摩擦学原理磨损规律
摩擦学第五章磨损
金属/ 非金属 1.7X10-6 1.7X10-6
润滑良好
润滑极好
10X10-6
3X10-7
2X10-6
1X10-7
0.3X10-6
0.3X10-7
1.7X10-6
3.3X10-7
影响因素:
1)载荷 载荷引起表面塑性变形必然导致温度升高,引起粘着。载荷达到 一临界值可发生胶合的值称为临界载荷。
2)温度 温度升高可引起粘着,使表面膜破坏引起粘着发生的温度称为 临界失效温度。 影响温度特性的主要因素是表面压力p和滑动速度v,其中速 度影响较大,因此有时把pv值作为控制粘着磨损和防止胶合发生的 一个参数。
(4)磨损系数
K WH / Nvt
式中,w—磨损量;H—材料硬度; v—速度;t —时间;N —正压力。 磨损系数表示磨损量与工况之间的关系,当载荷与速度为已知,并可 求出一定工况下的磨损系数时,就可估算磨损量,以预测摩擦学系统的寿 命。也可根据磨损系数来确定磨损类型,因为不同的磨损类型具有不同的 磨损系数。
a
,产生磨屑的概率
k ,则滑动 L 距离磨损体积:
v kN p
2 k F a3 n L 3 3 s
分析
粘着磨损的体积磨损率与法向载荷N (或正压力p)成正比,而与软金属材 料的屈服强度(或布氏硬度HB值)成反比。
当正压力 p
因此,在设计时应保证正压力不超过材料的布氏硬度的三分之一。 体积磨损率随着粘着磨损的磨损系数的增大而增大,而后者主要取决于摩 擦表面的润滑状况和两滑动金属相互牢固地粘着的趋向。 此外,磨损率与滑动速度无关。
按照磨损程度的不同,粘着磨损可以分为以下五类: 1) 轻微磨损 粘着点的剪切强度比形成该粘着点的任何一方的基体金属的剪切强度 都小(如锡与铁对磨),磨损发生在粘着点的界面上,材料转移十分轻微, 甚至不产生材料转移。磨合属于这种磨损。
《机械设计》第三节-摩擦-磨损-润滑
t
度不会继续改变,所占时
间比率较小
O
时间t
2、稳定磨损阶段
经磨合的摩擦表面加工硬化,形成了稳定的表面粗糙度,摩擦
条件保持相对稳定,磨损较缓,该段时间长短反映零件的寿命
3、急剧磨损阶段 经稳定磨损后,零件表面破坏,运动副间隙增大→动载振动
→润滑状态改变→温升↑→磨损速度急剧上升→直至零件失效
二、磨损的类型
弹性变形
流体摩擦(润滑)
塑性变形
边界膜
边界摩擦(润滑)—最低要求
边界膜 液体
液
混合摩擦(润滑)
边界膜
液体
一、干摩擦
摩擦理论: 库仑公式 Ff f () Fn
新理论:分子—机械理论、能量理论、粘着理论
简单粘着理论:
Ff
Ar B
Fn
sy
B
a
n
Ar Ari i 1
f () Ff B Fn sy
(3)条件粘度(相对粘度)—恩氏粘度
3、影响润滑油粘度的主要因素
(1)温度 润滑油的粘度随着温度的升高而降低
粘度指数VI ,35,85,110
(2)压力
p 0 ep
P>10MP时,随P↑→ηP↑
4、配油计算
K v vB vA vB
配油比
1、根据摩擦面间存在润滑剂的状况,滑动摩擦分
为哪几种? 2、获得流体动力润滑的基本条件是什么?
3、典型的磨损分哪三个阶段?磨损按机理分哪几 种类型?
4、什么是流体的粘性定律?
5、粘度的常用单位有哪些?影响粘度的主要因素是 什么?如何影响?
6、评价润滑脂和润滑油性能的指标各有哪几个?
润滑油压分布
v1
v2
摩擦磨损试验
实验四摩擦学基础实验(1学时)一.实验目的1•通过实验了解不同材料配副摩擦系数的变化及磨损量的不同。
2.掌握摩擦学实验的基本方法及有关仪器设备的使用方法。
二.实验原理1•概述摩擦表面上的物质,由于表面相对运动而不断损失的现象称磨损。
在一般正常工作状态下,磨损可分三个阶段:(1).跑合(磨合)阶段:轻微的磨损,跑合是为正常运行创造条件。
(2).稳定磨损阶段:磨损更轻微,磨损率低而稳定。
(3)•剧烈磨损阶段:磨损速度急剧增长,零件精度丧失,发生噪音和振动,摩擦温度迅速升高,说明零件即将失效。
(如图4.1)S跑合摩擦行程(时间〉图4.1磨损三个阶段的示总图机件磨损是无法避免的。
但是如何缩短跑合期、延长稳定磨损阶段和推迟剧烈磨损的到來,是研究者致力的方向。
伯韦尔(Bunvell)根据磨损机理的不同,把粘着磨损,磨粒磨损、腐蚀磨损和表面疲劳磨损列为磨损的主要类型,而把表面侵蚀,冲蚀等列为次要类型。
这些不同类型的磨损,可以单独发生,相继发生或同时发生(称为复合磨损形式)。
2磨损的检测与评定研究磨损要通过各种摩擦磨损试验设备,检测摩擦过程中的摩擦系数及磨损量(或磨损率)。
摩擦过程中从表面上脱落下来的材料(磨屑),记录了磨损的发展历程,反映了磨损机理,描述了表面磨损的程度。
