土钉墙抗滑移、抗倾覆验算
高层和超高层建筑抗倾覆验算
高层和超高层建筑抗倾覆验算在当今城市发展的进程中,高层和超高层建筑如雨后春笋般涌现。
这些高耸入云的建筑不仅是城市现代化的象征,更是工程技术的杰作。
然而,要确保这些建筑的安全和稳定,抗倾覆验算是至关重要的环节。
首先,我们来理解一下什么是抗倾覆验算。
简单来说,抗倾覆验算就是检验建筑物在受到各种外力作用时,是否会发生倾覆倒塌的危险。
对于高层和超高层建筑,由于其高度大、重心高、受风荷载和地震作用等影响较大,抗倾覆性能就显得尤为关键。
那么,为什么高层和超高层建筑需要进行抗倾覆验算呢?这是因为这类建筑在使用过程中会面临多种复杂的荷载情况。
比如,风荷载在高层和超高层建筑中所产生的影响不可小觑。
强风可能会对建筑物的侧面施加巨大的压力,从而产生倾覆力矩。
地震作用也是一个重要因素,地震波的传播会导致建筑物产生水平和竖向的振动,可能使建筑物失去平衡。
此外,建筑物自身的重量分布不均匀、基础不均匀沉降等也会增加倾覆的风险。
在进行抗倾覆验算时,需要考虑多个方面的因素。
首先是荷载的确定。
这包括恒载、活载、风荷载以及地震作用等。
恒载通常是建筑物的自重以及固定在建筑物上的永久性设备的重量。
活载则是建筑物在使用过程中人员、家具等可移动荷载。
风荷载的计算需要考虑建筑物所在地区的基本风压、风振系数、体型系数等参数。
地震作用的计算则要根据建筑物所在地区的抗震设防烈度、设计基本地震加速度等因素来确定。
其次,基础的设计和稳定性也是抗倾覆验算的重要内容。
基础是建筑物与地基之间的连接部分,它承受着建筑物的全部荷载,并将其传递到地基中。
对于高层和超高层建筑,通常会采用桩基础、筏板基础等形式。
在设计基础时,需要考虑地基的承载力、变形特性以及基础与上部结构的协同工作性能。
同时,要确保基础具有足够的抗滑移和抗倾覆能力。
另外,建筑物的结构体系和刚度分布也会影响其抗倾覆性能。
常见的高层和超高层建筑结构体系有框架结构、剪力墙结构、框架剪力墙结构等。
不同的结构体系具有不同的受力特点和抗倾覆能力。
抗滑稳定和抗倾覆稳定验算
抗滑稳定和抗倾覆稳定验算
抗滑稳定验算公式:
Ks=抗滑力/滑动力=(W+Pay)μ/Pa x≥1.3
Ks---抗滑稳定安全系数
Pax---主动土压力的水平分力,KN/m;
Pay---主动土压力的竖向分力,KN/m;
μ---基地摩擦系数,有试验测定或参考下表
土的类别摩擦系数μ
可塑 0.25~0.30
粘性土硬塑 0.30~0.35
坚塑 0.35~0.45
粉土 Sr≤0.5 0.30~0.40
中砂、粗砂、砾砂 0.40~0.50
碎石土 0.40~0.60
软质岩石 0.40~0.60
表面粗糙的硬质岩石 0.65~0.75
对于易风化的软质岩石,Ip>22的粘性土,μ值应通过试验确定。
抗倾覆稳定验算公式
Kt=抗倾覆力矩/倾覆力矩=(W*a+Pay*b)/Pax*h≥1.5
Kt---抗倾覆稳定安全系数;
a、b、h---分别为W、Pax、Pay对O点的力臂,单位m.
简单土坡稳定计算
1、无粘性土简单土坡
稳定安全系数
K=抗滑力/滑动力=tgф/tgθ
ф—为内摩擦角;θ—土坡坡角。
说明无粘性土简单土坡稳定安全系数K,只与内摩擦角ф和土坡坡角θ有关,与坡高H无关。
同一种土,坡高H大时,坡度允许值要小,即坡度平缓,坡度允许值中已包含安全系数在内。
2、粘性土简单土坡
粘性土简单土坡较复杂,其稳定坡角θ,是粘性土的性质指标c、γ、ф与土坡高度H的函数,通常根据计算结果制成图表,便于应用。
通常以土坡坡角θ为横坐标,以稳定数N=c/(γ*H)为纵坐标,并以常用内摩擦角ф值系列曲线,组合成粘性土简单土坡计算图。
抗倾覆稳定性验算
五、施工计算1、抗倾覆稳定性验算本工程基坑最深11、0米左右,此处得土为粘性土,可以采用“等值梁法”进行强度验算。
首先进行最小入土深度得确定:首先确定土压力强度等于零得点离挖土面得距离y,因为在此处得被动土压式中:P挖土面处挡土结构得主动土压力强度值,按郎肯土压力理论进行计b算即土得重力密度此处取18KN/m3修正过后得被动土压力系数(挡土结构变形后,挡土结构后得土破坏棱柱体向下移动,使挡土结构对土产生向上得摩擦力,从而使挡土结构后得被动土压力有所减小,因此在计算中考虑支撑结构与土得摩擦作用,将支撑结构得被动土压力乘以修正系数,此处φ=28°则K=1、78主动土压力系数经计算y=1、5m:挡土结构得最小入土深度t与墙前被动土压力对挡土结构底端得力矩相等来进行计算x可以根据P0挡土结构下端得实际埋深应位于x之下,所以挡土结构得实际埋深应为(k经验系数此处取1、2)2经计算:根据抗倾覆稳定得验算,36号工字钢需入土深度为3、5米,实际入土深度为3、7米,故:能满足滑动稳定性得要求2、支撑结构内力验算主动土压力:被动土压力:最后一部支撑支在距管顶0、5m得地方,36b工字钢所承受得最大剪应力d=12mm,经计算36b工字钢所承受得最大正应力经过计算可知此支撑结构就是安全得3、管涌验算:基坑开挖后,基坑周围打大口井两眼,在进出洞口得位置,可降低经计算因此此处不会发生管涌现象4、顶力得计算工程采取注浆减阻得方式来降低顶力.φ1800注浆后总顶力为:F=fo、S*0、3=25*667/10*0、3*1、1=550tfo—土得摩擦阻力,一般为25KN/m2S-土与管外皮得摩擦面积0。
3-注浆减阻系数1。
1—顶力系数5、后背得计算E=1、5×0、5×Υ×H2×tg2(45+φ/2)+2chtg(45+φ/2)(式中Υ土得重度(18KN/m3)c土得粘聚力10kpa,φ摩擦角28º)计算得每米588吨,后背工作宽度为4米,后背承载力为2354吨。
土钉墙稳定性验算
---------------------------------------------------------------------- 验算项目: 超级土钉 1---------------------------------------------------------------------- [ 验算简图 ]---------------------------------------------------------------------- [ 验算条件 ]---------------------------------------------------------------------- [ 基本参数 ]所依据的规程或方法:《建筑基坑支护技术规程》JGJ 120-99基坑深度: 6.650(m)基坑内地下水深度: 20.000(m)基坑外地下水深度: 20.000(m)基坑侧壁重要性系数: 1.000土钉荷载分项系数: 1.250土钉抗拉抗力分项系数: 1.300整体滑动分项系数: 1.300[ 坡线参数 ]坡线段数 1序号水平投影(m) 竖向投影(m) 倾角(°)1 5.320 6.650 51.3[ 土层参数 ]土层层数 3序号土类型土层厚容重饱和容重粘聚力内摩擦角钉土摩阻力锚杆土摩阻力水土泊松比变形模量(m) (kN/m^3) (kN/m^3) (kPa) (度) (kPa) (kPa)1 粘性土 5.430 19.8 19.8 20.0 15.0 40.0 40.0 合算0.250 7.0002 细砂 1.000 19.5 19.5 0.0 28.0 20.0 20.0 合算0.250 7.0003 卵石 10.600 22.0 22.0 0.0 40.0 120.0 120.0 合算0.250 7.000[ 超载参数 ]超载数 2序号超载类型超载值(kN/m) 作用深度(m) 作用宽度(m) 距坑边线距离(m) 形式长度(m)1 满布均布 5.0002 局部均布 30.000 0.000 6.000 2.800 条形[ 土钉参数 ]土钉道数 4序号水平间距(m) 垂直间距(m) 入射角度(度) 钻孔直径(mm) 长度(m) 配筋1 1.500 1.500 12.0 120 9.000 1E182 1.500 1.500 12.0 120 9.000 1E183 1.500 1.500 12.0 120 7.500 1E184 1.500 1.500 12.0 120 6.000 1E18[ 花管参数 ]基坑内侧花管排数 0基坑内侧花管排数 0[ 锚杆参数 ]锚杆道数 0[ 坑内土加固参数 ]厚度(m) 宽度(m) 重度(kN/m~3) 饱和重度(kN/m~3) 粘聚力(kPa) 内摩擦角(度)2.0003.000 18.000 18.000 20.000 35.0[ 内部稳定验算条件 ]考虑地下水作用的计算方法:总应力法土钉拉力在滑面上产生的阻力的折减系数: 0.500*******************************************************************[ 验算结果 ]*******************************************************************[ 局部抗拉验算结果 ]工况开挖深度破裂角土钉号土钉长度受拉荷载标准值抗拔承载力设计值抗拉承载力设计值满足系数(m) (度) (m) Tjk(kN) Tuj(kN) Tuj(kN) 抗拔抗拉1 1.200 33.2 02 2.200 33.2 03 3.200 33.2 1 9.000 2.4 93.3 91.6 30.557 30.0054 4.200 33.2 1 9.000 0.0 86.8 91.6 999.000 999.0002 9.000 6.8 96.6 91.6 11.326 10.7455 5.200 33.2 1 9.000 0.0 80.2 91.6 999.000 999.0002 9.000 6.8 90.0 91.6 10.560 10.7456 6.200 34.0 1 9.000 0.0 75.4 91.6 999.000 999.0002 9.000 6.5 84.7 91.6 10.494 11.3543 7.500 21.9 59.0 91.6 2.155 3.3487 6.650 34.6 1 9.000 0.0 74.0 91.6 999.000 999.0002 9.000 6.2 82.8 91.6 10.706 11.8393 7.500 21.0 56.7 91.6 2.163 3.4914 6.000 32.3 146.9 91.6 3.637 2.268[ 内部稳定验算结果 ]工况号安全系数圆心坐标x(m) 圆心坐标y(m) 半径(m)1 4.102 4.502 7.480 2.0352 2.738 3.655 