 3 判断函数 f(x)=
≠
1
2
在(-2,+∞)上的单调性.
解任取x1,x2∈(-2,+∞),且x1<x2,
1-2
+2+1-2
=a+ +2 ,
∵f(x)=
+2
1
1-2
1-2
∴f(x2)-f(x1)= + +2 − + +2 =(1-2a)·( +2 −
=[2(x1+x2)-3](x1-x2).由 x1,x2∈
3
-∞,
4
且 x1<x2,得
3 3
x1+x2< +
4 4
=
3
,x1-x2<0,
2
则 2(x1+x2)<3,即 2(x1+x2)-3<0,
所以 f(x2)>f(x1),故函数
f(x)=-2x2+3x+3
在区间
3
-∞, 4
上单调递增.
反思感悟 利用定义法证明或判断函数的单调性的步骤
高中数学第二章函数2.3函数的单调性课件北师大版必修1
第十页,共36页。
5.函数 f(x)=-x2+6x+8 在[-2,1]上的最大值是________. 【解析】 f(x)=-x2+6x+8=-(x-3)2+17, 所以函数 f(x)在[-2,1]上是增函数. 所以 f(x)的最大值为 f(1)=13. 【答案】 13
第十一页,共36页。
课堂探究 类型一 函数单调性的判定或证明 [例 1] (1)函数 y=f(x)的图像如图所示,其减区间是( )
(2)证明:对于任意的 x1,x2∈(-∞,0),且 x1<x2, 有 f(x1)-f(x2)=x121-x122 =x22x-21x22x21=x2-xx121xx222+x1. ∵x1<x2<0,∴x2-x1>0,x1+x2<0,x12x22>0. ∴f(x1)-f(x2)<0, 即 f(x1)<f(x2).
第二十一页,共36页。
方法归纳,
函数单调性应用的关注点 (1)函数单调性的定义具有“双向性”:利用函数单调性的定义可 以判断、证明函数的单调性,反过来,若已知函数的单调性,可以确 定函数中参数的范围. (2)若一个函数在区间[a,b]上是单调的,则此函数在这一单调区 间内的任意子集上也是单调的.
第二十二页,共36页。
跟踪训练 2 已知函数 f(x)=x2-2ax-3 在区间[1,2]上单调,求实 数 a 的取值范围.
第二十三页,共36页。
【解析】 函数 f(x)=x2-2ax-3 的图像开口向上,对称轴为直线 x=a,画出草图如图所示.
由图像可知函数在(-∞,a]和[a,+∞)上分别单调,因此要使函 数 f(x)在区间[1,2]上单调,只需 a≤1 或 a≥2(其中当 a≤1 时,函数 f(x) 在区间[1,2]上单调递增;当 a≥2 时,函数 f(x)在区间[1,2]上单调递减), 从而 a∈(-∞,1]∪[2,+∞).
《函数的基本性质》函数的概念与性质PPT(第2课时函数的最大值、最小值)
A.-1,0 C.-1,2 答案:C
B.0,2 D.12,2
栏目 导引
第三章 函数的概念与性质
函数 f(x)=1x在[1,+∞)上( ) A.有最大值无最小值 B.有最小值无最大值 C.有最大值也有最小值 D.无最大值也无最小值
栏目 导引
第三章 函数的概念与性质
解析:选 A.结合函数 f(x)=1x在[1,+∞)上的图象可知函数有 最大值无最小值.
栏目 导引
第三章 函数的概念与性质
图象法求最值的一般步骤
栏目 导引
ቤተ መጻሕፍቲ ባይዱ
第三章 函数的概念与性质
1.函数 f(x)在区间[-2,5]上的图象如图所示,则此函数的最 小值、最大值分别是( )
A.-2,f(2)
B.2,f(2)
C.-2,f(5)
D.2,f(5)
解析:选 C.由函数的图象知,当 x=-2 时,有最小值-2;当
x=5 时,有最大值 f(5).
栏目 导引
第三章 函数的概念与性质
x2-x(0≤x≤2),
2.已知函数 f(x)=x-2 1(x>2),
求函数 f(x)的最大值和
最小值.
解:作出 f(x)的图象如图.由图象可知,当 x=2 时,f(x)取最 大值为 2; 当 x=12时,f(x)取最小值为-14. 所以 f(x)的最大值为 2,最小值为-14.