发生磨损后的表面,同样有着磨损机理、磨损严重程度及其发展过程的记载。
因此研究磨屑和磨损后表面上的信息是研究磨损的重要一环。
2.1摩擦磨损试验机磨损试验的目的在于研究各种因素对摩擦磨损的影响,从而合理地选择配对材料,采用有效措施降低摩擦、磨损,正确设计摩擦副的结构尺寸及冷却设施等等。
摩擦磨损试验大体上可分为实验室试验,模拟试验或台架试验,以及使用试验或全尺寸试验三个层次,各层次试验设备的要求各不相同。
(1)实验室评价设备实验室设备主要用于摩擦磨损的基础研究,研究工作参数(载荷、速度等)对摩擦磨损的影响。
可以得到单一参量变化与摩擦磨损过程之间的关系。
摩擦学中的磨损机理研究
摩擦学中的磨损机理研究摩擦学是机械工程领域的一个重要分支,它研究的是物体在相对运动过程中所产生的摩擦和磨损现象,以及如何减少这些现象对机械装置的影响。
其中,磨损是摩擦学中一个非常重要的现象,对于机械装置的稳定性、寿命和优化设计都有着重要的影响。
因此,研究摩擦学中的磨损机理具有非常重要的意义。
1. 磨损机理的基本概念磨损是指机械装置在运动中的各个部件之间摩擦相互作用的结果,导致表面材料不断受到磨损,最终导致机械部件的寿命减少。
磨损机理研究的核心问题是要找到磨损过程中的关键因素,并由此导出可控制或减少磨损的方法。
磨损机理的研究范围涉及关键表面、运动方式、材质选择等各种因素。
2. 磨损机理的分类根据磨损过程产生的原因,磨损机理可以分为若干类别。
受力磨损是由于材料表面受到疲劳或压力等作用,导致表面损坏发生。
磨粒磨损是由材料表面摩擦沙粒、微小颗粒等硬质物质导致的表面磨损现象。
化学磨损是由于化学反应产生的腐蚀作用等导致表面逐渐损坏。
电化学磨损是由于表面与介质中的电解质在电化学过程中对表面的腐蚀作用产生的磨损现象。
最后,磨损机理也可以根据磨损过程产生的不同阶段来分类,如初始阶段、稳态阶段和失耗阶段等。
3. 磨损机理的影响因素磨损机理的产生受到多种因素的影响,不同因素的影响程度也不同。
例如,工作环境中的温度变化、表面材料的硬度、表面粗糙度、润滑剂的添加和压力等因素都会对磨损机理的产生产生重要的影响。
其他因素也可能影响磨耗的发生,如表面清洁度、紊流、润滑剂的粘度、温度和化学成分等。
4. 磨损机理的研究现状对于磨损机理的研究一直是摩擦学研究的重点,许多研究人员致力于解决这个问题。
研究方法包括试验、实验模拟和数值仿真等。
例如,试验可以直接模拟各种不同的工作环境来研究磨损机理的产生机理。
实验模拟利用不同材料的样品来模拟磨损过程,通过比较和分析不同材料的磨损性能来深入了解磨损机理产生和发展的规律。
数值仿真则可以通过计算机模拟磨损过程来评估磨损机理的影响因素及其作用程度。
磨损及磨损理论
粘着结合强度比两基体金属的抗剪强度都高,切应力高于粘着结合强度。 剪切破坏发生在摩擦副金属较深处,表面呈现宽而深的划痕。
此时表面将沿着滑动方向呈现明显的撕脱,出现严重磨损。如果滑动继 续进行,粘着范围将很快增大,摩擦产生的热量使表面温度剧增,极易出现 局部熔焊,使摩擦副之间咬死而不能相对滑动。 这种破坏性很强的磨损形式,应力求避免。
所以磨损是机器最常见、最大量的一种失效方式。据调查, 轮胎压痕(SEM 5000X) 联邦德国在1974年钢铁工业中约有30亿马克花费在维修上,其中 直接由于磨损造成的损失占47%,停机修理所造成的损失与磨损 直接造成的损失相当,如果再加上后续工序的影响,其经济损失 还需加上10%一20%。
摩擦痕迹 (350X)
1.6
磨损过程的一般规律:
1、磨损过程分为三个阶段:
表面被磨平, 实际接触面 积不断增大, 表面应变硬 化,形成氧 化膜,磨损 速率减小。
随磨损的增长,磨耗 增加,表面间隙增大, 表面质量恶 化,机件快速失效。
斜率就是磨损速率,唯一稳定值; 大多数机件在稳定磨损阶段(AB 段)服役; 磨损性能是根据机件在此阶段 的表现来评价。
(3)磨损比
冲蚀磨损过程中常用磨损比(也有称磨损率)来度 量磨损。
Hale Waihona Puke 材料的冲蚀磨损量(g或μ m 3) 磨损比= 造成该磨损量所用的磨料量(g)
它必须在稳态磨损过程中测量,在其它磨损阶段 中所测量的磨损比将有较大的差别。 不论是磨损量、耐磨性和磨损比,它们都是在一 定实验条件或工况下的相对指标,不同实验条件或 工况下的数据是不可比较的。
当材料产生塑性变形时,法向载荷W与较软材料的屈服极限σy之间的关系:
(1)
当摩擦副产生相对滑动,且滑动时每个微凸体上产生的磨屑为半球形。 其体积为(2/3)πa3,则单位滑动距离的总磨损量为:
摩擦磨损基本原理
4.犁沟效应
犁沟效应是硬金属的粗糙峰嵌入软金属后,在滑 动中推挤软金属,产生塑性流动并划出一条沟槽。 犁沟效应的阻力是摩擦力的组成部分,在磨粒磨损 和檫伤磨损中,为主要分量。
