平面直角坐标系及函数

合集下载

第9讲平面直角坐标系与函数

第9讲平面直角坐标系与函数

第9讲平面直角坐标系与函数平面直角坐标系与函数是数学中的基础概念,也是建立数学模型的重要工具。

掌握了这些概念,我们就能更好地理解和描述平面上的各种数学现象,为解决实际问题提供更准确的方法和思路。

平面直角坐标系是由两条相互垂直的坐标轴(x轴和y轴)组成的。

我们可以把x轴看作水平方向的数轴,y轴看作垂直方向的数轴。

平面上的任意一个点都可以用有序数对(x,y)来表示,其中x表示点在x轴上的投影,y表示点在y轴上的投影。

这样,我们可以通过坐标轴上的刻度来确定点在平面上的位置。

函数是研究数学关系的一种工具,它可以描述一个数与另一个数之间的依赖关系。

在平面直角坐标系中,我们可以用函数来描述一条曲线上的点的位置。

具体地,函数f(x)表示自变量x与因变量y之间的关系,即y=f(x)。

在函数的图象上,每个x对应着一个唯一的y值,也就是说,平面上的每个点都只属于一个函数的图象。

函数的图象在平面上的表示方式可以有很多种:点列法、显式函数法、隐式函数法、参数方程法等。

在点列法中,我们可以通过计算一系列的点,然后将这些点用直线或曲线连接起来,得到函数的图象。

显式函数法是指通过解方程y=f(x)来得到函数的图象,也就是将y表示为x的函数。

隐式函数法是指通过解方程F(x,y)=0来得到函数的图象,也就是将x和y同时视为自变量。

参数方程法是指通过用参数表示x和y,而不是直接用x和y表示函数的图象,常用于描述曲线。

函数的性质与变化是函数研究的重点内容。

函数的定义域是指所有自变量能够使函数有意义的取值范围,值域是指因变量能够取到的值的范围。

函数的奇偶性是指函数在坐标系上的对称性,即f(x)=f(-x)为偶函数,f(x)=-f(-x)为奇函数。

函数的单调性是指函数在一些区间上的增减性,可以通过函数的导数来判断。

函数的最值是指函数在一些区间上的最大值和最小值。

函数的周期性是指函数在一些区间上具有重复性。

平面直角坐标系与函数在实际问题中的应用非常广泛。

平面直角坐标系与函数的概念

平面直角坐标系与函数的概念

专题四 函数第一节 平面直角坐标系与函数的概念一【知识梳理】1.平面直角坐标系如图所示:注意:坐标原点、x 轴、y 轴不属于任何象限。

2.点的坐标的意义:平面中,点的坐标是由一个“有序实数对”组成,如(-2,3),横坐标是-2,纵坐标是-3,横坐标表示点在平 面内的左右位置,纵坐标表示点的上下位置。

3.各个象限内和坐标轴的点的坐标的符号规律①各个象限内的点的符号规律如下表。

说明:由上表可知x 轴的点可记为(x , 0) ,y 轴上的点可记做(0 , y )。

⒋ 对称点的坐标特征:点P (y x ,)①关于x 轴对称的点P 1(y x -,);②关于y 轴对称的点P 2(y x ,-);③关于原点对称的点P 3(y x --,)。

5.坐标平面内的点和“有序实数对” (x , y)建立了___________关系。

6.第一、三象限角平分线上的点到_____轴、_____轴的距离相等,可以用直线___________表示;第二、四象限角平线线上的点到_____轴、_____轴的距离也相等,可以用直线___________表示。

7.函数基础知识(1) 函数: 如果在一个变化过程中,有两个变量x 、y ,对于x 的 ,y 都有与之对应,此时称y是x的,其中x是自变量,y 是.(2)自变量的取值范围:①使函数关系式有意义;②在实际问题的函数式中,要使实际问题有意义。

(3)常量:在某变化过程中的量。

变量:在某变化过程中的量。

(4) 函数的表示方法:①;②;③。

能力培养:从图像中获取信息的能力;用函数来描述实际问题的数学建模能力。

二【巩固练习】1. 点P(3,-4)关于y轴的对称点坐标为_______,它关于x轴的对称点坐标为_______.它关于原点的对称点坐标为_____.2.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡起觉来.乌龟一直在坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程S随时间t变化情况的是( ).3.如图,所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4.如果点M(a+b,ab)在第二象限,那么点N(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限5.图中的三角形是有规律地从里到外逐层排列的.设y为第n层(n为正整数)三角形的个数,则下列函数关系式中正确的是().A、y=4n-4B、y=4nC、y=4n+4D、y=n26.函数13xyx+=-中自变量x的取值范围是()A.x≥1-B.x≠3 C.x≥1-且x≠3 D.1x<-7.如图,方格纸上一圆经过(2,5),(-2,l),(2,-3),( 6,1)四点,则该圆的圆心的坐标为()A.(2,-1)B.(2,2)C.(2,1) D.(3,l)8.右图是韩老师早晨出门散步时,离家的距离y与时间x的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()图3相帅炮9.已知M(3a -9,1-a)在第三象限,且它的坐标都是整数,则a 等于( )A .1B .2C .3D .010.如图, △ABC 绕点C 顺时针旋转90○后得到△A ′B ′C ′, 则A 点的对应点A ′点的坐标是( )A .(-3,-2);B .(2,2);C .(3,0);D .(2,l )11.在平面直角坐标系中,点(34)P -,到x 轴的距离为( )A.3 B.3- C.4 D.4-12.线段CD 是由线段AB 平移得到的。

第9讲 平面直角坐标系与函数

第9讲 平面直角坐标系与函数
数所涉及变量的变化规律,抓住图象中的关键点(如起点、转折点或交点等),以及各线段的倾斜程
度或函数增减性的变化规律.
[变式5] (2022武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的
变化规律如图所示(图中O-A-B-C为一折线).这个容器的形状可能是(
A
B
C
D
)
A
1
(1)点的对称规律:关于横(或纵)轴对称的点,横(或纵)坐标不变,纵(或横)坐标变号;关于原点对称,
则横、纵坐标都变号.
(2)点的平移规律:左右移,纵不变,横减加;上下移,横不变,纵加减.
(3)有时需要根据点在坐标系中的位置,建立不等式(组)或方程(组),把点的坐标问题转化为不等式
(组)或方程(组)的问题解决.
D.若x-y=0,则点P(x,y)一定在第一、第三象限角平分线上
3.(2022雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,-b),则ab的值为(
A.-4
B.4
C.12
D.-12
D)
4.小明从家到学校,先匀速步行到车站,等了几分后坐上了公交车,公交车沿着公路匀速行驶一段时间
后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是(
停止.若点 P 的运动速度为 1 cm/s,设点 P 的运动时间为 t(s),AP 的长度为 y(cm),y 与 t 的函数图象
如图②所示.则当 AP 恰好平分∠BAC 时,t 的值为


