数据挖掘期末大作业知识分享
数据挖掘知识点期末总结
数据挖掘知识点期末总结数据挖掘是一门涉及数据分析、机器学习、统计学和数据库技术的跨学科领域。
它利用各种算法和技术,从大规模数据集中提取模式和知识,以帮助人们做出更好的决策。
在信息时代,数据成为了我们生活和工作中的重要资源,而数据挖掘技术的发展,使得我们能够更好地利用这些数据。
在本文中,我们将回顾数据挖掘的基本概念、技术和应用,并对其未来发展进行展望。
一、数据挖掘的基本概念1. 数据挖掘的定义数据挖掘是指通过建立模型、使用算法,自动地发现数据中的模式、规律和知识的过程。
数据挖掘的目的是从大规模数据中提取有用的信息,以帮助人们做出决策、发现隐藏的信息和规律。
2. 数据挖掘的过程数据挖掘的过程通常包括数据清洗、特征选择、模型构建、模型评估和模型应用等步骤。
数据清洗主要是清理数据中的异常值和缺失值,特征选择是从大量特征中选择出最重要的特征,模型构建是利用算法建立模型,模型评估是评估模型的表现,模型应用是将模型应用到实际情况中进行预测。
二、数据挖掘的技术1. 分类算法分类算法是数据挖掘中常用的一种算法,它通过对训练数据进行学习,构建一个分类模型,用来预测数据的类别。
常见的分类算法包括决策树、支持向量机、朴素贝叶斯和神经网络等。
2. 聚类算法聚类算法是将数据集中的对象分成多个组,使得组内的对象之间相似度较高,组间的相似度较低。
聚类算法可以用来发现数据中的潜在结构,帮助我们理解数据的内在特点。
常见的聚类算法包括K均值、层次聚类和DBSCAN等。
3. 关联规则挖掘关联规则挖掘是用来发现数据中项之间的相关性和规律的技术。
通过关联规则挖掘,我们可以找到数据中多个项之间的潜在关系,从而帮助企业做出更好的决策。
常见的关联规则挖掘算法包括Apriori和FP-growth等。
4. 时间序列分析时间序列分析是一种用来处理时间序列数据的技术,它可以识别出数据中的趋势、周期和季节性,并用来预测未来的值。
时间序列分析在金融、气象和交通等领域有着广泛的应用。
数据挖掘考试复习资料
数据挖掘考试复习资料一、名词解释1、数据仓库:面向主题的、集成的、非易失的、是随时间变化的数据集合,用来支持管理决策.2、聚类:将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类3、数据挖掘:从大量的数据中挖掘那些令人感兴趣的、有用的、隐含的、先前未知的和可能有用的模式或知识4、人工神经网络:人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。
在工程与学术界也常直接简称为神经网络或类神经网络.5、文本挖掘:文本数据挖掘(Text Mining)是指从文本数据中抽取有价值的信息和知识的计算机处理技术6、OLAP:又称联机分析处理,是使分析人员、管理人员或执行人员能够从多种角度对从原始数据中转化出来的、能够真正为用户所理解的、并真实反映企业为特性的信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。
定义1:OLAP是针对特定问题的联机数据访问和分析。
通过对信息(维数据)的多种可能的观察形式进行快速、稳定一致和交互性的存取,允许管理决策人员对数据进行深入地观察。
定义2:OLAP是使分析人员、管理人员或执行人员能够从多种角度对从原始数据中转化出来的、能够真正为用户所理解的、并真实反映企业“维”特性的信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。
)7、概念描述:就是对目标类对象的内涵进行描述,并概括这类对象的有关特征.特征化:提供给定数据汇集的简洁汇总比较:提供两个或多个数据汇集的比较描述8、信息熵:在信息论中,熵被用来衡量一个随机变量出现的期望值.它代表了在被接收之前,信号传输过程中损失的信息量,又被称为信息熵。
信息熵也称信源熵、平均自信息量。
二、简答题1、数据仓库和传统数据库的区别和联系是什么?(1)区别:数据仓库和数据库是不同的概念数据仓库是一个综合的解决方案,而数据库只是一个现成的产品。
数据仓库需要一个功能十分强大的数据库引擎来驱动,它更偏向于工程。
数据挖掘期末考试重点
1·元数据:是关于数据仓库中数据的数据。
2·数据仓库中的元数据可以分为四类1) 关于数据源的元数据:对不同平台上的数据源的物理结构和含义的描述;2) 关于数据模型的元数据:描述了数据仓库中有什么数据以及数据之间的关系,它们是用户使用管理数据仓库的基础;3) 关于数据仓库映射的元数据:反映数据仓库中的数据项是从哪个特定的数据源填充的,经过哪些转换,变换和加载过程;4) 关于数据仓库使用的元数据:数据仓库中信息的使用情况描述,这类元数据能帮助用户到数据仓库查询所需要的信息,用于解决企业问题。
3·数据仓库和数据集市的区别数据仓库收集了关于整个组织的主题(如顾客、商品、销售、资产和人员)信息,因此是企业范围的。
对于数据仓库,通常使用星座模式,因为它能对多个相关的主题建模。
数据集市是数据仓库的一个部门子集,它针对选定的主题,因此是部门范围的。
对于数据集市,流行星型或雪花模式,因为它们都适合对单个主题建模。
4·数据集市主要有两种结构:从属数据集市 (数据直接来自于中央数据仓库)独立数据集市 (数据直接来源于各生产系统)5·数据库与数据仓库的联系与区别?联系:数据仓库的出现,并不是要取代数据库。
可以说,数据库、数据仓库相辅相成、各有千秋。
区别:出发点不同(面向事物/面向主题)、存储的数据不同(实时数据/历史数据)、设计规则不同(范式/反范式)、提供的功能不同(捕获数据/分析数据)、基本元素不同(事实表/维表)、容量不同(GB/TB)、服务对象不同(业务处理人员/高层决策人员)。