7.466 3.0183 2.637 2.966 8.635 5.1894 2.123 2.327 9.772 7.3315 1.594 1.550 11.164 9.7226 1.353 -0.423 12.877 12.4517 10.186 0.157 1.260 1.0418 10.186 0.157 1.260 1.041[ 外部稳定计算参数 ]所依据的规程:《建筑地基基础设计规范》(GB50007-2002) 土钉墙计算宽度: 10.000(m)墙后地面的倾角: 0.0(度)墙背倾角: 90.0(度)土与墙背的摩擦角: 10.0(度)土与墙底的摩擦系数: 0.300墙趾距坡脚的距离: 0.000(m)墙底地基承载力: 400.0(kPa) 抗水平滑动安全系数: 1.300抗倾覆安全系数: 1.600[ 外部稳定计算结果 ]重力: 968.4(kN)重心坐标: ( 6.166, 2.916)超载: 79.8(kN)超载作用点x坐标: 8.649(m)土压力: 83.4(kPa)土压力作用点y坐标: 2.261(m)基底平均压力设计值 106.3(kPa) < 400.0基底边缘最大压力设计值 184.7(kPa) < 1.2*400.0 抗滑安全系数: 3.880 > 1.300抗倾覆安全系数: 36.636 > 1.600 [ 喷射混凝土面层计算 ][ 计算参数 ]厚度: 80(mm)混凝土强度等级: C20配筋计算as: 15(mm)水平配筋: d6@200竖向配筋: d6@200荷载分项系数: 1.200[ 计算结果 ]编号深度范围荷载值(kPa) 轴向 M(kN.m) As(mm^2) 实配As(mm^2) 1 0.00~ 1.50 0.0 x 0.000 160.0(构造) 141.4y 0.000 160.0(构造) 141.42 1.50~ 3.00 1.8 x 0.148 160.0(构造) 141.4y 0.148 160.0(构造) 141.43 3.00~ 4.50 19.2 x 1.587 160.0(构造) 141.4y 1.587 160.0(构造) 141.44 4.50~ 6.00 41.9 x 3.466 186.1 141.4y 3.466 186.1 141.45 6.00~ 6.65 48.5 x 0.000 160.0(构造) 141.4y 2.562 160.0(构造) 141.4。
土钉墙的工作机理和设计概要
❖ 2)土钉的布置和规格
❖ 土钉的布置方式呈矩形或梅花行布置;土钉水平间距和竖向间 距宜为lm~2m;当基坑较深、土的抗剪强度较低时,土钉间距 应取小值。土钉倾角(与水平面夹角)宜为50~200。
❖ 对非饱和土,土钉长度l与基坑深度H之比宜为0.6~1.2,密实砂 土和坚硬粘土中可取低值;对软塑粘性土,比值l/H不应小于1.0。 为了减少支护变形,控制地面开裂,顶部土钉的长度宜适当增 加。非饱和土中的底部土钉长度可适当减少,但不宜小于0.5H; 含水量高的粘性土中的底部土钉长度则不应缩减。
土钉墙的工作机理和设计概要 墙体外部稳定分析:是将土钉墙视为重力式挡土墙,墙体宽 度等于最下一道土钉的水平投影长度,验算挡土墙的抗滑移、 抗倾覆稳定以及墙体底部的地基承载力。
(a)支 护沿 底面 水 (b) 支 护 绕 基 坑 (c) 支护连同外部土体的
平滑动
底角倾覆
整体滑动
墙体外部整体稳定性分析
土钉墙的工作机理和设计概要
5. 土钉墙 (构造)
❖ 3)注浆材料和注浆方式
❖ 注浆材料可采用水泥浆或水泥砂浆,其强度不宜低于20MPa;水 泥浆的水灰比宜取0.5~0.55;水泥砂浆的水灰比宜取0.4~0.45,同 时,灰砂比宜取0.5~1.0,拌合用砂宜选用中粗砂,按重量计的含 泥量不得大于3%。
❖ 钢管土钉的构造应符合下列要求: ①钢管的外径不宜小于48mm, 壁厚不宜小于3mm;钢管的注浆孔应设置在钢管末端l/2~2l/3 范围 内(l为钢管土钉的总长度);每个注浆截面的注浆孔宜取2 个, 且应对称布置,注浆孔的孔径宜取5mm~8mm,注浆孔外应设置 保护倒刺;②钢管的连接采用焊接时,接头强度不应低于钢管强 度;钢管焊接可采用数量不少于3 根、直径不小于16mm的钢筋沿 截面均匀分布拼焊,双面焊接时钢筋长度不应小于钢管直径的2倍。
土钉抗拔承载力经验验算方法
土钉抗拔承载力经验验算方法第27卷第2期2010年6月建筑科学与工程JournalofArchitectureandCivilEngineeringV o1.27NO.2June2010文章编号:1673—2049(2010)02一O018—07O土钉抗拔承载力经验验算方法杨敏,刘斌.(1.同济大学地下建筑与工程系,上海200092;2.同济大学岩土及地下工程教育部重点实验室,上海200092)摘要:通过对北京,广州等地区¨个工程实测的土钉最大轴力值和土钉最大轴力值位置的分析,提出了土钉抗拔承载力的经验验算方法,并采用梯形土压力分布模式和双折线潜在滑裂面分别计算土钉墙,预应力锚索加土钉复合支护及搅拌桩(微型桩)加土钉复合支护的土钉抗拔承载力.结合工程算例,将该方法与中国《建筑基坑支护技术规程》(JGJl2O一99)和《基坑土钉支护技术规程》(CECS96:97)方法进行了比较.结果表明:采用该方法进行土钉抗拔承载力验算可以满足工程设计要求,为进一步开展复合土钉墙设计方法的研究提供了依据.关键词:基坑;复合土钉墙;土钉抗拔承载力;预应力锚索;搅拌桩中图分类号:TU431文献标志码:AEmpiricalCheckingMethodforSoil(1.DepartmentGeotechnica1andNailingAnti—pullingCapacityYANGMin.LIUBin,ofGeotechnicalEngineering,TongjiUniversity,Shanghai200092,China;2.KeyLaborator yofUndergroundEngineeringofMinistryofEducation,TongjiUniversity,Shanghai200092,C hina)Abstract:BasedOntheanalysisonthemeasuredvalueand2ocationofthemaximumaxiajforc eofsoilnailingaccordingtothe11engineeringtestslocatedinBeijing,Guangzhouandotherarea s,anempiricalcheckingmethodforsoilnailinganti—pullingcapacitywasproposed,whichincluded thesoilpressureoftrapezoidaldistributionandthepotentialslipsurfaceofbilinear1ines.The presentmethodwascalculatedforsoilnailing,theprestressedanchorplussoilnailingcompos iteretainingandthemixingpile(micro—pile)biningwith theengineeringexamples,theproposedmethodwascomparedwiththemethodsofChinese TechnicalSpecificationforRetainingandProtectionofBuildingFoundationExcavations(J GJ12O一99)andTechnicalSpecificationforSoilNailinginFoundationExcavations(CECS96: 97).Resultsshowthatthismethodcanmeetthedesignrequirementofsoilnailinganti—pullingcapacity,andcanofferreferencesforfurtherresearchonthedesignmethodsofcompositesoil nailingwails.Keywords:foundationexcavation;compositesoilnailingwall;soilnailinganti—pullingcapacity;prestressedanchor;mixingpile引言土钉墙是一种在原位土体中设置土钉且在其表面喷射混凝土面层,借助土钉摩擦加筋,注浆加固和面层维护的作用以稳定边坡的支护技术.土钉墙施工简便,经济可靠,从2O世纪7O年代开始应用并得收稿日期:2010—03一O4基金项目:国家自然科学基金项目(40972179)作者简介:杨ft~(1960一),男,江西南昌人,教授,博士研究生导师,工学博士,Email:yangmin@.第2期杨敏,等:土钉抗拔承载力经验验算方法19到迅速发展l1J.为有效控制土钉墙变形,拓展土钉墙的适用范围和支护深度,实践中依据具体工程条件将土钉与搅拌桩,微型桩,预应力锚杆等进行组合,发展形成了复合土钉墙技术].依据中国《建筑基坑支护技术规程》(JGJ12O99)E83和《基坑土钉支护技术规程》(CECS96:97)Eg],土钉墙设计计算内容主要包括:土钉承载力验算,土钉墙稳定性验算和喷射混凝土面层的设计计算,其中喷射混凝土面层按构造要求一般可以满足,土钉墙抗滑移和抗倾覆稳定性均可采用重力式挡墙设计方法进行验算,而土钉抗弯和抗剪承载力只有在土钉墙整体失稳时才能得到充分发挥,此外,关于土钉墙和复合土钉墙变形计算也是研究的焦点],因此,土钉抗拔承载力,土钉墙和复合土钉墙的整体稳定性以及变形计算构成了土钉墙设计当中的3个关键内容.本文中笔者仅对其中的土钉抗拔承载力验算方法进行分析.土钉抗拔承载力验算的目的在于保证土钉杆体的抗拉强度和粘结强度,合理确定土钉的分布间距, 长度等设计参数,计算公式为N≥KN要求单根土钉i的抗拔承载力N与受拉荷载N的比值满足设计安全系数K.土钉的抗拔承载力N取土钉杆体抗拉力和有效粘聚力的较小值,土钉杆体抗拉力根据杆材抗拉强度计算,土钉的有效粘聚力由位于潜在滑裂面后的土钉有效抗拉长度以及土钉与土层间的粘结强度计算.土钉受拉荷载N为土钉在边坡荷载作用下所承受的轴向拉力,采用土压力作用模式来计算,因此,确定土压力分布模式和潜在滑裂面位置成为研究的重点.目前,在土钉墙设计中,普遍应用的土压力分布模式主要是根据经典土压力理论和工程实测结果来确定的,实测结果可以依据土钉墙面层压力值或土钉轴力值口,具体应用的土压力分布模式有三角形和梯形等分布模式口,潜在滑裂面依据试验和理论分析采用直线或双折线等滑裂面].