2 +2
.
1.(2022常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点
2
A-D-C 向终点 C 运动,设点 Q 的运动时间为 x(s),△APQ 的面积为 y(cm ),若 y 与 x 之间的函数关系的

平面直角坐标系及函数基本概念

平面直角坐标系及函数基本概念

教师 许长征、田淑梅 年级九年 学科数学 第1课时 2012年 3月 14日课题平面直角坐标系及函数基本概念课型复习学 习 目 标1、平面直角坐标系2、点坐标对称性3、函数的概念4、自变量取值范围5函数表达方式及图像做法重点 点坐标对称性,函数的概念,自变量取值范围 难点 自变量取值范围环节导 学 设 计易错点及变式一、平面直角坐标系1、平面内有 且 的两条数轴,构成平面直角坐标系。

在平面直角坐标系内的点和 之间建立了—一对应的关系。

2、不同位置点的坐标的特征:(1)各象限内点的坐标有如下特征:点P (x, y )在 象限⇔x >0,y >0; 点P (x, y )在 象限⇔x <0,y >0;点P (x, y )在 象限⇔x <0,y <0; 点P (x, y )在 象限⇔x >0,y <0。

(2)坐标轴上的点有如下特征:点P (x, y )在 轴上⇔y 为0,x 为任意实数。

点P (x ,y )在 轴上⇔x 为0,y 为任意实数。

3.点P (x, y )坐标的几何意义:(1)点P (x, y )到 轴的距离是| y |; (2)点P (x, y )到 袖的距离是| x |;(3)点P (x, y )到 的距离是22y x +(4)在平面直角坐标系内任意两点的距离可表示为: 4.关于坐标轴、原点对称的点的坐标的特征: (1)点P (a, b )关于x 轴的对称点是 ; (2)点P (a, b )关于x 轴的对称点是 ; (3)点P (a, b )关于原点的对称点是 ;【典型考题】 1、点P (-1,2)关于y 轴对称的点的坐标是( ).A .(1,2)B .(-1,2)C .(1,-2)D .(-1,-2)2、点M (1,2)关于x 轴对称点的坐标为( ) A 、(-1,2) B 、(-1,-2) C 、(1,-2) D 、(2,-1)3、点 P (3,-4)关于原点对称的点是________。

平面直角坐标系及函数图像

平面直角坐标系及函数图像
曲面方程
曲面是三维空间中由无数个平面或曲线所围成的几何体。在 三维坐标系中,曲面的方程可以用一个三元方程来表示。例 如,球面方程为(x-a)^2+(y-b)^2+(z-c)^2=R^2,其中 (a,b,c)为球心坐标,R为球半径。
感谢您的观看
THANKS
空间点坐标
在三维坐标系中,任意一点P的位置可以用三个实数x、y、z来表示,称为点P的坐标,记 作P(x,y,z)。
空间点坐标表示方法
柱坐标
柱坐标是一种用极径、极角和垂直高度三个量来表示空间点位置的方法。在柱 坐标系中,点的位置用(r,θ,z)表示,其中r为点到Z轴的距离,θ为点与X轴正方 向的夹角,z为点到XY平面的距离。
05
拓展内容:三维坐标系简介
三维坐标系定义及性质
三维坐标系定义
三维坐标系是在平面直角坐标系的基础上,引入第三个坐标轴而形成的坐标系。通常,三 个坐标轴分别用X、Y、Z表示,它们互相垂直并相交于原点O。
右手定则
在三维坐标系中,通常采用右手定则来确定坐标轴的方向。即伸出右手,大拇指指向X轴 正方向,食指指向Y轴正方向,中指指向Z轴正方向。
利用性质判断
周期函数具有一些特殊的性质,如周期性、 对称性、可加性等,这些性质可以帮助我们 判断一个函数是否具有周期性。
04
典型问题解析与讨论
求交点坐标问题
01
02
03
解析法
联立两个函数的解析式, 解方程组求得交点的横纵 坐标。
图象法
在平面直角坐标系中分别 作出两个函数的图象,两 图象交点的坐标即为所求 。
坐标的表示方法
在平面直角坐标系中,一个点的坐标可以用数对来表示。例如,(a, b)表示一个点的横坐标为a,纵坐 标为b。当a>0且b>0时,该点位于第一象限;当a<0且b>0时,该点位于第二象限;当a<0且b<0时 ,该点位于第三象限;当a>0且b<0时,该点位于第四象限。

平面直角坐标系与函数

平面直角坐标系与函数
则 m 的取值范围在数轴上表示正确的是( A )
析 已: 知 点 (3 - m , m - 1) 在 第 二 象 限 , 所 以 方法点析 解决此类问题的一般方法是根据点在 , 3-m<0 m>3, 坐标系中的符号特征,建立不等式 (组)或者方 故 ∴m>3,故选择 A. (组)或方程 程 ( 组 ) ,把点的问题转化为不等式 m-1>0, m>1, (组)来解决.
x<0,y<0 点 P(x, y)在第三象限⇔________________ x>0,y<0 点 P(x, y)在第四象限⇔________________
(2)坐标轴上点的坐标的特征
y=0,x为任意实数 点 P(x, y)在 x 轴上⇔__________________
x=0,y为任意实数 点 P(x, y)在 y 轴上⇔__________________
考点聚焦 归类探究 回归教材
作业:

《复习指导用书》
21
[点析] 根据函数图像,结合实际生活意义,对图像 进行分析判断即可得解.
19
考点聚焦
归类探究
回归教材
平面直角坐标系与函数
中考预测:看图说故事.请你编写一个故事,使故事情 境中出现的一对变量 x,y 满足如图所示的函数关系,要求: ①指出变量 x 和 y 的含义;②利用图中的数据说明这对变量 变化过程的实际意义,其中必须涉及“速度”这个量.
3
考点聚焦
归类探究
回归教材
平面直角坐标系与函数
考点3 点到坐标轴或原点的距离
到 x 轴 点 P(a,b)到 x 轴的距离等于点 P 的 b 纵坐标的绝对值 ,即 的距离 ___________________ 到 y 轴 点 P(a,b)到 y 轴的距离等于点 P 的 横坐标的绝对值 ,即 a 的距离 ___________________ 到原点 点 P(a, b)到原点的距离 的距离

平面直角坐标系与一次函数

平面直角坐标系与一次函数

平面直角坐标系与函数知识点一、平面直角坐标系1.平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2.点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征1.各象限内点的坐标的特征(1)点P(x,y)在第一象限0,0>>⇔y x (2)点P(x,y)在第二象限0,0><⇔y x (3)点P(x,y)在第三象限0,0<<⇔y x (4)点P(x,y)在第四象限0,0<>⇔y x2.坐标轴上的点的特征(1)点P(x,y)在x 轴上0=⇔y ,x 为任意实数. (2)点P(x,y)在y 轴上0=⇔x ,y 为任意实数. (3)点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0).3.两条坐标轴夹角平分线上点的坐标的特征(1)点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等. (2)点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数.4.和坐标轴平行的直线上点的坐标的特征(1)位于平行于x 轴的直线上的各点的纵坐标相同。

(2)位于平行于y 轴的直线上的各点的横坐标相同。

5.关于x 轴、y 轴或远点对称的点的坐标的特征(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数. (2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数.(3)点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数.6.点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +知识点三、函数及其相关概念1.变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

函数,平面直角坐标系

函数,平面直角坐标系

函数,平面直角坐标系函数是一个数学概念,是一个映射关系,指实数集合内的任一元素都有且仅有一个相关联的另一元素。

在平面直角坐标系中,我们可以以函数图像的方式表示函数的性质,包括其定义域、值域、单调性、对称性、奇偶性等。

本文将对函数在平面直角坐标系中的表示及其相关性质进行介绍。

一、坐标系及函数的定义平面直角坐标系是一个由横纵坐标轴和它们的正负半轴组成的二维平面,通常用X轴和Y轴表示。

在这个坐标系中,点的位置是由它在X轴与Y轴上的坐标决定的。

函数是一个映射,它是一个从一个集合到另一个集合的规则。

在数学中,函数通常被表示为一系列的输入与输出变量,即f(x) = y,其中f是函数符号、x是输入变量,y是输出变量。

函数可以用一张图像来表示。

二、函数的基本性质函数的图像可以表示出函数的一些基本性质,如函数的定义域、值域、单调性、对称性、奇偶性等。

定义域:定义域指函数有效的输入值范围,通常用集合的形式表示。

如果定义域中的某一个值会导致函数无意义或报错,那么该值就不在定义域内。

值域:值域指函数可输出的实际值的范围。

值域由图像框定,根据函数的单调性和对称性,可以很容易确定其值域。

单调性:单调性是指在函数定义域内函数值的增减关系。

如果函数在定义域内单调递增,那么它的图像就是从左到右逐渐升高的。

如果函数在定义域内单调递减,那么它的图像就是从左到右逐渐降低的。

对称性:对称性是指函数图像关于某条线或某点的对称性。

当函数关于X轴或Y轴对称时,称函数图象关于X轴或Y轴对称。

当函数关于原点对称时,称函数图象关于原点轴对称。

奇偶性:奇偶性是指函数的性质:当任意一个输入变量的相反数被输入到函数中时,函数的输出值是否保持不变。

如果函数在其定义域内关于原点对称,则称之为奇函数。

如果函数恒等于它的相反数,即f(-x) = -f(x),则称之为偶函数。

三、常见函数的图像在平面直角坐标系中,有许多常见的函数,它们的图像则有着相应的特点。

直线函数:直线函数的图像是一条直线,其一般式为y = kx + b,其中k为斜率,b 为截距。

函数-第1讲:平面直角坐标系与函数

函数-第1讲:平面直角坐标系与函数

1、点坐标的特征:x 轴上点坐标的特征:(m,0)y 轴上点坐标的特征:(0,m )平行于x 轴的直线上点的纵坐标相同,平行y 轴的直线上的点的横坐标相同。

2、点坐标的几何意义:(1)点(a ,b )表示到x轴的距离是b ,到y 轴的距离是a (2)根据点到坐标轴的距离可以写出点坐标,但是需要考虑符号,需要分类讨论。

例:点A 到x 轴的距离是2,到y 轴的距离是3,求点A 的坐标。

答:(3,2)或(-3,2)或(-3,-2)或(3,-2)3、确认函数自变量取值范围的方法:【方法技巧】第一节 函数-平面直角坐标系与函【知识梳理】4、函数图象问题的解题技巧:①解题关键步骤:第一步:识别变量(审题):第二步:判断趋势第三步:找特殊值第四步:列解析式小贴士:以上四步没有绝对的向后顺序,若可以利用排除法求,则优先利用排除法,若实在判断不了函数图象,则可求出函数的关系式;注意出现动点时,要标出动点走过的路程和剩下的路程再去找关系,常用勾股定理和相似来求动点解析式②判别图象是曲还是直:要看变量的个数,若一个变量,则为直线;若变量是两个,则为曲线。

