(完整版)圆柱和圆锥整理复习
完整版)圆柱体和圆锥体知识点复习整理
完整版)圆柱体和圆锥体知识点复习整理圆柱体和圆锥体知识点复整理
本文档旨在提供关于圆柱体和圆锥体的知识点复整理。
以下是相关的知识点介绍:
圆柱体(Cylinder)
圆柱体是一个由两个平行的圆面和一个定位于两圆面之间的侧面所组成的几何体。
以下是一些圆柱体的重要特征:
底面积:圆柱体底面的面积可以通过圆的面积公式计算。
圆的面积公式为:A = πr²,其中 r 是圆的半径。
侧面积:圆柱体的侧面积可以通过将圆的周长乘以圆柱体的高度来计算。
侧面积公式为:A = 2πrh,其中 h 是圆柱体的高度,r 是圆的半径。
总表面积:圆柱体的总表面积可通过将底面积和侧面积相加来计算。
总表面积公式为:A = 2πr² + 2πrh。
圆锥体(Cone)
圆锥体是一个由一个圆形底面和一个定位于底面圆心的侧面所组成的几何体。
以下是一些圆锥体的重要特征:
底面积:圆锥体底面的面积可以通过圆的面积公式计算。
圆的面积公式为:A = πr²,其中 r 是底面圆的半径。
侧面积:圆锥体的侧面积可以通过将圆的周长乘以圆锥体的斜高来计算。
侧面积公式为:A = πrl,其中 l 是圆锥体的斜高,r 是底面圆的半径。
总表面积:圆锥体的总表面积可通过将底面积和侧面积相加来计算。
总表面积公式为:A = πr² + πrl。
以上是关于圆柱体和圆锥体的知识点复习整理。
希望对您有所帮助!。
人教版六年级下册数学 圆柱与圆锥整理和复习
40
(单位:厘米)
增加两个长方形的面, 长等于圆柱的高,宽等 于底面直径。
滚、刷、切、削、熔……
切割前后的表面积 增加了,体积不变
。
滚、刷、切、削、熔……
把圆柱削成最大的圆锥,需要削去多少?
50
问题1:怎么削才算是最大的圆锥?
问题2:削成的圆锥与圆柱有什么关系?
2
3.14×(40÷2)2×50×
选择 一个有盖的圆柱形铁桶。 1、求这个铁桶的占地面积,是求( A. 容积 B. 底面积 C. 表面积
B) D. 体积
2、做这样一个铁桶用多少铁皮,是求( C ) A. 容积 B. 底面积 C. 表面积 D. 体积
3、这个铁桶能装多少水,是求( A ) A. 容积 B. 底面积 C. 表面积 D. 体积
0.5m 1m 4.5m ——
314dm3 2.198m3 6280cm3 10.048dm3 1.1775m3
3.妈妈给小雨的塑料壶做了一个布套(如图)小雨每天上学带一壶水。 (1)至少用了多少布料? (2)小雨在学校一天喝1.5L的水,这壶水够喝吗?(水壶的厚度忽略不 计。)
分析:求所用布料就是求水壶的表面积,求能装多少水 即求水壶的体积。
答:旋转一周后围成的立体图形的体积是301.44cm3。
3.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一 些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸 入水中),鱼缸中的水面升高了2cm。这个圆锥的高是多少?
水面升高的那部分圆柱的体积就是
放入水中的圆锥的体积。
2cm
V 锥 = V 柱=3.14×(40÷2)2×2 =3.14×800 =2512(cm3)
3.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一 些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸 入水中),鱼缸中的水面升高了2cm。这个圆锥的高是多少?