6·粒度的作用:粒度越小,数据的综合程度越低,存储的数据越详细,需要的索引项越多,存储的数据量越大;回答查询的种类越多。
粒度越高,数据综合程度越高,需要的索引项越少,存储的数据量越小,查询的效率也越高7·数据集市(data marts)通常是指较为小型化、针对特定目标且建设成本较低的一种数据仓库。
python数据挖掘大作业聚类总结
python数据挖掘大作业聚类总结Python数据挖掘大作业聚类总结一、任务目标本次Python数据挖掘大作业的目标是利用聚类算法对给定的数据集进行聚类分析,并将结果可视化展示。
通过对数据的聚类,可以发现数据中的模式和结构,为进一步的数据分析和应用提供支持。
二、数据集介绍本次任务所使用的数据集是一个包含10个特征的样本数据集,每个样本有30个观测值。
数据集包含了各种类型的特征,如数值型、类别型和有序型等。
为了进行聚类分析,需要将数据集划分为若干个簇,使得同一簇内的样本尽可能相似,不同簇的样本尽可能不相似。
三、聚类算法选择在本次任务中,我们选择了K-means聚类算法对数据进行聚类分析。
K-means算法是一种常见的聚类算法,其基本思想是:将n个样本划分为k个簇,使得每个簇内的样本尽可能相似,不同簇的样本尽可能不相似。
K-means算法采用迭代的方式进行聚类,每次迭代都重新计算簇的中心点,并重新分配样本到最近的簇中。
四、代码实现下面是本次任务中K-means聚类的代码实现:```pythonfrom import KMeansimport as pltimport pandas as pd读取数据集data = _csv('')将数据集划分为特征和标签两部分X = [:, :-1] 特征部分y = [:, -1] 标签部分(可省略)划分训练集和测试集(可省略)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=, random_state=42)定义K-means模型并进行训练kmeans = KMeans(n_clusters=3) 假设要分成3个簇(X_train)预测测试集的标签并计算准确率(可省略)y_pred = (X_test)accuracy = accuracy_score(y_test, y_pred)print('Accuracy:', accuracy)可视化聚类结果(需要安装matplotlib库)([:, 0], [:, 1], c=_, cmap='viridis') 可根据实际情况修改特征维度和颜色映射方式()```五、结果分析通过运行上述代码,我们可以得到聚类的结果。
数据挖掘期末笔记总结
数据挖掘期末笔记总结数据挖掘是一门研究如何通过大规模数据进行知识发现和模型构建的学科。
它是人工智能、机器学习和数据库技术的交叉学科,涉及数据预处理、特征选择、模型建立和模型评估等方面。
数据挖掘的任务包括分类、聚类、关联规则挖掘、异常检测和时序预测等。
本次期末笔记总结将从数据预处理、特征选择、聚类、分类和模型评估等方面进行概括。
1. 数据预处理数据预处理是数据挖掘的第一步,目的是将原始数据转化为适合进行挖掘的数据。
数据预处理包括数据清洗、数据集成、数据转换和数据规约。
数据清洗主要是处理缺失值、噪声和异常值;数据集成是将多个数据源合并成一个一致的数据集;数据转换是将数据转化为适合挖掘算法的形式;数据规约是简化数据,提高计算效率。
2. 特征选择特征选择是从所有可能的特征中选择出有用的特征,用于构建模型或进行数据分析。
特征选择的方法包括过滤法、包裹法和嵌入法。
过滤法是通过计算特征与目标变量之间的相关性来选择特征;包裹法是通过构建模型来评估特征的重要性;嵌入法是将特征选择嵌入到模型训练过程中,根据特征的权重来选择特征。
3. 聚类聚类是将相似的数据对象分组到同一个簇中的过程。
聚类可以用于数据的探索性分析、异常检测和市场细分等任务。
常用的聚类算法包括K均值聚类、层次聚类和密度聚类。
K均值聚类是一种基于距离度量的聚类算法,将数据点划分到K个簇中,使得每个数据点到所属簇的质心的距离最小化;层次聚类是一种通过不断地合并和拆分簇来构建聚类层次结构的算法;密度聚类是一种通过计算数据点的密度来进行聚类的算法。
4. 分类分类是基于已有的类别标签训练模型,然后预测新样本的类别标签。
分类是监督学习的一种形式,常用的分类算法包括决策树、朴素贝叶斯、支持向量机和神经网络。
决策树通过将数据集划分为不同的子集来构建一个预测模型;朴素贝叶斯通过计算事件发生的先验概率和条件概率来进行分类;支持向量机通过寻找一个超平面来将不同类别的数据分隔开;神经网络通过多个神经元的连接和激活函数的计算来进行分类。
数据挖掘知识点归纳
知识点一数据仓库1.数据仓库是一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。
2.数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构造。
3.数据仓库围绕主题组织4.数据仓库基于历史数据提供消息,是汇总的。
5.数据仓库用称作数据立方体的多维数据结构建模,每一个维对应于模式中的一个或者一组属性,每一个单元存放某种聚集的度量值6.数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据7.提供提供多维数据视图和汇总数据的预计算,数据仓库非常适合联机分析处理,允许在不同的抽象层提供数据,这种操作适合不同的用户角度8.OLAP例子包括下钻和上卷,允许用户在不同的汇总级别上观察数据9.多维数据挖掘又叫做探索式多维数据挖掘OLAP风格在多维空间进行数据挖掘,允许在各种粒度进行多维组合探查,因此更有可能代表知识的有趣模式。