两个变量的增加性一样,则开口向上。

若不一样,开口向下。

③识别图象特点:若动点在直线、射线、线段、圆、圆弧上动,则函数图像为连续圆滑的图像,若在有尖点的折线上运动,则函数图像为出现明显的拐点为分段函数。

【考点突破】考点1:平面直角坐标系例1、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C. D.变式1、已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A.a<﹣1 B.a>C.﹣<a<1 D.﹣1<a<例2、已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限变式1、在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限例3、已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.变式1、画出平面直角坐标系,标出下列各点;(1)点A在y轴上,位于原点上方,距离原点2个单位长度;(2)点B在x轴上,位于原点右侧,距离原点1个单位长度;(3)点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度;(4)点D在x轴上,位于原点右侧,距离原点3个单位长度(5)点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度.依次连接这些点,你能得到什么图形?例4、已知△ABC中,点A(﹣1,2),B(﹣3,﹣2),C(3,﹣3)①在直角坐标系中,画出△ABC;②求△ABC的面积.变式1、如图,在平面直角坐标系中,O为坐标原点,点A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)(1)在坐标系中描出各点,画出△AEC,△BCD.(2)求出△AEC的面积(简要写明简答过程).变式2、已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.例5、已知,如图,点A(a,b),B(c,d)在平面直角坐标系中的任意两点,且AC⊥x轴于点C,BD⊥x轴于点D.(1)CD= ,|DB﹣AC|= ;(用含a,b,c,d的代数式表示)(2)请猜想:A,B两点之间的距离;(3)利用猜想,若A(﹣2,5),B(4,﹣4),求AB两点之间的距离.变式1、先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.考点二:函数及其图象例1、在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥变式1、函数y=中,自变量x的取值范围是()A.x>4B.x≥2C.x≥2且x≠﹣4D.x≠﹣4变式2、函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠2例2、如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.变式1、如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是()A.B.C.D.例3、如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是()A.y=2x+1B.y=x﹣2x2C.y=2x﹣x2D.y=2x变式1、如图,A的坐标是(0,4),点C是x轴上的一个动点,点B与点O在直线AC两侧,∠BAC=∠OAC,BC⊥AC,点B的坐标为(x,y),y与x的函数关系式为()A.y=8x B.y=C.y=D.y=例4、在五边形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD边的中点,点P由点A出发,按A→B→C→M的顺序运动.设点P经过的路程x为自变量,△APM的面积为y,则函数y的大致图象是()A.B.C.D.变式1、如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P 从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.例5、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.变式1、如图,BC是⊙O直径,A是圆周上一点,把△ABC绕点C顺时针旋转得△EDC,连结BD,当BD∥AC时,记旋转角为x度,若∠ABC=y度,则y与x之间满足的函数关系式为()A.y=180﹣2x B.y=x+90C.y=2x D.y=x例6、如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为()A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O变式1、一个观察员要到如图1所示的A,B,C,D四个观测点进行观测,行进路线由在同一平面上的AB,BC,CD,DA,AC,BD组成.为记录观察员的行进路线,在AB的中点M处放置了一台定位仪器,设观察员行进的路程为x,观察员与定位仪器之间的距离为y,若观察员匀速行进,且表示y与x的函数关系的图象大致如图2所示,则观察员的行进路线可能为()A.A→D→C→B B.A→B→C→D C.A→C→B→D D.A→C→D→B例7、如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DE变式1、如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H 是AC边上一点,且∠AGH=30°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH例8、小阳在如图①所示的扇形舞台上沿O﹣M﹣N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的()A.点Q B.点P C.点M D.点N变式1、如图1,△ABC是一块等边三角形场地,点D,E分别是AC,BC边上靠近C点的三等分点.现有一个机器人(点P)从A点出发沿AB边运动,观察员选择了一个固定的位置记录机器人的运动情况.设AP=x,观察员与机器人之间的距离为y,若表示y与x的函数关系的图象大致如图2所示,则观察员所处的位置可能是图1的()A.点B B.点C C.点D D.点E例9、如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度d与时间t的函数关系的图象可能是()A.①B.③C.①或③D.②或④变式1、如图甲,A、B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,那么如图乙图象中可能表示y 与x 的函数关系的是( )A .①B .④C .①或③D .②或④<A 组>1.已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.函数y=中,自变量x 的取值范围是( )A .x >4B .x≥2C .x≥2且x≠﹣4D .x≠﹣43.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min 后回家,图中的折线段OA ﹣AB ﹣BC 是她出发后所在位置离家的距离s (km )与行走时间t (min )之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A .B .C .D .4.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟【分层训练】返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.5.小颍今天发烧了.早晨她烧得很厉害,吃药后她感觉好多了,中午时小颖的体温基本正常,但是下午她的体温又开始上升,直到夜里小颖才感觉没那么发烫.下面四幅图能较好地刻画出小颖今天体温的变化情况的是()A.B.C.D.6.已知点A(m,﹣2),点B(3,m﹣1),且直线AB∥x轴,则m的值为()A.﹣1B.1C.﹣3D.37.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)8.如图,直线m∥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O49.如图,在下列正方形网格中,标注了射阳县城四个大型超市的大致位置(小方格的边长为1个单位).若用(0,﹣2)表示苏果超市的位置,用(4,1)表示文峰超市的位置,则大润发超市的位置可表示为.10.如图,是象棋盘的一部分,若“帅”位于点(2,﹣1)上,“相”位于点(4,﹣1)上,则“炮”所在的点的坐标是.<B组>1、如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(0,21008)B.(21008,21008)C.(21009,0)D.(21009,﹣21009)2、观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角3.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.4.在平面直角坐标系中,已知点A(﹣3,0),B(3,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标.5、如图∥,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt∥ABC或Rt∥DEF的斜边长.下面:以求DE为例来说明如何解决:从坐标系中发现:D(﹣7,5),E(4,﹣3).所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:DE==.下面请你参与:(1)在图∥中:AC=,BC=,AB=.(2)在图∥中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示AC=,BC=,AB=.(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A(2,1),B(4,3),C为坐标轴上的点,且使得∥ABC是以AB为底边的等腰三角形.请求出C点的坐标.6、如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t秒,∥APQ的面积为S,则表示S与t之间的函数关系的图象大致是()A.B.C.D.7、如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),∥OEF 的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.参考答案【考点突破】考点1:平面直角坐标系例1、解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即﹣2m+3<0,解得m>.故选B.变式1、解:∵点P(a+1,2a﹣3)在第一象限,∴,解得:a,故选:B.例2、解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.变式1、解:∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴点B(a,b)所在的象限是第四象限.故选D.例3、解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).变式1、解:(1)∵点A在y轴上,位于原点上方,距离原点2个单位长度,∴点A的坐标为(0,2);(2)∵点B在x轴上,位于原点右侧,距离原点1个单位长度,∴点B的坐标为(1,0);(3)∵点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度,∴点C的坐标为(2,2);(4)∵点D在x轴上,位于原点右侧,距离原点3个单位长度,∴点D的坐标为(3,0);(5)∵点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度,∴点E的坐标为(4,2).将A、B、C、D、E标在同一坐标系中,依次连接这些点,如图所示,得到的图形为W形.例4、解:(1)△ABC如图所示;(2)△ABC的面积=6×5﹣×2×4﹣×1×6﹣×5×4,=30﹣4﹣3﹣10,=30﹣17,=13.变式1、解:(1)如图所示:(2)△AEC取EC为底,则EC为6,EC边上高AC=4所以S△AEC=×6×4=12.变式2、解:(1)S△ABC=3×4﹣×2×3﹣×2×4﹣×1×2=4;(2)如图所示:P1(﹣6,0)、P2(10,0)、P3(0,5)、P4(0,﹣3).例5、解:(1)CD=|c﹣a|,|DB﹣AC|=|b﹣d|;(2)AB=;(3)AB==3.故答案为|c﹣a|,|b﹣d|;.变式1、解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.考点二、函数及其图象例1、解:在函数y=中,自变量x的取值范围是x≤,故选:B.变式1、解:由题意得,解得x≥2,x≠﹣4,∥自变量x的取值范围是x≥2,故选B.变式2、解:∥函数表达式y=的分母中含有自变量x,∥自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.例2、快速解法:由题意可得P经过两个线段,BA,AC,当P在BA上运动时,BD是变化的(增大),PD也是变化的(增大),所以面积是曲线,不是直线,排除A、D当P在AC上运动时,BD是变化的(增大),PD也是变化的(减少),所以面积是曲线,且是下降的。