(完整版)圆柱圆锥知识点总结
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面.圆柱两个底面之间的距离叫做圆柱的高.2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高.3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高.4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图例2、半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3。
14 × 3 × 2 = 18。
84(厘米)底面积 3。
14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31。
4(米)底面积 3.14 ×(10÷2)²= 78。
5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算.例3、判断:圆柱和圆锥都有无数条高.错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高.例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形.这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
圆柱与圆锥知识点整理六年级
圆柱与圆锥知识点整理六年级一、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h1.圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh2.圆柱的特征:①底面的特征:圆柱的底面是完全相等的两个圆。
②侧面的特征:圆柱的侧面是一个曲面。
③高的特征:圆柱有无数条高。
3.圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形二、圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h1.圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh2.圆锥的特征:①底面的特征:圆锥的底面一个圆。
②侧面的特征:圆锥的侧面是一个曲面。
③高的特征:圆锥有一条高。
3.圆柱和圆锥的关系①圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
②圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
③圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
④圆柱与圆锥等底等高,体积相差2/3Sh专项练习题一、填空。
1. 把圆柱的侧面沿高剪开,得到一个( ),这个( )的长等于圆柱底面的( ),宽等于圆柱的( ),所以圆柱的侧面积等于( )。
2. 415平方厘米=( )平方分米 4.5立方米=( )立方分米2.4立方分米=( )升( )毫升 4070立方分米=()立方米3立方分米40立方厘米=()立方厘米325 立方米=()立方分米538 升=()升()毫升3. 将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是( )平方分米,体积是( )立方分米。
六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面
圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。
【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。
2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。
长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。
3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。
3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。
考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。
圆柱和圆锥的复习
一瓶罐装可口可乐的体积大约是400立方 厘米,用20瓶装满一箱,这只箱子的容积 是8000立方厘米。
A
√
B
一个圆柱形水桶(无盖),底面半径 分米 分米。 一个圆柱形水桶(无盖),底面半径2分米,高6分米。 ),底面半径 分米, 分米
给这个水桶加个盖,是求这个水桶的( )
底面积: 3.14×22
A C E
20cm
A 增加了
40cm
B 减少了 C 没有发生变化
把这个木桩切成两个大小相同的圆柱形木桩, 表面积有没有发生变化?
20cm
表面积增加了两个底面。 表面积增加了两个底面。
40cm
半径:
20÷2=10cm
两个底面: 3.14×102×2
把这个木桩削成一个与它等底等高的 圆锥,圆锥的体积是多少? 圆锥,圆锥的体积是多少?削去的体 积是多少? 积是多少?
40cm
A B
表面积 侧面积 体积 底面积
20cm
C D
在这个木桩的外面刷上一层蓝色涂料, 在这个木桩的外面刷上一层蓝色涂料,刷涂料部分 的面积是多少平方米? 的面积是多少平方米? 半径: 20÷2=10cm
40cm
表面积: 3.14×20×40 + 3.14×102×2
20cm
把这个木桩切成两个大小相同的圆柱 形木桩,表面积有没有发生变化?
40cm
半径:
20÷2=10cm
圆锥体积: 3.14×102×40×1/3
20cm
削去的体积: 3.14×10 ×40×2/3
2
油漆工人给大堂里的几根圆柱形柱子涂上新的 油漆,那么涂油漆部分的面积是指 ( )
A B C D
底面积 侧面积 表面积 体积
(完整版)圆柱和圆锥知识点总结
长方体里削出最大的圆柱、圆锥:圆柱、圆锥底面直径等于宽(宽﹥高),圆柱、圆锥高等于长方体高。
4.浸物体积问题(排水法测不规则物体的体积):水面上升部分的体积就是浸
入水中物品的体积,等于盛水容器的底面积乘上升的高度。
也就是变化的水的体积。
主要类型:①盛满水,浸物溢水;②浸物水面上升;③取物水面下降。
5.等体积转换问题:圆锥体沙堆铺路;长方体钢材熔铸成圆柱或圆锥;橡皮泥
改变形状;圆柱中的溶液倒入圆锥……都是体积不变的问题。
解决此类问题,最好列出体积相等公式,再代入数据进行计算。
六年级下册数学教案《 第3单元 圆柱与圆锥 整理和复习 》 人教版