知识点二可以挖掘什么数据1.大量的数据挖掘功能,包括特征化和区分、频繁模式、关联和相关性分析挖掘、分类和回归、聚类分析、离群点分析2.数据挖掘功能用于指定数据挖掘任务发现的模式,分为描述性和预测性3.描述性挖掘任务刻画目标数据中数据的一般性质4.预测性挖掘任务在当前数据上进行归纳,以便做出预测5.数据可以与类或概念相关联6.用汇总、简洁、精确的表达描述类和概念,称为类/概念描述7.描述的方法有数据特征化(针对目标类)、数据区分(针对对比类)、数据特征化和区分8.数据特征化用来查询用户指定的数据,上卷操作用来执行用户控制的、沿着指定维的数据汇总。
面向属性的归纳技术可以用来进行数据的泛化和特征化,而不必与用户交互。
形式有饼图、条图、曲线、多维数据立方体和包括交叉表在内的多维表。
结果描述可以用广义关系或者规则(也叫特征规则)提供。
9.用规则表示的区分描述叫做区分规则。
10.数据频繁出现的模式叫做频繁模式,类型包括频繁项集、频繁子项集(又叫频繁序列)、频繁子结构。
数据挖掘与分析期末总结
数据挖掘与分析期末总结数据挖掘与分析是一门涉及大量理论和实践的学科,它利用统计学,机器学习,人工智能等技术和方法,从大量的数据中发掘出有价值的信息和知识。
在本学期的数据挖掘与分析课程中,我学习了许多有关数据挖掘与分析的基本概念、常用算法和实践技巧。
现在我来分享一下我的学习心得和收获。
首先,我学习了数据挖掘与分析的基本概念和流程。
数据挖掘与分析的目标是从大量的数据中提取有用的信息和知识,并用于决策和预测。
它包括数据预处理、特征选择、模型建立、模型评估等步骤。
在数据预处理阶段,我们需要对原始数据进行清洗、去除噪声、填补缺失值等操作,以提高数据质量。
在特征选择阶段,我们需要通过特征选择算法从大量特征中选择最具有代表性的特征,以减少模型复杂度和计算开销。
在模型建立阶段,我们需要选择合适的模型或算法,并用训练数据对其进行训练。
最后,在模型评估阶段,我们需要使用测试数据对模型的性能进行评估,并根据评估结果进行调优。
其次,我学习了数据挖掘与分析的常用算法和技术。
在本学期的课程中,我学习了许多经典的数据挖掘与分析算法,如决策树、聚类、分类、回归等。
这些算法在实际应用中具有广泛的适用性和效果。
决策树算法可以用于分类和回归问题,它通过对特征的不断划分,从而构建一个树形结构的模型。
聚类算法可以将数据分为若干个紧密相关的类别,从而揭示出数据的内在结构和规律。
分类算法可以用于将数据分为多个预定义的类别,它可以用于判断新的数据属于哪个类别。
回归算法可以用于建立变量之间的函数关系,从而进行预测和模拟。
此外,我还学习了数据挖掘与分析的实践技巧和工具。
在实践过程中,我们需要选择合适的工具和技术来处理和分析数据。
例如,Python语言是一个非常强大的数据分析工具,它提供了许多用于数据处理和建模的库和函数。
在课程中,我学习了如何使用Python进行数据处理、特征选择、模型建立和模型评估。
此外,我还学习了如何使用数据可视化工具(如Matplotlib和Seaborn)将数据以图形的形式展示出来,以便更好地理解数据和模型。
数据挖掘期末大作业
数据挖掘期末大作业1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。
对于数据挖掘的发展趋势,可以从以下几个方面进行阐述:(1)数据挖掘语言的标准化描述:标准的数据挖掘语言将有助于数据挖掘的系统化开发。
改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。
(2)寻求数据挖掘过程中的可视化方法:可视化要求已经成为数据挖掘系统中必不可少的技术。
可以在发现知识的过程中进行很好的人机交互。
数据的可视化起到了推动人们主动进行知识发现的作用。
(3)与特定数据存储类型的适应问题:根据不同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。
(4)网络与分布式环境下的KDD问题:随着Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。
因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。
(5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等领域。
由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。
(6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处理系统的主流。
2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输入,不知道其对应的输出。
请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。
首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。
然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。
在新建的表完成之后,默认的数据表名称为Table_1,并打开表,根据题目提供的数据在表中输入相应的数据如下图所示。
数据挖掘大作业(打印) 2
