光子晶体及其器件的研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳大学研究生课程论文

题目光子晶体及其器件的研究进展成绩

专业

课程名称、代码

年级姓名

学号时间2016 年12 月任课教师

子晶体及其器件的研究进展

摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由

于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。

关键词:光子晶体;光子晶体的应用;发展趋势

Research progress of photonic crystals and devices

Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected.

Key words:Photonic crystal; application of photonic crystal; development trend

1引言

在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。

目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得无

法想象。用光子晶体做成的光子集成芯片,可以像集成电路对电子的控制一样对光子进行控制,从而实现全光信息处理,在全光通信网、光量子信息、光子计算机等诸多研究领域有着诱人的应用前景。工作于可见光波段的光子晶体器件典型尺寸通常为微米、亚微米量级,却可实现导光、分光、滤光以及波分复用等很多功能,非常有利于光路集成。目前,电路芯片集成度已经逐渐受到“电子瓶颈”效应的限制,这是因为电子带电荷,相互之间存在库仑作用,互相干扰,产生热效应,因此集成度过高时将严重影响传输速度,而光子呈电中性,并具有高于电子好几个数量级的传播速度,不仅可以大幅提高集成度,还可以大幅提高信息传递速率。光子晶体器件还有一个突出优点:损耗极低且基本可以实现无损传输,这意味着可以节约大量的光中继放大设备,极大的降低建设成本,同时很多相应的通信技术难题如:光放大后的信号畸变问题、光传输中的电子瓶颈问题等也迎刃而解。光子晶体器件的研究已经引起国内外众多知名科研机构和公司的广泛重视,形成了包括材料学、物理学、化学、微细加工、电子工程、微电子等多学科交叉的研究热点[2]。

光子晶体的研究已经开展了多年, 纵观其发展历程, 研究领域主要集中在[3]:①完全禁带光子晶体结构的理论设计和计算;②光子晶体的制备;③光子晶体带隙所产生的物理效应和光波在光子晶体中的传播规律;④光子晶体中的非线性效应;

⑤利用光子晶体制备光子器件展开对光子晶体应用领域的探索。这5 个领域的发展相辅相成、互相促进, 而其中三维光子晶体能产生全方向的完全禁带, 相比一维、二维光子晶体仅能产生方向禁带, 具有更普遍的实用性, 因此占据了光子晶体研究中很大的份额。

2 光子晶体

2.1光子晶体的定义

光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。依据不同的分类标准,可以将光子晶体分为不同的种类:按电磁波的波长不同,可分为微波光子晶体、红外波光子晶体、可见光子晶体等;按材料种类不同,可分为金属光子晶体、半导体光子晶体、氧化物光子晶体和聚合物光子晶体等;按用途不同,又可分为光子晶体微腔、光子晶体波导、光子晶体光纤和光子晶体激光器等;按折射率周期性变化的空间维度不同,则可分为一维(1D)光子晶体、二维(2D)和三维(3D)光子晶体,如图1所示。

相关文档
最新文档