六年级下册数学教案《第3单元圆柱与圆锥整理和复习》人教版一. 教材分析本节课为人教版六年级下册数学第3单元“圆柱与圆锥”的整理和复习。
本单元的主要内容是圆柱和圆锥的特征、体积计算以及应用。
教材通过复习和整理,使学生对圆柱和圆锥的概念、性质、计算方法等有一个清晰、系统的认识,提高学生的空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习了圆柱和圆锥的基本知识,对圆柱和圆锥的特征、体积计算有一定的了解。
但部分学生对一些概念和公式的理解不够深入,应用能力有待提高。
此外,学生的空间想象能力和解决问题的能力参差不齐,需要在教学中加以关注和培养。
三. 教学目标1.知识与技能:通过对圆柱和圆锥的复习,使学生掌握圆柱和圆锥的基本概念、性质和体积计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和团队协作精神,使学生感受到数学与生活的密切联系。
四. 教学重难点1.重点:圆柱和圆锥的基本概念、性质和体积计算方法的掌握。
2.难点:对圆柱和圆锥体积公式的理解与应用,以及空间想象能力的培养。
五. 教学方法1.自主学习:引导学生独立思考,自主探究,发现和总结圆柱和圆锥的特点和规律。
2.合作交流:鼓励学生与他人分享学习心得,互相讨论,共同解决问题。
3.探究发现:引导学生动手操作,观察分析,发现圆柱和圆锥的体积计算方法。
4.启发引导:教师通过提问、设疑,引导学生思考,激发学生的学习兴趣。
六. 教学准备1.教具:圆柱和圆锥模型、图片、课件等。
2.学具:学生每人准备一个圆柱和圆锥模型,以及相关计算工具。
七. 教学过程1.导入(5分钟)利用课件展示生活中的圆柱和圆锥物体,引导学生回顾已学的知识,为新课的复习打下基础。
2.呈现(10分钟)教师通过讲解和示范,呈现圆柱和圆锥的基本概念、性质和体积计算方法。
圆柱的知识整理
圆柱的知识整理LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】三圆柱和圆锥一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。
(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr2?②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr2?底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr2+2πrh体积:V柱=πr2h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(完整版)六年级数学下册圆柱与圆锥知识点
六年级数学下册《圆柱与圆锥》知识点六年级数学下册《圆柱与圆锥》知识点知识点1。
圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆.3。
(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5。
把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
6。
圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
7.在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形.8。
温馨提示:圆柱的底面是圆形,面不是椭圆。
9.温馨提示:沿高剪开时,圆柱的侧面展开图是一个长方形。
10。
从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形).11。
如果圆柱的侧面展开图是个长方形,那么该圆柱的底面周长大约是其底面直径长度的3倍。
如果圆柱的侧面展开图是个正方形,那么该圆柱的高大约是其底面直径长度的3倍。
12。
圆柱的侧面积=底面周长×高.如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch13。
(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。
(2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。
14。
圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。
15.圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。
16.(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。
圆柱体圆锥体复习
通过实验得到圆锥体的体积等于和它等底等高的圆柱体体积的三分之一;圆锥体积的字母公式是V=1/3Sh)
教
后
反
思
有上、下两个面是完全相同的两个圆;两个底面之间的距离叫做高;有无数条;侧面展开是长或正方形。
圆柱的侧面是长方形或正方形面积=底面的周长×高;
表面积=圆柱的侧面积+两个底面的面积
长方体的体积=底面积×高,推出圆柱体的体积=底面积×高。圆柱体的体积计算的字母公式是V=Sh
圆锥体
只有一个顶点;一个底面;从圆锥的顶点到底面圆心的距离,叫做圆锥的高;只有一条高;侧面展开是扇形。
学习重点
掌握圆柱、圆锥表面积、体积的计算。
学习难点
认识圆柱、圆锥的特征和它们的体积之间的联系与区别。
教学准备
学具、小黑板。
学习过程
学案
导案
学习流程
1.通过小组探究交流整理圆柱与圆锥的相同点、不同点、表面积及体积的汉字和字母公式。
2.组长做好分工。
3.各组员发言。
4.记录员记录。
5.准备交流。
1.参与小组活动。
2.参与各组解题思路的探讨交流。
3.组织学生汇报解题过程,交流解题思路。
(具体题目见小黑板或学生课堂归纳的典型题目。)
总
结
评
价
1.谈收获。
2.自评互评。
1.归纳总结。
2.评价小组活动。
板
书
设
计
圆柱和圆锥整理与复习
圆柱与圆锥的特征比较
形体
项目
相同点
不同点
表面积
体积
圆柱体
都是立体图形;底面都是圆;侧面是一个曲面。
2.倾听小组发言。
3.帮助弱势小组或指导学困生。
圆柱与圆锥的整理复习
圆柱的底面半径为:62.8÷3.14÷2=10(m) 3.14×10²×2+3.14×10²×1.2÷3=628+125.6=753.6(m³)
圆柱体积
圆锥体积
753.6×500=376800(千克)=376.8(吨)
答:————————————。
=314(cm²) 铁块的高为:6280 x3÷314= 60(cm)
答:————————。
7、一个圆锥形的沙堆,底面周长是31.4m, 高是7.2m,每立方米沙重1.5吨,如果用 一辆载重6吨的汽车来运,几次可以运完?