平面直角坐标系与函数

平面直角坐标系与函数

定义
用表格来表示函数关系的方法叫做列表法 用图象来表示函数关系的方法叫做图象法
关系式法
用关系式来表示函数关系的方法叫做关系 式法
知识点
4 函数自变量和函数值
1、函数自变量取值范围:
①函数解析式有意义 ②有实际意义 2、函数值:相应的自变量x取某一值时,相应的y的取值就是函数值
焦点5,,6
达州中考5
m=4,n≠-3 (9,4-m) , 3、点M(1,4-m)关于过点(5,0)且垂直于x轴的直线对称的点的坐标是____________ 若M关于过点(0,-3)且平行于x轴的直线对称的点的坐标为(1,7),则m=________ . 17
4、有关坐标的规律探究 焦点3自己看,课堂小练10
知识点
3 函数及相关概念
知识点
2 平面直角坐标系内点
y P1(x1,y1) Q(x2,y1)
o 横坐标差的绝对值
x
1)
x1 x2 y1 y2 C 2 , 2
o x B(x2,y2)
达州中考2 课堂小练1,2,3
1.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是( A.第一象限或第三象限 B.第二象限或第四象限 C.第一象限或第二象限 D.无法确定 2、已知A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的取值范围. B )
课堂小练7
知识点
5 函数图像
1、画函数图像的步骤
焦点7,焦点8,课堂小练5,6,达州中考6
y Q(x2,y1) 纵坐标差的绝对值
o
x
P2(x2,y2)
知识点
2 平面直角坐标系内点
y P2(x2,y2)
o p1(x1,y1)