硬金属表面的粗糙峰由许多半角为θ 的圆锥体组成,在法向载荷作用下,硬 峰嵌入软金属的深度为h,滑动摩擦时, 只有圆锥体的前沿面与软金属接触。 接触表面在水平面上的投影面积A =πd2/8; 在垂直面上的投影面积S=dh/2。 如果软金属的塑性屈服性能各向同性,屈服极限为σs,于是 法向载荷W和犁沟力Pe 分别为
定律三:摩擦系数与滑动速度无关。虽然对于金属材料基 本符合,而对粘弹性显著的弹性材料,摩擦系数则明显与滑 动速度有关。
特别注意:在古典摩擦定律中,摩擦系数µ是一个常数。 大量的试验指出,很难确定某种摩擦副固定的摩擦系数, 仅在一定的环境(湿度温度等)和工况(速度和载荷等)下,对 于一定的材质的摩擦副来说,µ才有可能是一个常数。如在 正常的大气环境下,硬质钢摩擦副表面的µ为0.6,但在真 空下,其µ可达到2.0。 因此,通过摩擦试验测得试样的摩擦系数时,必须注明 试验条件,否则所得的试验数据没有意义。
a.金属的整体机械性质:如剪切强度、屈服极限、硬度、弹 性模量等,都直接影响摩擦力的粘着项和犁沟项。 b. 晶态材料的晶格排列:在不同晶体结构单晶的不同晶面 上,由于原子密度不同,其粘着强度也不同。如面心立方晶 系的Cu的(111)面,密排六方晶系的Co的(001)面,原子密度 高,表面能低,不易粘着。
对金属间的摩擦而言,主要是粘着作用,其次是“犁沟”作用。 而材料的弹性变形引起的能量消耗很小,因而对总摩擦阻力的 影响很小,故可忽略不计,因此摩擦阻力可用下式表达:
F = F 剪 + F犁
机械摩擦与磨损
机械摩擦与磨损摩擦是物体之间接触表面相对运动时产生的力的阻碍,常常引起能量损耗和磨损。
机械摩擦和磨损是一个广泛研究的领域,涉及到材料科学、工程学和物理学等多个学科。
本文将探讨机械摩擦与磨损的原理、常见磨损机制以及减少磨损的方法。
一、机械摩擦和磨损的原理机械摩擦力的产生主要是由于不同物体之间的相互作用力和物体表面形状的不规则性。
当两个物体之间存在相对运动时,它们表面原子之间的接触力导致了摩擦力的产生。
这一过程中,表面的微小凸起和凹陷随着相对运动被磨损,导致能量损耗和材料表面的物质消耗。
二、常见的磨损机制1. 粘着磨损:当两个物体相对运动时,表面原子之间的吸引力会导致粘着现象,使得物体表面材料被剥离或形成痕迹。
2. 疲劳磨损:循环加载和卸载会导致材料发生应力变化,造成表面微裂纹的扩展和最终的磨损。
3. 磨粒磨损:在摩擦过程中,杂质和硬颗粒被夹在物体表面之间,造成局部的损伤和表面磨损。
4. 腐蚀磨损:在特定环境中,例如润滑剂失效或者氧化性环境下,腐蚀会导致材料表面的腐蚀和磨损。
三、减少磨损的方法1. 润滑:通过在摩擦表面施加润滑剂,可以降低表面之间的接触力,减少摩擦和磨损。
2. 表面处理:表面涂层、氮化和硬质合金等技术可以增强材料的抗磨损性能,减缓磨损过程。
3. 设计优化:通过改变物体的几何形状和表面纹理,可以减少摩擦力的发生和磨损的产生。
4. 材料选择:选择具有高硬度和耐磨损特性的材料,可以有效地延长材料的使用寿命。
5. 磨损监测与维护:定期监测机械设备的磨损状况,及时进行维护和更换磨损部件,以减少不必要的磨损。
结论机械摩擦和磨损是工程和科学研究中一个重要的问题。
通过了解磨损的原理和机制,以及采取有效的减少磨损的方法,可以延长材料的寿命,提高设备的效率,并减少资源的浪费。
在未来的研究中,我们还需要进一步探索新的材料和技术,以应对不同工况和环境下的磨损问题。
摩擦力学的磨损特性分析
摩擦力学的磨损特性分析摩擦力学是研究摩擦行为和力学性质的学科。
在实际应用中,摩擦力学对于磨损特性的分析有着重要的意义。
本文将通过对摩擦力学的磨损特性进行分析,探讨其在实际应用中的重要性和应用前景。
1. 摩擦力学的概念和基本原理摩擦力学是研究摩擦行为的力学学科,涉及到摩擦力的产生机制,摩擦副的特性以及与其相关的磨损现象。
基于阿基米德原理和牛顿第三定律,摩擦力学通过摩擦系数、压力和相对运动速度等参数对摩擦行为进行描述和定量分析。
2. 磨损现象与机理磨损是摩擦力学中重要的研究对象,它指的是物体表面因为相对运动而损失材料的现象。
磨损可以通过磨损模式进行分类,常见的磨损模式包括磨粒磨损、疲劳磨损和腐蚀磨损等。
不同的磨损模式有不同的机理,因此对于摩擦力学的磨损特性进行分析需要考虑这些不同的机理。
3. 摩擦力学的磨损特性分析方法在摩擦力学的磨损特性分析中,常用的方法包括实验测试、数值模拟和理论分析等。
实验测试可以通过模拟实际工况来获取实际磨损情况的数据,数值模拟则可以通过计算机仿真来预测磨损行为。