底面半径r=31.4÷3.14÷2=5(m) 沙堆的体积:
V=1/3 × 3.14 × 5²× 7.2=188.4(m³) 188.4 × 1.5÷6≈48(次)
答:——————————。
• 1 圆柱与圆锥各有哪些特征? • 2 怎样求圆柱的侧面积.表面积.体积? 计算公式各是什么?
• 3怎样求圆锥的体积?计算公式是什么? • 4圆柱与圆锥的体积之间有什么系?
圆柱的特征:
1.两个底面是半径相等的两个圆 2.圆柱有一个曲面叫做侧面,展 开后是一个长方形。 3.圆柱有无数条高,且高的 长度都相等
V=sh÷3
圆柱与圆锥的体积之间有什么关系?
等底等高圆锥体积是圆柱体积的 三分之一 等底等高圆柱体积是圆锥体积的3倍
请回答下面的问题,并列出算式。
一个圆柱形水桶,底面半径10分米,
高是20分米。 ①给这个水桶加个桶的外面涂上油漆,是求哪个
部分? ④这个水桶能装多少水,是求哪个部分?
1.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( B )。
圆柱和圆锥(全部整合)
D
5
B4 C
13.把一个棱长是2分米的正方体削
成一个最大的圆柱体,它的侧面积 是( B )平方分米。 A.6.28 B.12.56 C.18.84 D. 25.12
2
2
2
2×3.14×2
14.把一个棱长是10厘米的正方体削
成一个最大的圆柱体,它的体积是 ( C )立方厘米。 A.3140 B.392.5 C.785 D. 314
10 8
2号题
计算图形的表面积(单位:厘米 )
6
上面圆柱的侧面积
5 下面圆柱的表面积
5 10
3号题
如图,想想办法,你能否求 它的体积?( 单位:厘米)
4
2
6
[3.14×1×1×(6+4)] ÷2=15.7( 立方厘米)
4号题 用塑料绳捆扎一个圆柱形的蛋糕
盒(如下图),打结处正好是底面圆心, 打结去20厘米绳长。
18.84
A
4
B
2
12.56
C
20
D
6
3.下雨时,给打谷场上的
圆锥形谷堆盖上塑料防 雨布,所需防雨布的最小 面积是指圆锥的( C ). A. 表面积 B.体积 C. 侧面积
4.一根圆柱形木材长2米,把截成4 个相等的圆柱体. 表面积增加了 18平方分米.截后每段圆柱体积 是( 660ddmm33 ).
P
B
A
P
Q
Q
P
C
(1)以长方形的一边 为轴旋转一周,扫过的 空间是什么形状?你可 以求出它的体积吗?
(2)以三角形的一条 直角边为轴旋转一周, 扫过的空间是什么形 状?你可以求出它的 B 体积吗?
5 4
圆柱与圆锥的整理复习
20c m
那么,它的表面积增加了多少 ?
把这个圆柱切成四段,它的表面
积增加了多少?
20c m
2019/1/30
如果截去4厘米高的一截,它的 表面积会有什么变化呢?
20c m
轻松一刻:我会断:
1.圆柱的体积比与它等底等高圆锥 的体积大3倍。 (×) 2.圆柱的半径扩大2倍,高不变, 它的体积也扩大2倍。 ( × 1 ) 3 × 3.圆锥的体积是圆柱体积的 ( ) √ 4.圆柱的侧面展开图也有可能是一 个平行四边形。 (
的面积有多大?