数据挖掘在客户关系管理中的应用一、数据挖掘技术在客户关系管理中的主要应用领域1、客户关系管理中常用的数据挖掘方法常用的数据挖掘方法主要包括:分类、聚类、关联规则、统计回归、偏差分析等等。
(1)分类:分类在数据挖掘中是一项非常重要的任务。
分类的目的是通过统计方法、机器学习方法(包括决策树法和规则归纳法)、神经网络方法等构造一个分类模型,然后把数据库中的数据映射到给定类别中的某一个。
(2)聚类:聚类是把一组个体按照相似性归成若干类别。
即“物以类聚”。
它的目的是使同一类别之内的相似性尽可能大,而类别之间的相似性尽可能小。
这种方法可以用来对客户进行细分,根据客户的特征和属性把客户分成不同客户群,根据其不同需求,制订针对不同客户群的营销策略。
(3)关联规则:它是描述数据库中数据项之间存在关联的规则,即根据一个事物中某些项的出现可导出另一项在同一事物中也出现,即隐藏在数据间的关联或相互关系。
在客户关系管理中,通过对企业客户数据库里大量数据进行挖掘,可以从中发现有趣的关联关系。
(4)回归分析:回归分析反映的是事务数据库中属性值在时间上的特征.主要用于预测,即利用历史数据自动推出对给定数据的推广描述.从而对未来数据进行预测。
它可应用于商品销售趋势预测、客户赢利能力分析和预测等。
(50偏差分析:偏差分析侧重于发现不规则和异常变化,即与通常不同的事件。
在相类似的客户中,对客户的异常变化要给予密切关注。
例如某客户购买行为发生较大变化,购买量较以前大大减少,就要对客户的这种原因进行调查,避免客户流失。
2、数据挖掘在客户关系管理中的具体运用由于零售业采用P O S机和C R M。
使得顾客的资料及购买信息得以贮存。
在这些海量的数据中存在着许多能对商品决策提供真正有价值的决策信息。
商家面临以下问题是:真正有价值的信息是哪些。
这些信息有哪些关联等等。
因此,需要从大量的数据中, 经过深层分析,从而获得有利商业运作提高企业争力的信息。
数据挖掘期末大作业
数据挖掘期末大作业1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。
对于数据挖掘的发展趋势,可以从以下几个方面进行阐述:(1)数据挖掘语言的标准化描述:标准的数据?挖掘语言将有助于数据挖掘的系统化开发。
改进?多个数据挖掘系统和功能间的互操作,促进其在企?业和社会中的使用。
?(2)寻求数据挖掘过程中的可视化方法:可视?化要求已经成为数据挖掘系统中必不可少的技术。
?可以在发现知识的过程中进行很好的人机交互。
?数据的可视化起到了推动人们主动进行知识发现的?作用。
?(3)与特定数据存储类型的适应问题:根据不?同的数据存储类型的特点,进行针对性的研究是目?前流行以及将来一段时间必须面对的问题。
?(4)网络与分布式环境下的KDD问题:随着?Internet的不断发展,网络资源日渐丰富,这就需要?分散的技术人员各自独立地处理分离数据库的工作?方式应是可协作的。
因此,考虑适应分布式与网?络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。
?(5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业?等领域。
由于数据挖掘在处理特定应用问题时存在?局限性,因此,目前的研究趋势是开发针对于特定应?用的数据挖掘系统。
?(6)数据挖掘与数据库系统和Web数据库系?统的集成:数据库系统和Web数据库已经成为信息?处理系统的主流。
2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输入,不知道其对应的输出。
请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。
首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。
然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。
数据挖掘期末复习整理
51.无监督学习(185):又称为“聚类”,每个训练元组的类标号是未知的,并且要学习的类的个数或集合也可能事先不知道。
52.如何评价学习算法(187):从以下几个方面评价:准确率、速度、鲁棒性、可升缩性、可解释性。
2.决策树(P189):信息增益(192)例6-1;增益率(184)例6-2;
3.贝叶斯分类(P200);贝叶斯定理(201);朴素贝叶斯分类(202);例6-4 P203
四.综合
1.数据挖掘产生的背景
答:随着信息科技的进步以及电子化时代的到来,人们以更快捷、更容易、更廉价的方式获取和存储数据,使得数据及信息量以指数方式增长。据粗略估计,一个中等规模企业每天要产生100MB以上的商业数据。而电信、银行、大型零售业每天产生的数量以TB来计算。人们搜集的数据越来越多,剧增的数据背后隐藏着许多重要的信息,人们希望对其进行更高层次的分析,以便更好的利用这些数据。先前的数据库系统可以高效的实现数据的录入、查询、统计等功能,但无法发现数据背后隐藏的知识手段。导致了“数据爆炸但知识贫乏”的现象。于是人们开始提出“要学会选择、提取、抛弃信息”,并且开始考虑:如何才能不被信息淹没?如何从中及时发现有用的知识、提高信息利用率?如何从浩瀚如烟海的资料中选择性的搜集他们认为有用的信息?这给我们带来了另一些头疼的问题:
结果=(1-0.5)*6+0.5*7=6.5
25.五数概况(35):由中位数,四分位数Q1和Q3,最小和最大观·测值组成,按一下序列写为:Minimun,Q1,Median,Q3,Maximum.