理论分析则是通过建立摩擦力学的数学模型和方程进行分析,从而得到磨损特性的定量描述。
4. 摩擦力学的磨损特性在实际应用中的重要性摩擦力学的磨损特性对于实际应用具有重要的意义。
在机械工程领域,磨损是机械零部件寿命的重要影响因素。
通过对磨损特性的分析和评估,可以选择适当的材料和润滑方式,延长机械零部件的使用寿命。
在摩擦学中,对于摩擦材料的选择和摩擦副的设计也需要考虑磨损特性,以确保正常工作和可靠性。
5. 摩擦力学的磨损特性分析的应用前景随着科学技术的发展,摩擦力学的磨损特性分析得到越来越广泛的应用。
在材料科学中,通过对摩擦力学的磨损特性进行分析,可以设计和合成具有良好磨损性能的新材料。
在工程应用中,通过对摩擦副的优化和润滑方式的改进,可以提高机械系统的效率和可靠性。
总结:摩擦力学的磨损特性分析是研究摩擦行为和力学特性的重要方面。
摩擦磨损基本原理
摩擦磨损基本原理摩擦磨损是指两个接触的物体之间由于相对运动而产生的表面损伤现象。
摩擦磨损是一种普遍存在的现象,对于润滑技术、材料科学、机械工程等领域具有重要意义。
摩擦磨损的基本原理涉及到力学、热学、接触力学、表面科学等多个学科的知识。
摩擦磨损的基本过程可以概括为接触、破坏和脱落三个阶段。
在接触过程中,两个物体表面因为施加的外力而发生相互接触。
接触区域的应力和应变随着施加的力的增大而增加,而且还受到表面形貌、材料硬度等参数的影响。
随着外力增大,接触区域的变形加大,产生摩擦力,使得物体相对运动。
摩擦力对磨损的贡献主要通过两个方面:一是由于摩擦力的作用,使得接触区域的局部温度升高,导致材料处于高温和高应力状态,从而容易发生热疲劳、塑性变形和相变等现象。
这些过程都会导致表面产生裂纹、变形和疲劳剥落等磨损现象。
二是由于摩擦力的作用,使得接触区域的材料发生塑性流动和磨粒切削现象。
这些过程会导致材料的变形和脱落,从而造成表面的磨损。
在摩擦磨损的研究中,磨损机理的理论模型被广泛运用。
其中,最基本的模型是Archard模型,该模型认为磨损量与应力、相对滑动距离和材料的硬度等参数有关。
这个模型的关键假设是磨损过程中的材料脱落量与实际接触面积成正比。
基于此模型,许多研究进一步提出了考虑表面形貌、摩擦力、温度效应和润滑剂的改进模型。
另外,摩擦磨损也与材料的物理化学性质密切相关。
例如,摩擦磨损中的表面氧化和化学反应会使材料表面的性质发生变化,从而影响磨损机理。
一些研究表明,表面的硬度和化学反应等特性会影响摩擦磨损的发展。
此外,润滑剂也是影响摩擦磨损过程的重要因素。
润滑剂通过减少表面间的摩擦力和热量生成,降低了材料表面的磨损。
摩擦磨损的研究和控制对于提高机械零部件的寿命和可靠性具有重要意义。
通过优化材料硬度、润滑剂的选择和设计更好的表面形貌等手段,可以减少摩擦磨损的发生。
此外,对于特定工况下的摩擦磨损问题,还可以采用更先进的摩擦材料、表面处理技术和涂层技术等措施来提高材料的耐磨性能。
摩擦学原理第章磨损理论
摩擦学原理第章磨损理论本文将讨论摩擦学原理中的磨损理论。
磨损是指两个物体表面接触,因相对运动或静止而引起的表面质量减少或形状变化。
因此,磨损是一种不可避免的表面现象。
在制造过程中对磨损进行研究是极其重要的,因为磨损会导致成本增加,使得设备和部件的寿命减少。
因此,磨损理论对于工程师来说是非常重要的。
磨损机理磨损的机理可以分为三种类型:粘着磨损粘着磨损是指表面接触时,两个物体的接触点出现局部的塑性形变,导致两个物体表面产生能够在断裂时撕裂的结合力。
这种磨损主要出现在金属材料中。
它的形成是由于两个表面间的粘着摩擦力超过了物体表面的材料强度而引起的。
磨粒磨损磨粒磨损是指在表面接触过程中,其中一个物体表面的硬颗粒形成的极高应力,在另一物体表面的损耗机制下形成切削或剥落的表面损伤。
这种磨损主要出现在有磨料的环境中。
疲劳磨损疲劳磨损是指在表面接触中受到重复载荷作用的物体表面,由于载荷的作用,表面形成微小的裂纹,这些裂纹随着时间的推移逐渐扩大,最终导致断裂。
这种磨损主要出现在金属材料中。
磨损测试了解磨损机理对于测试磨损有很大的帮助。
使用标准试验程序,可以评估不同材料之间的磨损率和耐磨性能。
在磨损测试过程中,机器将不同材料的样本表面接触,并测量它们之间的摩擦力和磨损量。
这些测试可以通过摩擦器、磨损测试机等设备来完成。
磨损控制由于磨损对机械设备和部件的寿命和成本都有很大的影响,控制磨损已成为一个非常重要的问题。
磨损控制采取各种方法,包括材料的使用、表面涂层、润滑剂、设计和运行条件的优化等。
下面我们将简单介绍这些方法的一些方面。
材料的选择材料的选择对于磨损控制至关重要。
选择适合特定应用的材料,可以延长生命周期,增加效率,降低维护成本。