栏目 导引
第三章 函数的概念与性质
利用函数的单调性求最值 已知函数 f(x)=xx-+12,x∈[3,5]. (1)判断函数 f(x)的单调性,并证明; (2)求函数 f(x)的最大值和最小值. 【解】 (1)f(x)是增函数.证明如下: ∀x1,x2∈[3,5]且 x1<x2, f(x1)-f(x2)=xx11+-21-xx22+-21=(x13+(2x)1-(xx22)+2),
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.利用二次函数的性质(配方法)求函数的最大(小)值
2. 利用图象求函数的最大(小)值
3.利用函数单调性的判断函数的最大(小)值
如果函数y=f(x)在区间[a,b]上单调递增,则函数 y=f(x)在x=a处有最小值f(a),在x=b处有最大值f(b) ; 如果函数y=f(x)在区间[a,b]上单调递减,在区 间[b,c]上单调递增,则函数y=f(x)在x=b处有最小 值f(b);
画出下列函数的草图,并根据图象解答下列问题:
(1) f ( x ) 2 x 3 (2)
f (x) x 2 x 1
2
1 说出y=f(x)的单调区间,以及在各单调区间上的 单调性;
2 指出图象的最高点或最低点,并说明它能体现 函数的什么特征? y y 2
-1 o o x x
解:作出函数h(t)= -4.9t2+14.7t+18的图象(如图).显然, 函数图象的顶点就是烟花上升的最高点,顶点的横坐 标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面 的高度. 由于二次函数的知识,对于 h(t)=-4.9t2+14.7t+18,我们有:
当t 14 . 7 2 ( 4 .9 ) h 1 . 5 时,函数有最大值
b
f (
b 2a
)
4ac b 4a
2
例1、“菊花”烟花是最壮观的烟花之一.制造时 一般是期望在它达到最高点时爆裂. 如果在距地 面高度h m与时间t s之间的 关系为:h(t)= -4.9t2+14.7t+18 , 那么烟花冲出后什么时候是 它的爆裂的最佳时刻?这时 距地面的高度是多少(精确 到1m)
2.二次函数f(x)=ax2+bx+c(a≠0)的最值. (1)当a>0时,f(x)在区间(- , 2ba )上单调递减,在( 2ba , + )上单调递增,所以f(x)在R上的最小值为:
f ( b 2a ) 4ac b 4a
2
(2)当a<0时,f(x)在区间(- , 2 a )上单调递增,在( 2ba , + )上单调递减,所以f(x)在R上的最大值为:
那么,称M是函数y=f(x)的最小值
注意:
1、函数最大(小)值首先应该是某一个函数值, 即存在x0∈I,使得f(x0) = M; 2、函数最大(小)值应该是所有函数值中最大 (小)的,即对于任意的x∈I,都有f(x)≤M (f(x)≥M).
常见函数的最值
1.一次函数f(x)=kx+b(k≠0)的最值 (1)当k>0时,f(x)=kx+b是R上的增函数,在区间 [a,b]上的最大值:f(x)max=f(b),最小值 :f(x)min=f(a) (2)当k<0时,f(x)=kx+b是R上的减函数,在区间 [a,b]上的最大值: f(x)max=f(a), 最小值 :f(x)min=f(b)
所以,函数 y
2
f ( x1 ) f ( x 2 )
x 1
是区间[2,6]上的减函数.
因此,函数 x 1 在区间[2,6]上的两个端 点上分别取得最大值和最小值,即在点x=2时取 最大值,最大值是2,在x=6时取最小值,最小值 为0.4 .
y
2
y
2 x 1
利用函数单调性判断函数的最大(小)值的方法
2 x1 1 2 x2 1
2 [( x 2 1) ( x 1 1)] ( x 2 1)( x 1 1) 2 ( x 2 x1 ) ( x 2 1)( x 1 1)
由于2<x1<x2<6,得x2- x1>0,(x1-1)(x2-1)>0,于是
f ( x1 ) f ( x 2 ) 0 , 即
课堂练习
1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减, 则a的取值范围是( ) D A、a≥3 B、a≤3 C、a≥-3 D、a≤-3 2、在已知函数f(x)=4x2-mx+1,在(-∞,-2]上 递减,在[-2,+∞)上递增,则f(x)在[1,2]上的 [21,39] 值域____________.
1.最大值
一般地,设函数y=f(x)的定义域为I,如果 存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的最大值
2.最小值 一般地,设函数y=f(x)的定义域为I,如果 存在实数M满足: (1)对于任意的x∈I,都有f(x)≥M; (2)存在x0∈I,使得f(x0) 8 14 . 7 4 ( 4 .9 )
29
于是,烟花冲出后1.5秒是它爆裂的最佳时刻,这 时距地面的高度为29 m.