平面直角坐标系与函数图像

平面直角坐标系与函数图像

平面直角坐标系与函数图像在数学中,平面直角坐标系是一种常用的图像表示方法,用于描述数学中的函数图像。

平面直角坐标系由横轴和纵轴组成,以一个点作为原点,可以表示二维平面上的任意点。

一、平面直角坐标系的构成平面直角坐标系由两条相互垂直的直线组成,通常称为x轴和y轴。

x轴水平放置,代表横轴,y轴竖直放置,代表纵轴。

这两条直线的交点被定义为原点O,即坐标(0,0)。

二、坐标的表示方法在平面直角坐标系中,每个点都可以通过一个有序数对表示,这个有序数对通常写成(x, y),x代表该点在横轴上的位置,y代表该点在纵轴上的位置。

例如,点A的坐标为(2, 3),表示该点在横轴上位置为2,纵轴上位置为3。

三、函数图像在平面直角坐标系中的表示函数图像是平面直角坐标系中的一种重要应用。

我们可以通过函数的定义域和值域来绘制函数图像。

以一元函数为例,假设给定函数f(x),x为定义域上的变量,y为函数的值域。

我们可以通过给不同的x值计算对应的y值,将这些点在平面直角坐标系上连线得到函数的图像。

四、函数图像的性质函数图像在平面直角坐标系中呈现出不同的特征和性质。

我们可以通过观察图像找到函数的最大值、最小值、零点、增减性、凹凸性等关键信息来研究函数的性质。

平面直角坐标系为我们提供了一个直观的展示方式,有助于我们更好地理解和分析函数。

五、利用平面直角坐标系解决实际问题平面直角坐标系不仅在数学理论中有重要应用,在实际问题中也发挥着重要作用。

例如,在物理学中,我们可以通过绘制运动曲线来描述物体在平面上的运动轨迹;在经济学中,我们可以通过绘制需求曲线和供给曲线来研究市场的供求关系。

六、小结平面直角坐标系是一种重要的图像表示方法,用于描述数学中的函数图像。

它由x轴和y轴组成,通过坐标的有序数对来表示点的位置。

函数图像在平面直角坐标系中可以展现出不同的性质和特征,有助于我们研究函数的性质和解决实际问题。

通过学习和理解平面直角坐标系,我们能更好地掌握数学知识,并应用于实际生活中。

平面直角坐标系与函数及图像

平面直角坐标系与函数及图像

第三模块函数3.1平面直角坐标系与函数及图像考点一、平面直角坐标系内点的坐标1.有序数对(1)平面内的点可以用一对有序实数来表示.例如点A在平面内可表示为A(a,b),其中a表示点A的横坐标,b表示点A的纵坐标.(2)平面内的点和有序实数对是一一对应的关系,即平面内的任何一个点可以用一对有序实数来表示;反过来每一对有序实数都表示平面内的一个点.(3)有序实数对表示这一对实数是有顺序的,即(1,2)和(2,1)表示两个不同的点.2.平面内点的坐标规律(1)各象限内点的坐标的特征点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上的点的坐标的特征点P(x,y)在x轴上⇔y=0,x为任意实数;点P(x,y)在y轴上⇔x=0,y为任意实数;点P(x,y)在坐标原点⇔x=0,y=0.【例1】在平面直角坐标系中,点P(m,m-2)在第一象限,则m的取值范围是________.解析:由第一象限内点的坐标的特点可得:m>0,m-2>0,解得m>2.方法点拨:此类问题的一般方法是根据点在坐标系中的符号特征,建立不等式组或者方程(组),把点的问题转化为不等式组或方程(组)来解决.考点二、平面直角坐标系内特殊点的坐标特征1.平行于坐标轴的直线上的点的坐标特征(1)平行于x 轴(或垂直于y 轴)的直线上点的纵坐标相同,横坐标为不相等的实数.(2)平行于y 轴(或垂直于x 轴)的直线上点的横坐标相同,纵坐标为不相等的实数.2.平面直角坐标系各象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点,横、纵坐标相等.(2)第二、四象限角平分线上的点,横、纵坐标互为相反数.3.平面直角坐标系对称点的坐标特征点P (x ,y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称点P 2的坐标为(-x ,y );关于原点的对称点P 3的坐标为(-x ,-y ). 以上特征可归纳为:(1)关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.(2)关于y 轴对称的两点,横坐标互为相反数,纵坐标相同.(3)关于原点对称的两点,横、纵坐标均互为相反数.【例2】已知点M(1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是 ( )解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m ,1-m ).∵M (1-2m ,m -1)关于x 轴的对称点在第一象限, ∴⎩⎨⎧1-2m >0,1-m >0,解得⎩⎨⎧m <12,m <1.考点三、确定物体位置的方位1.平面内点的位置用一对有序实数来确定.2.方法 (1)平面直角坐标法(2)方向角和距离定位法用方向角和距离确定物体位置,方向角是表示方向的角,距离是物体与观测点的距离.用方向角和距离定位法确定平面内点的位置时,要注意中心点的位置,中心点变化了,则方向角与距离也随之变化.考点四、点到坐标轴的距离考点五、平面直角坐标系中的平移与对称点的坐标-4,-1),C(2,0),将△ABC 平移至△A1B1C1的位置,点A、B、C的对应点分别是A1、B1、C1,若点A1的坐标为(3,1),则点C1的坐标为________.解析:由A(-2,3)平移后点A1的坐标为(3,1),可知A点横坐标加5,纵坐标减2,则点C的坐标变化与A点的坐标变化相同,故C1(2+5,0-2),即(7,-2).方法点拨:求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质;二是利用图形的全等关系;三是确定变换前后点所在的象限.考点六、函数及其图象1.函数的概念(1)在一个变化过程中,我们称数值发生变化的量为变量,有些数值是始终不变的,称它们为常量.(2)函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x在其取值范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说,x是自变量,y是x的函数.函数值:对于一个函数,如果当自变量x =a 时,因变量y =b ,那么b 叫做自变量的值为a 时的函数值注:函数不是数,它是指某一变化过程中的两个变量之间的关系(3)用来表示函数关系的数学式子,叫做函数解析式或函数关系式.2.函数的表示法及自变量的取值范围(1)函数有三种表示方法:解析法,列表法,图象法,这三种方法有时可以互相转化.(表示函数时,要根据具体情况选择适当的方法,有时为了全面认识问题,可同时使用几种方法)(2)当函数解析式表示实际问题或几何问题时,其自变量的取值范围必须符合实际意义或几何意义.3.函数的图象:对于一个函数,把自变量x 和函数y 的每对对应值分别作为点的横坐标与纵坐标在平面内描出相应的点,组成这些点的图形叫这个函数的图象.(1)画函数图象,一般按下列步骤进行:列表、描点、连线.(2)图象上任一点的坐标是解析式方程的一个解;反之以解析式方程的任意一个解为坐标的点一定在函数图象上.温馨提示:画图象时要注意自变量的取值范围,当图象有端点时,要注意端点是否有等号,有等号时画实心点,无等号时画空心圆圈.【例4】函数y =1x +x 的图象在( ) A .第一象限 B .第一、三象限C .第二象限D .第二、四象限解析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.⎩⎨⎧2x<3(x -3)+1,①3x +24>x +a.② 由①得x >8,由②得x <2-4a ,其解集为8<x <2-4a.因不等式组有四个整数解,为9,10,11,12,则⎩⎨⎧2-4a>12,2-4a≤13,解得-114≤a<-52. 故选B.【例5】[2013·苏州] 在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直到铁块完全露出水面一定高度.下图能反映弹簧秤的度数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是 ( )解析:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选C.方法点拨:观察图象时,首先弄清横轴和纵轴所表示的意义,弄清哪个是自变量,哪个是因变量;然后分析图象的变化趋势,结合实际问题的意义进行判断.考点七、自变量取值范围的确定方法求函数自变量的取值范围时,首先要考虑自变量的取值必须使解析式有意义.1.自变量以整式形式出现,它的取值范围是全体实数.2.自变量以分式形式出现,它的取值范围是使分母不为零的实数.3.当自变量以偶次方根形式出现,它的取值范围是使被开方数为非负数;以奇次方根出现时,它的取值范围为全体实数.4.当自变量出现在零次幂或负整数幂的底数中,它的取值范围是使底数不为零的数5.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.【例6】(1)(2010·遵义)函数y =1x -2的自变量x 的取值范围是________. (2)(2010·济宁)在函数y =x +4中,自变量x 的取值范围是________.(3)(2010·黄冈)函数y =x -3x +1的自变量x 的取值范围是________. (4)(2010·玉溪)函数y =x x +1中自变量x 的取值范围是________. 【解答】(1)由x -2≠0得x≠2.(2)由x +4≥0,得x≥-4.(3)由⎩⎨⎧ x -3≥0,x +1≠0,得x≥3. (4)由x +1>0,得x >-1.。

中考一轮复习--第9讲 平面直角坐标系与函数的概念

中考一轮复习--第9讲 平面直角坐标系与函数的概念
是( A )
A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)
解析:∵将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长
度,得到点B,
∴点B的横坐标为1-2=-1,纵坐标为-2+3=1,∴B的坐标为(-1,1).故
选A.
考法1
考法2
பைடு நூலகம்
考法3
对应练3(2019·安徽庐江期末)如图为正方形网格中的一片树叶,
点O是这两条数轴的原点,这样建立的两条数轴构成平面直角坐标
系.
考点梳理
自主测试
3.平面直角坐标系中点的坐标
各象限点
坐标的符
号特征
坐标轴上
点的坐标
特征
象限角平
分线上点
的坐标特

x 轴上的点的纵坐标为 0 ,y 轴上的点的横坐标为
0,原点的坐标为(0,0)
第一、三象限角平分线上点的横、纵坐标相等;第
二、四象限角平分线上点的横、纵坐标互为相反
答案:D
解析:∵点A(-3,0),点P(a,b),点B(m,n)为弦PA的中点,
-3+
0+
∴m= 2 ,n= 2 .
∴a=2m+3,b=2n.
又a,b满足等式:a2+b2=9,
∴(2m+3)2+4n2=9.故选D.
考法1
考法2
考法3
对应练1(2018·四川攀枝花)若点A(a+1,b-2)在第二象限,则点B(a,1-b)在( D )
间的距离为|y2-y| .
考点梳理
自主测试
5.坐标系中的距离公式
(1)点P(a,b)到x轴的距离是|b|
(2)点P(a,b)到y轴的距离是|a|