对于复合土钉墙,土钉抗拔承载力验算方法沿用了土钉墙的设计方法,关于复合土钉墙的土压力分布模式和潜在滑裂面的研究甚少L1.本文中笔者以11个工程实测的土钉最大轴力值以及土钉最大轴力值位置为依据,对土钉墙以及2类复合土钉墙,即预应力锚索加土钉复合支护与搅拌桩(微型桩)加土钉复合支护的土压力分布模式和潜在滑裂面位置进行了分析,提出了土钉抗拔承载力验算的经验方法,其中采用了梯形土压力分布模式和双折线潜在滑裂面,最后通过实例计算对本文方法进行了验证.1工程实测资料土钉墙及复合土钉墙的工程实例概况如表1所示,表1中所列工程主要位于北京和广州地区,共包括4个土钉墙工程,3个预应力锚索加土钉复合支护工程和4个搅拌桩(微型桩)加土钉复合支护工程.表1工程实例Tab.1EngineeringExamples土钉墙与复合土钉墙支护参数实例工程名称基坑开挖土钉锚索搅拌桩微型桩放坡c?(yH)最大侧编号深度/iql移/mm排数长度/m排数长度/m桩长/m桩长/i71系数l深圳赛格群星广场z?]11.701O6.0~12.010.3O0.102102北京林达嘉园[22]12.5186.8~11.81:0.20O.O68173北京冠华大厦【.14.O075.8~]1.81:0.300.0l54珠江新城E2区商住楼]9.2066.0~12.0i{0.i50.143265深圳假日广场[25]16.351O6.0~12.0211.0~13.01:0.2O0.076736北京朝外SOHO[.jl4.6076.o~l2.o217.S~18.51:o.1o0.O347北京熊猫环岛地铁站Ez7]16.711O12.0~13.52l6.0~22.01:0.500.0458南京玄武湖隧道[zs]10.00915.0~18.018直立0.046209广州番禺某酒店]5.5048.0~24.0169.O直立0.129431O汉口某城市花园[.o]8.00312.01212.0直立0.O931311北京某商业楼[3]8.2O57.0~9.09.51:0.2O0.10418注,y分别为基坑开挖深度H范围内的土体粘聚力和重度,按土层厚度取加权平均值.对于土钉实测轴力值,本文中以朗肯主动土压力,对土钉轴力值进行量纲为1的计算,采用土压力力计算公式为依据,参考文献E13]并考虑土体粘聚作用模式参数K来表示,即20建筑科学与工程2010血K——一(1)(),HK一2c~/K)ShS式中:Tm为实测土钉最大轴力;a为土钉与水平方向的夹角;K为主动土压力系数,K一tan(45.+舻/2);s,s分别为土钉的水平向和竖直向的间距; 为土体内摩擦角,取基坑深度范围内按土层厚度计算的加权平均值.土钉最大轴力值位置用参数Ks来表示,即CKs一k)max(2)』J式中:S为土钉最大轴力值位置距土钉墙坡面的水平方向距离.根据式(1),(2)对表1所列工程进行计算,结果如图l~3所示,其中离散点表示计算值,两虚线之间为分布趋势,即土钉最大轴力值沿深度呈梯形分布模式,最大轴力值位置为双折线模式,为土钉距地表的距离.K.毫●H0lT0●~0l(a)土钉最大轴力值(b)土钉最大轴力值位置图1土钉墙支护的实测结果Fig.1MeasuredResultsofSoilNailingWallRetaining 2验算方法根据上述分析,结合现有文献[3],[8],[9],[13]和实例验算,在土钉抗拔承载力验算中,建议采用梯形土压力作用模式和双折线潜在滑裂面,如图4,5所示,K,K为双折线潜在滑裂面参数,土钉墙取Kc一0.65,K一0.5,K一0.3;预应力锚索加土钉复合支护取K一o.4,K一0.4,K一0.2;●h01(a)土钉最大轴力值fb)土钉最大轴力值位置图2预应力锚索加土钉复合支护的实测结果Fig.2MeasuredResultsofPrestressedAnchorPlus SoilNailingCompositeRetaining●N01毫●Ol(a)土钉最大轴力值s(b)_:钉最大轴力值位置图3搅拌桩(微型桩)加土钉复合支护的实测结果Fig.3MeasuredResultsofMixingPile(Micro-pile) PlusSoilNailingCompositeRetaining搅拌桩(微型桩)加土钉复合支护取K一0.6,K==: 0.6,K一0.4;当地表作用均布超载g时,超载q按照规程CECS96:97方法考虑.另外,根据土层条件和设计要求,K值可以适当降低,但土钉墙不宜小于0.3,预应力锚索加土钉复合支护不宜小于0.2,搅拌桩(微型桩)加土钉复合支护不宜小于0.3. 一×/卞一佻/一实实实—..................L.●外....工.一≮~◆◆一~.;一~删删刘删一~)(◆:6I~一×__▲▲If....Lr....L........[●●●●●一./一__}_实实实实一_◆▲×一.一-◆/一2—1234l~一一一佻~—一.一如如郏▲/一◆-▲×/×/第2期杨敏,等:土钉抗拔承载力经验验算方法21 (a)土钉墙,Kc=0.65c;(c)搅拌桩(微型桩)加(d)地表均布超载土钉复合支护,K20.6图4土压力分布模式Fig.4DistributionPatternsofSoilPressures卜图5双折线潜在滑裂面Fig.5PotentialSlipSurfaceofBilinearLines3算例分析算例1:广东深圳赛格群星广场的土钉墙支护处的基坑挖深l1.7m,放坡系数1:0.3,土层至上而下为:素填土厚0.2--1.2m,砾质粉质粘土厚6.6~4O.3m;采用q025钢筋注浆土钉,倾角15.,间距1.2m×1.2m;喷射100mm厚C2o混凝土面层,配双向钢筋网6@250×250,根据现场抗拔试验结果取土钉与土体间粘结强度为52kPa.考虑地表作用均布超载20kPa,土体参数取按土层厚度的加权平均值,即y一18.53kN,一24.02.,c一22.13kPa,分别采用规程JGJ12O99方法,规程CECS96:97方法和本文方法进行计算.由表2可见,对于该算例,本文方法所得的土钉抗拔承载力N值较其他2种方法所得结果要小,3种方法计算所得土钉受拉荷载N与实测值N之间都存在较大差别,对于本文方法,究其原因除了出于设计安全考虑地表超载外,K的取值也是按偏保守的情况考虑,当不考虑超载且取K一0.6时,土钉3,5,7,9 的受拉荷载计算值分别为53.62,56.O1,56.01,56.01kN,与实测值更为接近.对安全系数K值进行比较,规程JGJ12O一99与规程CECS96:97方法计算结果偏大,本文方法计算结果较符合工程实际.算例2:广东广州凯华城的预应力锚索加土钉复合支护处的基坑挖深12m,放坡系数1:0.2,土层至上而下为:杂填土厚2.3m,粉质粘土厚4.4m,粉土厚5.8m,全风化粗砂岩化3.9m.共设置9排土钉且第2排和第4排水平间隔设置预应力锚索,土钉为22钢筋注浆土钉,倾角15.,间距1.3m×1.3m,2.3m深处采用23的锚索,长度为22m,施加预应力200kN;4.9m深处采用4×74的锚索,长度为25m,施加预应力380kN.考虑地表作用均布超载20kPa,土体参数按土层厚度取加权表2算例1的计算结果Tab.2CalculatedResultsofExample1规程JGJ12O99方法规程CECS96:97方法本文方法土钉长度/nl深度/m,vk/kN编号N/kNNb/kNKN/kNNh/kNKN/kNNk/kNK16O.48.3512.8241.1721.131.956.4419.120.33281.650.557.2779.8853.541.4939.1145.760.853122.830.91125.411.5779.8O151.2681.8O1.8O104.4668.701.524l24.0134.9410.28l3.10l57.3O87.471.68104.4673.251.4251l5.239.19128.1219.106.70147.OO87.471.6888.0173.251.2O61l6.4137.6427.9l4.93l53.0487.471.6888.0l73.251.2O7107.654.1213O.8336.733.56142.7487.471.6374.6273.251.O28108.8140.3545.543.O8148.7787.471.6887.1973.251.199810.053.92117.2O54.352.16122.1487471.4067.1173.250.92lO811.2126.7257.9O2.19128.1780.181.6079.5267.141.18注:N为按土钉有效粘聚力计算的结果,按土钉杆体抗拉力计算得147kN;安全系数K取两者较小值计算.帼装[=====U复丁●22建筑科学与3-程2010血平均值,即y一18.63kN,—17.02.,f一22.50kPa,分别采用规程JGJl2O一99,规程CECS96:97方法和本文方法进行计算.由表3可见,本文方法计算所得安全系数K较规程JGJ120—99和规程CECS96:97方法更符合工程实际.算例3:上海东方肝胆外科医院病房的副搅拌桩加土钉复合支护处的基坑挖深7m,土层至上而下为:杂填土厚1.85m,褐黄色粘质粉土厚0.95m,粘质粉土厚1.85m,灰色砂质粉土厚14.4m,灰色粘土厚1.8m,灰色粉质粘土厚3.9m.共设置6排6排采用48×3.5钢管注浆土钉,土钉倾角1~5排为10.,第6排为20.,问距1.0rn×1.0m;设置双排水泥土搅拌桩形成止水帷幕,搅拌桩宽1.2m,深14.9m.考虑地表作用均布超载20kPa,土体参数按土层厚度取加权平均值,即y一18.35kN,一23.72.,C一6.11kPa,分别采用规程JGJ120~99方法,规程CECS96:97方法和本文方法进行计算.由表4可见,本文方法计算所得的安全系数K较规程JGJ12o一99和规程CECS96:97方法计算结果要保守,但实测局部最大水平位移达到65mm,故土钉,1~4排采用~D22钢筋注浆土钉,第5排和第结合变形值分析,本文方法更为合理.