26.方差、标准差(35):
N个观测值x1,x2………Xn的方差是:
数据挖掘期末大作业
数据挖掘期末大作业1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。
对于数据挖掘的发展趋势,可以从以下几个方面进行阐述:(1)数据挖掘语言的标准化描述:标准的数据挖掘语言将有助于数据挖掘的系统化开发。
改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。
(2)寻求数据挖掘过程中的可视化方法:可视化要求已经成为数据挖掘系统中必不可少的技术。
可以在发现知识的过程中进行很好的人机交互。
数据的可视化起到了推动人们主动进行知识发现的作用。
(3)与特定数据存储类型的适应问题:根据不同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。
(4)网络与分布式环境下的KDD问题:随着Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。
因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。
(5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等领域。
由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。
(6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处理系统的主流。
2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输入,不知道其对应的输出。
请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。
首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。
然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。
在新建的表完成之后,默认的数据表名称为Table_1,并打开表,根据题目提供的数据在表中输入相应的数据如下图所示。
数据挖掘复习
数据挖掘复习1、简单描述一下数据挖掘的过程(1)数据清洗:清除数据噪声和与挖掘主题明显无关的数据(2)数据集成:将来自多个数据源中的相关数据组合到一起(3)数据选择:根据数据挖掘的目标选取待处理的数据(4)数据转换:将数据转换为易于进行数据挖掘的数据存储形式(5)数据挖掘:根据一定评估标准,从挖掘结果中筛选出有意义的相关知识(6)知识表示:利用可视化和知识表达技术,向用户展示所挖掘的相关知识2、均值、中位数、截断均值在反应数据中心方面的特点(1)均值:(2)中位数:对于倾斜的(非对称的)数据,中位数是数据中心的一个较好度量(3)截断均值:均值对极端值很敏感,截断均值可以避免少量极端值影响均值3、在数据预处理的时候可以发现并清除噪音数据吗?噪音数据一般有哪些处理方法(1)可以。
数据清理的目的就是试图填充缺失值、去除噪声并识别利群点、纠正数据中的不一致值。
(2)1、分箱:通过考察周围的值来平滑有序数据的值2、聚类:聚类将类似的值组织成群或簇。
落在簇集合之外的值被视为异常值3、回归:通过回归(线性回归、非线性回归)让数据适合一个函数来平滑数据4、举例说明什么是数据挖掘的关联分析任务例:通过对数据集进行关联分析,发现关联规则A→B,表示购买产品A的顾客通常都会购买产品B。
关联规则中的前件和后件不存在必然的因果关系,只是表示如果前件出现了,后件也很有可能出现。
5、一趟聚类算法是如何在时效性和处理混合型数据方面得到提高的?它的缺点是什么?(1)(2)1、对于大规模数据集,聚类时效性和准确性难以满足要求2、难以直接处理混合属性的数据3、聚类结果依赖于参数,而参数的选择主要靠经验或试探,没有简单、通用的方法。
数据挖掘期末复习
《数据挖掘》总复习题1.数据挖掘系统可以根据什么标准进行分类?挖掘的数据库类型分类、挖掘的知识类型分类、所用的技术分类、应用分类2.知识发现过程包括哪些步骤?数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估、知识表示3.什么是概念分层?一个概念分层定义一个映射序列,将底层概念到更一般的高层概念。
4.多维数据模型上的OLAP操作包括哪些?上卷、下钻、切片和切块、转轴、其它OLAP操作5.OLAP服务器类型有哪几种?关系OLAP(ROLAP)服务器、多维OLAP(MOLAP)服务器、混合OLAP(HOLAP)服务器、特殊的SQL服务器6.数据预处理技术包括哪些?数据清理、数据集成、数据变换、数据归约7.什么是数据清理?数据清理例程可以用于填充遗漏的值,平滑数据,找出局外者并纠正数据的不一致性8.什么是数据集成?数据集成将多个数据源中的数据结合成、存放在一个一致的数据存储,如数据仓库中。
这些源可能包括多个数据库、数据方或一般文件。
9.什么是数据归约?数据归约技术,如数据方聚集、维归约、数据压缩、数值归约和离散化都可以用来得到数据的归约表示,而使得信息内容的损失最小。
10.数据清理的内容包括哪些?遗漏值、噪音数据、不一致数据11.将下列缩略语复原OLAP——on-line analytical processingDM——data miningKDD——knowledge discovery in databasesOLTP——on-line transaction processingDBMS——database management systemDWT——discrete wavelet transform12.什么是数据挖掘?数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的人们事先不知道的,但又有潜在有用的信息和知识的过程。
13.什么是关联规则?什么是强关联规则?强关联规则都是有趣的吗?关联规则:关联规则挖掘寻找给定数据集中项之间的有趣联系。
数据仓库与挖掘期末考试知识点复习
数据挖掘知识点(考点)复习第6章的知识点 1.哪些学科和数据挖掘有密切联系?(P68数据挖掘关系图)2.数据挖掘的定义(P69)数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