通常使用高硬度、高耐磨损的金属、陶瓷和聚合物等材料来提高材料的耐磨性能。
表面涂层涂层是一种能够提高材料表面耐磨性能和摩擦系数的方法。
涂层可以使材料表面粗糙度减小,并降低摩擦力。
常用的涂层材料有核化镀层、磷化处理和高分子膜等。
第三章 磨损及磨损理论
c.材料的组织结构和表面处理
多相金属比单相金属的抗粘着磨损能力高;金 属中化合物相比单相固溶体的粘着倾向小。
通过表面处理技术在金属表面生成硫化物、磷 化物或氯化物等薄膜可以减少粘着效应,同时 表面膜限制了破坏深度,提高抗粘着磨损的能 力。
d.元素周期表中的B族元素,如锗、银、镉、铟、 锡、锑、铊、铅、铋与铁的冶金相容性差,抗 粘着磨损性能好。而铁与A族元素组成的摩擦副 粘着倾向大。
b. 相同金属或冶金相溶性大的材料摩擦副易发生 粘着磨损。异种金属或冶金相溶性小的材料摩 擦副抗粘着磨损能力较高。金属与非金属摩擦 副抗粘着磨损能力高于异种金属摩擦副。
应避免使用同种金属或冶金相溶性大的金属组成 摩擦副。
冶金的相(互)溶性:两种金属能在固态互相溶解的性能。 摩擦的相(互)溶性:一定配对材料在发生摩擦和磨损时抵 抗粘着的性能。 一般,冶金相溶性好的金属摩擦副,其摩擦相溶性就差, 相同金属摩擦副,摩擦互溶性最差。
③ 速度的影响
随着滑动速度的变化,磨损类型由一种形式转变为另一种 形式。 如图(a)所示,当摩擦速度很低时,主要是氧化磨损,出 现Fe2O3的磨屑,磨损量很小。 随速度的增大,氧化膜破裂,金属的直接接触,转化为粘 着磨损,磨损量显著增大。 滑动速度再高,摩擦温度上升,有利于氧化膜形成,又转 为氧化磨损,磨屑为Fe3O4,磨损量又减小。 如摩擦速度再增大,将再次转化为粘着磨损,磨损量又开 始增加。
它们不产生切削作用,因此Ks值明显减小。
图(b)是滑动速度保持一定而改变载荷所得到的钢对钢磨
损实验结果。
载荷小产生氧化磨损, 磨屑主要是Fe2O3;
当载荷达到W0后, 磨屑是FeO、Fe2O3 和Fe3O4的混合物。 载荷超过临界载荷Wc以后, 便转入危害性的粘着磨损。
磨损与摩擦的基本原理及其应用
磨损与摩擦的基本原理及其应用磨损和摩擦是我们生活中经常遇到的现象。
我们走路时,鞋底与地面的摩擦产生噪音,驾车时,车轮和地面的摩擦使我们车辆行驶。
同时,磨损和摩擦也是一项重要的研究领域,与工程学、材料学、机械制造等众多领域息息相关。
本文将介绍磨损和摩擦的基本原理及其应用。
一、摩擦的基本原理摩擦可以定义为两个物体接触并相对运动时的阻力。
摩擦力的大小与两个物体之间的接触面积和物体表面间的粗糙程度有关。
通常,摩擦力的大小可以通过以下公式表示:Ff = fN其中,Ff为摩擦力,f为摩擦系数,N为垂直于接触面的受力大小。
摩擦系数是一个无量纲数值,表示为μ。
它是考虑到物体表面状况的因素,如表面的成分、温度和光滑度等。
不同物体之间摩擦系数不同,例如,滑冰鞋在冰上滑行时的摩擦系数很小,而橡胶底鞋子在冰面表上行走时的摩擦系数较大。
摩擦力的大小决定了物体运动状态的变化,当物体沿着某个方向施加一定的力时,摩擦力会在反方向上阻碍运动,产生负加速度,即使物体足够大,对地面施加的力足够大,摩擦力也会阻碍物体移动。
二、磨损的基本原理磨损是材料表面因相互接触和摩擦而失去原来形状的现象。
摩擦往往导致材料表面磨损和损坏,主要分为两种类型:磨粒磨损和疲劳磨损。
磨粒磨损是指材料表面的颗粒和其他颗粒之间的摩擦损失。
磨损率取决于磨损颗粒的硬度和材料表面硬度的比较。
颗粒的尺寸越小,磨损率则越高。
磨粒磨损是一种常见的磨损方式,例如,机械零件在运转过程中容易受到此种磨损。
疲劳磨损又称为表面疲劳磨损,是由表面微小韧性变形引起的剥落或断裂而导致的,通常出现在高速运动的机械零件之间的接触面。
在机械工作时,因为机械零件之间的摩擦力和容易产生热量,从而导致零件表面的变形和裂纹。
一旦表面氧化,则容易受到疲劳磨损。
三、磨损与摩擦的应用磨损和摩擦在工程制造和材料科学中具有广泛的应用。
例如,工业生产中的磨损是一个非常重要的因素,因为它会影响设备的寿命和生产效率。
磨损的控制不仅可以降低运营成本,还可以提高设备的寿命和可靠性。
摩擦学原理(第4章磨损理论)
由于ER是磨损单位体积所需要的能量,而Ee是摩擦一次材料单位体积所吸 收的能量,需经过n次才形成磨屑,于是
ER nEe
考虑到接触峰点处产生变形的体积即储存能量的体积Vd比被磨 掉的体积Vw大,若令 Vw ,因而可得
Vd
ER
将式(4.10)代入式(4.12),则得
ER
nEe
(4.12)
将磨损分类的主要目的是为了将实际存在的各种各样的磨损现象归纳 为几个基本类型,从而更好地分析磨损规律。早期人们根据摩擦的作 用将磨损分为以下三大类:
1.机械类 由摩擦过程中表面的机械作用产生的磨损,包括磨粒磨损、表面塑性 变形、脆性剥落等,其中磨粒磨损是最普遍的机械磨损形式。 2.分子-机械类 由于分子力作用形成表面粘着结点,再经机械作用使粘着结点剪切所 产生的磨损,这类磨损的主要形式就是粘着磨损。 3.腐蚀-机械类 这类磨损是由介质的化学作用或电化学作用引起表面腐蚀,而摩擦中 的机械作用加速腐蚀过程,它包括氧化磨损和化学腐蚀磨损。
nEb k e [ (n 1) 1]
由于形成磨屑需要很多次摩擦,即n>>1,上式可改写为:
ER nEb k e [n 1]
(4.13)
式(4.13)建立了摩擦次数n和磨损所需的能量密度ER与形成磨屑的能量 密度Eb之间的关系。
为了计算线磨损度可将式(4-12)代入式(4-11)。这样
(4.6)
对重量磨损率来说,体耐磨性可表示为: E
Aa ds dG
(4.7)
3. 磨损常数
在有些情况下,为了对比不同硬度材料的磨损量, 可采用磨损常数来判定磨损大小,磨损常数K的定 义:
磨损量 硬度 3VH K 法向载荷 滑行距离 NS
摩擦学基础知识磨损PPT课件
(3)擦伤:
粘着结合强度比两基本金属的抗剪强度都高。 剪切发生在较软金属的亚表层内或硬金属的亚表 层内,转移到硬金属上的粘着物使软表面出现细 而浅划痕,硬金属表面也偶有划伤。
(4)划伤:
粘着结合强度比两基体金属的抗剪强度都高, 切应力高于粘着结合强度。剪切破坏发生在摩擦 副金属较深处,表面呈现宽而深的划痕。
e: 表面粗糙度:一般情况下, 降低摩擦副的表面粗糙度能 提高抗粘着能力。
24
c: 材料的组织结构和表面处理:
--多相金属比单相金属的抗粘着磨损能力 高。通过表面处理技术在金属表面生成硫 化物、磷化物或氯化物等薄膜可以减少粘 着效应,同时表面膜限制了破坏深度,提 高抗粘着磨损的能力。
25
d:材料的硬度: 硬度高的金属比硬度低的 金属抗粘着能力强,表面 接触应力大于较软金属硬 度的1/3时,很多金属将由 轻微磨损转变为严重的粘 着磨损。
19
(5) 咬死:
粘着结合强度比两基体金属的抗剪强 度都高,粘着区域大,切应力低于粘着 结合强度。摩擦副之间发生严重粘着而 不能相对运动。
20
4 简单粘着磨损计算(Archard模型):
21
三条粘着磨损规律:
1.磨损量与滑动距离成正比:适用于多种条件。 2.磨损量与载荷成正比:适用于有限载荷范围。 3.磨损量与较软材料的硬度或屈服极限成正比:
咬死
点蚀 研磨 划伤 凿削
黏着坑密集,材料转移严重,摩擦副大量焊合,磨损急剧增加, 摩擦副相对运动受到阻碍或停止。 材料以极细粒状脱落,出现许多“豆斑”状凹坑。
宏观上光滑,高倍才能观察到细小的磨粒滑痕。
低倍可观察到条条划痕,由磨粒切削或犁沟造成。
存在压坑,间或有粗短划痕,由磨粒冲击表面造成
摩擦磨损原理
摩擦磨损原理
摩擦磨损是指两个物体在接触过程中由于相对移动发生的表面磨损现象。
它是在两个物体之间发生相对滑动时,由于接触面之间存在摩擦力的作用,使得物体表面的材料发生局部破坏和剥落的过程。
摩擦磨损可以分为表面磨损和微观磨损。
表面磨损是指摩擦力使物体表面的一层材料被削减或剥落,导致表面形态发生改变的磨损形式。
微观磨损是指摩擦力作用下,在微观尺度上出现材料的剪切、断裂和摩擦等微小变形和破坏的磨损形式。
摩擦磨损的机理主要包括物理磨损、化学磨损和机械磨损。
物理磨损是指摩擦力在物体表面产生高温或高压,使表面材料发生相变、硬化等变化,从而导致磨损的过程。
化学磨损是指摩擦过程中,物体表面的化学物质与摩擦副的化学物质发生反应,产生化学反应产物,导致磨损的过程。
机械磨损是指摩擦力使物体表面发生微小的破碎和剥落,导致磨损的过程。
为了减少摩擦磨损,可以采取以下措施。
首先,选择适当的润滑方式,使用润滑油、涂层等来减少摩擦和磨损。
其次,控制摩擦接触表面的质量和粗糙度,减少表面间的相互作用力。
再次,使用合适的材料,例如使用硬度高、耐磨性好的材料来减少磨损。
最后,正确设计和使用机械装置,避免过高的载荷和速度,以及避免突然的冲击和振动,以减少摩擦磨损的发生。
总结起来,摩擦磨损是两个物体在相对滑动过程中由于摩擦力的作用而引起的表面磨损现象。
了解摩擦磨损的原理和机理,
可以有助于我们采取有效的措施来减少磨损, prolonging物体的使用寿命。
摩擦学原理磨损规律
5.2 影响磨损因素
5.2.1 材料的减摩耐磨机理
• 1.软基体中硬相承载机理 • 通常认为减摩耐磨材料的组织应当是在软的塑性基体上分布着许多硬颗