表3算例2的计算结果Tab.3CalculatedResultsofExample2土钉规程GJ12099方法规程CECS96:97方法本文方法长度/m深度/m编号N/kNNk2/kNKN/kNNk/kNKN/kNNk/kNK1151.o140.4o一23.79l6l_2465.381.74167.9974.631.532122.3102.951.4869.60122.14l09.381.04ll8.9881.441.40163.618O.7719.3】5.90197.39136.840.83184.3381.441.403123.6115.4219.315.90132.04136.840.83118.9881.441.404l24.9127.9037.143.07141.95136.840.83118.9881.441.40146.2l73.O554.972.O7184.52136.840.83151.6681.441.40586.275.0354.971.3686.5O136.840.6353.6481.440.6661O7.512O.1872.8O1.56l29.O8136.840.8386.3181.441.06788.899.9890.631.10106.31136.840.7864.5081.440.798810.1112.461O8.461.04l16.22136.840.8378.3781.440.969611.492.26l2l_430.7693.45l31.570.7159.6O49.571.2O注:N按土钉杆体抗拉力计算得114kN.表4算例3的计算结果Tab.4CalculatedResultsofExample3土钉规程GJi2099方法规程CECS96:97方法本文方法长度/m深度/1711编号N/kNNkJ/kNKN/kNN/kNKN/kNNk2/kNK1121.582.28l6.954.8582.2851.651.5972.9049.361.482l22.587.882O,414,3】87.8839.232.2472.9037.】51.96393.586.9528.353.O786.9539.232.2259.5037.151.60494.594.4236.292.6094.4239.232.4159.5037.151.6O565.564.1944.241.4564.1939.231.6430.6732.590.94666.571.8754.681.3171.8741.1l1.7542.2617.602.40注:N按土钉杆体抗拉力计'算得钢筋和钢管的抗拉力分别为114,105kN. 4结语基于对北京,广州等地区的】1个工程实测资料的土钉最大轴力值和土钉最大轴力值位置的分析,提出了土钉抗拔承载力的经验验算方法,其中采用的梯形土压力分布模式和双折线潜在滑裂面,适用于土钉墙,预应力锚索加土钉复合支护及搅拌桩(微型桩)加土钉复合支护,并结合工程算例与规程JGJ 120—99和规程CECS96:97法进行了比较,验证了本文方法的合理性,可以满足工程设计要求.参考文献:References:[1]SCHIOSSERF,UNTERREINERP,PLUMELLEC.FrenchResearchProgramClouterreonSoilNail—ing[C~//ASCE.GeotechnicalSpecialPublication No.30.NewYork:ASCE.1992:739—750.'第2期杨敏,等:土钉抗拨承载力经验验算方法23[2][3][4][5][6][7][8][9][1O][11]1,12]ST0CKERMF,RIEDINGERG.TheBearingBe—haviorofNailedRetainingStructures[C]//ASCE. GeotechnicalSpecialPublicationNo.25.NewYork: ASCE,1990:612-628.王步云.土钉墙设计FJ].岩土工程技术,1997(4):30—41.WANGBu—yun.DesignforSoilNailingi,J].Geotech—nicalEngineeringTechnique,1997(4):30—41.ZH0UWanhuan,YINJianhua.ASimpleMath- ematicalModelforSoilNallandSoilInteraction Analysisl'J].ComputersandGeotechnics,2008,35 (3):479488.李象范,徐水根.复合型土钉挡墙的研究[J].上海地质,1999(3):1—11.LIXiangfan,XUShui—gen.StudyoftheCompound SoilNailedRetainingWall[J].ShanghaiGeology,1999(3):111.汪剑辉,闫顺,曾宪明,等.复合土钉支护在我国的研究与应用[J].施工技术,2006,35(1):15—19. WANGJian—hui,YANShun,ZENGXianruing,eta1.StudyandApplicationofCompoundSoilNail SupportinChina[J].ConstructionTechnology,2006,35(1):15-19.杨志银,张俊,王凯旭.复合土钉墙技术的研究及应用[J].岩土工程,2005,27(2):153~156. YANGZhi—yin,ZHANGJun,WANGKai—xu.Devel—opmentofCompositeSoilNailingWalls[J].Chinese JournalofGeotechnicalEngineering,2005,27(2): 153~156.JGJ12O一99,建筑基坑支护技术规程[s].JGJ120—99,TechnicalSpecificationforRetaining andProtectionofBuildingFoundationExcavations [s].CECS96:97,基坑土钉支护技术规程[s].CECS96:97,TechnicalSpecificationforSoilNailing inFoundationExcavations[s].JEWEl1RA.ReviewofTheoreticalModelsforSoil Nailingi,C]//MCGOWNA,YEOK,ANDRAWES. ProceedingsoftheInternationalReinforcedSoilCon—ference.London:ThomasTelford,1991:265—275.尹骥,魏建华,李象范.计算复合土钉支护变形的增量方法[J].岩土工程,2007,29(5):755—759. YINJi,WEIJian-hua,LIXiang—fan.Increment MethodtoCalculateDisplacementofCompositeSoil NailledWalli,J].ChineseJournalofGeotechnicalEn gineering,2007,29(5):755759.魏焕卫,杨敏,孙剑平,等.土钉墙变形的实用计算方法[J].土木工程,2009,42(1):81—90.[13]i,14][15]E16]l,a7][18][19][2O]WEIHuanwei,YANGMin,SUNJian-ping,eta1. CalculationMethodforSoilNailingDisplacement FJ].ChinaCivilEngineeringJournal,2009,42(1):8l一90.JURANI,ELIASV.SoilNailedRetainingStruc—tures:AnalysisofCaseHistories[C]//ASCE. GeotechnicalSpecialPublicationNo.12.NewYork: ASCE,1987:232—244.刘晓红,饶秋华.土钉支护侧土压力合理分布模式探讨[J].中南公路工程,2006,31(2):29—32. IIUXiao—hong.RAOQiu-hua.MoreReasonable ModelfortheLateralSoilPressureDistributionof SoilNailBracing[J].CentralSouthHighwayEn gineering,2006,31(2):29—32.张明聚,宋二祥,陈肇元.土钉挡土技术(续)[J].中南公路工程,1998,23(2):37—43. ZHANGMing—ju.SONGEr—xiang,CHENZhao yuan.RetainingTechnologyofSoilNailing[J].Cen—tralSouthHighwayEngineering,1998,23(2):37—43.董建华,朱彦鹏.地震作用下土钉支护边坡稳定性分析[J].中国公路,2008,21(6):2025.D0NGJian-hua,ZHUYan-peng.StabilityAnalysis ofSlopeSupportedbySoilNailingRetainingWall UnderEarthquake[J].ChinaJournalofHighwayand Transport,2008,21(6):20—25.冯光乐,凌天清,许志鸿.公路边坡支护方案优化设计[J].交通运输工程,2002,2(1):43—47. FENGGuang—le,LINGTian—qing,XUZhi—hong.Op—timizingDesignMethodofHighwaySlopel,J].Jour—nalofTrafficandTransportationEngineering,2002,2(1):43—47.杨治国,侯恩科,李琰庆.FLAC一3D与理正软件在基坑支护设计中的应用5J].西安科技大学,2007,27(2):224—227.YANGZhi—guo.HOUEn—ke.LIYan-qing.Applica—tionofFIAC一3DandLizhengSoftwaretoDeisgnof FoundationProtection[J].JournalofXi'anUniversity ofScienceandTechnology,2007,27(2):224227.任建喜,高立新,刘杰,等.深基坑变形规律现场监测rJ].西安科技大学,2008,28(3):445449. RENJian-xi.GAOLi—xin,LIUJie,eta1.In-site MonitoringonDeformationLawsofDeepFounda—tionPit[J].JournalofXi'anUniversityofScience andTechnology,2008,28(3):445—449.童华炜,周龙翔,钟声.基坑土钉支护的突变分析IJ].