3.14X20X30+ 3.14X ( 20÷2 ) X2
2
=600∏ + 200∏=800 ∏
=2512(平方厘米)
20cm
这根木头的体积是多少?
2019/1/30
20cm 把这个圆柱形的木头削成最大的圆锥形,
这个圆锥形的体积是多少?削去的体积是
多少?
如果沿着底面直径把这个圆柱切开,
6
2 4
思考题
4 2 6
如图,想想办法,你能否求 它的体积?( 单位:分米)
6 2
4
内蒙古包头市包 钢 十 一 小
主讲人:宋 秀 清
20cm
仔细观察图中信息,结合圆柱和圆锥
的知识,联系我们的生活实际,展开你
们想象的翅膀,看看你们小组能提出哪
些实际问题来,并解答。(每个小组至少 提出4个问题)。
把这根木头横着放,滚动一圈,滚动 的面积是多少?
20c m
2019/1/30
20c m 把这根木头全都刷上油漆,刷油漆
一铁制圆锥底面直径是4cm,高为6cm, 它的体积是多少?将其熔铸成一个与 它等底的圆柱体,这个圆柱的高是多 少?
圆柱与圆锥期中专题复习 (含答案)
第一部分:面的旋转【重点知识】1、长方形以长或宽为轴旋转,得到圆柱。
补充:以谁为轴,谁就是高2、直角三角形以直角边为轴旋转,得到圆锥。
补充:以谁为轴,谁就是高;如长直角边为轴,则长直角边为高,短直角边为底面半径3、截面(1)圆柱的截面:圆形、长方形、正方形、平行四边形、梯形、椭圆、拱形。
(2)圆锥的截面:圆形、三角形、曲面(3)切一刀,增加2个面,切2刀,增加4个面,以此类推。
补充:圆柱切成多个小圆柱,切一刀,变为2个小圆柱,切2刀,变为3个小圆柱,以此类推。
4、展开图(1)圆柱的展开图:长方形、正方形、平行四边形①展开图为长方形:长方形的长=圆柱底面周长,长方形的宽=圆柱的高②展开图为正方形:圆柱的底面周长=圆柱的高=正方形的边长(2)圆锥的展开图:扇形【考试题精选】1、把一根圆柱体木料锯成三段,增加的底面有________个.()A.2B.3C.42、用一张长50厘米,宽20厘米的纸,以两种不同的方法围成一个圆柱,那么围成的圆柱()A.侧面积和高都相等B.高一定相等C.侧面积一定相等D.侧面积和高都不相等3、货架上正好装满了底面直径为32cm,高为60cm的油桶,这个货架的长至少________cm,高至少为________cm,宽为________cm.4、用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长15厘米.扎这个盒子至少用去塑料绳多少厘米?5、一个底面半径是4cm的圆锥,从顶点沿着高将它切成两部分,表面积增加了48cm2。
这个圆锥的体积是多少立方厘米?6、一个圆锥的底面周长是15.7厘米,高是3厘米.从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?第二部分:圆柱的表面积【重点知识】1、公式(3个)(1)底面积公式:3.14×r×r(2)侧面积公式:3.14×r×2×h(不要改变字母和数字的顺序)(3)表面积公式:(3.14×r×r)×2+3.14×r×2×h补充:凡是有周长、直径,不管题目求什么,第一时间求出半径。
《圆柱与圆锥》整理复习(教案)
2.引导与启发:我将作为引导者,提出问题帮助学生思考,如“圆柱与圆锥的设计有哪些优点?”