第11讲 平面直角坐标系与函数

第11讲 平面直角坐标系与函数

一象限内,则m的取值范围是______.
【解析】因为第一象限内的点横坐标为正,纵坐标为正,所以
m 0, m 2 0,
解得
m 0, 所以m>2. m 2,
答案:m>2
求函数自变量的取值范围
◆中考指数:★★★★☆ 函数自变量取值范围的五种情形: 1.若函数解析式是整式,其取值范围是全体实数. 2.若函数解析式是分式,其取值范围应使分母不等于零. 3.若函数解析式是偶次根式,其取值范围应使被开方数为 非负数. 4.若函数解析式为零指数和负整数指数,其取值范围应使 底数不等于0. 5.与实际问题有关的函数解析式,其自变量的取值范围除 了满足上述条件外,还应使实际问题有意义.
平路、上坡、下坡的时间分别为8分钟、10分钟、2分钟,所以
总共需要20分钟.
【对点训练】 6.(2012·益阳中考)在一个标准大气压下,能反映水在均匀 加热过程中,水的温度(T)随加热时间(t)变化的函数图象大 致是( )
【解析】选B.选项A:由图象中发现,水温达到100 ℃时温度
保持了一段时间后又在上升,错误;选项C:由图象中发现,水
【例】(2011·长沙中考)如图,在平面直角坐标系中,
点P(-1,2)向右平移3个单位长度后的坐标是(
(A)(2,2) (C)(-1,5) (B)(-4,2) (D)(-1,-1)
)
【解题导引】根据“右加左减,上加下减”确定点P平移后的
坐标.
【规范解答】选A.借助网格,可以看出在平面直角坐标系中点
3 2 (D) x 3 2
(A)x> 3
2 (C)x 3 2
(B) x
【解析】选D.∵2x-3≥0,解得 x
3 . 2

第1部分 第3章 第1节 平面直角坐标系与函数

第1部分 第3章 第1节 平面直角坐标系与函数

2.(2019·日照)如图,在单位为 1 的方格纸上,△A1A2A3,△A3A4A5,
△A5A6A7,…,都是斜边在 x 轴上,斜边长分别为 2,4,6,…的等腰直角
三角形,若△A1A2A3 的顶点坐标分别为 A规律,A2019 的坐标为( A )
函数(2018.10,2016.9,2014.9,2012.9) 1.函数及相关概念 (1)变量与常数:在一个变化过程中,可以变化的量,是变量;保持不 变的量,是常量. (2)函数:一般地,在一个变化过程中,如果有两个变量 x,y,且对于 x 在它允许取值范围内的每一个值,y 都有⑯ 唯一确定 的值与它对应,那么 就说 x 是自变量,y 是 x 的函数. (3)函数值:对于一个函数,取自变量 x 在允许范围内的一个确定值, 代入函数表达式求得的函数 y 的值,就叫做函数值.
【解析】由题意知,A1(21, 23),A2(1,0),A3(32, 23), A4(2,0),A5(25,- 23),A6(3,0),A7(72, 23),…综上可知,每个点的 横坐标为序号的一半,纵坐标每 6 个点依次为 23,0, 23,0,- 23,0 这 样循环,∴A2019(20219, 23).
【解析】∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x 表示漏水时间,y 表示壶底到水面的高度,∴y 随 x 的增大而减小,符合一 次函数图象.
点的坐标特征(冷考) 1.(2013 安徽,18(2),4 分)我们把正六边形的顶点及其对称中心称作 如图(1)所示基本图的特征点,显然这样的基本图共有 7 个特征点,将此基 本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2), 图(3),….
如图所示,三架飞机 P,Q,R 保持编队飞行,某时刻在坐标 系中的坐标分别为(-1,1),(-3,1),(-1,-1).30 秒后,飞机 P 飞到 P′(4, 3)位置,则飞机 Q,R 的位置 Q′,R′分别为( A )

平面直角坐标系与函数

平面直角坐标系与函数

六边形,所以 OC=OA=1,∠COD=60°,所以 OM=12,CM= 23,因为点 C
在第四象限内,所以点 C 的坐标为
1 2
,-
3 2
.
答案:
1 2
,-
3 2
命题点2 平面直角坐标系内点的坐标特征
【例2】 已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则a的
取值范围是( )
A.a>-1 C.-1<a<12
P(x,y)
向上
平移
b个
向右平移a个单位
单位
P1(x+a,y)
点到坐标 轴及原点 的距离
点P(a,b)到x轴的距离为 b
点P(a,b)到y轴的距离为⑨ a 点P(a,b)到原点的距离为⑩ a2 b2
常量和变量:在某一变化过程中,保持不变的 量叫做常量,可以变化的量叫做变量
相 关 函数:在某一变化过程中,有两个变量x与y, 概 念 如果对于x在某一范围内的每一个确定的值,
解:解法一:∵-1≤x<3,∴2≥-2x>-6,∴2+4≥-2x+4>-6
+4,即6≥-2x+4>-2.∵y=-2x+4,∴6≥y>-2,即-2<y≤6 解
法二:∵y=-2x+4,∴x=
4-y 2
.∵-1≤x<3,∴-1≤
4-y 2
<3,∴-
2≤4-y<6,∴-2-4≤-y<6-4,-6≤-y<2,∴-2<y≤6
[对应训练]
1 在函数 y= x2-5中,自变量 x 的取值范围是( A ) A.x>5 B.x≥5 C.x≠5 D.x<5
2 在 函 数 y = x+4 + x - 2 中 , 自 变 量 x 的 取 值 范 围 是 _______x_≥_-__4_且__x_≠_0_________.