西安建筑科技大学:自然科学版,2007,39 (4):485—491.T0NGHuawei,ZH0ULong—xiang,ZH0NG24建筑科学与工程2010隹E21][22][23][24][251[26][27]Sheng.CatastropheAnalysisofSoilNailingSupport inFoundationPit[J].JournalofXi'anUniversityof Architecture&Technology:NaturalScienceEdi—tion,2007,39(4):485—49i.杨志银,冯申铎.新型土钉墙技术的研究与应用[R]. 北京:冶金部建筑研究总院,1999. YANGZhi—yin,FENGShen—duo.ResearchandAp—plicationofaNewSoilNailWallTechnology[R]. Beijing:BuildingScienceResearchandDesignAcad—emyofMinistryofMetallurgicalIndustry,1999.耿玲."林达嘉园"深基坑土钉支护数值模拟与现场监测研究[D].北京:北京科技大学,2007. GENGLing.StudyonNumericalSimulationofSoil NailingSupportinDeepFoundationDitchandField Monitoringof"LindaJiayuan"[D].Beijing:Univer—sityofScienceandTechnologyBeijing,2007.徐教宇.土钉支护工作性状的研究[D].北京:中国建筑科学研究院,2003.XUJiao—yu.StudyontheBehaviorsofSoilNailing [D].Beijing:ChinaAcademyofBuildingResearch, 2003.张明聚,郭忠贤.土钉支护工作性能的现场测试研究[J].岩土工程,2001,23(3):319-323. ZHANGMing—ju,GUOZhongxian.ResearchonBe haviorsofSoilNailingbyFieldTest[J].Chinese JournalofGeotechnicalEngineering,2001,23(3):319-323.刘晓纲.深基坑复合土钼'支护结构试验研究与应用[D].重庆:重庆大学,2005.IAUXiao—gang.TestStudyandApplicationofCorn—positeSoilNailofDeepFoundationPit[D]. Chongqing:ChongqingUniversity,2005.张钦喜,秦汉坤,佟德凯,等.朝外S()HO土钉拉力现场监测研究[J].北京工I大学,2007,33(5):507-511.ZHAN『GQin—xi,QINHan—kun,T()NGI)ekai.eta1. MeasurementsandAnalysisofStressinSoilNailsof ChaowaiSOHOProject[J].JournalofBeijingUni—versityofTechnology,2007,33(5):507—5l1.李厚恩,秦四清.预应力锚索复合十钉支护的现场测试研究EJ].工程地质,2008,16(3):393—400.I1Hou—en,QINSi(1ing.VariationsofInsituForces inSoilNailsandPrestressedGroundAnchorsas[281[291[3O][313r32][33] CombinedStructureforExcavationofaSubwaySta—tionFoundationPitinBeijing[J].JournalofEn—gineeringGeology,2008,16(3):393—400.段建立,谭跃虎,樊有维,等.复合土钉支护的现场测试研究EJ].岩石力学与工程,2004,23(12): 2128—2132.DUANJian-li,TANYue-hu,FANYou—wei,eta1. FieldTestingStudyonCompositeSoilNailing[J]. ChineseJournalofRockMechanicsandEngineering, 2004,23(12):2128—2132.冯涛.搅拌桩与微预应力土钉复合支护体系的稳定与变形分析FD].广州:广州大学,2007. FENGTao.StabilityandDeformationAnalysisof MixingPileandPrestressedSoilNailComposite SupportingSystem[D].Guangzhou:GuangzhouUni—versity,2007.司马军,刘祖德,徐书平.加筋水泥土墙复合土钉支护的现场测试研究EJ].岩土力学,2007,28(2):371—375.SIMAJun,LIUZu—de,XUShu—ping.FieldTesting StudyonCo。
挡土墙的抗倾覆和抗滑移验算
挡土墙的抗倾覆和抗滑移验算1. 挡土墙的基本概念说到挡土墙,大家可能会觉得有点陌生,但其实它就在我们生活中无处不在。
想象一下,某个小山坡上有块地,你想在那儿盖个房子,但这小山坡就像个不听话的孩子,随时可能滑下来,真是让人心慌。
为了防止这种事情发生,我们就需要挡土墙,它就像一个稳稳的护卫,默默守护着我们的家园。
挡土墙的工作原理就像妈妈在旁边时不时给你一个眼神,提醒你别往悬崖边走。
听起来是不是很贴心?2. 抗倾覆和抗滑移的必要性2.1 抗倾覆说到抗倾覆,这玩意儿可重要了!如果挡土墙一不小心就“翻了”,那可就尴尬了。
想象一下,墙壁朝你这边倾斜,像个醉酒的老头儿,真是心惊胆战。
为了让挡土墙稳稳当当,得算一算它的抗倾覆能力。
这就好比我们上学时,老师问我们“你为什么能站得稳”,你得有个好理由,才能让老师满意。
挡土墙同样需要“有理有据”,必须保证它的重心在基础的支撑范围内。
简单来说,就是它的重量得足够,才能压住那些想要“叛变”的土。
2.2 抗滑移再来说说抗滑移。
这就像一块大饼,如果放在一个倾斜的盘子上,肯定会滑下去。
挡土墙也是如此,如果地面湿滑,或者上面有重物压着,它就可能会“滑”。
这时候,我们得确保挡土墙的摩擦力足够大,就像你在冰天雪地里穿着厚厚的冬靴,走路稳稳当当的,不怕摔倒。
所以,计算抗滑移的时候,得考虑土壤的性质、坡度以及其他各种因素,真是繁琐,但却是安全的保障。
3. 实际验算步骤3.1 计算重心和力的作用好了,现在我们进入到实际验算的环节!首先,得计算挡土墙的重心位置和各种力的作用。
就像我们做作业时,得先把题目看明白一样。
一般来说,挡土墙的重心应该在基础的中间,这样才能保持稳定。
接着,考虑到墙体自重、土压力、以及任何可能的外力,像风力、地震力等等,得把这些都算在内。
听起来是不是有点复杂?但只要一步步来,就不怕犯错了。
3.2 检查安全系数接下来,我们要检查一下安全系数。
这个就像我们开车前检查刹车和油量一样,得确保一切正常才能放心上路。
某办公楼建筑深基坑围护中土钉墙支护的技术探讨
某办公楼建筑深基坑围护中土钉墙支护的技术探讨摘要:本文叙述了混凝土在高压空气作用下高速喷向受喷面,在喷层与土层面产生嵌固效应。
锚杆深固于土体内部,主动支护土体,并与土体共同作用,有效保持和提高围土强度,使土体变荷载为支护结构。
钢筋网能有效地调整喷层与锚杆内应力分布,增强支护体的柔性和整体性,将传统支护被动受力结构体系变为主动受力结构体系。
该文以某办公楼为例,对土钉墙支护技术加以介绍。
关键词:深基坑;土钉墙支护;围护1 工程概况某办公楼基坑开挖深度为 4.10m,四周场地狭小,不能直接放坡开挖,需要进行基坑支护。
经验算,水泥搅拌桩、松木桩不能满足抵抗土体压力的要求,若采用沉管灌注桩和搅拌桩相结合的方案,不但工期长,而且造价相对较高,综合比较后决定采用土钉墙支护技术。
2 工程地质条件根据地质勘察报告,该场地地下水埋深 1.70~1.92m,为浅表孔隙潜水,对混凝土无侵蚀性,基坑影响范围内的地层分布叙述如下:第 1 层:①号土,人工杂填土:厚度 2.68~3.45m,土体灰色,含砖头碎石,局部夹有大量块石及粉质粘土,土质不均匀,具高压缩性。
第 2 层:③号土,淤泥质粘土:厚度 2.68~4.03m,土体灰色,很湿,软流塑状,具高压缩性,基坑底落在该层土上。
第 3 层:④号土,可塑粘土:厚度 0.85~2.03m,土体灰黄褐色,稍湿,中压缩性。
3 土钉墙支护各组成部分参数的确定及设计计算鉴于该场地施工条件及工程地质条件,为了确保开挖后边坡的稳定与安全,同时降低造价,在场地允许的范围内,先将基坑土挖去 1~1.5m深,边壁外四周按 1∶1 比例放坡,以减少土体压力。
由于基坑作用在③号淤泥质粘土层上,施工时需采取基底的抗滑措施,即在开挖前先打一排超前锚杆(ф18@300 长 3000)以阻止基坑土的隆起,俗称“烂脚”。
3.1 锚杆各参数的确定、注浆的控制、支护面层的做法3.1.1 水平锚杆间距根据目前的理论和实践,锚杆的间距大小与土体的整体作用之间尚不能给出明确的定量关系。
土钉支护的设计与应
08.08.2021
编辑ppt
2
土钉支护的作用机理是当土体发生 变形时,通过与土体接触界面上的黏结力 或磨擦力,使土钉受拉,从而约束土体的变 形。土钉按较密的间距(≯1.5m)排列,依靠 群体的作用,以保证边坡的稳定。
08.08.2021
编辑ppt
3
现代土钉技术在上世纪70年代出现,许多 国家几乎在同一时期内,各自独立地提出了这 种支护方法,并迅速加以开发,广泛地应用于 边坡稳定和深基坑支护工程。我国的情况也 是这样,有记载的国内首例土钉工程是1980 年山西太原煤矿设计院王步云在山西柳湾煤 矿应用的边坡支护工程。该工程挖深
21
b 绕支护面层底端(墙趾)倾复,或者支护底 面竖向压力过大,超过地基土的承载力而失稳;
c 与周围和深部土体一起来整体滑动。
前两种破坏可按重力式挡土墙的模式进 行分析;c种破坏则可按一般边坡稳定的方法进 行分析。一般取抗滑安全系数≥1.3,抗倾复安 全系数≥1.5。
这种体外破坏的情况是否真会发生,尚 有争议。
x0——挡土墙重心离墙趾的水平距离; b——基底的水平投影宽度。
08.08.2021
编辑ppt
34
3 整体滑动稳定性验算:可采用圆弧 滑动面法。
4 地基承载力验算,除应符合本规范 第5.2节的规定外,基底合力的偏心距不应 大于0.25倍基础的宽度。当基底下有软弱下 卧层时,尚应验算下卧层的承载力。
25
L.0.2对于高度小于或等于5m的挡土墙,当排水条 件符合本规范6.6.1条,填土符合下列质量要求时,其主 动土压力系数可按附图查得.当地下水丰富时,应考虑水 压力作用.