3.成果分享:每个小组将分享他们的讨论成果,以便全班同学共同学习。
(五)总结回顾(用时5分钟)
今天我们复习了圆柱与圆锥的表面积和体积的计算,并通过实践活动和小组讨论加深了对这些几何形状的理解。希望大家能够将这些知识应用到实际生活中。如果对今天的课程有任何疑问,欢迎随时提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要回顾圆柱与圆锥的基本概念,包括它们的表面积和体积的计算方法。这些几何形状在工程、建筑等领域有着广泛的应用。
2.案例分析:接下来,我们通过一个案例来了解圆柱与圆锥在实际中的应用,比如如何计算一个圆柱形水桶的容量。
3.重点难点解析:我会特别强调圆柱与圆锥表面积、体积公式的记忆和运用,以及如何将实际问题转化为数学模型。对于难点,如圆锥体积的1/3系数,我会通过实物演示或动画来帮助学生理解。
在教学过程中,教师需针对重点内容进行反复讲解和练习,确保学生熟练掌握。针对难点内容,教师应采用直观教学、实际操作等方法,帮助学生形象理解,并逐步突破难点。通过举例分析,让学生在实际问题中运用所学知识,提高解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《圆柱与圆锥》这一章节。在开始之前,我想先问大家一个问题:“你们在生活中是否注意过哪些物品是圆柱形或圆锥形的?”(如饮料罐、沙堆等)这个问题与我们将要复习的知识点密切相关。通过这个问题,我希望能够激发大家的兴趣,让我们一起探索圆柱与圆锥的奥秘。
-圆柱的表面积公式:S=2πrh+2πr²,体积公式:V=πr²h;
圆柱与圆锥整理和复习
支撑结构
装饰元素
圆柱在许多建筑中作为装饰元素出现 ,例如在门廊或窗户周围,圆柱形的 装饰柱可以增加建筑的视觉效果和美 观度。
圆柱在建筑中可以作为支撑结构,例 如在桥梁中,圆柱形的桥墩能够有效 地支撑桥面,保证桥梁的稳定性。
圆锥在机械制造中的应用案例
01
02
03
传动装置
圆锥在机械制造中广泛应 用于传动装置,如圆锥齿 轮、圆锥轴等,能够实现 精确的传动和扭矩传递。
交流合作
可以与其他同学或老师进行交流合作 ,共同探讨问题,互相学习,共同提 高。
06
圆柱与圆锥的练习题及答案解 析
基础练习题及答案解析
题目:一个圆柱的侧面展开图是半径为8cm的半圆, 则该圆柱的侧面积是 _______ $cm^2$,体积是 _______ $cm^3$.
输标02入题
01
答案:128$\pi$;128
圆柱与圆锥整理和复习
汇报人: 2023-12-19
目录
• 圆柱与圆锥基础知识回顾 • 圆柱与圆锥的几何特性分析 • 圆柱与圆锥的实际应用案例解
析 • 圆柱与圆锥的数学模型建立与
求解方法探讨
目录
• 圆柱与圆锥的解题技巧总结与 提高策略建议
• 圆柱与圆锥的练习题及答案解 析
01
圆柱与圆锥基础知识回顾
答案:36$\pi$
THANKS
谢谢您的观看
圆柱和圆锥都是由一条直线(轴线 )和一个平面图形(底面)组成的 。
面积上的相似性
圆柱和圆锥的侧面积都是曲边图形 ,虽然它们的面积计算公式不同, 但它们具有相似的形状和性质。
03
圆柱与圆锥的实际应用案例解 析
圆柱在建筑中的应用案例
圆柱和圆锥复习题大全(136题)
圆柱和圆锥复习题大全(136题)一、解决问题。
1.用铁皮做一个底面半径是20cm,高是50cm的圆柱形无盖水桶,至少需要多少平方米的铁皮 ?2.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米 ?3.小明有一个百宝箱,上部是一个圆柱的一半,下部是一个长50cm,宽40cm,高20cm的长方体,小明这个百宝箱的表面积是多少 ?4.一个圆柱的体积是602.88m3,底面周长是50.24m,这个圆柱的高是多少米?5.一瓶2.5升的果汁,倒入底面直径为4cm ,高为5cm 的圆柱形杯子里,可以倒几杯?(得数保留整数)6、爸爸要用一块面积为282.6dm 2的铁皮,做一个底面直径为1.5dm 的通风管,所做的通风管最长是多少 ?7.自来水管的内半径是2cm ,管内水的流速是每秒20cm 。
一位同学打开水龙头洗手,走时忘了关,5分钟后被另一名同学发现才关上,请你算一算,大约浪费了多少升水 ?8.如图,想想办法,9、亮亮生日那天,爸爸为亮亮买了一个圆柱形蛋糕,已知蛋糕的底面直径是32cm ,高l2cm ,这个蛋糕的体积是多少立方分米?10、一个圆柱形侧面展开后上一个正方形,已知这个正方形的高是18.84厘米,这个圆柱形的体积是多少?11、用铁皮做一个如下图所示空心零件(单位:厘米),需用铁皮多少平方厘米?12、一个长方形,长5分米,宽3分米,以它的长为轴,旋转一周,所形成的图形的体积是多少立方分米?13、在直径0.8米的水管中,水流速度是每秒2米,那么5分钟流过的水有多少立方米?14、把一个棱长是40厘米的正方体削成一个最大的圆柱体,它的表面积和体积各是多少?15、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?16、一个圆柱和与它等底等高的圆锥的体积之和是24平方分米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“圆柱和圆锥的复习”教学设计
者竜乡小学:龙庆伟
教学内容:义务教育课程标准试验教科书(北大版)六年级下册第一单
元“圆柱和圆锥”。
教材分析:
教学目标:
1.通过复习,使学生进一步认识圆柱、圆锥的特点.