粒的异质结构。例如,锡基巴氏合金的组织是以含锑与锡固溶体为塑性 基体,在该软基体上面分布着许多硬的Sn-Sb立方晶体和Cu-Sn针状晶 体。在正常载荷作用下,主要由突出在摩擦表面的硬相直接承受载荷, 而软相起着支持硬相的作用。由于是硬相发生接触和相对滑动,所以摩 擦系数和磨损都很小。又由于硬相被支持在软基体之上,易于变形而不 致于擦伤相互摩擦的表面。同时,软基体还可以使硬相上压力分布均匀。 当载荷增加时,承受压力增大的硬相颗粒陷入软基体中,将使更多的硬 颗粒承载而达到载荷均匀分布。
,良好的磨合还能够有效地改善 摩擦副其它性能。如图5.8所示, 滑动轴承经磨合后可以改善表面 形貌,使轴承临界特性数降低, 更利于建立流体动压润滑膜。又 如发动机的合理磨合提高了缸套 活塞环的表面品质,减少擦伤痕 迹,提高密合性,可使发动机的 耗油量较一般情况下降达50%。
3.提高磨合性能的措施
• 良好的磨合性能表现为磨合时间短,磨合磨损量小,以及磨合后的表面 耐磨性高。为提高磨合性能一般可采取以下措施:
5.1.2 磨合磨损
1.表面形貌与性能的变化
• 生产实践中,主要有四种磨合方式,即干摩擦条件下的磨合、普通润滑 油中的磨合、添有磨料润滑油中的磨合和电火花磨合。在有润滑油的磨 合磨损中,除粘着磨损和磨粒磨损主要机理外,同时还存在化学磨损、 疲劳磨损、冲蚀磨损、气蚀磨损和电化磨损等多种复杂机理。在添有磨 料润滑油中的磨合中,采用的磨料有微米固体颗粒和纳米固体颗粒,研 究人员将微米和纳米固体粉末混合在一起作为磨料,取得了较好的磨合 效果。电火花磨合是利用放电原理使运转的摩擦副达到磨合的目的。
第三章-磨损及磨损机理
第三章-磨损及磨损机理第三章磨损及磨损机理概述物体摩擦表面上的物质,由于表面相对运动而不断损失的现象称磨损。
在一般正常工作状态下,磨损可分三个阶段:a.跑合(磨合)阶段:轻微的磨损,跑合是为正常运行创造条件。
b.稳定磨损阶段:磨损更轻微,磨损率低而稳定。
c.剧烈磨损阶段:磨损速度急剧增长,零件精度丧失,发生噪音和振动,摩擦温度迅速升高,说明零件即将失效。
(如图3.1)机件磨损是无法避免的。
但,如何缩短跑合期、延长稳定磨损阶段和推迟剧烈磨损的到来,是研究者致力的方向。
影响磨损的因素很多,例如相互作用表面的相对运动方式(滑动,滚动,往复运动,冲击),载荷与速度的大小,表面材料的种类,组织,机械性能和物理-化学性能等,各种表面处理工艺,表面几何性质(粗糙度,加工纹理和加工方法),环境条件(温度、湿度、真空度、辐射强度、和介质性质等)和工况条件(连续或间歇工作)等。
这些因素的相互影响对于磨损将产生或正或负的效果,从而使磨损过程更为复杂化。
磨损过程涉及到许多不同的学科领域,由于具有跨学科的性质,至今还很难将它的规律解释清楚。
已经有很多学者对磨损进行了大量的研究。
如20世纪20年代,汤林森提出了分子磨损的概念,他认为两个粗糙表面在接触摩擦过程中相互接近,而一个表面上的原子被另一个表面俘获的现象就是磨损。
霍尔姆在上述基础上作了进一步的发展,他指出摩擦材料的压缩屈服极限σb(即硬度)对耐磨性的影响很大。
50年代初,奥贝尔(Oberle)从表层材料的机械破坏着眼,联系“切削”过程来解释磨损,他认为影响磨损的主要因素除硬度H外,还有材料的弹性模量E。
处在弹性极限内的,变形越大,机械破坏越少,并提出用模数(m=E/H×105)来反映材料的耐磨性,m值高则耐磨性好。
冯(Feng)提出了机械性质相近的两表面上机械嵌锁作用导致界面上既粘连又犁削的观点。
布洛克(Blok)认为软钢表面变得粗糙和发生塑性变形,是由于应力过高而引起的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使工作条件急剧恶化,而导致零件完全失效。
5.1.2 磨合磨损
• 加工装配后的摩擦副表面具有微观和宏观几何缺陷,使配合面在开始摩 擦时的实际接触峰点压力很高,因而磨损剧烈。在磨合过程中,通过接 触峰点磨损和塑性变形,使摩擦副接触表面的形态逐渐改善,而表面压 力、摩擦系数和磨损率也随之降低,从而达到稳定的磨损率进入正常磨 损阶段。按照欧洲经济合作和发展组织(OECD)的工程材料磨损小组 的定义,磨合是机械零件在使用初期,改善其适应性、表面形貌和摩擦 相容性的过程。可认为是形成表面氧化膜等的化学过程和形变硬化等的 冶金过程。
第五章 磨损规律 Wear Characteristics
• 各种磨损形式有着不同的作用机理:磨粒磨损(Abrasive Wear )主要是 犁沟和微观切削作用;粘着磨损(Adhesive Wear )过程与表面间分子作 用力和摩擦热密切相关;接触疲劳磨损(Contact Fatigue Wear )是在循 环应力作用下表面疲劳裂纹萌生和扩展的结果;而氧化和腐蚀磨损 (Oxidation and Corrosive Wear )则由环境介质的化学作用产生。