Ⅰ类 碎石土: 中密,干密度应≥2.0t/m3; Ⅱ 类 砾、粗、中砂:中密,干密度应≥1.65t/m3; Ⅲ类 黏土夹块石:干密度应≥1.90t/m3; Ⅳ类 粉质黏土:干密度应≥1.65t/m3;
土钉墙稳定性验算
---------------------------------------------------------------------- 验算项目: 超级土钉 1---------------------------------------------------------------------- [ 验算简图 ]---------------------------------------------------------------------- [ 验算条件 ]---------------------------------------------------------------------- [ 基本参数 ]所依据的规程或方法:《建筑基坑支护技术规程》JGJ 120-99基坑深度: 6.650(m)基坑内地下水深度: 20.000(m)基坑外地下水深度: 20.000(m)基坑侧壁重要性系数: 1.000土钉荷载分项系数: 1.250土钉抗拉抗力分项系数: 1.300整体滑动分项系数: 1.300[ 坡线参数 ]坡线段数 1序号水平投影(m) 竖向投影(m) 倾角(°)1 5.320 6.650 51.3[ 土层参数 ]土层层数 3序号土类型土层厚容重饱和容重粘聚力内摩擦角钉土摩阻力锚杆土摩阻力水土泊松比变形模量(m) (kN/m^3) (kN/m^3) (kPa) (度) (kPa) (kPa)1 粘性土 5.430 19.8 19.8 20.0 15.0 40.0 40.0 合算0.250 7.0002 细砂 1.000 19.5 19.5 0.0 28.0 20.0 20.0 合算0.250 7.0003 卵石 10.600 22.0 22.0 0.0 40.0 120.0 120.0 合算0.250 7.000[ 超载参数 ]超载数 2序号超载类型超载值(kN/m) 作用深度(m) 作用宽度(m) 距坑边线距离(m) 形式长度(m)1 满布均布 5.0002 局部均布 30.000 0.000 6.000 2.800 条形[ 土钉参数 ]土钉道数 4序号水平间距(m) 垂直间距(m) 入射角度(度) 钻孔直径(mm) 长度(m) 配筋1 1.500 1.500 12.0 120 9.000 1E182 1.500 1.500 12.0 120 9.000 1E183 1.500 1.500 12.0 120 7.500 1E184 1.500 1.500 12.0 120 6.000 1E18[ 花管参数 ]基坑内侧花管排数 0基坑内侧花管排数 0[ 锚杆参数 ]锚杆道数 0[ 坑内土加固参数 ]厚度(m) 宽度(m) 重度(kN/m~3) 饱和重度(kN/m~3) 粘聚力(kPa) 内摩擦角(度)2.0003.000 18.000 18.000 20.000 35.0[ 内部稳定验算条件 ]考虑地下水作用的计算方法:总应力法土钉拉力在滑面上产生的阻力的折减系数: 0.500*******************************************************************[ 验算结果 ]*******************************************************************[ 局部抗拉验算结果 ]工况开挖深度破裂角土钉号土钉长度受拉荷载标准值抗拔承载力设计值抗拉承载力设计值满足系数(m) (度) (m) Tjk(kN) Tuj(kN) Tuj(kN) 抗拔抗拉1 1.200 33.2 02 2.200 33.2 03 3.200 33.2 1 9.000 2.4 93.3 91.6 30.557 30.0054 4.200 33.2 1 9.000 0.0 86.8 91.6 999.000 999.0002 9.000 6.8 96.6 91.6 11.326 10.7455 5.200 33.2 1 9.000 0.0 80.2 91.6 999.000 999.0002 9.000 6.8 90.0 91.6 10.560 10.7456 6.200 34.0 1 9.000 0.0 75.4 91.6 999.000 999.0002 9.000 6.5 84.7 91.6 10.494 11.3543 7.500 21.9 59.0 91.6 2.155 3.3487 6.650 34.6 1 9.000 0.0 74.0 91.6 999.000 999.0002 9.000 6.2 82.8 91.6 10.706 11.8393 7.500 21.0 56.7 91.6 2.163 3.4914 6.000 32.3 146.9 91.6 3.637 2.268[ 内部稳定验算结果 ]工况号安全系数圆心坐标x(m) 圆心坐标y(m) 半径(m)1 4.102 4.502 7.480 2.0352 2.738 3.655 7.466 3.0183 2.637 2.966 8.635 5.1894 2.123 2.327 9.772 7.3315 1.594 1.550 11.164 9.7226 1.353 -0.423 12.877 12.4517 10.186 0.157 1.260 1.0418 10.186 0.157 1.260 1.041[ 外部稳定计算参数 ]所依据的规程:《建筑地基基础设计规范》(GB50007-2002) 土钉墙计算宽度: 10.000(m)墙后地面的倾角: 0.0(度)墙背倾角: 90.0(度)土与墙背的摩擦角: 10.0(度)土与墙底的摩擦系数: 0.300墙趾距坡脚的距离: 0.000(m)墙底地基承载力: 400.0(kPa) 抗水平滑动安全系数: 1.300抗倾覆安全系数: 1.600[ 外部稳定计算结果 ]重力: 968.4(kN)重心坐标: ( 6.166, 2.916)超载: 79.8(kN)超载作用点x坐标: 8.649(m)土压力: 83.4(kPa)土压力作用点y坐标: 2.261(m)基底平均压力设计值 106.3(kPa) < 400.0基底边缘最大压力设计值 184.7(kPa) < 1.2*400.0 抗滑安全系数: 3.880 > 1.300抗倾覆安全系数: 36.636 > 1.600 [ 喷射混凝土面层计算 ][ 计算参数 ]厚度: 80(mm)混凝土强度等级: C20配筋计算as: 15(mm)水平配筋: d6@200竖向配筋: d6@200荷载分项系数: 1.200[ 计算结果 ]编号深度范围荷载值(kPa) 轴向 M(kN.m) As(mm^2) 实配As(mm^2) 1 0.00~ 1.50 0.0 x 0.000 160.0(构造) 141.4y 0.000 160.0(构造) 141.42 1.50~ 3.00 1.8 x 0.148 160.0(构造) 141.4y 0.148 160.0(构造) 141.43 3.00~ 4.50 19.2 x 1.587 160.0(构造) 141.4y 1.587 160.0(构造) 141.44 4.50~ 6.00 41.9 x 3.466 186.1 141.4y 3.466 186.1 141.45 6.00~ 6.65 48.5 x 0.000 160.0(构造) 141.4y 2.562 160.0(构造) 141.4。
论基坑支护工程土钉墙整体稳定性验算方法
论基坑支护工程土钉墙整体稳定性验算方法1、概述目前,土钉墙在深基坑支护施工中得到广泛应用,《建筑基坑支护技术规程》(JGJ120)1999版本已修改为2012版本,其中土钉墙章节做了较大修改,尤其是土钉墙整体稳定性验算公式变化,需要搜索不同圆心及半径的所有潜在滑动圆弧,以确定抗滑力矩与滑动力矩之比的最小值;因此产生了新的计算方法,如各种应用软件。
下面介绍一种实用的手算方法,按照《建筑基坑支护技术规程》(JGJ120-2012)中土钉墙整体稳定性验算规定,建立计算模型、建立计算表格、采用CAD 制图软件画出滑动圆弧、工程实例计算、搜索,以完成土钉墙整体稳定性验算过程。
2、手算方法2.1 计算模型为达到搜索不同圆心及半径的所有潜在滑动圆弧的目的,需要建立一个计算模型:第一步:设定滑动圆弧AB,A点在坡脚,B点在坡顶。
水平移动B点,形成AB1圆弧、AB2圆弧,如图1。
通过AB圆弧、AB1圆弧、AB2圆弧计算圆弧滑动稳定安全系数KS,j,搜寻KS,j最小值,搜索危险滑动圆弧面ABZ。
第二步:对于滑动圆弧ABZ,A点、BZ点固定,设圆弧中点C,移动C点,形成AC1BZ圆弧、AC2BZ圆弧,如图2。
通过AC1BZ圆弧、AC2BZ圆弧计算圆弧滑动稳定安全系数KS,j,搜寻K S,j最小值,搜索最危险滑动圆弧面ACZBZ。
2.2 建立计算表格使用Excel电子表格(表1),计算圆弧滑动稳定安全系数Ks,j。
由《建筑基坑支护技术规程》(JGJ120-2012)公式(5.1.1-1)、(5.1.1-2),采用圆弧滑动条分法进行计算得出Ks,j:min{KS,1,KS,2…K S,j…}≥K S (5.1.1-1)∑[ cj lj + (qj bj+ΔGj )cosθjtan φj ] + ∑Rˊk,k[cos(αk+θk)+ψv]/sx,kKs,j = ------------------------------------------------------------------------------------- (5.1.1-2)∑(qj bj+ΔGj )sinθj公式中參数:cj 、qj、φj 、Rˊk,k、αk、sx,k,为已知数值;参数:lj、bj、ΔGj、θj、θk、ψv,通过CAD制图画出滑动圆弧,获取数值,如图3;将所有数据填入表1,表格自动计算出Ks,j。
土钉墙
3.2.2计算基坑壁所受主动土压力利用朗垦土压力来计算,当黏聚力C 的影响较小时,有时可以略去,可使于计算,亦可使计算偏于安全。
(见图3.7)因基坑开挖深度较大,可分二段开挖支护,上层取6m ,以1:0.5放坡,中间留1m 平台,且因施工时经过雨季,地下水可达地表以下1m 。
