差动保护的比率制动特性曲线及现场测试方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

差动保护是许多电气设备的必备保护,变压器的差动保护由于有变比误差和星角变换问题,相对其他电气设备的差动保护较为复杂,常规的变压器差动保护为了保证星角接线方式的变压器保护差流的平衡,一般将星侧的CT接角形,而将角侧的CT接成星形。而现代的微机变压器差动保护已开始采用将变压器两侧CT均接成星形进入装置,由装置内部软件完成星角转换。做常规变压器差动保护制动特性时,可用一个三相试验台通过调整角度输出两相电流,模拟区内或区外故障两侧CT的同名相的电流加入装置,分别做每相的制动特性。如何用一个三相试验台做微机变压器差动保护比率制动曲线呢?下面以

Y/△-11接线的两卷变压器为例进行说明。

假定变压器星侧二次电流为IH,角侧二次电流为IL。确定输入装置的CT电流极性为: 当一次电流流入变压器时,装置的感应电流都为正极性电流流入装置(如图1),这样在正常运行或区外故障时,星侧流入装置的电流与一次同向,角侧流入装置的电流与一次反向,但又由于星角变换而使一次星侧电流滞后角侧30度,所以最后流入装置的二次电流为星侧超前角侧150度,向量如图2,进入装置后,软件通过以下计算完成转角:

图2 图3

即星侧电流

通过以上转换之后,两侧电流大小未变,方向相反,但由于变压器变比和CT变比问题,进入装置的两侧电流大小不相等,所以还要加上平衡系数,最后计算差电流的算法为:

经过以上运算,可以得出,在区外故障和正常运行时,装置算得的差流为零。这就是国内微机变压器差动保护的算法。

由于星角变换由软件进行,所以在做单相比率制动特性时就不一样了。可以看到,如果在星侧加入A相电流I,而软件却计算出星侧:

这时,要做A相比率制动特性,首先要在角侧加入C相电流,方向与星侧所加A相电流相同,大小适当,平衡掉C相差流,否则C相总能使差动保护先动作。之后,在角侧A相加入与星侧A相方向相反的电流,调整电流大小,就可以作出差动保护的比率制动特性曲线。B相和C相做法与此相同。以此类推,也可以得出其他星角接线方式的变压器的微机差动保护比率制动特性曲线的做法。

浅析变压器差动保护的比率制动特性曲线及现场测

试方法

陈杰云

(佛山电力工业局,广东佛山528000)

摘要:目前变压器都安装了差动保护,并引入比率制动式差动继电器,以保障电力系统的安全运行水平。为此,介绍变压器差动保护的制动特性曲线及

现场测试方法。

关键词:变压器;差动保护;制动特性;测试方法

1 前言

变压器是现代电力系统中的主要电气设备之一。由于变压器发生故障时造成的影响很大,故应加强对其继电保护装置功能的调试,以提高电力系统的安全运行水平。变压器保护装置中最重要一项配置——差动保护,就是为了防御变压器内部线圈及引出线的相间及匝间短路,以及在中性点直接接地系统侧的引出线和线圈上的接地短路。同时,由于差动保护选择性好,灵敏度高,因此,我们还应该考虑该保护能躲过励磁涌流和外部短路所产生的不平衡电流,同时应在变

压器过励磁时能不误动。

2 差动保护中引入比率制动特性曲线

变压器在正常负荷状态下,电流互感器的误差很小。这时,差动保护的差回路不平衡电流也很小,但随着外部短路电流的增大,电流互感器就可能饱和,误差也随之增大,这时的不平衡电流也随之增大。当电流超过保护动作电流时,差动保护就会误动,因此,为了防止变压器区外故障发生时差动保护误动作,我们希望引入一种继电器,其动作特性是:它的动作电流将随着不平衡电流的增大而按比例增大,并且比不平衡电流增大的还要快,这样误动就不会出现。因此,我们在差动保护中引入了比率制动式差动继电器,它除了以差动电流作为动作电流外,还引入了外部短路电流作为制动电流。当外部短路电流增大时,制动电流也随之增大,使继电器的动作电流也相应增大,从而有效地防止了变压器区外故障发生时差动保护误动作,制动特性曲线见图1。

由图1可知,该保护继电器能可靠地躲过外部故障时的不平衡电流,能有效地防止变压器区外故障发生时保护误动作,因此,差动保护的制动特性曲线的精确性是决定保护装置正确动作的关键,故制动特性曲线的测试是整套保护装

置的调试重点。

3制动特性曲线的测试方法

以往在实际工作中,由于试验仪器所限,我们很容易忽略比率制动特性的测试,认为制动系数装置已固有,不用测试,结果往往造成保护装置因调试工作不细致而误动作。但随着现场试验仪器的不断先进,我们必须把这项工作做好。常规保护测试制动特性曲线可以在差动绕组和制动绕组分别通入动作电流及制动电流,经重复多次试验后,即可得出特性曲线。但是,随着变压器微机保护在电力系统中的广泛应用,我们又如何测试微机保护的比率制动特性曲线呢?笔者根据在现场对变压器微机保护多次调试总结出的经验看,微机差动保护制动系统只能在高、低压侧模拟区外故障通入电流,并经过计算动作电流和制动电流来求得。现介绍一种简单可靠且精确性高的测试方法,供大家参考,测试接线见图2。

为了方便计算,我们可以先假设变压器接线组分别为Y、y0,电流互感器变比的电流补偿系数为1,并根据现场变压器绕组的不同分为两类。

第一类,两绕组制动特性差动保护。

用两个电流源(可定为I A、I a相,两相电流夹角为180°)将I A相、I a相电流分别接在保护装置的高、低压侧,调整两相电流,令I A=I a,此时I d=0。然后模拟区外故障,I a相电流恒定不变,I A相电流增大使差动电流I d增大直致保护动

作。此时:

动作电流I d=I A-I a;制动电流I r=I A+I a;

则制动系数(即求出图1中的曲线斜率)K b1为:

K b1=(I d-I cd)/(I r-I B)

式中I cd为最小动作电流;I B为拐点电流。

重复上述试验,固定不同的I a值,调整不同的I A值,使其可进行保护动

作,即可求得曲线。由此可使计算出的K b1值与整定的K b1值相符。

第二类:多绕组制动特性差动保护。

这时,动作电流为各侧电流同极性相加,制动电流取各侧电流中的最大值电流。当发生区外故障时,差动电流为不平衡电流,制动电流为最大侧的故障电流。此时,测试方法与第一类相同,可假设I a恒定不变,减小I A电流来增大

差动电流I d,即:

动作电流I d=I a-I A;制动电流I r=I a;

则制动系数K b1=(I d-I cd)/(I r-I B)

计算出制动系数K b1与装置整定值K b1相符。

以上介绍的测试方法只考虑了变压器接线绕组为Y、y0,电流互感器变比的电流补偿系数为1的情况。但在现场工作中,可能会碰到变压器接线绕组为Y、Δ,电流互感器变比的电流补偿系数不为1的情况,这时,我们需要考虑其

他补偿系数的影响。

4结论

经过笔者在现场对不同型号的变压器微机保护的制动系数的测试,发现此方法简单易行,精确度高,值得向大家推广。

相关文档
最新文档