• 实际的磨损现象通常不是以单一形式出现,而是以一、两种为主,几种 不同机理的磨损形式综合表现的。
• 随着工况条件的变化,实际机械零件的主要磨损形式也会相应改变。图 5.1给出了齿轮失效方式随着载荷和速度的变化情况。在这一章中,磨 损被视作综合的表面损伤现象,讨论磨损变化规律、影响因素和抗磨措 施。
图5.5是塑性指数曲线。 随磨合时间的延续, 经过磨合磨损表面由 塑性接触过渡到弹塑 性接触,甚至弹性接 触状态。
2.磨合规范
• 采用不同的磨合规范可以使磨合时间、磨合磨损量以及磨合后的磨损率 有很大的不同。实践证明:良好的磨合能够使摩擦副的正常工作寿命提
高1~2倍。 • 在图5.6中,若以下标0表示的是磨合磨损的物理量;而以下标a表示的
5.1.2 磨合磨损
1.表面形貌与性能的变化
• 生产实践中,主要有四种磨合方式,即干摩擦条件下的磨合、普通润滑 油中的磨合、添有磨料润滑油中的磨合和电火花磨合。在有润滑油的磨 合磨损中,除粘着磨损和磨粒磨损主要机理外,同时还存在化学磨损、 疲劳磨损、冲蚀磨损、气蚀磨损和电化磨损等多种复杂机理。在添有磨 料润滑油中的磨合中,采用的磨料有微米固体颗粒和纳米固体颗粒,研 究人员将微米和纳米固体粉末混合在一起作为磨料,取得了较好的磨合 效果。电火花磨合是利用放电原理使运转的摩擦副达到磨合的目的。
为稳定磨损的物理量。令磨损率为单位时间的磨损量,则有:
•
dQ
dT
a tg
(5.1)
• 总磨损量Q=Q0+Qa,而稳定磨损量Qa=aT知:正常磨损寿命TTa a随1着a (QQ0和Q0 a) 的减小而增加。(5.2)
2.磨合规范
三种磨合规范的磨合曲线
2.磨合规范
• 由此可知:考虑表层材料在磨损过程中的动态特性和破坏特点,以及材 料与周围介质的作用等等,对于建立磨损理论及其计算方法具有十分重 要的意义,而这一任务的复杂性使得磨损计算至今还不能满足应用的要 求。
5.1 磨损过程曲线
5.1.1 磨损过程曲线
• 图5.2给出了典型的磨损曲线,它表示磨损量Q随时间T的变化关系。各 种磨损曲线通常由表示三种不同的磨损变化过程中三个阶段组成。
• 不同摩擦副结构和性质以及不同磨合工况,其磨合磨损机理的构成都不 一样。
1.表面形貌与性能的变化
• 磨合阶段的磨损形式主要是粘着磨损和磨粒磨损。特别是在表面粗糙度 较高,两表面硬度相差较大时,表面微凸体的机械相互作用,硬的微凸 体对较软表面的犁削作用,更是磨合初期的主要磨损形式。随着磨合磨 损过程的进行,表面粗糙度将发生变化,正常的情况是粗糙度下降,磨 粒磨损或微凸体机械作用的磨损逐渐减少,直至进入磨损的持续阶段。
,良好的磨合还能够有效地改善 摩擦副其它性能。如图5.8所示, 滑动轴承经磨合后可以改善表面 形貌,使轴承临界特性数降低, 更利于建立流体动压润滑膜。又 如发动机的合理磨合提高了缸套 活塞环的表面品质,减少擦伤痕 迹,提高密合性,可使发动机的 耗油量较一般情况下降达50%。
3.提高磨合性能的措施
• 良好的磨合性能表现为磨合时间短,磨合磨损量小,以及磨合后的表面 耐磨性高。为提高磨合性能一般可采取以下措施:
• 选用合理的磨合规范 • 选择适当的润滑油和添加剂 • 采用合适的材料配对 • 控制制造精度和表面粗糙度
5.2 影响磨损因素
图5.2 磨损过程曲线
5.1.1 磨损过程曲线
• 组成磨损曲线的三种磨损阶段为: • I.磨合磨损(Running-in Wear Process )阶段:磨损率随时间增加而逐
渐降低。它出现在摩擦副开始运行时期。 • II.稳定磨损(Steady Wear Process )阶段:摩擦表面经磨合以后达到
第五章 磨损规律 Wear Characteristics
图5.1 齿轮失效方式 failure mode of gear
第五章 磨损规律 Wear Characteristics
• 近年来通过对磨损状态和磨屑分析以及对磨损过程的深入研究,提出了 一些磨损理论,它们是磨损计算的基础。
• 磨损计算方法的建立必须考虑磨损现象的特征。而这些特征与通常的强 度破坏很不相同。例如摩擦副的实际接触点是离散的和变化的,因而摩 擦副承载材料的体积很小并在磨损过程中不断变化。
• 通过磨合磨损不仅使摩擦副在几何上相互贴服,同时还使表面层的组织 结构发生变化,获得适应工况条件的稳定的表面品质。
1.表面形貌与性能的变化
Ra
磨合过程中粗糙度Ra 值的变化
1.表面形貌与性能的变化
图5.4表示较硬摩擦副 表面磨合前后表面形 貌变化。磨合使接触 面积显著地增加和峰 顶半径增大。
1.表面形貌与性能的变化