第一层土:11P qka =上=20⨯0.633=12.564211(45/2)ka tg ϕ=-2(4513/2)tg =-=0.633 11P ka γ=下1(q+h ) =(20+19.5⨯0.3)×0.633=16.363 第二层土:12P ka γ=1上(q+h )=16.363211P ka γγ⎡⎤=⎣⎦/下11q+h +(h-h )图3.7主动土压力计算示意图=[20+19.5⨯0.3+9.5×(4-0.3)]×0.633=38.613 图3.7 主动土压力计算图 第三层土:232(45/2)ka tg ϕ=-2(4528/2)tg =-0.361=1123P h h h ka h ka γγγ⎡⎤=+⨯⨯⎣⎦//1113上q++(-)=[20+19.5⨯0.3+9.5×(4-0.3)+9.5×2]×0.361=28.8012()w P h h ηγ=+水=0.5×(2+3) ×10=253.2.3土钉抗拔承载力计算土钉抗拔力计算是局部稳定性验算的一个重要方面,旨在在主动土压力作用下,保证土钉具有足够的抗拔力而不致被拔出,进而导致局部失稳塌方。
见图3.8土钉选材:采用Ⅱφ32(热轧变型钢筋)。
本设计土钉成孔直径D =150mm 土钉长度: 123L L L L =++式中1L ——自由段长度; 2L ——锚固段长度; 3L ——土钉外端长度。
本设计取3L =250mm图3.8 确定土钉长度示意图3.2.3.1确定自由段长度,土钉自由段的长度从已确定的最危险圆弧滑动面上量取 1I L =4m; 2I L =3 .3m; 3I L =1.8m;3.2.3.2讲计算出的主动土压力图采用二分之一分割法,把临近的土压力分配给该根土钉承受,使矩形面积与不规则多边形或梯形面积相等,这样每根土钉承受的主动土压力为: i i h v R N S S =⨯⨯。
土钉抗拉承载力和土钉墙整体稳定性计算方法[详细]
土钉墙支护计算计算书本计算书参照《建筑基坑支护技术规程》JGJ120-99 中国建筑工业出版社出版《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制.土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性.一、参数信息:1、基本参数:侧壁安全级别:二级基坑开挖深度h(米):7.430;土钉墙计算宽度b'(米):100;土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层内的内摩擦角;条分块数:/;不考虑地下水位影响;2、荷载参数:序号类型面荷载q(kPa) 基坑边线距离b0(米) 宽度b1(米)1 局布20.00 4.86 53、地质勘探数据如下::序号土名称土厚度坑壁土的重度γ 坑壁土的内摩擦角φ 内聚力C 极限摩擦阻力(米) (kN/米3) (°) (kPa) (kPa)1 填土 1.30 18.00 18.00 12.00 80.002 粘性土 1.30 18.00 20.00 25.00 100.003 粉土 3.10 19.00 25.00 18.00 110.004 粘性土 1.20 18.00 20.00 25.00 100.005 粉砂 4.10 19.00 35.00 18.00 115.004、土钉墙布置数据:放坡参数:序号放坡高度(米) 放坡宽度(米) 平台宽度(米)1 7.43 3.00 100.00土钉数据:序号直径(米米) 长度(米) 入射角(度) 竖向间距(米) 水平间距(米)1 150 6.00 15.00 1.50 1.50二、土钉(含锚杆)抗拉承载力的计算:单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99,R=1.25γ0T jk1、其中土钉受拉承载力标准值T jk按以下公式计算:T jk=ζe ajk s xj s zj/cosαj其中ζ--荷载折减系数e ajk --土钉的水平荷载s xj、s zj--土钉之间的水平与垂直距离αj--土钉与水平面的夹角ζ按下式计算:ζ=tan[(β-φk)/2](1/(tan((β+φk)/2))-1/tanβ)/tan2(45°-φ/2)其中β--土钉墙坡面与水平面的夹角.φ--土的内摩擦角e ajk按根据土力学按照下式计算:e ajk=∑{[(γi×s zj)+q0]×K ai-2c(K ai)1/2}2、土钉抗拉承载力设计值T uj按照下式计算T uj=(1/γs)πd nj∑q sik l i其中d nj--土钉的直径.γs--土钉的抗拉力分项系数,取1.3q sik --土与土钉的摩擦阻力.根据JGJ120-99 表6.1.4和表4.4.3选取.l i--土钉在直线破裂面外穿越稳定土体内的长度.层号有效长度(米) 抗拉承载力(kN) 受拉荷载标准值(kN) 初算长度(米) 安全性1 2.68 10.35 0.00 3.32 满足第1号土钉钢筋的直径ds至少应取:14.000 米米;三、土钉墙整体稳定性的计算:根据《建筑基坑支护技术规程》JGJ 120-99要求,土钉墙应根据施工期间不同开挖深度及基坑底面以下可能滑动面采用圆弧滑动简单条分法如下图,按照下式进行整体稳定性验算:公式中:γk --滑动体分项系数,取1.3;γ0 --基坑侧壁重要系数;ωi --第i条土重;b i --第i分条宽度;c ik--第i条滑土裂面处土体固结不排水(快)剪粘聚力标准值;φik--第i条滑土裂面处土体固结不排水(快)剪内摩擦角标准值;θi --第i条土滑裂面处中点切线与平面夹角;αj --土钉与水平面之间的夹角;L i --第i条土滑裂面的弧长;s --计算滑动体单元厚度;T nj--第j根土钉在圆弧滑裂面外锚固与土体的极限抗拉力,按下式计算.T nj=πd nj∑q sik l njl nj --第j根土钉在圆弧滑裂面外穿越第i层稳定土体内的长度把各参数代入上面的公式,进行计算可得到如下结果:---------------------------------------------------------------------------------计算步数安全系数滑裂角(度) 圆心X(米) 圆心Y(米) 半径R(米) 第1步 2.355 29.610 -0.034 1.475 1.476示意图如下:计算步数安全系数滑裂角(度) 圆心X(米) 圆心Y(米) 半径R(米) 第2步 1.586 29.610 -0.251 10.963 10.966示意图如下:--------------------------------------------------------------------------------------计算结论如下:第 1 步开挖内部整体稳定性安全系数Fs= 2.355>1.30 满足要求! [标高-1.000 米]第 2 步开挖内部整体稳定性安全系数Fs= 1.586>1.30 满足要求! [标高-7.430 米]四、抗滑动及抗倾覆稳定性验算(1)抗滑动稳定性验算抗滑动安全系数按下式计算:K H=f'/E ah≥1.3式中,E ah为主动土压力的水平分量(kN);f'为墙底的抗滑阻力(kN),由下式计算求得:f'=μ(W+qB a S v)μ为土体的滑动摩擦系数;W为所计算土体自重(kN)q为坡顶面荷载(kN/米2);B a为荷载长度;S v为计算墙体的厚度,取土钉的一个水平间距进行计算1级坡:K H=3.62>1.3,满足要求!(2)抗倾覆稳定性验算抗倾覆安全系数按以下公式计算:K Q=米G/米Q式中,米G--由墙体自重和地面荷载产生的抗倾覆力矩,由下式确定米G=W×B C×qB a×(B'-B+b×B a/2)其中,W为所计算土体自重(kN)其中,q为坡顶面荷载(kN/米2)B c为土体重心至o点的水平距离;B a为荷载在B范围内长度;b为荷载距基坑边线长度;B'为土钉墙计算宽度;米E--由主动土压力产生的倾覆力矩,由下式确定米k=E ah×l h其中,E ah为主动土压力的水平分量(kN);l h为主动土压力水平分量的合力点至通过墙趾O水平面的垂直距离. 1级坡:满足要求!。
相关规范对土钉墙整体稳定性的计算公式
s k 0 ( wi q0 bi ) sin i 0
i 1
式中:
n --滑动体分条数; m --滑动体内土钉数;
k --整体滑动分项系数,可取 1.3;
0 --基坑侧壁重要性系数;
wi --第 i 条土重,滑裂面位于粘性土或
粉土中时,按上覆土层的饱和土重度计 算;滑裂面位于砂层或碎石类土中时, 按上覆土层的浮重度计算;
Tnj --第 j 根土钉在圆弧滑裂面外锚固体与土体的极限抗拉力。
2、中国工程建设标准化协会标准《基坑土钉支护技术规程》 (CEVS96-97)P12 5.3.1 土钉支护的内部整体稳定性分析是指边坡土体中可能出现的破坏面发生在支护内部并 穿过全部或部分土钉。 假定破坏面上的土钉只承受拉力且达到最大抗力, 按圆弧破坏面采用 普通条分法对支护作整体稳定分析, 取单位长度支护进行计算, 按下式算出内部整体稳定性 安全系数为:
bi --第 i 分条宽度; cik --第 i 分条滑裂面处土体固结不排水(快)剪粘聚力标准值;
ik --第 i 分条滑裂面处土体固结不排水(快)剪内摩擦角标准值; i --第 i 分条滑裂面处中点切线与水平面夹角;
j --土钉与水平面之间的夹角;
Li --第 i 分条滑裂面处弧长;
s --计算滑动体单元厚度;
--折减系数,根据经验取 0.5。
5、上海市标准《基坑工程技术规范》 (DG/TJ08-61-2010)P48 7.2.6 复合土钉墙支护应根据开挖和安设土钉工况分阶段验算稳定性,同时应按最终工况验 算整体稳定性。 复合土钉墙支护应采用瑞典条分法验算最危险滑动面的稳定性, 并按下式计 算水泥土搅拌桩、土钉等的抗滑作用:
c l S (w
4.1.土钉墙支护计算(手算)
错误!未定义书签。
错误!未定义书签。
目录1。
工程概况 (1)2。
求土钉所受土体侧压力p (1)3.求土钉所受的拉力N (2)4。
求土钉长度L (2)5。
求土钉钢筋直径d (3)6.边坡喷混凝土面层计算 (4)7.边坡稳定性验算 (6)7。
1外部整体稳定性验算 (6)7.2内部整体稳定性验算 (7)8.基坑分层开挖高度计算 (9)1.工程概况[例]基坑开挖深度H=7.4m,土钉孔径d 0=0。
1m,土质为一般粘性土,呈坚硬状态,土的内摩擦角ψ=25°,土的粘聚力c=18 kPa 土钉与土体之间的界面粘结强度г=50 kPa ,土的重度γ=19 kN/m 3,地面超荷载q=20 kN/m 2,试求土钉所受的拉力,土钉长度、直径、边坡喷混凝土厚度及配筋并进行边坡稳定性验算。