例2.求函数 最小值.
f ( x1 ) f ( x 2 )
y
2 x 1
在区间[2,6]上的最大值和
解:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则
2. 利用图象求函数的最大(小)值
3.利用函数单调性的判断函数的最大(小)值
如果函数y=f(x)在区间[a,b]上单调递增,则函数 y=f(x)在x=a处有最小值f(a),在x=b处有最大值f(b) ; 如果函数y=f(x)在区间[a,b]上单调递减,在区 间[b,c]上单调递增,则函数y=f(x)在x=b处有最小 值f(b);
画出下列函数的草图,并根据图象解答下列问题:
(1) f ( x ) 2 x 3 (2)
f (x) x 2 x 1
2
1 说出y=f(x)的单调区间,以及在各单调区间上的 单调性;
2 指出图象的最高点或最低点,并说明它能体现 函数的什么特征? y y 2
-1 o o x x
解:作出函数h(t)= -4.9t2+14.7t+18的图象(如图).显然, 函数图象的顶点就是烟花上升的最高点,顶点的横坐 标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面 的高度. 由于二次函数的知识,对于 h(t)=-4.9t2+14.7t+18,我们有:
当t 14 . 7 2 ( 4 .9 ) h 1 . 5 时,函数有最大值
b
f (
b 2a
)
4ac b 4a
2
例1、“菊花”烟花是最壮观的烟花之一.制造时 一般是期望在它达到最高点时爆裂. 如果在距地 面高度h m与时间t s之间的 关系为:h(t)= -4.9t2+14.7t+18 , 那么烟花冲出后什么时候是 它的爆裂的最佳时刻?这时 距地面的高度是多少(精确 到1m)
2.二次函数f(x)=ax2+bx+c(a≠0)的最值. (1)当a>0时,f(x)在区间(- , 2ba )上单调递减,在( 2ba , + )上单调递增,所以f(x)在R上的最小值为:
f ( b 2a ) 4ac b 4a
2
(2)当a<0时,f(x)在区间(- , 2 a )上单调递增,在( 2ba , + )上单调递减,所以f(x)在R上的最大值为:
那么,称M是函数y=f(x)的最小值
注意:
1、函数最大(小)值首先应该是某一个函数值, 即存在x0∈I,使得f(x0) = M; 2、函数最大(小)值应该是所有函数值中最大 (小)的,即对于任意的x∈I,都有f(x)≤M (f(x)≥M).
常见函数的最值
1.一次函数f(x)=kx+b(k≠0)的最值 (1)当k>0时,f(x)=kx+b是R上的增函数,在区间 [a,b]上的最大值:f(x)max=f(b),最小值 :f(x)min=f(a) (2)当k<0时,f(x)=kx+b是R上的减函数,在区间 [a,b]上的最大值: f(x)max=f(a), 最小值 :f(x)min=f(b)
所以,函数 y
2
f ( x1 ) f ( x 2 )
x 1
是区间[2,6]上的减函数.
因此,函数 x 1 在区间[2,6]上的两个端 点上分别取得最大值和最小值,即在点x=2时取 最大值,最大值是2,在x=6时取最小值,最小值 为0.4 .
y
2
y
2 x 1
利用函数单调性判断函数的最大(小)值的方法
2 x1 1 2 x2 1
2 [( x 2 1) ( x 1 1)] ( x 2 1)( x 1 1) 2 ( x 2 x1 ) ( x 2 1)( x 1 1)
由于2<x1<x2<6,得x2- x1>0,(x1-1)(x2-1)>0,于是
f ( x1 ) f ( x 2 ) 0 , 即
课堂练习
1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减, 则a的取值范围是( ) D A、a≥3 B、a≤3 C、a≥-3 D、a≤-3 2、在已知函数f(x)=4x2-mx+1,在(-∞,-2]上 递减,在[-2,+∞)上递增,则f(x)在[1,2]上的 [21,39] 值域____________.
1.最大值
一般地,设函数y=f(x)的定义域为I,如果 存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的最大值
2.最小值 一般地,设函数y=f(x)的定义域为I,如果 存在实数M满足: (1)对于任意的x∈I,都有f(x)≥M; (2)存在x0∈I,使得f(x0) 8 14 . 7 4 ( 4 .9 )
29
于是,烟花冲出后1.5秒是它爆裂的最佳时刻,这 时距地面的高度为29 m.
例2.求函数 最小值.
f ( x1 ) f ( x 2 )
y
2 x 1
在区间[2,6]上的最大值和
解:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则