第7章的知识点1.数据挖掘步骤(P74)确定目标、数据准备、数据挖掘、结果分析2.数据选择的内容(包括哪两部分)(P75)属性选择和数据抽样3.数据清理的方法(P75) 了解小规模数据、大数据集的清理方法。
小规模数据:人工清理大数据集:自动清理(测定→识别→ 纠正)4.常见的模式有哪些(P78)尤其是分类、回归、聚类模式之间的分析比较。
① 分类模式(用于离散值)② 回归模式(用于连续值)③ 聚类模式④ 关联模式⑤序列模式即将数据间的关联性事件发生的顺序联系起来。
⑥时间序列模式根据数据随时间变化的趋势预测将来的值。
5.模式的精确度(P79)训练和测试模式需将数据分成哪两部分以及各自用途?模式准确性的测试方法及其比较。
训练和测试模式需将数据分成:一是训练数据,主要用于模式训练;另一个是测试数据,主要用于模式测试。
模式准确性的测试方法:封闭测试:测试集即训练模式的训练数据。
可测试模式的稳定性,但无法验证其推广能力。
开放测试:测试模式的数据是模式先前未见的数据。
可以很好地度量模式的准确度。
6.数据预处理的任务有哪些?(P83-89)数据清理、数据集成和转换7.空缺值的处理方法(P83-84)忽略该条记录(不很有效)、手工填补遗漏值(可行性差)、利用缺省值填补遗漏值(不推荐)数据库理论 数据仓库数据统计 机器学习 人工智能 数据挖掘利用均值填补遗漏、利用同类别均值填补遗漏值、利用最可能的值填补遗漏值(较常用)8.分箱技术(P84-86) 分箱之前要做的工作?P84 分箱之前需要对记录按目标属性值的大小进行排序(1)要求能描述出常见的分箱方法和数据平滑方法(简答)。
weka数据挖掘期末大作业
Weka数据挖掘期末大作业是一个非常重要的任务。
它涉及到许多数据挖掘技术,可以帮助学生们了解数据挖掘的核心概念,以及如何应用这些技术来解决实际问题。
首先,学生需要了解Weka数据挖掘工具,包括其特点和功能。
Weka是一个开源的数据挖掘工具,它提供了各种有用的算法,可以帮助学生们进行数据分析,比如分类、聚类和关联分析。
Weka还有一个灵活的用户界面,可以让学生们轻松地查看和编辑数据。
其次,学生还需要了解如何通过Weka来完成期末大作业。
学生可以使用Weka的GUI工具,轻松地训练和评估机器学习模型。
另外,学生还可以使用Weka的API,在Java或其他编程语言中编写自己的算法。
第三,学生还需要考虑如何将实际问题转换为可以在Weka中解决的问题。
这要求学生们了解数据挖掘的基本概念,如数据预处理、特征选择、模型训练和评估。
最后,期末大作业还需要学生提交一份报告,说明他们在数据挖掘中学到的内容。
报告中需要包括算法的细节,以及实验结果分析,以便说明学生们是如何使用Weka解决实际问题的。
总之,Weka数据挖掘期末大作业是一个很重要的任务,可以帮助学生们更好地理解数据挖掘技术,以及如何将其应用于实际问题。
数据挖掘期末复习提纲(整理版)
1.熟悉数据挖掘的流程:提示:1)业务理解2)数据理解3)数据准备4)建立模型5)模型评估6)模型发布2.数据库系统与数据仓库系统的区别:数据仓库是一个面向主题的、集成的、时变的和非易失的数据集合,支持管理部门的决策过程:而数据库是面向具体操作的、单一的、实时的、更新的数据集合,支持管理机构日常操作的。
数据库系统的主要任务是执行联机事务和查询处理,这种系统称为OLTP系统,涵盖了组织机构的大部分日常操作;另一方面,数据仓库在数据分析和决策方面为用户和知识工人提供服务。
3. 数据聚合需考虑的问题;4. 利用免费商品做促销的关联规则挖掘问题:1)找到免费商品的频繁1—项集,记为S1。
2)使用FP增长算法生成那些价格不少于$200的频繁项集,记为S2。
这是一个单调约束,因此不必要在每一步使用“生成—测试”过程,这样能节省一些不必要的计算开销。
如果我们有一个频繁项价格至少¥200,则没必要对这个频繁项的任何超集进行测试。
这是因为任何其他商品加到这个频繁项里,价格肯定会增多。
需要检验的是超集是否是频繁的。
这里之所以使用FP增长算法的原因是Apriori算法丢弃了那些价格低于$200的频繁项集。
这样导致了将不能够发现满足约束条件的频繁项集。
FP增长算法不会有这样的问题,因为它保留了关于数据库的完整信息在一个树结构中。
3)从S1S2中找到频繁项集。
4)生成满足最小置信度且形如2S 的规则。
1S5.分布式数据的关联规则挖掘方法:第一.在每一个站点挖掘局部频繁项集,设CF为四个站点的局部频繁项集的并集;第二.计算CF中每个频繁项集在各个站点的支持度计数;第三.计算CF中每个项集的全局支持度计数,可以通过将它在四个站点的局部支持度计数累加起来;那些全局支持度大于支持度阀值的项集为频繁项集;第四.从全局频繁项集里导出强规则。
6.急切分类、惰性分类的优缺点:急切分类比惰性分类在速度上要更快。
因为它在接受新的待测数据之前已经构造了一个概括的模型。
数据挖掘期末知识点总结
数据挖掘期末知识点总结数据挖掘是一门涉及统计学、机器学习、数据库技术、数据可视化等多个学科的交叉学科,是从大量数据中发现隐含模式、关系和知识的过程。
在当今信息爆炸的时代,数据挖掘成为了一个重要的工具,它可以帮助企业发现商机、政府做决策、学术界进行研究等,因此受到了广泛的关注。
在这篇文章中,我将对数据挖掘的一些重要知识点进行总结,包括数据预处理、数据挖掘模型、评估指标等内容,希望能够对大家有所帮助。
1. 数据预处理数据预处理是数据挖掘中非常重要的一步,其目的是将原始数据转换成适合建模的数据。
数据预处理包括数据清洗、数据集成、数据变换和数据约简等步骤。
数据清洗是指处理数据中的噪声和异常值,使数据更加干净。
数据集成是指将多个数据源中的数据合并成一个数据集。
数据变换是指将数据转换成适合建模的形式,比如将分类数据转换成数值型数据。
数据约简是指减少数据集的复杂度,降低建模的难度。
2. 数据挖掘模型数据挖掘模型是数据挖掘的核心,它是用来从数据中抽取知识的工具。
常见的数据挖掘模型包括分类、聚类、关联规则挖掘、回归分析等。
分类是一种用于预测离散型变量的模型,主要包括决策树、支持向量机、朴素贝叶斯等。
聚类是一种用于将数据集分成若干类的模型,主要包括K均值聚类、层次聚类、密度聚类等。
关联规则挖掘是一种用于发现数据项之间的关联关系的模型,主要用于市场篮子分析。
回归分析是一种用于预测数值型变量的模型,主要包括线性回归、多项式回归、岭回归等。
3. 评估指标评估指标用于评价数据挖掘模型的性能,常见的评估指标包括准确率、召回率、精确度、F1值、ROC曲线等。