2.求土钉所受土体侧压力p公式:c 18==0.130.05197.4H γ⨯> 对于c0.05Hγ≤的砂土和粉土 即: P=0.55 Ka γH 对于c0.05Hγ>的一般黏性土 即: P 1=0.552c- a 1a K H H K Ka H ⎛ ≤⎝γγγ黏性土P 1 的取值不小于0.2γH已知式中,2a=tan 45-=2K ϕ⎛⎫︒ ⎪⎝⎭0。
4060。
637侧 压P 1=21810.4061-7.47.40.637=⨯⎛⎫⨯⨯⨯⨯ ⎪⨯⎝⎭191934。
14 kN/㎡侧 压P q =Ka ∙q=0。
406×20=8。
12 kN/㎡ 侧压力P= P 1+P q =34.14+8.12=42.26 kN/㎡ 3。
求土钉所受的拉力N 公式: 1=pS S cos X Y N θΘ为土钉的倾角,取10°;S X 为土钉水平间距,取1.0m ;S Y 为土钉水竖向距,取1.4m 。
1-41=42.26 1.0 1.4=cos10N ⨯⨯⨯60.08 kN51=42.26 1.0 1.1=cos10N ⨯⨯⨯47.16 kN4。
土钉墙计算与实例_secret
土钉墙的设计一、土钉墙的设计土钉几何尺寸设计土钉长度设计计算公式L=mH+S0式中:m为经验系数一般可取0.7→1.2;S0为止浆器长度一般可取0.8→1.5m;H为边坡的垂直高度(m)。
土钉间距设计由下式确定s x s y≤k l d h L式中:s x、s y为土钉行距、列距;d h为土钉孔直径,由施工钻机确定,一般为90→200mm;k l为注浆系数,一次压力注浆,取1.5→2.5。
土钉钉材直径d b按下式估算d b=(20→25)÷1000×s x s y同时按土钉过量伸长或屈服进行土钉直径验算,按界面摩阻力进行锚固力计算。
二、土钉墙内部稳定验算土钉墙土压力计算及潜在破裂面确定假定潜在破裂面为双折线,既墙顶至墙顶以下0.75H范围内的破裂面为直线,其下为斜线(图8-3)。
图8-3潜在破裂面图土钉墙面层土压力简化图土钉墙面层后土压力强度公式为q=m e kγh式中:m e为工作条件系数,临时支撑为1.1,永久支撑为1.2;k为土压力系数,K=0.5(k0+k a),k0、k a分别为静止土压力和主动土压力系数;γ为土容重;h为土压力作用点到坡顶的距离,当h≤0.5H时,h取实际值,当h>0.5H时,h取0.5H。
土压力分布见图8-3。
抗拉断裂验算πd b2f y/4E i≥1.5式中:E i为第I列单根土钉所承担的土压力,E i=q i s x s y;f y为钉材抗拉设计值(kPa);q i为第I列单根土钉所在位置面层后土压力强度。
抗拔验算在土压力作用下,土钉应具有足够的界面阻力而不被拔出,应满足下式τπd h L ei/E i≥F s式中:L ei为第i列土钉有效锚固长度;τ为锚孔对砂浆的极限剪应力(kPa);F s为安全系数,取1.3→2.0,永久工程取大值。
土钉墙的设计内容对于一般土钉墙工程,设计内容为:1、根据总体设计布置确定土钉墙的平、剖面尺寸;2、根据边坡岩土特征确定分层施工高度;3、确定土钉布置方式和间距;4、确定土钉的直径、长度和倾角;5、确定土钉钢筋的类型、直径和构造;6、注浆配比和注浆方式;7、喷射混凝土面板设计及坡顶防护设计;8、土钉墙内部及整体分析;9、排水系统设计;10、现场监测和质量控制设计。
土钉墙稳定性验算
---------------------------------------------------------------------- 验算项目: 超级土钉 1---------------------------------------------------------------------- [ 验算简图 ]---------------------------------------------------------------------- [ 验算条件 ]---------------------------------------------------------------------- [ 基本参数 ]所依据的规程或方法:《建筑基坑支护技术规程》JGJ 120-99基坑深度: 6.650(m)基坑内地下水深度: 20.000(m)基坑外地下水深度: 20.000(m)基坑侧壁重要性系数: 1.000土钉荷载分项系数: 1.250土钉抗拉抗力分项系数: 1.300整体滑动分项系数: 1.300[ 坡线参数 ]坡线段数 1序号水平投影(m) 竖向投影(m) 倾角(°)1 5.320 6.650 51.3[ 土层参数 ]土层层数 3序号土类型土层厚容重饱和容重粘聚力内摩擦角钉土摩阻力锚杆土摩阻力水土泊松比变形模量(m) (kN/m^3) (kN/m^3) (kPa) (度) (kPa) (kPa)1 粘性土 5.430 19.8 19.8 20.0 15.0 40.0 40.0 合算0.250 7.0002 细砂 1.000 19.5 19.5 0.0 28.0 20.0 20.0 合算0.250 7.0003 卵石 10.600 22.0 22.0 0.0 40.0 120.0 120.0 合算0.250 7.000[ 超载参数 ]超载数 2序号超载类型超载值(kN/m) 作用深度(m) 作用宽度(m) 距坑边线距离(m) 形式长度(m)1 满布均布 5.0002 局部均布 30.000 0.000 6.000 2.800 条形[ 土钉参数 ]土钉道数 4序号水平间距(m) 垂直间距(m) 入射角度(度) 钻孔直径(mm) 长度(m) 配筋1 1.500 1.500 12.0 120 9.000 1E182 1.500 1.500 12.0 120 9.000 1E183 1.500 1.500 12.0 120 7.500 1E184 1.500 1.500 12.0 120 6.000 1E18[ 花管参数 ]基坑内侧花管排数 0基坑内侧花管排数 0[ 锚杆参数 ]锚杆道数 0[ 坑内土加固参数 ]厚度(m) 宽度(m) 重度(kN/m~3) 饱和重度(kN/m~3) 粘聚力(kPa) 内摩擦角(度)2.0003.000 18.000 18.000 20.000 35.0[ 内部稳定验算条件 ]考虑地下水作用的计算方法:总应力法土钉拉力在滑面上产生的阻力的折减系数: 0.500*******************************************************************[ 验算结果 ]*******************************************************************[ 局部抗拉验算结果 ]工况开挖深度破裂角土钉号土钉长度受拉荷载标准值抗拔承载力设计值抗拉承载力设计值满足系数(m) (度) (m) Tjk(kN) Tuj(kN) Tuj(kN) 抗拔抗拉1 1.200 33.2 02 2.200 33.2 03 3.200 33.2 1 9.000 2.4 93.3 91.6 30.557 30.0054 4.200 33.2 1 9.000 0.0 86.8 91.6 999.000 999.0002 9.000 6.8 96.6 91.6 11.326 10.7455 5.200 33.2 1 9.000 0.0 80.2 91.6 999.000 999.0002 9.000 6.8 90.0 91.6 10.560 10.7456 6.200 34.0 1 9.000 0.0 75.4 91.6 999.000 999.0002 9.000 6.5 84.7 91.6 10.494 11.3543 7.500 21.9 59.0 91.6 2.155 3.3487 6.650 34.6 1 9.000 0.0 74.0 91.6 999.000 999.0002 9.000 6.2 82.8 91.6 10.706 11.8393 7.500 21.0 56.7 91.6 2.163 3.4914 6.000 32.3 146.9 91.6 3.637 2.268[ 内部稳定验算结果 ]工况号安全系数圆心坐标x(m) 圆心坐标y(m) 半径(m)1 4.102 4.502 7.480 2.0352 2.738 3.655 7.466 3.0183 2.637 2.966 8.635 5.1894 2.123 2.327 9.772 7.3315 1.594 1.550 11.164 9.7226 1.353 -0.423 12.877 12.4517 10.186 0.157 1.260 1.0418 10.186 0.157 1.260 1.041[ 外部稳定计算参数 ]所依据的规程:《建筑地基基础设计规范》(GB50007-2002) 土钉墙计算宽度: 10.000(m)墙后地面的倾角: 0.0(度)墙背倾角: 90.0(度)土与墙背的摩擦角: 10.0(度)土与墙底的摩擦系数: 0.300墙趾距坡脚的距离: 0.000(m)墙底地基承载力: 400.0(kPa) 抗水平滑动安全系数: 1.300抗倾覆安全系数: 1.600[ 外部稳定计算结果 ]重力: 968.4(kN)重心坐标: ( 6.166, 2.916)超载: 79.8(kN)超载作用点x坐标: 8.649(m)土压力: 83.4(kPa)土压力作用点y坐标: 2.261(m)基底平均压力设计值 106.3(kPa) < 400.0基底边缘最大压力设计值 184.7(kPa) < 1.2*400.0 抗滑安全系数: 3.880 > 1.300抗倾覆安全系数: 36.636 > 1.600 [ 喷射混凝土面层计算 ][ 计算参数 ]厚度: 80(mm)混凝土强度等级: C20配筋计算as: 15(mm)水平配筋: d6@200竖向配筋: d6@200荷载分项系数: 1.200[ 计算结果 ]编号深度范围荷载值(kPa) 轴向 M(kN.m) As(mm^2) 实配As(mm^2) 1 0.00~ 1.50 0.0 x 0.000 160.0(构造) 141.4y 0.000 160.0(构造) 141.42 1.50~ 3.00 1.8 x 0.148 160.0(构造) 141.4y 0.148 160.0(构造) 141.43 3.00~ 4.50 19.2 x 1.587 160.0(构造) 141.4y 1.587 160.0(构造) 141.44 4.50~ 6.00 41.9 x 3.466 186.1 141.4y 3.466 186.1 141.45 6.00~ 6.65 48.5 x 0.000 160.0(构造) 141.4y 2.562 160.0(构造) 141.4。