平面直角坐标系与函数像的关系

平面直角坐标系与函数像的关系

平面直角坐标系与函数像的关系直角坐标系是数学中常用的一种坐标系,我们可以利用它来描述平面上的各种几何图形和数学函数。

在这种坐标系中,平面被划分为四个象限,每个象限由两个互相垂直的轴,即x轴和y轴所确定。

x轴和y轴的交点称为原点,它的坐标为(0, 0)。

在直角坐标系中,我们可以通过给定的x坐标和y坐标,来确定平面上的一个点。

这个点的坐标表示为(x, y),其中x表示点在x轴上的位置,y表示点在y轴上的位置。

通过这种表示方式,我们可以利用直角坐标系方便地进行平面几何运算和函数分析。

函数是数学中一个非常重要的概念,它描述了两个数集之间的一种关系。

在直角坐标系中,我们可以将函数表示为一条曲线,这条曲线上的每个点都满足函数的定义。

函数的自变量通常表示为x,因变量表示为y,即y = f(x)。

在直角坐标系中,这个函数图像可以看作是平面上的一个图形。

函数的图像在直角坐标系中呈现出各种不同的形状,如直线、曲线、抛物线等。

通过观察这些图像,我们可以得到函数的性质和行为。

例如,当函数图像是一条直线时,函数呈现线性关系,即y与x成正比或反比。

而当函数图像是一条曲线时,函数可能表现出增长或衰减的趋势,或者存在极值点和拐点等。

函数图像在直角坐标系中的属性还包括对称性和周期性。

对称性是指函数图像在某个中心对称轴上呈现对称的特点,例如关于x轴对称、y轴对称或者原点对称。

周期性是指函数图像呈现出一定规律的重复性,即函数在某个区间内的数值与另一个区间内的数值相同。

直角坐标系也为我们提供了一种便利的方式来研究函数的变化趋势和数值特征。

通过观察函数图像在直角坐标系中的行为,我们可以判断函数的增减性、最值、零点以及一些其他的特征。

这些特征对于我们理解函数的性质和应用具有重要意义。

在数学和物理等领域,直角坐标系与函数的关系具有广泛的应用。

例如,我们可以利用直角坐标系来分析物体的运动轨迹、计算物体的速度和加速度,从而更好地理解运动规律。

此外,直角坐标系也为计算机图形学等领域提供了重要的基础,使得我们可以实现平面上的各种图形显示和处理。

第1部分 第10讲 平面直角坐标系与函数

第1部分 第10讲 平面直角坐标系与函数

孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。
谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
(1)第一、三象限的角平分线上的点的横坐标与纵
象限角平分线上 坐标⑧___相__等_____;
的点的坐标特征 (2)第二、四象限的角平分线上的点的横坐标与纵
坐标⑨__互__为__相__反__数______
平行于坐标轴的
直线上点的坐标 特征
(1)平行于 x 轴的直线上的点的⑩__纵___坐标相等; (2)平行于 y 轴的直线上的点的⑪_横_____坐标相等
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
第 14 页
②如答图 2,当点 D 在边 PN 上时, ∵∠N=45°,CD=2, ∴CN=CD=2, ∴CM=6-2=4,即此时 x=4. 当 2<x≤4 时,如答图 3,矩形 ABCD 与△PMN 重叠部分是四边形 EMCD,过 点 E 作 EF⊥MN 于点 F, ∴EF=MF=2,∴ED=CF=x-2, ∴y=S 梯形 EMCD=12CD·(DE+CM) =12×2×(x-2+x)=2x-2;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 函 数
第一节 平面直角坐标系及函数
一、考情分析:
本节知识在学业水平测试中占有重要地位,测试要求总体难度较低,但也有难度较高的题目考察,本节知识重点考察自变量的取值范围,多以填空题、选择题的考察形式出现。

2012-2019年云南省的学业水平测试对知识点的考察中,省卷考察6-13分,昆明卷考察3分,曲靖卷考察3分,属常考点。

二、考点分析:
命题点1:坐标系中点的坐标特征
命题点2:函数自变量的取值范围
三、考点梳理:
1、各象限点的坐标特征:第一象限: ;第二象限: ; 第三象限: ;第四象限: 。

2、坐标轴上点的坐标特征:点在x 轴上则 ;在y 轴上则 ;
3、坐标系中点的对称:
点关于x 轴对称: ;点关于y 轴对称: ; 点关于坐标原点对称: ;
4、点到坐标轴及原点的距离:点P (a,b )到x 轴的距离为 ;到y 轴的距离为 ; 到坐标原点的距离为 。

四、精讲点拨:
例1:在平面直角坐标系中,将点P (-2,1)向右平移3个单位长度,在向上平移4个单位长度长度得到点P 1的坐标为 。

例2:在平面直角坐标系中,点P 在第四象限,且点P 到x 轴的距离为2,到y 轴的距离为5,则点P 关于直线x=2的对称点为 。

例3:已知点M 到x 轴的距离为3,到y 轴的距离为4。

(1)若M 位于第一象限,则其坐标为 ;
(2)若M 位于x 轴的上方,则其坐标为 ;
(3)若M 位于y 轴的右侧,则其坐标为 ;
例4:函数3
-1-x x y =的自变量x 的取值范围是 。

五、课堂检测:
1、函数y=x+3中自变量x的取值范围是________.
2、在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是________.
3、在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是( )
A. (3,-5)
B. (-3,5)
C. (3,5)
D. (-3,-5)
4、在平面直角坐标系中,若点P(m-2,m+1)在第二象限,则m的取值范围是( )
A. m <-1
B. m > 2
C. -1< m < 2
D. m >-1
5、若点A(1+m,1-n) 与点B(-3,2)关于y轴对称,则m+n的值是( )
A. -5
B. -3
C. 3
D. 1
6、在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是( )
A. (3,-4)
B. (4,-3)
C. (-4,3)
D. (-3,4)
7、已知点A(m2-2,5m+4)在第一象限角平分线上,则m的值为( )
A. 6
B. -1
C. 2或3
D. -1或6
六、拓展延伸:
1、函数y=
1
2x-1
中自变量x的取值范围是________.
2、函数y=2x+1
x-3
中自变量x的取值范围是________.
3、“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终赢得比赛,下列函数图象可以体现这一故事过程的是( )
4、如图,点P是菱形ABCD边上的一动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )。

相关文档
最新文档