准确率是模型预测正确的样本数占总样本数的比例。
召回率是模型预测出的正样本中实际为正样本的比例。
精确度是模型预测出的正样本中实际为正样本的比例。
F1值是精确度和召回率的调和平均数,综合考虑了精确度和召回率的性能。
ROC曲线是一种用于评价二分类模型性能的图像指标,它反映了模型在不同阈值下的性能表现。
数据挖掘期末复习资料
数据挖掘期末复习资料2009-02-21 20:38:37| 分类:读书笔记 | 标签: |字号大中小订阅题型:填空(20空)、判断(20分)、简答(5个:预处理方法、决策树、朴素贝叶斯过程、其他一些知识内容)、大题(算法:关联分析、分类、决策树、ID3算法、贝叶斯方法、A神经网络、聚类回归占得比较小)概述一、数据挖掘是一个多学科领域,具体涉及到哪些相关学科?数据库及相关领域知识。
二、什么是数据挖掘,产生的背景,典型的数据挖掘系统的主要成分?数据挖掘定义:数据挖掘是从存放在数据库,数据仓库或其他信息库中的大量数据中挖掘有趣知识的过程。
典型的数据挖掘系统的主要成分:1.数据库,数据仓库或其他信息库;2.数据库或数据仓库服务器:3.知识库;4.数据挖掘引擎;5.模式评估模块;6.图形用户界面。
三、数据挖掘的功能有哪些?数据挖掘功能-可以挖掘什么类型的模式。
数据挖掘任务:描述和预测。
描述性挖掘任务刻划数据库中数据的一般特性;预测性挖掘任务在当前数据上进行推断。
数据挖掘的功能——用于指定数据挖掘任务中要找的模式类型。
其模式类型介绍如下:(1)、概念/类描述:特征化和区分。
用汇总的、简洁的、精确的方式描述每个类和概念,称这种描述为类/概念描述,通过三种方式得到:1)数据特征化 2)数据区分 3)数据特征化和比较。
(2)关联分析:发现规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件。
关联规则的含义为:满足X中条件的数据库元组多半也满足Y中条件。
包括多维关联规则和单维关联规则。
(3)分类和预测:分类与预测是两种数据分析形式,它们可用于抽取能够描述重要数据集合或预测未来数据趋势的模型。
分类是找出描述并区分数据类或概念的模型或函数,以便能用模型预测类标记未知的对象类。
如:可以构造一个分类模型来对银行贷款进行风险评估(安全或危险);也可建立一个预测模型以利用顾客收入与职业(参数)预测其可能用于购买计算机设备的支出大小。
数据挖掘期末
(一)概述为什么要数据挖掘(Data Mining)?存在可以广泛使用的大量数据,并且迫切需要将数据转转换成有用的信息和知识什么是数据挖掘?数据挖掘(Data Mining)是指从大量数据中提取或“挖掘”知识。
对何种数据进行数据挖掘?关系数据库、数据仓库、事务数据库空间数据超文本和多媒体数据时间序列数据流数据(二)数据预处理为什么要预处理数据?为数据挖掘过程提供干净、准确、简洁的数据,提高数据挖掘的效率和准确性,是数据挖掘中非常重要的环节;数据库和数据仓库中的原始数据可能存在以下问题:定性数据需要数字化表示不完整含噪声度量单位不同维度高数据的描述度量数据的中心趋势:均值、加权均值、中位数、众数度量数据的离散程度:全距、四分位数、方差、标准差基本描述数据汇总的图形显示:直方图、散点图度量数据的中心趋势集中趋势:一组数据向其中心值靠拢的倾向和程度。
集中趋势测度:寻找数据水平的代表值或中心值。
常用的集中趋势的测度指标:均值:缺点:易受极端值的影响中位数:对于不对称的数据,数据中心的一个较好度量是中位数特点:对一组数据是唯一的。
不受极端值的影响。
众数:一组数据中出现次数最多的变量值。
特点:不受极端值的影响。
有的数据无众数或有多个众数。
度量数据的离散程度反映各变量值远离其中心值的程度(离散程度),从另一个侧面说明了集中趋势测度值的代表程度。
常用指标:全距(极差):全距也称极差,是一组数据的最大值与最小值之差。
R=最大值-最小值组距分组数据可根据最高组上限-最低组下限计算。
受极端值的影响。
四分位距 (Inter-Quartilenge, IQR):等于上四分位数与下四分位数之差(q3-q1)反映了中间50%数据的离散程度,数值越小说明中间的数据越集中。
不受极端值的影响。
可以用于衡量中位数的代表性。
四分位数:把顺序排列的一组数据分割为四(若干相等)部分的分割点的数值。
分位数可以反映数据分布的相对位置(而不单单是中心位置)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘期末大作业
1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。
对于数据挖掘的发展趋势,可以从以下几个方面进行阐述:
(1)数据挖掘语言的标准化描述:标准的数据
挖掘语言将有助于数据挖掘的系统化开发。
改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。
(2)寻求数据挖掘过程中的可视化方法:可视
化要求已经成为数据挖掘系统中必不可少的技术。
可以在发现知识的过程中进行很好的人机交互。
数据的可视化起到了推动人们主动进行知识发现的作用。
(3)与特定数据存储类型的适应问题:根据不
同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。
(4)网络与分布式环境下的KDD问题:随着
Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。
因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。
(5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等
领域。
由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。
(6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处理
系统的主流。
2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输入,
不知道其对应的输出。
请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。
首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。