2.使学生进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法,并提高灵活应用计算方法解决一些实际问题的能力。
3.进一步发展学生的空间观念,提高解决实际问题的能力。
教学重点:进一步认识圆柱、圆锥的特点。
教学难点:进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法。
教具准备:课件。
教学过程:
一、揭示课题
1、出示:圆柱和圆锥几何图,问:这是什么图形?
学生答:圆柱和圆锥
2、揭示课题:这节课我们就来复习“圆柱和圆锥”,并板书。
二、知识梳理
回忆本单元内容,形成初步的整体感知。
1、说出本单元所学内容
2、独自整理出重点知识,(概念、特征、计算公式)。
学生说,教师板书。
1、圆柱和圆锥的特征
有两个完全相同的圆形底面 一个顶点 圆
圆
一个圆形底面 柱 锥
一个曲形侧面
展开一般是个长方形 只有一条高
有无数条高 2、计算公式
圆柱的侧面积 = 底面周长× 高 圆柱的表面积 = 侧面积 +底面积 × 2 圆柱的体积 = 底面积 × 高 V=sh 圆锥的体积 = 底面积 × 高 × 3
1 V=
3
1
sh 三、练习、讲评
1、求圆柱的表面积(单位:厘米)
2
S=50.24厘米2
3、我会判断
(1)圆柱的体积是圆锥体积的3倍。
()(2)一个圆柱的体积是60立方厘米,和它等底等高的圆锥体积是20立方厘米。
()(3)把一段圆柱形的木料削成一个最大的圆锥,削去的部分是原体
2。
()积的
3
(4)一个圆柱和一个圆锥底面积相等,体积也相等,已知圆柱的高是15厘米,圆锥的高是5厘米。
()
4、我会选
(1)把一个圆柱的侧面展开,在()相等时,可以得到一个正方形。
A底面半径和高B底面直径和高C底面周长和高
(2)把一个圆柱平均切成若干份,可以拼成一个近似的长方体,原来的圆柱和拼成的长方体相比,()。
A体积不变B表面积不变C表面积和体积都不
(3)一个圆柱和一个圆锥,底面积相等,体积也相等。
圆柱的高是18厘米,圆锥的高是()厘米。
A6B18C54
5、实际问题
(1)一根高4米的大厅门柱,底面半径是2米,如果给这根柱子刷漆,至少要刷多少平方米?
(2)一个圆锥形谷堆,底面直径为6米,高1.2米。
①这堆稻谷的体积是多少立方米?
②如果每立方米稻谷的质量为800千克,这堆稻谷的质量为多少
千克?
(3)一根600厘米长的圆柱形木料锯成3段,表面积增加了16平方厘米,这根木料的体积是多少立方厘米?
四、回顾小结
这节课我们复习了什么,通过复习你有什么收获?
板书设计
1、圆柱和圆锥的特征
有两个完全相同的圆形底面一个顶点
圆圆一个圆形底面
柱锥一个曲形侧面
展开一般是个长方形只有一条高
有无数条高
2、计算公式
圆柱的侧面积= 底面周长×高
圆柱的表面积= 侧面积+底面积× 2
圆柱的体积= 底面积×高V=sh
1
圆锥的体积= 底面积×高×
3
1sh V=
3。