然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。
在新建的表完成之后,默认的数据表名称为Table_1,并打开表,根据题目提供的数据在表中输入相应的数据如下图所示。
在测试数据被输入到数据库中之后,打开SQL Server Business Intelligence Development Studio命令,并在文件中新建项目,项目名称命名为MyData,并单击确定,进入下一步,如下图所示。
在进入的新页面上,新建一个数据源,并在出现的新窗口中单击下一步,并选择新建按钮,就会出
现连接管理器窗口,如右图所示。
在打开的界面中,在“提供程序”下拉列表框中选择Microsoft OLE DB Provider for SQL Server选项,选择完成后,单
击确定,进入下一界面,至此,完成了数据连接的工作。
在建立完数据连接之后,需要建立数据源视图,右键单击数据源视图,并选中“新建数据源视图”命令,在数据库YxqDatabase下的数据表Table_1中,选中这个数据表,然后单击下一步,并更改数据源视图的名称为YxqView,单击完成,这样就建好了数据源视图。
如下图所示。
在上面的工作完成之后,我们在界面中单击“挖掘结构”,并新建一个挖掘结构然后点击下一步,在弹出的新窗口“选择挖掘技术”中,我们选择“Microsoft神经网络”选项,并单击下一步,如下图所示。
弹出的新窗口要求对Table_1中的各个列指定类型:键类型、输入类型、可预测类型。
把数据表Table_1中的data列定为键类型,x1,x2,x3规定为输入类型,y1,y2规定为可预测类型,选择之后情形如下图所示。
在上图中,单击下一步,再选择默认值,并单击下一步,就完成了挖掘模型的创建。
挖掘模型创建完成之后会出现下图所示的窗口。
在此界面中,我们选择“挖掘模型查看器”选项卡,会弹出一个小窗口,提问“服务器内容似乎已过时。
是否先生成和部署项目?”单击是按钮,系统将花费一点时间进行部署和生成,见下图所示。
部署成功后,就会弹出另外一个小窗口,提问“必须先处理Table_1挖掘模型才能浏览其内容。
处理模型可能要花费一些时间,具体将取决于数据量。
是否继续?”单击“是”按钮,并在新弹出的窗口中单击“运行”按钮”处理成功之后在两个窗口分别单击“关闭”按钮,就会得到下图所示的数据分析图表。
最后,选择“挖掘模型预测”选项卡,进行数据预测,出现的界面如下图所示。
在所示的界面中,我们单击“选项事例表”按钮,在选择导航中,选择事例表为Table_1,将出现下图所示的界面。
在上图所示的结构中,单击工具栏上的“单独查询”按钮,即产生下图所示的界面。
在上图所示的界面中,把表中数据的最后一行分别输入到变量x1,x2,x3后面的空白中,然后把挖掘模型下的Y1,Y2项拖动至最下面一行的最左边位置。
然后单击工具栏上的“切换到查询结果”按钮,会出现下图所示的界面。
至此,我们通过神经网络功能预测出了最后两条数据的输出。
3.用ID3算法生成分类决策树
在之前创建好的数据源与数据源视图的前提下,我们开始创建决策树的挖掘结构,单击“挖掘结构”,并从中选择“新建挖掘结构”命令,系统将打开数据挖掘导向。
在“欢迎使用数据挖掘向导”页上,单击下一步按钮,在“选择定义方法”页上,确认已选中“你要使用何种数据挖技术?”下拉列
表中选择“Microsoft决策树”选项,如下图所示。
然后单击下一步,出现“指定定型数据”页,如下图所示。
在界面中,确保选中RID列右边“键”列中的复选框,这即是决策树分析中所用的属性。
在上图中,单击下一步,在随后“指定列的内容和数据类型”页上,单击下一步按钮,出现“完成向导”页。
接下来,我们开始设置决策树挖掘结构的相关参数,在“挖掘模型”选项卡上单击鼠标右键,从弹出的快捷菜单中选择“设置算法参数”命令,系统将打开“算法参数”对话框,如下图所示。
在设置好决策树挖掘结构的相关参数之后,接下来,开始建立决策树挖掘模型,选择“挖掘模型查看器”选项卡,程序是否建立部署项目,选择“是”,单击运行按钮,出现“处理进度”窗口,我们再次选择“挖掘模型查看器”选项卡,生成的决策树如下图所示。
4.数据挖掘与数据仓库的关系是什么?谈谈对数据挖掘的理解。
首先,数据挖掘是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的过程。
简单的说,数据挖掘就是从大量的数据中提取或“挖掘”知识。
然而,数据仓库通常是指一个数据库环境,而不是指一件产品,它提供用户用于决策支持的当前和历史数据,这些数据在传统的数据库中通常不方便得到。
简单来说,数据仓库就是一个面向主题的、集成的、相对稳定的、反应历史变化的数据集合,通常用于辅助决策支持。
其实,可以用这样一个简单例子形象化两者的关系,如果将数据仓库比作矿井,那么数据挖掘就是深入矿井采矿的工作。
决策者利用数据作决策,即从数据仓库中挖掘出对决策有用的信息与知识,是建立数据仓库与进行数据挖掘的最大目的。
只有数据仓库先建行立完成,且数据仓库所含数据时干净、完备和经过整合的,数据挖掘才能有效地进行,因此从一定意义上可将两者的关系解读为数据挖掘时从数据仓库中找出有用信息的一种过程与技术。
5.通过我班同学的身体特征,进行数据的分析,各特征有序号、身高(cm)、体重(kg)、胸
围(cm)、腰围(cm)、臀围(cm),总共有50个学生的资料。
首先,通过之前所创建的数据源、数据源视图,在接下来我们开始创建k-means挖掘结构,在此,我们新建挖掘结构,如下图所示。
然后单击下一步,接下来出现的“指定定型数据”页,也即是指定聚类分析中所用的属性,如下图所示。
至此,k-means挖掘结构创建完成,接下来我们开始设置k-means挖掘结构的相关参数,在“挖掘模型”选项卡上单击鼠标右键,从弹出的快捷菜单中选择“设置算法参数”命令,系统将打开“算法参数”对话框,如下图所示。
接着,我们开始建立k-means挖掘模型,然后选择“挖掘模型查看器”,程序问是否建立部署项目,
选择“是”。
在接下来的“处理挖掘模型”页上,单击运行按钮,出现“处理速度”页,如下图所示。
在上图中,处理进度完成之后,单击关闭按钮,建模完成。
然后再次选择“挖掘模型查看器”选项卡,由此得到的k-means聚类结果如下图所示。
在上图所示的界面中,我们再次单击“分类对比”按钮,得到下图所示,至此通过图示所示,我们可以分析出班上50位同学的各种身体特征指标。